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Abstract. We revisit the problem of generating a “hard” random lattice together with a
basis of relatively short vectors. This problem has gained in importance lately due to new
cryptographic schemes that use such a procedure for generating public/secret key pairs.
In these applications, a shorter basis directly corresponds to milder underlying complexity
assumptions and smaller key sizes.

The contributions of this work are twofold. First, using the Hermite normal form as an
organizing principle, we simplify and generalize an approach due to Ajtai (ICALP 1999).
Second, we improve the construction and its analysis in several ways, most notably by
tightening the length of the output basis essentially to the optimum value.

1. Introduction

A (point) lattice is a discrete additive subgroup of Rm; alternatively, it is the set of
all integer linear combinations of some linearly independent basis vectors b1, . . . ,bn ∈ Rm.
Lattices appear to be a rich source of computational hardness, and in recent years, lattice-
based cryptographic schemes have emerged as an intriguing alternative to more traditional
ones based on, e.g., the factoring and discrete logarithm problems. Among other reasons,
this is because such schemes have yet to be broken by quantum algorithms, and their security
(on the average, for almost all choices of random keys) can be based solely on worst-case
computational assumptions.

In 1996, Ajtai’s seminal work [Ajt04] in this area demonstrated a family of random
lattices for which finding relatively short nonzero lattice vectors is at least as hard as ap-
proximating the well-known Shortest Vector Problem (among others) in the worst case.
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This family of “hard random lattices” has since been used as the foundation for several im-
portant cryptographic primitives, including one-way and collision-resistant hash functions,
public-key encryption, digital signatures, and identity-based encryption (see, for example,
[GGH96, MR07, Reg05, GPV08]).

Ajtai’s initial paper also showed that a hard random lattice can be generated along
with one relatively short lattice vector, which can be useful as a secret key in cryptographic
settings (though such applications seem spare; see [MV03] for the one example of which
we are aware). Shortly thereafter, Goldreich, Goldwasser and Halevi [GGH97] proposed
public-key cryptographic schemes (though without security proofs) in which the secret key
is a short basis (i.e., a basis in which all of the vectors are relatively short) of some public
lattice. One method proposed in [GGH97] for generating a lattice along with a short basis
is first to choose the short basis vectors, and then to transform it into a “random” public
basis by a sequence of lattice-preserving transformations. Unfortunately, this method does
not produce lattices from the provably hard family defined in [Ajt04]. Although improve-
ments to the GGH lattice generator and public-key cryptosystem were later proposed by
Micciancio [Mic01] (following a cryptanalysis of the original scheme by Nguyen [Ngu99]),
there is still no known proof that the resulting random lattices are actually hard on the
average. (We should also mention that the digital signature scheme from [GGH97] has
since been shown to be insecure regardless of the particular method used for generating
lattices [NR06].)

Following [GGH97], Ajtai demonstrated an entirely different method of generating a
lattice together with a short basis [Ajt99]. This generator has the important advantage
that the resulting lattice is drawn, under the appropriate distribution, from the hard family
defined in [Ajt04]. Interestingly, the algorithm apparently went without application until
very recently, when Gentry, Peikert and Vaikuntanathan [GPV08] constructed provably se-
cure (under worst-case assumptions) cryptographic schemes that crucially use short bases
as their secret keys; see also the subsequent works [PVW08, PV08, Pei08] for other appli-
cations. At this point we should mention that technically, the main algorithm of [Ajt99]
actually produces a full-rank set of short lattice vectors (not necessarily a basis), which
nonetheless suffices for all the applications in question.

The maximal length of the generated basis vectors directly affects the security and effi-
ciency of the application in which it is used, both in theory and in practice. More specifically,
it determines the approximation factor in the underlying worst-case lattice assumptions, as
well as the concrete dimensions and key sizes needed for security against real attacks (see
Section 2.1 for details). Therefore, it is very desirable to generate a set that is as short as
possible. Unfortunately, the result from [Ajt99] is far from optimal — the length is bounded

only by O(m5/2), versus the optimal bound of about
√

m (for commonly used parameters)
— and the method appears not to have attracted much attention or improvement since its
publication almost a decade ago (probably due to the lack of applications until recently).

