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Abstract

Access control encryption (ACE) was proposed by Damgérd et al. to enable the control
of information flow between several parties according to a given policy specifying which
parties are, or are not, allowed to communicate. By involving a special party, called the
sanitizer, policy-compliant communication is enabled while policy-violating communication is
prevented, even if sender and receiver are dishonest. To allow outsourcing of the sanitizer, the
secrecy of the message contents and the anonymity of the involved communication partners
is guaranteed.

This paper shows that in order to be resilient against realistic attacks, the security
definition of ACE must be considerably strengthened in several ways. A new, substantially
stronger security definition is proposed, and an ACE scheme is constructed which provably
satisfies the strong definition under standard assumptions.

Three aspects in which the security of ACE is strengthened are as follows. First,
CCA security (rather than only CPA security) is guaranteed, which is important since
senders can be dishonest in the considered setting. Second, the revealing of an (unsanitized)
ciphertext (e.g., by a faulty sanitizer) cannot be exploited to communicate more in a policy-
violating manner than the information contained in the ciphertext. We illustrate that this
is not only a definitional subtlety by showing how in known ACE schemes, a single leaked
unsanitized ciphertext allows for an arbitrary amount of policy-violating communication.
Third, it is enforced that parties specified to receive a message according to the policy cannot
be excluded from receiving it, even by a dishonest sender.

1 Introduction

1.1 Access Control Encryption—Model and Security Requirements

The concept of access control encryption (ACE) was proposed by Damgard, Haagh, and Or-
landi [DHO16] in order to enforce information flow using cryptographic tools rather than a
standard access control mechanism (e.g., a reference monitor) within an information system. If
the encryption scheme provides certain operations (e.g., ciphertext sanitization) and satisfies
an adequate security definition, then the reference monitor can be outsourced, as a component
called the sanitizer, to an only partially trusted service provider. The goal of ACE is that the
sanitizer learns nothing not intrinsically necessary. Security must also be guaranteed against
dishonest users, whether senders or receivers of information, and against certain types of sanitizer
misbehavior.
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The information flow problem addressed by ACE is defined in a context with a set R of roles
corresponding, for example, to different security clearances. Each user in a system can be assigned
several roles. For example the users are employees of a company collaborating on a sensitive
project, and they need to collaborate and exchange information by sending messages. Since the
information is sensitive, which information a party can see must be restricted (hence the term
access control), even if some parties are dishonest. In the most general form, the specification
of which role may send to which other role corresponds to a relation (a subset of R x R) or,
equivalently, to a predicate P: R x R — {0,1}, where s € R is allowed to communicate to r € R
if and only if P(s,r) = 1. The predicate P is called the (security) policy. Typical examples of
such policies arise from the Bell-LaPadula [BL73] model where roles are (partially) ordered, and
the so-called “no-write-down” rule specifies that it is forbidden for a user to send information to
another user with a lower role. Note that for this specific example, the relation is transitive, but
ACE also allows to capture non-transitive security policies.

ACE was designed to work in the following setting. Users can communicate anonymously
with a sanitizer. If a user wants to send a message, it is encrypted under a key corresponding
to the sender’s role. Then the ciphertext is sent (anonymously) to the sanitizer who applies a
certain sanitization operation and writes the sanitized ciphertext on a publicly readable bulletin
board providing anonymous read-access to the users (receivers). Users who are supposed to
receive the message according to the policy (and only those users) can decrypt the sanitized
ciphertext.

To ensure security in the described setting, the ACE scheme must at least provide the
following guarantees:

1. The encryption must assure privacy and anonymity against dishonest receivers as well as
the sanitizer, i.e., neither the sanitizer nor dishonest receivers without access allowed by
the policy should be able to obtain information about messages or the sender’s role.

2. A dishonest sender must be unable to communicate with a (potentially dishonest) receiver,
unless this is allowed according to the policy. In other words, the system must not provide
covert channels allowing for policy-violating communication.

As usual in a context with dishonest senders, the first goal requires security against chosen-
ciphertext attacks (CCA) because dishonest users can send a ciphertext for which they do
not know the contained message and by observing the effects the received message has on
the environment, potentially obtain information about the message. This corresponds to the
availability of a decryption oracle, as in the CCA-security definition.

Note that the second goal is only achievable if users cannot directly write to the repository or
communicate by other means bypassing the sanitizer, and if the sanitizer is not actively dishonest
because a dishonest sanitizer can directly write any information received from a dishonest sender
to the repository. The assumption that a user cannot bypass the sanitizer and communicate to
another party outside of the system can for example be justified by assuming that users, even if
dishonest, want to avoid being caught communicating illegitimately, or if only a user’s system
(not the user) is corrupted, and the system can technically only send message to the sanitizer.

Since the sanitizer is not fully trusted in our setting, one should consider the possibility
that an unsanitized ciphertext is leaked (intentionally or unintentionally) to a dishonest party.
This scenario can be called (unsanitized) ciphertezt-revealing attack. Obviously, all information
contained in this ciphertext gets leaked to that party. While this cannot be avoided, such an
attack should not enable dishonest parties to violate the security requirements beyond that.



We point out that previously proposed encryption techniques (before ACE), such as attribute-
based encryption [SW05; GPSW06] and functional encryption [BSW11], enable the design of
schemes where a sender can encrypt messages such that only designated receivers (who possess the
required key) can read the message. This captures the access control aspects of read permissions,
but it does not allow to capture the control of write/send permissions. In other words, such
schemes only achieve the first goal listed above, not the second one.

1.2 Contributions of this Paper

While the proposal of the ACE-concept and of efficient ACE-schemes were important first steps
toward outsourcing access control, the existing security definition turns out to be insufficient
for several realistic attack scenarios. The main contributions of this paper consist of uncovering
issues with existing definitions and schemes, fixing these issues by proposing stronger security
notions, and constructing a scheme satisfying our stronger notions.

Issues with existing definitions and schemes. As argued above, chosen-ciphertext attacks
should be considered since the use case for ACE includes dishonest senders. Existing definitions,
however, do not take this into account, i.e., the adversary does not have access to a decryption
oracle in the security games.

Furthermore, existing notions do not consider ciphertext-revealing attacks. Technically
speaking, the security game that is supposed to prevent dishonest senders from transmitting
information to dishonest receivers (called no-write game), gives the adversary only access to
an encryption oracle that sanitizes ciphertexts before returning them. This means that the
adversary has no access to unsanitized ciphertexts. This is not only a definitional subtlety, but
can completely break down any security guarantees. We demonstrate that existing ACE schemes
allow the following attack: Assume there are three users A, M, and F in the system, where
A is honest and by the policy allowed to send information to E, and M and E are dishonest
and not allowed to communicate. If A sends an (innocent) message to E and the corresponding
unsanitized ciphertext is leaked to M, malleability of the ciphertext can be exploited by M
to subsequently communicate an arbitrary number of arbitrary messages chosen by M to E.
Note that while this attack crucially exploits malleability of ciphertexts, it is not excluded by
CCA security for two reasons: first, CCA security does not prevent an adversary from producing
valid ciphertexts for unrelated messages, and second, the integrity should still hold if the adversary
has the decryption key (but not the encryption key).

Finally, existing security definitions focus on preventing dishonest parties from communicating
if disallowed by the policy, but they do not enforce information flow. For example, if user A only
has a role such that according to the policy, users B and C can read what A sends, existing
schemes do not prevent A from sending a message that can be read by B but not by C, or
sending a message such that B and C receive different messages. This is not as problematic
as the two issues above, and one can argue that A could anyway achieve something similar by
additionally encrypting the message with another encryption scheme. Nevertheless, for some use
cases, actually precisely enforcing the policy can be required (consider, e.g., a logging system),
and one might intuitively expect that ACE schemes achieve this.

New security definitions. We propose new, stronger security definitions for ACE that exclude
all issues mentioned above. First, we give the adversary access to a decryption oracle. More



precisely, the oracle first sanitizes the given ciphertext and then decrypts it, since this is what
happens in the application if a dishonest party sends a ciphertext to the sanitizer. Second, we
incorporate ciphertext-revealing attacks by giving the adversary access to an encryption oracle
that returns unsanitized ciphertexts for arbitrary roles. Finally, we introduce a new security
game in which an adversary can obtain encryption keys and decryption keys from an oracle and
has to output a ciphertext such that one of the following events occur: either the set of roles
that can successfully decrypt the ciphertext (to an arbitrary message) is inconsistent with the
policy for all sender roles for which the adversary has an encryption key (in this case, we say
the adversary is not role-respecting); or the ciphertext can be successfully decrypted with two
keys such that two different messages are obtained (in this case, we say the uniform-decryption
property is violated).

Construction of an ACE scheme for our stronger notions. Our construction proceeds
in three steps and follows the general structure of the generic construction by Fuchsbauer et
al. [FGKO17]. Since we require much stronger security notions in all three steps, our constructions
and proofs are consequently more involved than existing ones. First, we construct a scheme
for a primitive we call enhanced sanitizable public-key encryption (sPKE). Second, we use an
sPKE scheme to construct an ACE scheme satisfying our strong security notion for the equality
policy, i.e., for the policy that allows s to send to r if and only if » = s. Third, we show how to
lift an ACE scheme for the equality policy to an ACE scheme for the disjunction of equalities
policy. This policy encodes roles as vectors x = (z1,...,x) and allows role x to send to role y if
and only if x1 = y; V...V xy = ys. As shown by Fuchsbauer et al. [FGKO17|, useful policies
including the inequality predicate corresponding to the Bell-LaPadula model can efficiently be
implemented using this policy by encoding the roles appropriately.