1.1. Our Contributions

Our first contribution is to elucidate and generalize Ajtai’s algorithm [Ajt99] for gen-
erating a hard random lattice along with a relatively short full-rank set of lattice vectors.
We endeavor to give a high-level, modular exposition of the method and the main concerns
that motivate its structure (in the process, we also correct some minor errors in the original
paper). One novelty in our approach is to design and analyze the algorithm around the
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concept of the Hermite normal form (HNF), which is a unique canonical representation for
(integer) lattices. Micciancio [Mic01] has proposed using the HNF in cryptographic appli-
cations to specify a lattice in its “least revealing” representation; here we use the HNF as
the central organizing tool for ensuring that the short basis corresponds to a (uniformly
random) lattice from the hard family of [Ajt04].

Our second contribution is to refine the algorithm and its analysis, improving it in
several ways. First and most importantly, we improve the length of its output set from
O(m5/2) to as low as O(

√
m), where m is the dimension of the output lattice (see Section 3

for precise statements of the new bounds). For the cryptographic schemes of, e.g. [GPV08],
this immediately implies security under significantly milder worst-case assumptions: we
need only that lattice problems are hard to approximate to within an Õ(n3/2) factor, rather

than Õ(n7/2) as before. Our second main improvement is to make the generator work for
an arbitrary integer modulus q and to output a basis of the resulting lattice, whereas the
original algorithm of [Ajt99] works only for odd q and produces just a full-rank set. Using
an even modulus q happens to be important in recent cryptosystems of Peikert [Pei08] that
are based on the standard worst-case shortest vector problem. Generating a basis (versus a
full-rank set) seems to be less of an advantage, but it may have unanticipated uses elsewhere.

We hasten to add that [GPV08, Section 5] mentions that Ajtai’s algorithm can be
improved to yield an O(m1+ǫ) bound on the short set, but does not provide any further de-
tails. The focus of [GPV08] is on applications of a short basis, independent of the particular
method of its generation. The present work is a full exposition of an improved generation
algorithm, and is meant to complement [GPV08] and other applications requiring a short
basis.

1.2. Relation to Ajtai’s Construction

Our construction is inspired by Ajtai’s, but differs from it in most of the details. The
greatest similarity is in our use of a specially crafted unimodular matrix (called B in this
work) that has small entries, but whose inverse matrix B−1 contains geometrically increasing
sequences of integers. As in [Ajt99], a crucial step in our construction involves assembling
other matrices with large entries via products of short vectors and B−1.

In terms of its main differences from [Ajt99], our construction is guided from the “top
down” by the abstract block structure of the short basis, the desired distribution of its Her-
mite normal form, and the unimodular transformation relating the two. This approach also
yields various technical simplifications and corrections. In particular, it lets us completely
separate the structural constraints on the basis from the randomization of the output lat-
tice, and it facilitates a generalization to arbitrary moduli q. (In Ajtai’s construction, the
structure and randomization are tightly coupled, and q is assumed to be odd when arguing
that the output set is full-rank.)

2. Preliminaries

For a positive integer k, let [k] denote the set {1, . . . , k}. We denote the set of integers
modulo q by Zq, and identify it with the set {0, . . . , q − 1} in the natural way. Row vectors
are named by lower-case bold letters (e.g., x) and matrices by upper-case bold letters (e.g.,
X). The ith entry of a vector x is denoted xi and the ith row of a matrix X is denoted
xi. We identify a matrix X with the (ordered) set {xi} of its row vectors, and define



78 JOËL ALWEN AND CHRIS PEIKERT

‖X‖ = maxi ‖xi‖. We let ei denote the ith standard basis vector, where its dimension will
be clear from context. The symbol Id denotes the d× d identity matrix.

2.1. Lattices

Generally defined, a lattice Λ is a discrete additive subgroup of Rm for some nonneg-
ative integer m. In this work, every lattice will be a full-rank integer lattice, which is a
discrete additive subgroup of Zm having finite index, i.e., the quotient group Zm/Λ is finite.
The determinant of Λ, denoted det(Λ), is the cardinality |Zm/Λ| of this quotient group.
Geometrically, the determinant is a measure of the “sparsity” of the lattice.

A lattice Λ ⊆ Zm can also be viewed as the set of all integer linear combinations of m
linearly independent basis vectors B = {b1, . . . ,bm} ⊂ Zm:

Λ = L(B) =

{

cB =
∑

i∈[m]

cibi : c ∈ Zm

}

.

A lattice has infinitely many bases (when m ≥ 2), which are related to each other by
unimodular transformations, i.e., B and B′ generate the same lattice if and only if B = U·B′

for some unimodular matrix U ∈ Zm×m. The determinant of a basis matrix B is exactly
the determinant of the lattice it generates, up to sign: |det(B)| = det(L(B)).

Every lattice Λ ⊆ Zm has a unique canonical basis H = HNF(Λ) ∈ Zm×m called
its Hermite normal form (HNF). The matrix H is upper triangular and has non-negative
entries (i.e., hi,j ≥ 0 with equality for i > j), has strictly positive diagonal entries (i.e.,
hi,i ≥ 1), and every entry above the diagonal is strictly smaller than the diagonal entry
in its column (i.e., hi,j < hj,j for i < j). Note that because H is upper triangular, its
determinant is simply the product

∏

i∈[m] hi,i > 0 of its diagonal entries. For a lattice basis

B, we write HNF(B) to denote HNF(L(B)). It follows that for H = HNF(B), there exists
a (unique) unimodular matrix U such that B = U ·H. In addition, the matrices U and H

can be computed in polynomial time given B (see [MW01] and references therein).

Hard random lattices. We will be especially concerned with a certain family of lattices in
Zm as first defined by Ajtai [Ajt04]. A lattice from this family is most naturally specified
not by a basis, but instead by a parity check matrix A ∈ Zm×n

q for some positive integer n
and positive integer modulus q. (We discuss the parameters m, n, and q in detail below).
The associated lattice is defined as

L⊥(A) = {x ∈ Zm : xA = 0 mod q} ⊆ Zm.

It is routine to check that L⊥(A) contains the identity 0 ∈ Zm and is closed under addition,
hence it is a subgroup of (and lattice in) Zm. Also observe that q · ei ∈ L⊥(A) for every
A and every i ∈ [m], so membership in L⊥(A) is determined solely by a vector’s entries
modulo q.

We review some basic facts about this family of lattices. Let Λ = L⊥(A) for some
arbitrary A ∈ Zm×n

q . First, we have det(Λ) ≤ qn, by the following argument: let φ :
(Zm/Λ)→ Zn

q be the homomorphism mapping the residue class (x + Λ) to xA ∈ Zn
q . Then

φ is injective, because if φ(x + Λ) = φ(x′ + Λ) for some x,x′ ∈ Zm, we have (x− x′)A = 0

which implies x − x′ ∈ Λ, i.e., (x + Λ) = (x′ + Λ) ∈ (Zm/Λ). Therefore there are at most



GENERATING SHORTER BASES FOR HARD RANDOM LATTICES 79

|Zn
q | = qn residue classes in Zm/Λ. Minkowski’s first inequality states that the minimum

distance of Λ (i.e., the length of a shortest nonzero lattice vector) is at most
√

m · det(Λ)1/m ≤
√

m · qn/m. (2.1)

For reasons that will become clear from the statement of Proposition 2.1 below, the
hardness of these lattices is most naturally parameterized by n (not m, even though m is the
dimension of the lattices). Therefore, it is standard to consider the parameters m = m(n)
and q = q(n) as functions of n. Given n and q, one of the most interesting parameter choices
(which essentially minimizes the bound in (2.1)) is to let m = c · n lg q for some constant
c ≥ 1. Then by (2.1), the minimum distance of L⊥(A) for any A ∈ Zm×n

q is at most
√

m · qn/m =
√

m · q1/(c lg q) =
√

m · 21/c = Θ(
√

n lg q).