Enhanced sanitizable PKE. An sPKE scheme resembles publicy-key encryption with an
additional setup algorithm that outputs sanitizer parameters and a master secret key. The
master secret key is needed to generate a public/private key pair and the sanitizer parameters
can be used to sanitize a ciphertext. A sanitized ciphertext cannot be linked to the original
ciphertext without the decryption key. We require the scheme to be CCA secure (with respect to
a sanitize-then-decrypt oracle) and anonymous. Sanitization resembles rerandomization [Gro04;
PRO7], also called universal re-encryption [GJJS04|, but we allow sanitized ciphertexts to be
syntactically different from unsanitized ciphertexts. This allows us to achieve full CCA security,
which is needed for our ACE construction and unachievable for rerandomizable encryption.
Our scheme is based on ElGamal encryption [Elg85|, which can easily be rerandomized and
is anonymous. We obtain CCA security using the technique of Naor and Yung [NY90], i.e.,
encrypting the message under two independent keys and proving in zero-knowledge that the
ciphertexts are encryptions of the same message, which was shown by Sahai to achieve full
CCA security if the zero-knowledge proof is simulation-sound [Sah99]. A technical issue is that if
the verification of the NIZK proof was done by the decrypt algorithm, the sanitization would
also need to sanitize the proof. Instead, we let the sanitizer perform the verification. Since we
want to preserve anonymity, this needs to be done without knowing under which public keys the
message was encrypted. Therefore, the public keys are part of the witness in the NIZK proof.
Now the adversary could encrypt the same message under two different public keys that were
not produced together by the key-generation, which would break the reduction. To prevent
this, the pair of public keys output by the key-generation is signed using a signature key that is



contained in the master secret key and the corresponding verification key is contained in the
sanitizer parameters.

ACE for equality. The basic idea of our ACE scheme for the equality policy is to use for each
role, encryption and decryption keys of an sPKE scheme as the encryption and decryption keys of
the ACE scheme, respectively. Since we need to prevent dishonest senders without an encryption
key for some role from producing valid ciphertexts for that role even after seeing encryptions of
other messages for this role and obtaining encryption keys for other roles, we add a signature
key to the encryption key, sign this pair using a separate signing key, where the corresponding
verification key is part of the sanitizer parameters, and let senders sign their ciphertexts. To
preserve anonymity, this signature cannot be part of the ciphertext. Instead, senders prove in
zero-knowledge that they know such a signature and that the encryption was performed properly.

ACE for disjunction of equalities. The first step of our lifting is identical to the lifting
described by Fuchsbauer et al. [FGKO17|: for each component of the role-vector, the encryption
and decryption keys contain corresponding keys of an ACE scheme for the equality policy. To
encrypt a message, this message is encrypted under each of the key-components. In a second
step, we enforce role-respecting security with the same trick we used in our ACE scheme for
equality; that is, we sign encryption key-vectors together with a signing key for that role, and
senders prove in zero-knowledge that they have used a valid key combination to encrypt and
that they know a signature of the ciphertext vector.

1.3 Related Work

The concept of access control encryption has been introduced by Damgard et al. [DHO16]. They
provided the original security definitions and first schemes. Subsequent work by Fuchsbauer et
al. [FGIKO17|, by Tan et al. [TZMT17|, and by Kim and Wu [KW17] focused on new schemes that
are more efficient, based on different assumptions, or support more fine grained access control
policies. In contrast to our work, they did not attempt to strengthen the security guarantees

provided by ACE.

2 Preliminaries

2.1 Notation

We write x < y for assigning the value y to the variable x. For a finite set X, x «— X denotes
assigning to x a uniformly random value in X. For n € IN, we use the convention

[n] = {1,...,n}.

By Z,, we denote the ring of integers modulo n, and by Z its multiplicative group of units. The
probability of an event A in an experiment E is denoted by Prf[A], e.g., Pr* {0z = 0] = 3.
If the experiment is clear from the context, we omit the superscript. The conditional probability
of A given B is denoted by Pr[A | B] and the complement of A is denoted by —A. For a
probabilistic algorithm A and r € {0,1}*, we denote by A(z;7) the execution of A on input x
with randomness r. For algorithms A and O, .AO(')(x) denotes the execution of A on input z,

where A has oracle access to O.



2.2 Security Definitions, Advantages, Efficiency, and Negligibility

We define the security of a scheme via a random experiment (or game) involving an adversary
algorithm A. For a given scheme £ and adversary A, we define the advantage of A, which is a
function of the security parameter . To simplify the notation, we omit the security parameter
when writing the advantage, e.g., we write AdviiEUF'CMA instead of AdvgﬁEUF'CMA(m) for the
advantage of A in the existential unforgeability game for the signature scheme £. Such a scheme
is considered secure if Adv?ﬁEUF'CMA is negligible for all efficient A. An algorithm A is efficient
if it runs in probabilistic polynomial time (PPT), i.e., A has access to random bits and there is
a polynomial p such that A(x) terminates after at most p(|x|) steps (on some computational
model, e.g., Turing machines) for all inputs =, where |x| denotes the bit-length of z. A function f
is negligible if for every polynomial p, there exists ng € IN such that f(n) < 1/p(n) for all n > ny.
While these asymptotic definitions yield concise statements, we will in all proofs derive precise

bounds on the advantages, following a concrete security approach.

2.3 Access Control Encryption

We recall the definition of access control encryption by Damgérd et al. [DHO16]|. For definitions
of other cryptographic primitives used in this paper, see Appendix A. Following Fuchsbauer et
al. [FGKO17], we do not have sanitizer keys and require Gen to be deterministic. The set of roles
is assumed to be R = [n].

Definition 2.1. An access control encryption (ACE) scheme & consists of the following five
PPT algorithms:

Setup: The algorithm Setup on input a security parameter 1* and a policy P: [n] x [n] — {0, 1},
outputs a master secret key msk and sanitizer parameters sp. We implicitly assume that
all keys include the finite message space M and the ciphertext spaces C,C’.

Key generation: The algorithm Gen is deterministic and on input a master secret key msk, a
role i € [n], and the type sen, outputs an encryption key ek;; on input msk, j € [n], and
the type rec, outputs a decryption key dk;.

Encryption: The algorithm Enc on input an encryption key ek; and a message m € M, outputs
a ciphertext ¢ € C.

Sanitization: The algorithm San on input sanitizer parameters sp and a ciphertext ¢ € C,
outputs a sanitized ciphertext ¢ € C'U{L}.

Decryption: The algorithm Dec on input a decryption key dk; and a sanitized ciphertext ¢’ € C’,
outputs a message m € M U {L}; on input dk; and L, it outputs L.

For a probabilistic algorithm A, consider the experiment Expgcf'CORR that given a security

parameter 1* and a policy P, executes (sp, msk) < Setup(1%, P), (m,i,j) « ASeN(msk:) (sp),
ek; < Gen(msk, i, sen), and dk; <— Gen(msk, j,rec). We define the correctness advantage of A
(for security parameter x and policy P) as

AdveE“ORR .= Pr[P(i,j) =1 A Dec(dkj,San(sp, Enc(ek;,m))) # m],

where the probability is over the randomness in Exp?%'CORR and the random coins of Enc, San,
and Dec. The scheme & is called correct if /—\dv?ﬂz'CORR is negligible for all efficient A, and

perfectly correct if Advé%’CORR =0 for all A.



Remark. Correctness of an encryption scheme is typically not defined via a game with an
adversary, but by requiring that decryption of an encryption of m yields m with probability 1
This perfect correctness requirement is difficult to achieve for ACE schemes and not necessary for
applications because it is sufficient if a decryption error only occurs with negligible probability in
any execution of the scheme. Damgard et al. [DHO16| define correctness by requiring that for
all m, 4, and j with P(i,j) = 1, the probability that a decryption fails is negligible, where the
probability is over setup, key generation, encrypt, sanitize, and decrypt. While this definition
is simpler than ours, it does not guarantee that decryption errors only occur with negligible
probability in any execution of the scheme. For example, a scheme could on setup choose a
random message m and embed it into all keys such that decryption always fails for encryptions of
this particular message. This does not violate the definition by Damgéard et al. since for any fixed
message, the probability that this message is sampled during setup is negligible (if the message
space is large). Nevertheless, an adversary can always provoke a decryption error by sending
that particular message m, which is not desirable. The above example might at first sight seem
somewhat artificial, and typically, schemes do not have such a structure. However, capturing
correctness via an experiment is important when thinking of composition, since we expect that
the correctness guarantee still holds when the ACE scheme is run as part of a larger system. In
order to meet this expectation, and to exclude the above issue, we formalize correctness via an
experiment.

Additionally, Fuchsbauer et al. have defined detectability, which guarantees that decrypting
with a wrong key yields L with high probability [FGKO17|. This allows receivers to detect
whether a message was sent to them. As for correctness, we define it via an experiment. The
notion is related to robustness for public-key encryption [ABN10|. We additionally define strong
detectability, in which the randomness for the encryption is adversarially chosen.

Definition 2.2. Let £ = (Setup, Gen, Enc, San, Dec) be an ACE scheme and let A be a probabilis-
tic algorithm. Consider the experiment E><pACE pTCT that given a security parameter 1* and a pol-
icy P, executes (sp) < Setup(1%, P), (m,i,j) « AS"(m6:) (sp msk), ek; < Gen(msk, i,sen),
and dk;j < Gen(msk, j,rec). We define the detectability advantage of A as

Advéi‘f‘DTCT = Pr[P(i,j) =0 A Dec(dkj,San(sp, Enc(ek;,m))) # L],
ACE-DTCT

where the probability is over the randomness in Expg 4 and the random coins of Enc, San,

and Dec. The scheme & is called detectable if AdvACE DTCT is negligible for all efficient A. The

ACE-sDTCT ACE- DTCT

experiment Expg g is identical to Expg 4 except that A returns (m,r,7,5). The

strong detectabzlzty advantage of A is defined as
Adv?ﬂz'SDTCT =Pr[P(i,j) =0 A Dec(dkj,San(sp, Enc(ek;, m;r))) # L],

where the probability is over the randomness in EprCE sDTCT and the random coins of San and

Dec. The scheme & is called strongly detectable if AdvAFE'SDTCT is negligible for all efficient A.