For a random A, a volume argument reveals that with high probability, this bound is
essentially tight (up to a small constant factor). Note that for larger choices of m, the
minimum distance does not increase because we can just ignore the extra rows of A. As
long as m does not grow extremely large,

√
n lg q remains a good estimate for the minimum

distance of L⊥(A) for random A.
The following proposition, proved first by Ajtai [Ajt04] (in a quantitatively weaker

form) and in its current form in [MR07, GPV08], relates the average-case and worst-case
complexity of certain lattice problems.

Proposition 2.1. For any m = m(n), β = β(n) = poly(n) and any q = q(n) ≥ β ·
ω(
√

n log n), finding a nonzero x ∈ L⊥(A) having length at most β for uniformly random
A ∈ Zm×n

q (with nonnegligible probability over the choice of A and the randomness of the
algorithm) is at least as hard as solving (with overwhelming probability) the approximate
shortest vector problem GapSVP (and others) on n-dimensional lattices to within a γ(n) =

β · Õ(
√

n) factor in the worst case.

Note that Proposition 2.1 is meaningful only when β is at least the minimum distance
of a random L⊥(A), otherwise no nonzero vector x ∈ L⊥(A) of length at most β is likely
to exist. For q = poly(n) and m as described above above, we can therefore take β to be
as small as O(

√
n lg n), which yields a problem that is hard on the average assuming the

worst-case hardness of approximating GapSVP (and other problems) to within an Õ(n)
factor.

In certain cryptographic applications, however, an adversary that breaks the scheme is
guaranteed only to produce lattice vectors that are much longer than the shortest vector in
the lattice, so one needs to assume average-case hardness for larger values of β. For example,
the secret key in the digital signature schemes of [GPV08] is a basis of L⊥(A) having some
length L, and its signatures are vectors of length ≈ L

√
m. It is shown in [GPV08] that an

adversary that is capable of forging a signature is also capable of finding a nonzero lattice
vector of length β ≈ L

√
m in L⊥(A), which by Proposition 2.1 (for our choice of m) is as

hard as approximating GapSVP in the worst case to within L · Õ(n) factors. Therefore, a
shorter secret basis immediately induces a weaker underlying hardness assumption.

Note also that Proposition 2.1 requires the modulus q to exceed β by a significant
amount (otherwise the trivial vector q · e1 would be a valid solution), and that m grows
with lg q. Therefore, a polynomial factor improvement in the length L of the basis also
yields a constant factor improvement in the dimension m and magnitude q of entries in the
parity check matrix A (i.e., the public key).
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2.2. Probability

We denote the uniform probability distribution over a finite set G by U(G). For two
probability distributions D1,D2 (viewed as functions) over a finite set G, the statistical
distance ∆(D1,D2) is defined to be 1

2

∑

g∈G |D1(g)−D2(g)|.
Lemma 2.2 (Leftover Hash Lemma (Simplified) [HILL99]). Let H be a family of 2-universal
hash functions from a domain X to range Y. and let X be a random variable over X . Then
for h ← H and X ← X chosen independently and uniformly, (h, h(X)) is 1

2

√

|Y| / |X |-
uniform over H× Y.

3. Construction

Our goal is to generate a (nearly) uniform parity check matrix A ∈ Zm×n
q , together

with a basis S ∈ Zm×m of L⊥(A) whose vectors are relatively short. Our approach consists
of two steps. First we investigate the structure of the Hermite normal form of L⊥(A), for a
given (random) A. Then we describe how to generate S so that its HNF has the appropriate
structure and distribution, so as to induce a (nearly) uniform parity check matrix A.

We give two constructions that are, in general, incomparable. The first construction,
described in Theorem 3.1 below, works for a small dimension m = O(n log q), but the

resulting basis length is Õ(m), which is not optimal. The second construction, described in
Theorem 3.2, provides a basis of essentially optimal length O(

√
n log q), but at the cost of

a somewhat larger dimension m = O(n log2 q). More generally, Theorem 3.2 can actually
be parameterized by a base r to yield various trade-offs between the basis length and
dimension m; in general, we can obtain a basis of length Θ(r ·

√
n log q) with a dimension

m = Θ(n log q logr q).
Most applications use a polynomial modulus q = poly(n), so the extra log q = O(log n)

factor (or logr q = O(1/δ) factor, when r = nδ) in the dimension m in Theorem 3.2 is
of little consequence for the resulting key sizes and underlying hardness assumptions, at
least asymptotically. However, certain applications (like the GapSVP-based cryptosystems
of [Pei08]) in some cases rely on an exponentially large q ≈ 2n, in which case the extra log q
factor increases the key size significantly.

Theorem 3.1. There is a probabilistic polynomial-time algorithm that, on input a positive
integer n (in unary), positive integer q ≥ 2 (in binary), and a poly(n)-bounded positive
integer m ≥ 3(1+ δ)n lg q for some δ > 0, outputs a pair (A ∈ Zm×n

q ,S ∈ Zm×m) such that:

• A is (m · q−δn/2)-uniform over Zm×n
q ,

• S is a basis of L⊥(A), and

• For any ω(
√

log n) function, ‖S‖ ≤ m · ω(
√

log n) with all but n−ω(1) probability.

Theorem 3.2. There is a probabilistic polynomial-time algorithm that, on input the pa-
rameters n, q, and m as above with m ≥ 2n lg2 q, outputs a pair (A,S) as above, where

• ‖S‖ ≤ 5
√

n lg q for every i ∈ [m].

The remainder of this section is devoted to proving the theorems.
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3.1. Parity Check and Hermite Normal Form

As a warm-up to motivate the construction, we first consider how a given parity check
matrix A ∈ Zm×n

q relates to the Hermite normal form of the lattice L⊥(A). One may
imagine that the rows a1, . . . ,am ∈ Zn

q of A are uniformly random and independent, though
most of the discussion below applies to arbitrary A.

We determine the HNF matrix H ∈ Zm×m of the lattice Λ = L⊥(A) inductively from
the bottom up. Starting with the mth row hm = (0, . . . , 0, hm,m) = hm,m · em ∈ Zm, it
must be the case that

hm ·A = hm,m · am = 0 ∈ Zn
q ,

because every row of H must be in Λ. Let k ≤ q be the smallest positive integer solution
to k · am = 0 ∈ Zn

q . Then k · em ∈ Λ, so we must be able to write k · em =
∑

i∈[m] zihi for

some integers zi. Now because hi,i > 0 for every i ∈ [m], it must therefore be the case that
zi = 0 for all i < m, which implies hm,m = k.

Observe that when am is uniformly random, we typically have hm,m = q, but other
values of hm,m are also possible. For example, if q is even and every entry of am also
happens to be even, then we would have hm,m ≤ q/2.

More generally, suppose that we have determined hi+1, . . . ,hm for some 1 ≤ i < m.
Then by similar reasoning, hi ∈ Zm is given by the unique solution to the equation

hi,i · ai +
m∑

j=i+1

hi,j · aj = 0 ∈ Zn
q

in which hi,i > 0 is minimized and 0 ≤ hi,j < hj,j ≤ q for every j > i. To illustrate
further, let Mi+1 ⊆ Zn

q be the subgroup of Zn
q generated by (all integer linear combinations

of) ai+1, . . . ,am. Then if ai ∈ M , we have ai =
∑m

j=i+1 zjaj for some integers zj , so
hi,i = 1, hi,j = −zj mod hj,j, and Mi = Mi+1. On the other hand, if ai 6∈M , then we have
1 < hi,i ≤ q and Mi ) Mi+1. Note that once Mi = Zn

q , we have hi′,i′ = 1 and hi′,j′ = 0 for
every i′ < j′ < i.