2.4 Existing Security Definitions

Existing notions for ACE specify two core properties: the so-called no-read rule and the no-
write rule. The no-read rule formalizes privacy and anonymity: roughly, an honestly generated
ciphertext should not leak anything about the message, except possibly its length, or about the



Input: (17, P),x € N, P: [n] x [n] — {0,1}
(sp, msk) < Setup(1*, P)
(mo,maio, i1, st) ¢ AY9C OB (op)
b« {0,1}
ek, <+ Gen(msk, iy, sen)
¢ < Enc(ek;, ,myp)

b — ASG(".)’OE("')(SL C)

Experiment EprCE'"""ead

Experiment ExppCfno-vrite

Input: (17, P),x € N, P: [n] x [n] — {0,1}
(sp, msk) < Setup(1*, P)
(co,', st) += AYG OB (o)
b« {0,1}
m «— M
c1 < Enc(Gen(msk,i’, sen), m’)

o (—A?G(.’.)’OF’S(.")(SLSan(sp,cb))

Figure 1: The no-read and no-write experiments for an ACE scheme £ and an adversary A =
(A1, Az). The oracles are defined as Og(+,-) = Gen(msk, -, -), Og(:,-) := Enc(Gen(msk, -, sen), -),
and Opgg(+,-) = San(sp, Enc(Gen(msk, -, sen),-)).

role of the sender. The security game allows an adversary to interact with a key-generation
oracle (to obtain encryption and decryption keys for selected roles), and an encryption oracle
to obtain encryptions of chosen messages for roles for which the adversary does not possess the
encryption key. This attack model reflects that an adversary cannot obtain useful information
by observing the ciphertexts that are sent to the sanitizer. To exclude trivial attacks, it is not
considered a privacy breach if the adversary knows a decryption key that allows to decrypt the
challenge ciphertext according to the policy. Similarly, it is not considered an anonymity breach
if the encrypted messages are different. We next state the definition of the no-read rule.*

Definition 2.3. Let £ = (Setup, Gen, Enc, San, Dec) be an ACE scheme and let A = (A1, A2)
be a pair of probabilistic algorithms. Consider the experiment EprCE no-read i) Figure 1 and
let J be the set of all j such that A; or A issued the query (j,rec) to the oracle Og. The
payload-privacy advantage and the sender-anonymity advantage of A are defined as

AdveSEoTRIPY = o Pr[t = b A |mo| = |ma| A ¥j € J Plig,j) = P(i1,5) = 0] —

Adv ACE‘"Wead AN = 2. Pr[t =b A mog=m1 A Vj€J Plig,j) = Pi1,5)] — 1,
respectively, where the probabilities are over the randomness of all algorithms in EprCE'"O"ead.
The scheme & satisfies the payload-privacy no-read rule and the sender-anonymity no- read rule
if Adv ACE no-read:priv nd Adv'A‘CIE"'o'r'e""d AN are negligible for all efficient A, respectively. If it
satlsﬁes both, it is said to satlsfy the no-read rule.

The no-write rule of ACE is the core property to capture access control. In a nutshell, if
the adversary only possesses encryption keys for roles ¢ and decryption keys for roles j with
P(i,j) = 0, then he should not be able to create a ciphertext from which, after being sanitized,
he can retrieve any information. Technically, in the corresponding security game, the adversary is
given a key-generation oracle as above, and in addition an oracle to obtain sanitized ciphertexts
for selected messages and roles. This attack model corresponds to a setting where an adversary
only sees the outputs of a sanitizer, but not its inputs, and in particular no unsanitized ciphertexts
generated for roles for which he does not possess the encryption key. The adversary wins if
he manages to distinguish the sanitized version of a ciphertext of his choice from a sanitized

'For anonymity, we adopt here the definition of [DHO16], which is stronger than the one used by Fuchsbauer
et al. [FGKO17] since there, anonymity is not guaranteed against parties who can decrypt.



version of a freshly generated encryption of a random message, and if he does not obtain the
encryption key for any role ¢ and the decryption key of any role j for which P(i,j) = 1, as this
would trivially allow him to distinguish.

Definition 2.4. Let & = (Setup, Gen, Enc, San, Dec) be an ACE scheme and let A = (Aj, A2)
be a pair of probabilistic algorithms. Consider the experiment Expéﬁf'm"’"”te in Figure 1, let I;
be the set of all i such that Ay issued the query (i, sen) to Og, and let J be the set of all j such

that A; or Ay issued the query (j,rec) to Og. We define the no-write advantage of A as
AdvpSEmowrite .= 2. Pr[b) =b A i €} A Vi€ 1 Vje J P(i,j)=0 A San(sp,co) # L] — 1,

where the probability is over the randomness of all algorithms in Expéﬂz'm'write. The scheme £
ACE-no-write

satisfies the no-write rule if Advg is negligible for all efficient A.
Remark. Our definition follows the one by Fuchsbauer et al. [FGKO17] by requiring San(sp, ¢o) #
L in the winning condition for the no-write rule, which was not required in the original definition
by Damgéard et al. [DHO16|. Schemes can be made secure with respect to the original definition
by letting the algorithm San create a fresh ciphertext for a random message when given an invalid
ciphertext.

The condition i’ € I; together with Vi € I; Vj € J P(i,j) = 0 ensures that A does not have
a key to decrypt ¢, which would trivially allow to distinguish. Requiring that A obtains a key
for i’ however excludes adversaries that obtain no key at all. The original definitions [DHO16]
therefore include a special role 0 with P(0, ) = 0 for all 7. One can then assume without loss
of generality that anyone obtains a key for this role. Since assuming the existence of such a
role appears to be a technicality that is only needed for the no-write rule, we do not make this
assumption and present new security definitions in Section 4.2 that do not rely on such a role.

3 Ciphertext-Revealing Attacks Against Existing Schemes

3.1 Generic Description of Attack

We describe a fundamental practical issue of schemes which meet the above no-read and no-write
definitions and show why the guarantees expected from an ACE scheme need to be strengthened.
We show that schemes fulfilling the definition can suffer from what we call a malleability attack,
which effectively bypasses the given policy and allows communication that is forbidden by the
policy. The attack does not abuse any peculiarities of existing models and in fact only requires
that the semi-honest sanitizer shares its inputs and outputs with colluding parties, which is
arguably possible when the sanitizer is outsourced. In particular, security against such a sanitizer
is desirable from a practical point of view.

We first give a high-level explanation of the attack, formalize it as a second step, and show
that several existing schemes are vulnerable. Assume there are three parties, Alice, Bob, and
Charlie, each having a different role assigned. We denote by A, B, and C the associated roles. In
our example, Alice and Charlie are always honest. Alice is allowed to communicate with Bob and
Charlie. Bob is dishonest and forbidden to send messages to Charlie (and to Alice). The attack
now proceeds as follows: When Alice sends her first message, Bob requests the corresponding
ciphertext and the sanitized ciphertext from the semi-honest sanitizer. He then decrypts the
sanitized ciphertext and thus receives the message Alice has sent. With the knowledge of this
message, as we show below, he is able to create a valid ciphertext for a chosen message m/’,



which will be correctly sanitized and later decrypted by Charlie, hence allowing unrestricted
communication from Bob to Charlie. Details follow.
Consider the policy defined by

- 1, i=A,
P(i, ) :{

0, otherwise.

For the sake of presentation, we assume that the ACE scheme £ under consideration enjoys
perfect correctness. Also, we assume that the setup-phase has completed and the three parties
thus possess the encryption and decryption keys, ek; and dk;, respectively. Now, imagine that
the ACE scheme admits an efficient function maulg with the following property (later we show
how to implement such a function for some existing schemes): For all messages m and m’, any
role 4, and sanitizer parameters sp in the range of Setup, and for any fixed randomness r,

maulg(Enc(eki,m;r),sp,m,m')) = Enc(ek;, m’; 7). (1)
If such a malleability function exists, the communication policy can be bypassed as follows:

1. Alice encrypts a message ¢ < Enc(eka, m) and the sanitizer computes ¢’ < San(sp, ¢) and
gives ¢ and ¢ to Bob.

2. Bob computes m < Dec(dkg, ') and creates a new ciphertext ¢ <— maulg(c, sp, m, m’) and
sends it to the sanitizer.

3. The ciphertext is sanitized ¢ < San(sp,¢) and subsequently sent to Charlie. By the
(perfect) correctness of the assumed ACE scheme and by our assumption on maulg, ¢
is a valid ciphertext (under the encryption key of Alice) and Charlie is able to decrypt
m’ + Dec(dkc, ), effectively receiving Bob’s message m/.

In the following sections, we show that several existing ACE schemes £ admit an efficient
function maulg. More specifically, we consider the “linear” scheme by Damgard et al. [DHO16]
based on ElGamal and the ElGamal-based scheme by Fuchsbauer et al. [FGKO17|.

3.2 DHO Scheme Based on ElGamal

We briefly recall the ElGamal based ACE scheme for a single identity. The sanitizer parameters
of the scheme contain the description of a finite cyclic group G = (g) and its group order g,
and additionally an element h = ¢g* for a uniform random z € Z,. The encryption key for
A is a random value ek € Zg4, and the decryption key is —z. The algorithm Enc on input an
encryption key ek; and a message m € M, samples r{, 72 € Z, uniformly at random and outputs
the ciphertext

¢ = (co,c1,c0,c3) = (g™, h" g% g™ m - h™).

We can define the function maulpno as

1

maulpro ((co, ¢1, c2, ¢3), sp, m,m’) := (co, c1,c,m’ - m™" - ¢3).

Since the group order ¢ is part of sp, this function is efficiently computable. For ¢ = m - h"2, we
thus get a new fourth component ¢4 = m’ - h™ and equation (1) is satisfied.

The malleability for more than one identity (and in particular in our scenario described above)
follows since the scheme for several identities is composed of independent instances of the basic
single-identity scheme.

10



3.3 FGKO Scheme Based on ElGamal

Description of the scheme. In that scheme, the sanitizer parameters consist of the description
of a finite cyclic group G = (g) including the group order ¢ and a generator g, a verification
key vk>® of a signature scheme Sig, and a common-reference string crsNZK of a NIZK proof
system NIZK for the language L = {z | Jw (x,w) € R}, where R is defined as follows: for
T = (Uk:Sig,co, c1,C2, 03) and a witness w = (gw,JSig,m,r, s), R(z,w) =1 if and only if

Sig.Ver(kaig,gx,JSig) =1 A (co,c1,02,¢3) = (gr,gx'r,gs,m-gx’s).

The encryption and decryption keys are given by ek = (g%, aSig), dk := x for a uniformly
chosen x « Z,, where o€ is a signature on ¢%. To encrypt a message m, first choose r « Zy
and s « Z, uniformly at random and compute (co, c1, ¢2,¢3) = (g", 9*", ¢°, m - g**). Then run
aNIZK NIZK.Prove(crleZK, (kaig,co,cl,CQ,c;),), (g%, 0>, m,r, s)) and output the ciphertext
¢ = (cp,c1,C2,C3,7).