Now suppose that A is uniformly random, and that d = (1 + δ)n lg q ≤ m for some

positive constant δ > 0. Let m′ = m− d, and break A into two matrices A1 ∈ Zm′×n
q and

A2 ∈ Zd×n
q , where A1 consists of the first m′ rows of A and A2 consists of the remaining

d. It can be shown (e.g., using the leftover hash lemma) that the rows of A2 generate the
entire group Zn

q with overwhelming probability over the choice of A2. So almost all lattices

L⊥(A) have an HNF of the form

H =










Im′ H1

0 H2










, (3.1)

where H2 ∈ Zd×d
q is the Hermite normal form of the lattice L⊥(A2) ⊂ Zd, which has

determinant qn. Note that there is a bijection between Zd modulo H2 (formally, the group
Zd/(Zd·H2)) and Zn

q , given by φ(h) = h·A2 ∈ Zn
q . Note also that because H·A = 0 ∈ Zm×n

q ,

we have A1 = −H1 ·A2 ∈ Zm′×d
q . Therefore, the rows of A1 are uniformly random if and

only if the rows of H1 are uniformly random modulo H2. Our construction (described
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below) produces a basis S of short vectors whose HNF has the above form and a nearly
identical probability distribution.

3.2. The Block Structure

To guarantee that the HNF matrix H of our constructed basis S has the desired struc-
ture and distribution, we design S together with the unimodular matrix U relating it to H.
We first set up the basic block structures of S and U according to the principal equation
S = U ·H. We then make a few simplifying choices and extract a few constraints on the
blocks, and specify the blocks so as to satisfy these constraints.

Our construction first chooses A2 ∈ Zd×n
q uniformly at random and computes the HNF

H2 of the induced lattice L⊥(A2) ⊆ Zd. Recall that H2 is nonsingular and |det(H2)| ≤ qn

(note that it will usually be the case that A2 generates all of Zn
q and |det(H2)| = qn, though

we do not need this fact explicitly.) Following the form of H in (3.1), we obtain the following
block structure on S and U, where we have named the blocks of S for convenience.

S =










B D

P V










=










B U1,2

P U2,2










︸ ︷︷ ︸

U

×










Im′ H1

0 H2










︸ ︷︷ ︸

H

(3.2)

Strictly speaking, our construction of S and U does not correspond to an H that
is in full normal form; specifically, some entries of H1 might exceed their corresponding
diagonal entries in H2. This is not a problem, because the rows of H1 can always be
reduced modulo H2 via additional unimodular operations. But it is not even necessary to
compute this reduced form of H1 in our algorithm; instead, it suffices to output S, A2,
and A1 = −H1 ·A2 ∈ Zm′×n

q , and to show that the joint distribution of (A1,A2) is nearly
uniform.

One of the most sensitive conditions to satisfy is to make U unimodular. Because we
only care about H1 modulo H2, the particular choices of the rightmost blocks U1,2 and U2,2

are not of much consequence. For convenience, we make U block lower-triangular, setting
U1,2 = 0 and U2,2 = −Id, which implies that B must be unimodular. Substituting these
choices, we obtain the following constraints.

H1 = B−1 ·D (3.3)

V + H2 = P ·H1 = P ·B−1 ·D (3.4)

Note that the left-hand sides of the above equations have large entries, while we need all the
blocks of S to have small entries. The B−1 term will therefore bear the sole responsibility
for generating large entries. Note also the common term H1 = B−1 · D that appears in
both equations, which causes tension between the two constraints: while we need H1 to be
nearly uniform modulo H2, we also need to be able to construct P with small entries so
that P ·H1 closely approximates the matrix H2 that is imposed upon us.
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To resolve this tension, we write H1 as the sum of two matrices, a random matrix R

and a deterministic “structured” matrix G:

H1 = B−1 ·D = G + R.

• Each row ri of R is an independent, uniformly random vector in {0, 1}d with random

sign. We show using the leftover hash lemma that R·A2 is nearly uniform in Zm′×n
q ,

hence so is A1 = −H1 ·A2.
• The matrix G is designed so that small integer combinations of its rows may be

assembled to produce (a matrix close to) H2; more specifically,

P ·G = H′
2 = H2 − Id

for some P having small entries (we subtract Id from H2 simply for convenience,
to put the diagonals of H′

2 in the range {0, . . . , q − 1}). Furthermore, G and B are
designed together to make B ·G have small entries, so that

D = B ·H1 = B ·G + B ·R
has small entries as well.

We then let V = P ·R− Id; observe that V has small entries because P, R, and Id do, and
that (3.4) is satisfied because

P ·H1 = P · (G + R) = H2 + V.

3.3. Building the Blocks

Here we list the principal constraints on the as-yet undefined matrices B, P, and G

from the above discussion, and show how to satisfy those constraints.

(1) Matrix B must be unimodular and have small entries.
(2) The product W = B ·G must have small entries.
(3) We must satisfy P ·G = H′

2 = H2 − Id for some P with small entries.

Below we give two constructions, corresponding to Theorems 3.1 and 3.2, respectively.
In both constructions, we assemble B from copies of a certain component matrix Tk ∈ Zk×k,
which is defined to be the k × k lower-triangular matrix with 1s along the diagonal, −2s
directly below the diagonal, and 0s elsewhere, i.e., ti,i = 1 for i ∈ [k] and ti+1,i = −2 for
i ∈ [k − 1]. It may be verified that Tk is lower triangular and unimodular. Moreover,
its inverse T−1

k has a very useful form: its (i, j)th entry is 2i−j for every i ≥ j, and zero
elsewhere.

3.3.1. Construction for Theorem 3.1. Define m′ = m − d ≥ 2d. The basic idea is to
construct G = B−1 ·W ∈ Zm′×d so that it contains enough power-of-2 multiples of each of
the standard basis vectors in Zd; this is done by assembling B from copies of Tk and letting
W have small entries, thus satisfying constraint 2. Then any vector in Zd with bounded
entries (specifically, every row of H′

2) can be expressed as a binary combination of the rows
of G, thus satisfying constraint 3.

We now proceed in more detail. Recall that we are given H2 ∈ Zd×d; say its diagonal
entries (from top to bottom) are r1, . . . , rd, and recall that their product is (at most) qn.
Let ℓj = ⌈lg rj⌉ ≤ 1 + lg rj , and define the partial sums s0 = 0, sj = sj−1 + ℓj for j ∈ [d],
and define the total sum s = sd ≤ d + n lg q ≤ m′.
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Define B ∈ Zm′×m′
to be the block diagonal matrix

B = diag(Tℓ1, . . . ,Tℓd
, Im′−s),

i.e., the direct sum of Tℓj
for j ∈ [d], plus an identity matrix of the appropriate re-

maining dimension. Observe that B is lower triangular and unimodular, and that B−1 =
diag(T−1

ℓ1
, . . . ,T−1

ℓd
, Im′−s).

Now define W so that wsj−1+1 = ej ∈ Zd for each j ∈ [d], and wi = 0 elsewhere.

Recalling that G = B−1 ·W, one can then check that for each j ∈ [d] and each k ∈ [ℓj ], we
have

gsj−1+k = 2k−1 · ej ∈ Zd

(and gi = 0 for s < i ≤ m′).
Because G has such a useful form, satisfying constraint 3 (i.e., making P ·G = H2−Id)

is straightforward. For each j ∈ [d], every entry of the jth column of H′
2 is in {0, . . . , rj − 1},

by construction of H2. Therefore, each row of H′
2 can be represented as a binary combina-

tion of rows g1, . . . ,gs of G. These binary combinations are specified in the natural way via
the d rows of P, and we have satisfied constraint 3 where each entry of P has magnitude
at most 1.

3.3.2. Construction for Theorem 3.2. Define m′ = m − d ≥ d · ⌈lg q⌉. The basic idea is

to construct G = B−1 ·W ∈ Zm′×d so that G itself contains the rows of H′
2, which can

then be trivially selected by very short rows pi having length 1 (rather than almost
√

m
as above). To do this, we let B be made up of copies of Tk much like above, and let W

encode the binary representation of each row of H′
2. Note that H′

2 has d rows with entries
that can be as large as q − 1, so we can represent it in binary using d · ⌈lg q⌉ ≤ m′ rows.
(More generally, using the base-r analog of Tk instead of base 2, we can represent H′

2 using
d · logr q rows, at the expense of using vectors bi having length O(r).)

Define ℓ = ⌈lg(q − 1)⌉ and define B ∈ Zm′×m′
be the block diagonal matrix

B = diag(Tℓ, . . . ,Tℓ, Im′−d·ℓ)

(where the above expression includes d copies of Tℓ). Observe that B is lower triangular
and unimodular, and that B−1 = diag(T−1

ℓ , . . . ,T−1
ℓ , Im′−d·ℓ).