Potential malleability. We define the function maulrgko as
n . ;o1
maulrcko ((co, c1, €2, 3, ), sp,m,m’) := (co, c1,ca,m' - m™" - ¢, ).

This function satisfies equation (1) if, for example, the non-interactive zero-knowledge proof is
independent of the last component c3. We show that such a NIZK proof system exists without
violating the properties assumed by Fuchsbauer et al. [FGKO17|. To this end, let NIZK' be a
NIZK proof system for the language L' := {z | Jw (z,w) € R'}, where the relation R’ is defined
as follows: for x = (kaig, co,c1,¢2) and w = (g, oS 1, s), (z,w) € R’ if and only if

Sig.Ver(kaig,gx,USig) =1 A (eo,c1,02) = (gr,gx'r,gs).
Given NIZK', we construct a NIZK proof system NIZK for the original language L as follows:

NIZK.Gen(1%) := NIZK'.Gen(1%),
NlZK.PI’OVG(CTSNIZK,(’UkSig,C(),Cl,CQ,Cg),(gx,O'Sig,m,T, s)) =
NIZK'.Prove(crsNIZK, (Uk:Sig,co,cl,cQ), (gz,USig,r, s)),

NIZK.Ver(crsNIZK, (vk>'®, o, 1, ca, ¢3), WNIZK) = NIZK’.Ver(crsN'ZK, (kaig, o, C1,C2), WNIZK).

Correctness and zero-knowledge of NIZK follow straightforwardly from the underlying scheme
NIZK'. For knowledge-extraction, assume that NIZK’ is capable of extracting a valid wit-
ness (g%, 08, r,s) given a valid proof for the statement (’ukSig, o, c1,c2). Given a statement
(kaig , €0, C1,C2, 03) in the original language L, we can obtain a valid message encoded in c3 by
computing m = c3 - (¢**)~!, and thus also a witness (g‘”, oS8 m, T, s) for the given statement.
Finally, for soundness, note that if (vk>®,cg, ¢1,c2) € L/, this implies that any group element
cs € G is a valid last component, i.e., (vk>®, cg, ¢1, ¢, c3) € L for any c3 € G, since there exists
the message m = c3 - (¢°*)~!, and thus a valid witness w = (g%, 0>€,m,r, s).

For the constructed scheme NIZK and the function maulggko, equation (1) clearly holds.
Hence, the FGKO scheme can be instantiated such that the malleability attack works. It could
potentially be excluded by requiring stronger properties from the NIZK scheme.
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4 A Stronger Notion of ACE

In this section, we introduce our new security definitions, which exclude the issues we have
discovered.

4.1 ACE with Modification Detection

To be resilient against the ciphertext-revealing attacks described in Section 3, the sanitizer should
ideally only sanitize fresh encryptions and block ciphertexts that are either replays or obtained
by modifying previous ciphertexts. Therefore, we introduce an additional algorithm for detecting
modified ciphertexts. If the sanitizer receives a ciphertext that is detected to be a modification
of a previously received one, this ciphertext is blocked. Since such ciphertexts will not be stored
in the repository and consequently not be decrypted, we define chosen-ciphertext security with
respect to a decryption oracle that does not return a decryption if the received ciphertext is
detected to be a modification of the challenge ciphertext. Our definitions can therefore be seen
as a variant of publicly-detectable replayable-CCA security, which was introduced by Canetti et
al. [CKNO03| for public key encryption. Before defining the security, we define the syntax of ACE
schemes with this additional algorithm.

Definition 4.1. An access control encryption with modification detection scheme is an ACE
scheme & together with a PPT algorithm DMod that on input sanitizer parameters sp and two
ciphertexts ¢, ¢ € C, outputs a bit b (where b = 1 means that ¢ was obtained via modifying c).

Except for Section 4.3, where we show that our new definitions imply the existing ones, we
will from now on only consider ACE schemes with modification detection and thus often refer to
them simply as ACE schemes.

The algorithm DMod should output 1 if ¢ is an adversarial modification of ¢, and 0 otherwise.
We have the following intuitive requirements on DMod:

1. All ciphertexts ¢ an adversary can produce given ciphertexts c1, ..., ¢; and no encryption key,
are either invalid (i.e., sanitize to L) or we have DMod(sp, ¢;, ¢) = 1 for some i € {1,...,n}.

2. Given encryption and decryption keys, an adversary is unable to produce a ciphertext ¢
such that a ciphertext produced by Enc for a message of the adversary’s choice is detected
to be a modification of ¢. In particular, independent encryptions of messages collide only
with negligible probability.

The first requirement is captured by role-respecting security as defined in Definition 4.5, the
second one by non-detection of fresh encryptions defined in Definition 4.4.

Remark. Canetti et al. (translated to our setting) also require that if DMod(sp, ¢, é) = 1, then ¢
and ¢ decrypt to the same message [CKNO03|. For our purpose, this is not needed. This means
that we do not want to detect replays in the sense that the same message is replayed, but more
generally, whether the given ciphertext was obtain via some modification of another ciphertext.

4.2 New Security Definitions

We formalize chosen-ciphertext attacks by giving the adversary access to an oracle Ogp that
first sanitizes a given ciphertext and then decrypts the result. One could also consider chosen-
sanitized-ciphertext attacks by providing the adversary access to an oracle Op that only decrypts.
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This is potentially stronger since the adversary can emulate the oracle Ogp by first sanitizing
the ciphertexts and then giving the result to Op, but given Ogp, it is not necessarily possible to
emulate Op. Since in the application, users can only send ciphertexts to the sanitizer but not
directly write ciphertexts to the repository such that they are decrypted without being sanitized,
the weaker notion is sufficient.

In principle, the adversary has in all definitions access to Ogp, as well as to an encryption
oracle and a key-generation oracle. To simplify the definitions, we omit the encryption or
decryption oracles if the winning condition places no restriction on the encryption or decryption
keys obtained from the key-generation oracle, respectively.

Privacy and anonymity. We now define (payload) privacy and sender-anonymity. The former
guarantees that encryptions of different messages under the same encryption key cannot be
distinguished as long as the adversary has no decryption key that allows to decrypt. We also
require this for messages of different length, i.e., schemes satisfying our definition do not leak
the length of the encrypted message, which means that the message space has to be bounded.
Anonymity guarantees that encryptions of the same message under different keys cannot be
distinguished. We distinguish a weak and a strong variant of anonymity, where the weak one
provides no guarantees if the adversary can decrypt the ciphertext, and the strong one guarantees
that even if the adversary has decryption keys, nothing is leaked about the sender role beyond
which of the adversary’s decryption keys can be used to decrypt.

Definition 4.2. Let £ = (Setup, Gen, Enc, San, Dec, DMod), be an ACE with modification detec-
tion scheme and let A = (A1, .42) be a pair of probabilistic algorithms. Consider the experiment
ExpéA;Sf'PRV'ANON'CCA in Figure 2 and let J be the set of all j such that A; or As issued the
query (j,rec) to the oracle Og. We define the privacy under chosen-ciphertezt attacks advantage
and the sender-anonymity under chosen-ciphertext attacks advantages of A as

AdvpSEPRV-CA — 2 . Pr[t/ = b A dg =i1 A Vj € J Plig,j) =0] — 1,
Advp e ANON-CCA - 9 Pyt =b A mog=m1 A Vj € J Pig,j) = P(i1,5) = 0] — 1,
AdvpCEsANON-CCA — 9 . Pr[t/ =b A mo=my A Vj € J Plio,j) = P(i1,5)] — 1,

respectively, where all probabilities are in Expé&E'PRV'ANON'CCA. The scheme £ is called private
under chosen-ciphertezt attacks (PRV-CCA secure), weakly sender-anonymous under chosen-
ciphertext attacks (WANON-CCA secure), and strongly sender-anonymous under chosen-ciphertext
attacks (sANON-CCA secure) if Advé’cflf'PRV'CCA, Advéﬂz'WANON'CCA, and AdvéﬂE‘SANON'CCA are

negligible for all efficient A, respectively.

Remark. Weak anonymity corresponds to the anonymity notion considered by Fuchsbauer et
al. [FGKO17| and strong anonymity to the one considered by Damgard et al. [DHO16]. We
state both definitions because weak anonymity is easier to achieve but strong anonymity might
be required by some applications. If anonymity is only required against the sanitizer or if all
messages are anyway signed by the sender, weak anonymity is sufficient. Strong anonymity is
required in settings where senders also want to retain as much anonymity as possible against
legitimate receivers.

Sanitization security. We next define sanitization security, which excludes that dishonest
parties can communicate via the ciphertexts. We formalize this by requiring that the output
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ACE-SAN-CCA

Experiment ExpéSf‘PRV'ANON'CCA Experiment Expg
Input: (17, P),x € N, P: [n] x [n] — {0,1} Input: (1%, P),x € N, P: [n] x [n] = {0,1}
(sp, msk) < Setup(1*, P) (sp, msk) < Setup(1*, P)
(mo,m1, o, i1, st) (_A?G('v')vOSD(‘s‘)(sp) (co, c1, st) <__A?G('y')v(’)SD('a')(Sp)
b« {0,1} ¢(, < San(sp,co); ¢ < San(sp,c1)
ek, < Gen(msk, 1y, sen) b« {0,1}
c* < Enc(ek;,, mp) b (_AOG(~,~),OSD(-,-)($t )
F o 490G () Ospe () oy o e o
b — Ag (st,c*) for j € [n] do

mg,; < Dec(Gen(msk, j, rec), cf))
my ; < Dec(Gen(msk, j,rec),c})

Experiment Exp?ff'NDTCT'FENC Experiment ExpéSf’URR
Input: (1%, P),x € N, P: [n] x [n] — {0,1} Input: (1%, P),x € N, P: [n] x [n] — {0,1}
(sp, msk) < Setup(1*, P) (sp, msk) < Setup(1*, P)
(m,i,c) + AP ) (sp) ¢+ ACc D080 (sp)
ek; < Gen(msk,i,sen) dct < false
¢* < Enc(ek;, m) for ¢ € {answers from O} do
b < DMod(sp, ¢, c*) dct  dct V DMod(sp, é,¢) =1

¢’ + San(sp,c)
for j € [n] do
my < Dec(Gen(msk, j, rec),c)

Definitions of oracles

O¢ (i, t) == Gen(msk, i,t)
Og(i,m) = Enc(Gen(msk, i, sen), m)
Osp(j, c) = Dec(Gen(msk, j, rec), San(sp, c))

Dec(Gen(msk,j, rec), San(sp, c)), DMod(sp, c*,c) =0
test, else

Osp~ (Ja C) = {

Figure 2: Security experiments for an ACE with modification detection scheme £ and an
adversary A, where A = (Aj, A2) in the first two experiments.

of the sanitizer for two different ciphertexts cannot be distinguished, as long as both sanitized
ciphertexts are not | and the adversary has no decryption key that decrypts one of the ciphertexts.
This provides no security guarantees if the adversary can decrypt the ciphertexts, which does
not seem to be an issue since in this case, the parties can anyway directly communicate via the
messages. However, we additionally consider a stronger variant, where the adversary is allowed to
possess a decryption key that decrypts the ciphertexts, as long as they both decrypt to the same
message. This stronger variant excludes subliminal channels, i.e., even if the involved parties
are allowed to communicated by the policy, they cannot exchange information via ciphertexts
beyond the encrypted message.

Since the adversary provides the two ciphertexts that are sanitized, we do not know to which
roles they correspond; they could even be particularly crafted without belonging to an existing
role. Hence, we cannot state the requirement (in the weak variant) that the adversary should
not be able to decrypt by only considering the policy and the obtained decryption keys, as in the
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no-write rule in Definition 2.4. Instead, we require that the decryption algorithm returns L for
all decryption keys the adversary possesses. For this to provide the intended security, we need
that the decrypt algorithm returns | whenever the receiver role corresponding to the used key is
not supposed to read the message. This is guaranteed by role-respecting security which is defined
later.

Definition 4.3. Let £ = (Setup, Gen, Enc, San, Dec, DMod) be an ACE with modification detec-
tion scheme and let A = (A1, .A2) be a pair of probabilistic algorithms. Consider the experiment
Exp?ﬂz'SAN'CCA in Figure 2 and let J be the set of all j such that A; or Ajg issued the query (j, rec)
to the oracle Og. We define the sanitization under chosen-ciphertext attacks advantage and the
strong sanitization under chosen-ciphertext attacks advantage of A as

AdveSTANCA =2 Pt =b A ch# LA A VjET moy=my;=1] -1,
AdveSEsSANCA =2 Prt =b A ¢ # L#c) A Vj€ETmo;=m -1,

respectively, where the probability is over the randomness in ExpéSf'SAN'CCA. The scheme £
is called sanitization under chosen-ciphertext attacks secure (SAN-CCA secure) and strongly
sanitization under chosen-ciphertext attacks secure (sSAN-CCA secure) if AdvéSf'SAN'CCA and

Adv?%‘SSAN'CCA are negligible for all efficient A, respectively.

Non-detection of fresh encryptions. In the intended way of using a scheme satisfying our
notions, the sanitizer only adds sanitized ciphertexts to the repository if the given ciphertext
is not detected to be a modification of a previously received ciphertext. This means that if an
adversary can find a ciphertext ¢ such that another ciphertext ¢* that is later honestly generated
is detected as a modification of ¢, the delivery of the message at that later point can be prevented
by sending the ciphertext ¢ to the sanitizer earlier. We exclude this by the following definition,
which can be seen as an extended correctness requirement.

Definition 4.4. Let & = (Setup, Gen, Enc, San, Dec, DMod) be an ACE with modification detec-
tion scheme and let A be a probabilistic algorithm. Consider the experiment ExpéSf‘NDTCT'FENC

in Figure 2. We define the non-detection of fresh encryptions advantage of A as
AdV?Cj_NDTCT_FENC — Pr [b _ 1}
) T - ’

where the probability is over the randomness in ExpéﬂE'NDTCT'FENC. The scheme £ is said to

have non-detecting fresh encryptions (NDTCT-FENC) if Adv?ff'NDTCT'FENC is negligible for all
efficient A.

Role-respecting and uniform-decryption security. We finally define role-respecting and
uniform-decryption security. The former means that an adversary cannot produce a ciphertext
for which the pattern of roles that can decrypt does not correspond to a role for which the
adversary has an encryption key. For example, if the adversary has only an encryption key for
the role 7 such that roles jo and j; are the only roles j with P(7,j) = 1, all ciphertexts produced
by the adversary are either invalid (i.e., sanitized to L or detected as a modification) or decrypt
to a message different from 1 precisely under the decryption keys for jg and j;. On the one
hand, this means that receivers who are not allowed to receive the message get L and hence
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know that the message is not for them.? On the other hand, it also guarantees that the adversary
cannot prevent receivers with role j; from receiving a message that is sent to receivers with
role jg. Furthermore, uniform decryption guarantees for all ciphertexts ¢ output by an adversary
that if ¢ decrypts to a message different from L for different decryption keys, it always decrypts
to the same message. In the example above, this means that jyo and j; not only both receive
some message, but they both receive the same one.

Definition 4.5. Let & = (Setup, Gen, Enc, San, Dec, DMod) be an ACE with modification de-
tection scheme and let A be a probabilistic algorithm. Consider the experiment ExpéSf'URR
in Figure 2 and let I and J be the sets of all i and j such that A issued the query (i, sen)
and (j,rec) to the oracle Og, respectively. We define the role-respecting advantage and the

uniform-decryption advantage of A as

AdveRR :=Pr[d # L A det =false A =(JieIVje J (m;# L Pli,j)=1))],
AdvpSTUPEC = Pr[3j,5' € T mj # L #my A mj # my],

respectively, where the probabilities are over the randomness in ExpéSf'URR. The scheme £ is
role-respecting (RR secure) and uniform-decryption (UDEC) secure if Adv?Sf'RR and AdvéﬂE’UDEC

are negligible for all efficient A, respectively.

Remark. Note that in Definition 4.5, we only check the decryptions for receiver roles for which A
has requested the corresponding decryption key. This means that an adversary in addition to
producing a ciphertext that causes an inconsistency, also has to find a receiver role for which
this inconsistency manifests. If the total number of roles n is small (say polynomial in the
security parameter), A can simply query Og on all receiver keys, but for large n this condition
is nontrivial. For example, we consider a scheme secure if an adversary can efficiently produce
a ciphertext such that there is a receiver role that can decrypt it even though the policy does
not allow it, as long as this receiver role is hard to find. The rationale is that in this case, the
inconsistency cannot be exploited and will only be observed with negligible probability in an
execution of the protocol.

4.3 Relation to the Original Security Notions

In this section, we discuss how our notions relate to the original security definitions (see
Scction 2.4). First note that we assume the scheme has an additional algorithm DMod. As
explained in Section 4.1, the intended usage of such a scheme is that the sanitizer discards
ciphertexts that are detected to be a modification of a previous ciphertext. This means that if
dishonest parties want to communicate even though disallowed by the policy (i.e., they want
to break the no-write rule), the sender must produce a ciphertext that is not detected as a
modification of a previous ciphertext. With this in mind, it is natural to adjust the no-write rule
such that an adversary only wins if the ciphertext he outputs is not detected to be a modification
of a ciphertext generated by the oracle Ogg (before sanitizing it).

2Detectability (Definition 2.2) provides this guarantee for honest encryptions, role-respecting security extends
this to maliciously generated ciphertexts. Note, however, that detectability is not implied by role-respecting
security: If an adversary has encryption keys for two roles i and ', role-respecting security does not exclude that
encrypting some message (depending on i’) with the key for role i can be decrypted with keys for roles that are
allowed to receive from i’.
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Definition 4.6. Let Let £ = (Setup, Gen, Enc, San, Dec, DMod) be an ACE with modification
detection scheme and let A = (A1, A2) be a pair of probabilistic algorithms. The experiment
Exp?SE'MD'm'Write is identical to EprCE'"°'W”te in Figure 1 except that after A; returns (co, 7', st),
it is checked whether the oracle OES has generated some ¢ and returned its sanitization such
that DMod(sp, ¢, cp) = 1. If this is the case, set dct < true, else dct « false. Let I be the
set of all ¢ such that A; issued the query (i,sen) to Og, and let J be the set of all j such that
Ap or Ay issued the query (j,rec) to Og. We define the no-write with modification detection
advantage of A as

Adv?ff‘MD'"o'W”te =2-Pr[t) =b A det =false A i €]y
AYiel,VjeJP(i,j)=0 A San(sp,co) # L] — 1,

where the probability is over the randomness of all algorithms in EprCE'MD'm'Write. The scheme &

satisfies the no-write with modification detection rule if AdvACE MD-no-wite

efficient A.

is negligible for all

We show that our new security definitions from Scction 4.2 imply the no-read rule and the
no-write with modification detection rule. We have to assume that the policy P allows for all ¢
that one can efficiently find some j with P(i,j) = 1. This seems to be the case for all practically
relevant policies, though. The results are summarized in the following theorem.

Theorem 4.7. Let £ = (Setup, Gen, Enc, San, Dec, DMod) be an ACE with modification detection
scheme and let £ = (Setup, Gen, Enc, San, Dec) be the corresponding ACE scheme. If £ is correct
and PRV-CCA, sSANON-CCA, SAN-CCA, and RR secure, then it satisfies the the no-write with
modification detection rule for policies P such that for all i, one can efficiently find some j
with P(i,7) = 1, and &' satisfies the no-read rule. More precisely, for all adversaries A, A,
and A", there exist adversaries Apry and Awanon (both roughly as efficient as emulating an
execution of EprCE no-read ) on, adversary Alanon (roughly as efficient as emulating an execution
of E><pACE noread) and adversaries ALny, Amgs and Alorr (all roughly as efficient as emulating

an execution of Exp. A//MD no-write ) guch that

Adv ACE -no-read,priv < Ad ACE PRV-CCA + Ad ACE wANON-CCA

ELA Aprv WANON )
ACE-no-read,anon ACE-sANON—CCA
Adv Ver ar Adv€7‘A;ANON ’
AdVACE MD-no-write < Adv ACE SAN CCA +4 Adv A(;IlE//RR +92. Adv A(.:,E”CORR
Agn

We here sketch the proof idea, a detailed proof of the theorem is provided in Appendix B.
To prove the claim about the payload-privacy no-read rule, consider the hybrid experiment H
that is identical to EprCE no-read ovcept that after A; returns (mg, ma, i, i1, st), 41 is replaced
by ig. If A wins the no- read privacy game, P(ig,j) = P(i1,j) = 0 for all j for which A obtained
a decryption key. Hence, in this case EprCE no-read and H are indistinguishable by weak sender-
anonymity. If A wins in H, one can construct an adversary against PRV-CCA security by
running A, returning (mg, m1, ig, i0, st) when A; returns (mg, ma, i, i1, st), and returning the
same guess as Ay. Note that A has access to an encryption oracle O in E><pACE no-read ' which is
not available in Eprf:E PRV-ANON-CCA " However, since the winning conditions do not restrict the
encryption keys obtained from Og¢, the oracle O can be emulated by obtaining the encryption
key and then encrypting the message.
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Relating the sender-anonymity no-read rule to sSANON-CCA security is a straightforward
reduction.