We now define W. Let h′
j ∈ Zd denote the jth row of H′

2, and observe that every entry

of h′
j is nonnegative and at most q−1, so it can be written in binary using ℓ bits. Therefore

h′
j can be seen as the ℓth row of T−1

ℓ ·Wj for a binary matrix Wj ∈ {0, 1}ℓ×d, where the

rows of Wj consist of the coordinate-wise bits of h′
j from most significant down to least

significant. Finally, let W ∈ Zm′×d be the vertical block matrix consisting of W1 through
Wd, followed by the zero matrix of dimension (m′− d · ℓ)× d. Then for G = B−1 ·W, it is
apparent from the above discussion that row gj·ℓ = h′

j for each j ∈ [d]. The corresponding

rows of P are pj = ej·ℓ ∈ Zm′
for j ∈ [d].

3.4. Analysis

We now prove that the above constructions satisfy the claims in Theorems 3.1 and 3.2,
respectively. We have already shown by construction that S is a basis of L⊥(A). It remains
to show that the distribution of A is statistically close to uniform over Zm×n

q , and that the
rows of S are all relatively short (in both constructions).
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3.4.1. Distribution of A. Recall that in both constructions, A is of the form

(A1 = −H1 ·A2 , A2) = (−(G + R) ·A2 , A2) ∈ Zm×n
q ,

where A2 ∈ Zd×n
q is uniform, G is deterministic, and each row of R is independent and

uniform from {0, 1}d (with random sign).
We claim that {hA2

: hA2
(r) = rA2} is a family of 2-universal hash functions from

domain {0, 1}d to range Zn
q . First, note that rA2 = r′A2 if and only if (r− r′)A2 = 0, and

0 6= r − r′ ∈ {0,±1} for any distinct r, r′ ∈ {0, 1}. Fix such r, r′, and suppose that they
differ in their ith entry. Finally, observe that

Pr
A2

[(r− r′)A2 = 0] = q−n = 1/
∣
∣Zn

q

∣
∣ ,

by averaging over any fixed choice of all but the ith row of A2.
Now because d = (1 + δ)n lg q for some constant δ > 0, Lemma 2.2 (the leftover hash

lemma) and the triangle inequality imply that (R · A2,A2) is (m · q−δn/2)-uniform over
Zm×n

q , as desired.

3.4.2. Length of S. We need to analyze the lengths of the rows of B, P, D, and V, where

D = BG + BR

V = PR− Id

• In both constructions, BG = W is a binary matrix (or in the base-r generalization

of Theorem 3.2, an r-ary matrix). Thus ‖BG‖ ≤
√

d (more generally, (r − 1)
√

d).

• We have ‖R‖ ≤
√

d by construction, and the ℓ1 norm (i.e., the sum of the absolute
values of each entry) of each bi is at most 3 (more generally, at most r + 1). So by

the triangle inequality, we have ‖BR‖ ≤ 3
√

d (more generally, (r + 1)
√

d).
• Note that ‖V‖ ≤ ‖PR‖+ 1 by the triangle inequality.

It remains to analyze ‖PR‖ for the two constructions. In the construction for The-

orem 3.2, each pi has just a single 1 entry (and 0s elsewhere), so ‖PR‖ ≤
√

d. Putting
all the blocks of S together, we conclude that in the construction for Theorem 3.2, ‖S‖ ≤
(2r + 1)

√
d, as desired.

We now analyze the construction for Theorem 3.1. Let s be the random variable
corresponding to any entry of PR. Because P is a fixed binary matrix, s is the sum of at
most m independent random variables ri,j that individually have expectation 0 (because
the sign of each ri is random) and magnitude at most 1. By the Hoeffding bound, we have
|s| ≤ t ·√m except with probability at most exp(−Ω(t2)). Setting t = ω(

√
log n) and taking

a union bound over all poly(n) entries of PR, we conclude that ‖PR‖ ≤ t ·
√

m · d ≤ t ·m,

except with probability n−ω(1), as desired.
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