To prove the claim about the no-write rule, assume A” wins the corresponding game. If
A" does not obtain a decryption key that decrypts ¢g or ¢; to a message different from L, this
adversary can be used to break SAN-CCA security as follows: when A] returns (co, 7', st), output
co and the encryption of a uniformly chosen message for sender role i’ as c;; finally output the
same guess b’ as Aj. Correctness ensures that ¢; does not sanitize to |,* so the winning condition
of the SAN-CCA game is satisfied. If A” does obtain a decryption key that decrypts cg or ¢; to
a message different from L, one can construct an adversary against role-respecting security.

Relation to original no-write rule. Perhaps surprisingly, one can also show that our new no-
tions imply the original no-write rule if DMod is symmetric in the sense that Pr[DMod(sp, co,c1) =
1] = Pr[DMod(sp, c1, ¢p) = 1] (which is the case for all schemes considered in this paper). The
proof idea is to construct adversaries against correctness, and sanitization and role-respecting
security as above. Now, the role-respecting game is not won if the adversary A returns a
ciphertext ¢g that is detected to be a modification of a ciphertext generated by Ogg. We show
that in this case, we can break sSAN-CCA security. Note that Ogg only gives A the sanitized
ciphertexts. The proof idea is as follows. A; makes several queries to Ogg. For a uniformly
chosen one, encrypt the message twice, give the resulting ciphertexts ¢g, ¢; to the sSSAN-CCA
challenger, and give the obtained sanitized ciphertext & to A;. For all other queries, encrypt and
sanitize the message normally. When 4; returns a ciphertext cg, check whether c¢g is detected
to be a modification of ¢y or ¢;. Since the ciphertext ¢;_; is information-theoretically hidden
from A, it can be considered to be a fresh encryption. By our assumption, the probability that
co is detected to be a modification of ¢1_p is equal to the probability that ¢;_p is detected to be
a modification of ¢y, which contradicts non-detection of fresh encryptions. Hence, by checking
which of the two ciphertexts is detected, one can guess b and thus break sSAN-CCA security.
Note that A is allowed to obtain a decryption key that decrypts ¢, which is why we need strong
sanitization security.

Theorem 4.8. Let £ = (Setup, Gen, Enc, San, Dec, DMod) be an ACE with modification detection
scheme such that Pr[DMod(sp, co, ¢1) = 1] = Pr[DMod(sp, c1, co) = 1] for all sp returned by Setup
and all ciphertexts co,c1 € C. Further let &' = (Setup, Gen, Enc, San, Dec) be the corresponding
ACE scheme. If € is correct, detectable, has NDTCT-FENC, and is sSAN-CCA and RR secure,
then £’ satisfies the no-write rule for policies P such that for all i, one can efficiently find some j
with P(i,7) = 1. More precisely, for all adversaries A that make at most qgs queries to the
oracle Ogg and at most qq, queries of the form (-,rec) to Og, there exist adversaries Asan,

Arr, Assan, ANDTCT, Acorr, and Adwer (all roughly as efficient as emulating an ezecution of
Exp?ﬂz'm'w”te) such that

ACE-no-write ACE-SAN-CCA ACE-RR ACE-sSAN-CCA
AdVg/’A S AdVg + 4. AdVg’ARR + 2QES . Advgy-AsSAN

7-ASAN
ACE-NDTCT-FENC ACE-CORR ACE-DTCT
+4qEs - Advgu-ANDTCT + (SQESC]dk + 2) ' Advg,ACORR + 8qEsqak - Advg,Adtct :

See Appendix B for a detailed proof.

3This is the only place where we need that one can efficiently find j with P(i’,j) = 1 since the adversary in
the correctness game has to provide such j.
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5 Enhanced Sanitizable Public-Key Encryption

5.1 Definitions

As a stepping stone toward ACE schemes satisfying our new security definitions, we introduce
enhanced sanitizable public-key encryption. Sanitizable public-key encryption has been considered
by Damgéard et al. [DHO16| and Fuchsbauer et al. [FGKO17] as a relaxation of universal re-
encryption [GJJS04] and rerandomizable encryption [Gro04; PRO7|. It allows to sanitize a
ciphertext to obtain a sanitized ciphertext that cannot be linked to the original ciphertext except
that it decrypts to the correct message. In contrast to rerandomizable encryption, sanitized
ciphertexts can have a different syntax than ciphertexts, i.e., it is not required that a sanitized
ciphertext is indistinguishable from a fresh encryption. We introduce an enhanced variant with a
different syntax and stronger security guarantees.

Definition 5.1. An enhanced sanitizable public-key encryption (sPKE) scheme consists of the
following five PPT algorithms:

Setup: The algorithm Setup on input a security parameter 1%, outputs sanitizer parameters sp,
and a master secret key msk. We implicitly assume that all parameters and keys include
the finite message space M and the ciphertext spaces C,C’.

Key generation: The algorithm Gen on input a master secret key msk, outputs an encryption
key ek and a decryption key dk.

Encryption: The algorithm Enc on input an encryption key ek and a message m € M, outputs
a ciphertext ¢ € C.

Sanitization: The algorithm San on input sanitizer parameters sp and a ciphertext ¢ € C,
outputs a sanitized ciphertext ¢ € C'U{L}.

Decryption: The algorithm Dec on input a decryption key dk and a sanitized ciphertext ¢ € C’,
outputs a message m € M U {L}; on input dk and L, it outputs L.

For correctness, we require for all (sp, msk) in the range of Setup, all (ek, dk) in the range of
Gen(msk), and all m € M that

Dec(dk, San(sp, Enc(ek,m))) =m
with probability 1.

We require robustness in the sense that no ciphertext decrypts to a message different from 1 for
two different decryption keys (except with negligible probability). This is similar to detectability
for ACE schemes, but we allow the adversary to directly output a ciphertext, instead of a message,
which is then honestly encrypted. Our notion therefore closely resembles unrestricted strong
robustness (USROB), introduced by Farshim et al. [FLPQ13] for public-key encryption, which
also allows the adversary to choose a ciphertext and, in contrast to strong robustness by Abdalla
et al. [ABN10|, gives the adversary access to decryption keys.

Definition 5.2. Let & = (Setup, Gen, Enc, San, Dec) be an sPKE scheme. For a probabilistic

algorithm A, we define the experiment Expsé'?ﬁE'USROB that executes (sp, msk) < Setup(1*)

and (c,ig,11) < AOG(')(Sp), where the oracle Og on input getNew, outputs a fresh key pair
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(ek, dk) < Gen(msk). Let ¢ be the number of oracle queries and let for ¢ € {1,...,q}, (ek;, dk;)
be the i-th answer from Og. We define the (unrestricted strong) robustness advantage of A as

Advg REUSROB = Pr(1 <ig,i1 < q A g # iy
A Dec(dk;,, San(sp,c)) # L # Dec(dki,,San(sp,c))],

where the probability is over the randomness in ExpSPKE USROB 4nd the random coins of San

and Dec (both executed independently twice). The scheme & is (unrestricted strongly) robust
(USROB secure) if Advg 15V3ROB is negligible for all efficient A.

We next define IND-CCA security analogously to the definition for ordinary public-key
encryption. In contrast to the usual definition, we do not require the adversary to output two
messages of equal length, which implies that schemes satisfying our definition do not leak the
length of the encrypted message.

Definition 5.3. Let & = (Setup, Gen, Enc, San, Dec) be an sPKE scheme and let A = (A1, As2)
be a pair of probabilistic algorithms. Consider the experiment ExpSPKE IND-CCA i) Figure 3 and
let C'4, be the set of all ciphertexts that Ay queried to the oracle OSD We define the ciphertext
indistinguishability under chosen-ciphertext attacks advantage of A as

AdVEFREIND-CCA o o[ — b A ¢ ¢ Cuy] — 1,

where the probability is over the randomness in ExpSPKE'”\'D'CCA The scheme & has indistin-

guishable ciphertexts under chosen-ciphertext attacks (is IND-CCA secure) if AdePKE IND-CCA 4

negligible for all efficient A.

We also need that it is hard to predict a ciphertext generated by Enc from a message of
the adversary’s choice given encryption and decryption keys. Note that this is not implied by
IND-CCA security since the adversary here obtains the decryption key.

Definition 5.4. Let & = (Setup, Gen, Enc, San, Dec) be an sPKE scheme and let .4 be a prob-
abilistic algorithm. Consider the experiment Expfgl?ﬁE'UPD'CTXT in Figure 3. We define the
ciphertext unpredictability advantage of A as

AdV(SgPL(lE_UPD_CTXT — Pr [C — C*],

where the probability is over the randomness in ExpSPKE UPD-CTXT " The scheme & has unpredictable

ciphertexts (is UPD-CTXT secure) if AdvSPKE UPD-CTXT 5o negligible for all efficient A.

We further define anonymity or indistinguishability of keys following Bellare et al. [BBDPO1].

Definition 5.5. Let & = (Setup, Gen, Enc, San, Dec) be an sPKE scheme and let A = (A1, As2)
be a pair of probabilistic algorithms. Consider the experiment ExpSPKE IK-CCA in Figure 3 and let
C 4, be the set of all ciphertexts that Ay queried to the oracle (’)S Do or Osp,. We define the
indistinguishability of keys under chosen-ciphertext attacks advantage of A as

Advzlilf\E_lK_CCA — 9. Pr [b' =b A C ¢ CA2] -1,

where the probability is over the randomness in Expfg'?ﬁE"K'CCA. The scheme & has indistinguishable

keys under chosen-ciphertext attacks (is IK-CCA secure) if Advsgﬁ)ﬁE"K‘CCA is negligible for all
efficient A.
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sPKE-IND-CCA sPKE-UPD-CTXT

Experiment Expg Experiment Expz 4
Input: 1%,k € N Input: 1",k € N
Esp, 'ms)k) — Sezup(l)”””) Esp7 ms)k) — Sezup(l)”””)
ek, dk) < Gen(msk ek, dk) < Gen(msk
(mo,mi, st) + A?G(‘)’OSD(')(sp, ek) (m, ) = AP0 (sp, ck, dk)
b« {0,1} c* < Enc(ek,m)

¢* + Enc(ek, myp)
% (_ASG(‘)vOSD(‘)(St )

Experiment Expsg'?ﬁE"K‘CCA Experiment Expsg'?ﬁE'SAN'CCA
Input: 17,k € N Input: 17,k € N
(sp, msk) + Setup(1¥) (sp, msk) + Setup(1¥)
(eko, dko) < Gen(msk) (eko, dko) < Gen(msk)
(ek1, dk1) + Gen(msk) (ek1, dk1) + Gen(msk)
(m, st) — A?G(')>OSD0(')xOSD1(')(Sp, cko, ek1) (co,c1, st) A?G(')vOSDO(')sOSDl (')(sp, cko, ek1)
b« {0,1} ¢(, < San(sp,co); ¢y < San(sp,c1)
c* + Enc(eky, m) mo,0 < Dec(dko, c(); mo,1 < Dec(dk1, ()
Yo AOG(.%OSDO(.)YOSDl(.)(St,c*) mi,0 < Dec(dko, c}); mi,1 < Dec(dk1,c})
2 b« {0,1}
b,(_ASGC),OSDO(')»OSL)l(-)(st’cgj)

Figure 3: Security experiments for an sSPKE scheme £ and an adversary A, where A = (A1, Asg)
in the experiments Exp}f’ﬁE"ND'CCA, Expsgf)ﬁE"K'CCA, and Expf;:F:ﬁE'SAN'CCA. The oracle Ogp is

defined as Ogp(c) = Dec(dk,San(sp,c)) and the oracle Ogp, as Ogp;(c) = Dec(dk;, San(sp, c)).
Moreover, the oracle O¢g on input getNew, outputs a fresh key pair (ek, dk) <— Gen(msk).

Sanitization security formalizes that given certain public keys and a sanitized ciphertext, it
is hard to tell which of two adversarially chosen ciphertexts was actually sanitized. To exclude
trivial attacks, we require that both ciphertexts are encryptions relative to the two challenge
public keys eky and ek;. Otherwise, the adversary could use the oracle Og to obtain a fresh
key-pair (ek, dk) and encrypt two different messages under ek. It could then decrypt the challenge
ciphertext using dk and win the game.

Definition 5.6. Let & = (Setup, Gen, Enc, San, Dec) be an sPKE scheme and let A = (A;,.A2)
be a pair of probabilistic algorithms. Consider the experiment ExpsglfﬁE'SAN'CCA in Figure 3. We
define the sanitization under chosen-ciphertext attacks advantage of A as

AdvEFRESAN-CCA — 9 . Pr[t =b A 35,5/ € {0,1} moy; # L # maiy] —1,

where the probability is over the randomness in Exp}?ﬁE'lK'CCA. The scheme £ is sanitization under
chosen-ciphertext attacks (SAN-CCA) secure if Adv}F’)ﬁE'SAN'CCA is negligible for all efficient A.

We finally define the probability that two independent executions of the key-generation
algorithm produce the same encryption key. This probability has to be small for all IND-CCA-
secure schemes because an attacker can otherwise obtain a new key pair from Og and if the
obtained encryption key matches the one with which the challenge ciphertext is generated, the
attacker can decrypt and win the IND-CCA game. We anyway explicitly define this probability
to simplify our reductions later.
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Definition 5.7. Let £& = (Setup, Gen, Enc,San,Dec) be an sPKE scheme. We define the
encryption-key collision probability Col?gk as

Colgk — Pr(sp,msk)eSetup(l"); (eko,dko)<—Gen(msk); (ekl,dk1)%Gen(msk)[ek0 _ 6]{}1].

5.2 Constructing an sPKE Scheme

We next construct an sSPKE scheme satisfying our security definitions. Our construction resembles
the weakly sanitizable PKE scheme by Fuchsbauer et al. [FGKO17|. We use a variant of ElGamal
encryption and obtain security against chosen-ciphertext attacks using the technique of Naor
and Yung [NY90|, i.e., encrypting the message under two independent keys and proving in
zero-knowledge that the ciphertexts are encryptions of the same message, which was shown
to achieve full IND-CCA security if the zero-knowledge proof is one-time simulation sound by
Sahai [Sah99].

Let PKE be a (IND-CPA secure) public-key encryption scheme, let Sig be a (EUF-CMA-
secure) signature scheme, and let NIZK be a (one-time simulation sound) NIZK proof system
for the language L := {z | 3w (z,w) € R}, where the relation R is defined as follows: for
T = (g, ekPKE, ’UkSig,Cl,CQ,CU) and w = (m, g%, ¢°,71, 51,79, 82,0, 1), we have (z,w) € R if and
only if

"LghT g%t g%t m) A cp = (gTQ,gb'm,g52,gb'52 -m)

A Sig.Ver(kaig, (ga,gb),a) =1 A ¢, = PKE.Enc(ekPKE, (ga,gb,a);r).

Clz(g g

We define an sPKE scheme as follows:
Setup: The setup algorithm sPKE.Setup first generates

(ek”¥E, dkPKE) « PKE.Gen(1%),
(kaig, skSig) + Sig.Gen(17),
crs < NIZK.Gen(1%).
Let G = (g) be a cyclic group with prime order p generated by g, with p > 2%, and let
M C G such that |[M|/p < 27%. The sanitizer parameters sp>"<E contain ekP¥E vkSe€,

crs, and a description of G, including g and p. The master secret key msk* KE consists of
ekPRE vkS8 ) skS8 crs, and a description of G, including ¢ and p.

Key generation: The algorithm sPKE.Gen on input msk"KE, samples two elements dk1, dko «

Z,, and computes eky < g1 eky — g%2 as well as o Sig.Sign(skSig,(ekl,ekg)).
Finally, it outputs ek*"KE := (g,p, crs, ekPKE vkS8 ek, ekg,a) and dkSTKE = (dk1, dk2).

Encryption: The algorithm sPKE.Enc on input an encryption key ekS"KE = (g,p, crs, ekPRE,
kaig, ekq, eks, 0’) and a message m € M, samples randomness r, chooses 1, s1,72, s2 « Z,
uniformly at random, and computes

cl (g”, eki', g%, ekt -m),
Co (gm, eky?, g%, eks? - m),
Co PKE.Enc(ekPKE, (ekq, ekg,a);r).

It then generates m < NIZK.Prove(crs,x = (g, ekPKE, 'UkSig,Cl,CQ,CO—),’LU = (m, ek, eka,
r1, 81,72, 89,0, 7")) It finally outputs the ciphertext ¢ = (c1, 2, ¢y, ).
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Sanitization: The algorithm sPKE.San on input sanitizer parameters sp*KE and a cipher-

text ¢ = (e1,c2,¢5,m), first verifies the NIZK proof by evaluating NIZK.Ver(crs,x =
(g, ekPKE, ’UkSig,Cl,CQ,CO—),ﬂ'). It then parses (c1,1,¢1,2,¢1,3,¢1,4) < c¢1. If the verification
succeeds and c1,1 # 1 # c12, then it chooses a random ¢ « ZI*, and outputs the sanitized
ciphertext

d = ((01,1)t * C1,3, (61,2)t : 01,4)-

If the verification fails or if ¢11 = 1 or ¢12 = 1, it outputs L.

Decryption: The algorithm sPKE.Dec on input a decryption key dksP¥E = (dky, dks) and a
sanitized ciphertext ¢/ = (¢}, ), computes the message m < ¢ - ((c’l)dkl)_l. It outputs m
if m € M, and otherwise it outputs L. On input dk*"XF and L, it outputs L.

We first prove correctness and other straightforward properties of the scheme.

Proposition 5.8. If Sig is correct and NIZK has perfect completeness, the scheme sPKE from
above is correct, robust, has unpredictable ciphertexts, and negligible encryption-key collision
probability.

Proof. To prove correctness, let (spsPKE, mskSPKE) in the range of sPKE.Setup, (ekSPKE, dkSPKE)
in the range of sSPKE.Gen(msk*"XE), and let m € M. By correctness of Sig and completeness of
NIZK, the NIZK verification in sPKE.San in the correctness experiment succeeds with probability 1.
Moreover, since g generates G and rq, dk1 € Z, we have c;1 = g™ # 1 and c15 = ekt =
g1 oL 1. Hence,

d = sPKE.San(spSPKE,sPKE.Enc(ekSPKE,m)) = ((01,1)'5 - 1,3, (0172)75 . 01,4)
— (97“1-1t+517 ek;1~t+81 . m)

and

SPKE.DeC(dkSPKE,C/) — 6k71"1~t+51 .m- ((grrt-%sl)dkl)il — gdkl(r1~t+s1) .- (gdkl(m-t—i-sl))*l —m.

This shows that sPKE is correct.

For ciphertext unpredictability, note that each ciphertext contains g™, ¢g°!, ¢g"2, and ¢®2 for
uniformly chosen rq, 51,72, 2 € Z;,. Each of these elements can only be guessed with probability
1/|Z;| = 1/(p — 1), where p > 2%. We can therefore conclude that for any A,

1 1
Ad sPKE-UPD-CTXT < < .
VSPKE,.A = (p . 1)4 — (25 _ 1)4

dkg)

Similarly, since the encryption keys contain the pairs (ek; = g1, eko = g for uniformly

chosen dk1, dka € Zs,, we have

1 1

k
Colbke = i < o

We finally prove robustness. To this end, let A be a probabilistic algorithm that makes at
most g queries to Og and consider Exp}'?f\E'USROB. Further let ek?PKE and deS»PKE = (dkin, dki2)
be the keys returned from Og for the i-th query and let (c,ig,71) be the output of A, where
¢ = (c1,¢,¢q,m) and ¢; = (g% g%, g%, g%). Assume that ig # i; and that ¢ passes sanitization,
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since A cannot win otherwise. This implies a # 0 # b and sanitizing and decrypting the ciphertext
with the two decryption keys yield mg = gbto“'d_d"‘it}vl("’to“'c) and mp; = gbt1+d_dki1’1(“t1+‘3),
respectively, where to, %1 € Zj are chosen uniformly during sanitization. We then have that A
wins if mg, m; € M. Assume that mg € M. Then,

—b-tg 7d+dki071 (a-t0+c) bty +d— dkil 1 (a-t1 +C)

mip=mo-g g

(dkio,l_dkil 71)C . (a~dki071—b)t0 (b—a-dkil,l)tl )

=mp-g g g

Note that if dk;, 1 # dk;, .1 and a # 0 # b, then a-dk;, 1 —b and b—a-dk;, 1 cannot both be 0. Hence,
in this case, m1 is a uniformly random element in the group G. The probability that m; € M is
therefore |[M|/|G| < 27%. Since A obtains at most ¢ decryption keys and the dk;; are uniform
elements in Z¥, the probability that dki,,1 = dks, 1 is bounded by ¢*-1/(p— 1) < ¢*-1/(2" —1).
We can therefore conclude that

2 2
q <q+1

PKE-USROB —
AdvaKE,A <2 H+2;§_1—25_1‘

O]
The main result of this section is the security of the scheme, summarized in the following
theorem.

Theorem 5.9. If the DDH assumption holds in the group G, PKE is IND-CPA secure, Sig is
EUF-CMA secure, and if NIZK is zero-knowledge, computationally sound, and one-time simulation
sound, then the scheme sPKE from above is IND-CCA secure, IK-CCA secure, and SAN-CCA

Secure.

On a high level, our proof proceeds as follows. It is rather straightforward to show that our
variant of ElGamal encryption satisfies the CPA versions of the three properties. The proof
of CCA security follows the proof by Sahai for public-key encryption [Sah99]: Since the NIZK
ensures that both ciphertext components are encryptions of the same message, it does not matter
which component is decrypted. In a reduction, where we assume an adversary A against the CCA
variants of the desired properties, and we want to break the corresponding CPA variants, we only
get one public key and no decryption oracle from the challenger. In order to emulate the view
toward A, the reduction chooses an additional public key and a CRS for the NIZK scheme. Since
the reduction thus knows one of the secret keys, it can emulate a decryption oracle. To generate
a challenge ciphertext, the reduction obtains one challenge ciphertexts from its CPA challenger,
and encrypts another, arbitrary message to get a second ciphertext. The reduction uses the
NIZK simulator to obtain an accepting proof that is indistinguishable from a “real proof”, even if
the underlying statement is not true. A crucial point here is that the NIZK scheme has to be
one-time simulation sound (see Definition A.11). This ensures that even if the adversary sees one
simulated (accepting) proof of a wrong statement, it is not capable of producing accepting proofs
of wrong statements, except by reproducing the exact proof obtained within the challenge, but
which A is not allowed to ask to the decryption oracle by the CCA definition. The fundamental
result of Sahai [Sah99] is that the above strategy successfully simulates a complete CCA attack
toward A.

An additional obstacle we have is that to preserve anonymity, the NIZK needs to be verified
without knowing which encryption keys were used. On the other hand, the reduction only works
if the two used keys “match”, since otherwise, the emulated decryption oracle would use an
incorrect key to decrypt. To prevent an adversary from mixing different key pairs for encryptions,
the key-generation process signs valid key pairs, and the NIZK ensures that a signed pair was
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used. Due to anonymity, this signature cannot be directly contained in the ciphertexts. Instead,
it is part of the witness. To prove that if a ciphertext is accepted, the used key pair was indeed
signed by the key-generation process, we show that if A manages to produce a ciphertext that
is accepted but the keys were not signed, we can break EUF-CMA security of the signature
scheme. In this reduction, we have to provide a forgery. Hence, the reduction needs to extract
the signature and the used encryption keys from the ciphertext. This could be achieved by
assuming that the NIZK is extractable. Extractability and simulation-soundness at the same
time is, however, a quite strong assumption. Instead, we add an encryption of the signature and
the key pair under a separate PKE scheme to the ciphertexts. The reduction can then generate
the keys for this PKE scheme itself and perform extraction by decrypting that ciphertext.

Since the proofs for IND-CCA and IK-CCA security closely follow the proof by Sahai [Sah99],
we here prove SAN-CCA security and defer the other proofs to Appendix C.

Lemma 5.10. Let sSPKE be the scheme from above and let A = (A1, As) be a pair of probabilistic
algorithms such that Ay and Ao together make at most qq queries to Og and at most gsp queries
to Osp, and Ogp, combined. Then, there exist adversaries AppH, Asnd, and Asig (which are all
roughly as efficient as emulating an execution of ExpiE&EfL‘AN'CCA) such that

AAVEEIRE SN O < 8- AQVEDL,, 4 (24qsp + 48) - AGVNECTY,
52¢2 + 192 + 196

26 —1

+24 - AdvgE LT MA 4
Proof. Let Wgap be the event that A4 wins the sanitization game, i.e.,
Waan = [V =b A 3,5 € {0,1} mo; # L #ma ).

We define hybrid experiments Hy to Hy as follows:

o Hy:= ExpiEﬁEjAN'CCA is the sanitization experiment.
e H, is identical to Hy, except that if ¢f, # L, then ¢ is replaced by two uniformly random
group elements (g°, g¢).

e Hy is identical to Hj, except that if ¢} # L, then ¢ is replaced by two uniformly random
group elements (g, ).

In Hy, if ¢y # L and ¢} # L, the view of A is independent of the bit b. Hence, A cannot
guess b with probability more than 1/2 in this case. On the other hand, if ¢ = L or ¢} = L,
then mg o = mo,1 = L or my 9 =m1,; = L, respectively, since L decrypts to L. By definition of
the sanitization advantage, A cannot win in this case. Thus,

H 1
Pri [ Wea] < 5. (2)

To conclude the proof, we show that the probability of Wy, in Hy differs only negligibly
from its probability in Hs. To this end, we first prove that three bad events occur only with
negligible probability in any of the hybrids.

Claim 1. Leti € {0,1,2} and consider the experiment H;. Further let By be the event that A
outputs as co or c1 or queries at least one of its decryption oracles with a valid but improper
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ciphertext (c1,co,Co, ), i€, (g, ekPKE, ’Uk‘Sig,Cl,CQ,CU) ¢ L, but where 7 is an accepting proof,
i.e., NIZK.Ver(crs,x = (g, ekPKE, ’UkSIg,Cl,CQ,CO—),Tr) = 1. Then, there exists an adversary Aind
such that
H; NIZK-snd
Pri[B1] < (¢sp + 2) 'AdVNIZK,i{End‘

Proof of claim. On input crs from the soundness challenger, A’ , uses this CRS, generates
all needed keys itself, and emulates an execution of H; toward A. It initially chooses qg «
{-1,0,1,...,qsp} uniformly at random. If gy > 0 and when A submits the go-th query to a
decryption oracle, Al , outputs the corresponding statement and proof to the challenger. If
go < 0 and when A outputs (¢, c1, st), then Aénd submits the statement and proof from cy,41 to
the challenger. If By occurs, then for some ¢, Aind outputs an accepting proof for an incorrect
statement. Hence, the claim follows. O

Claim 2. Let i € {0,1,2} and consider the experiment H;. Further let By be the event that
A outputs as cg or c1 or queries at least one of its decryption oracles with a valid and proper
ciphertext (c1,co,Co,T), i.€., (g, ekPKE, UkSig,Cl,CQ,Cg) € L and 7 is accepting, but where c, is
the encryption of a triple (ek1, eka, ), such that the pair (eki, eka) has never been output by the
experiment or the oracle Og. Then, there exists an adversary Agig such that

H; Sig-EUF-CMA
Pri[Bg] < AdVSig,Agig .

Proof of claim. On input a signature verification key vk>'8, ‘AiSig generates all keys except for

vk>'® and sk>'® , and emulates an execution of H;. To generate the encryption keys ekBPKE and

ekiPKE and to answer queries to Og, gig obtains the needed signature using the signing oracle of
Sig-EUF-CMA

Sig;,.Agig

Exp . The rest of H; is straightforward to emulate since Aéig possesses all keys except

for sk>€. Whenever A returns or submits a ciphertext (c1,c2, ¢y, ™) to one of the decryption
oracles, .AZSig decrypts ¢, to obtain a pair (ek], ek)) and a signature o’. If it has never queried
(ek’, ekh) to its signing oracle and if the signature is valid, then it outputs ((ekl, eky),0’) as its
forgery. Note that if By occurs, Agig obtains a forgery, so the claim follows. O

Claim 3. Let i € {0,1,2} and consider the experiment H;. Further let Bg be the event that
H; generates two different encryption keys ek KE = (g,p, crs, ekPRE kS8 ek, ek‘g,a) and

(ekSPKE)/ = (g,p, crs, ekPRE w58 ekl | ek, 0’) such that ek = ek} or eko = ekl. Then,

2(gc +2)°

Prifi[By] <
v Bs] < =

Proof of claim. The experiment H; initially generates two encryption keys and then one for
each query to Og. Hence, there are at most (gg + 2)? such pairs. For each of these pairs, the
probability that one of the two components collides is at most 2 - (1/|Z;|) = 2/(p — 1). Using
p > 2% and the union bound implies the claim. O

We now bound the difference of the probabilities of Wg,, in different hybrids. To this end, let
B := By U By U Bs.

Claim 4. For all i € {0,1}, there exists an adversary .AEDH such that

2
H, H DDH H; H, dc+1
Prii[Wean] — Proet [Wean] < 2- Advg”AiDDH +2-Pr[B]+4-Pr+t[B] 4+ TR
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Proof of claim. Let i € {0,1} and let Gy and G; be the events that ¢; output by A is an
encryption under ekBPKE and ekSIPKE, respectively. If B, Gy, and G all do not occur, then ¢; is
either invalid or a valid encryption under a key different from ek:(S)PKE and ek$PKE. Since Wean
can only occur if the ciphertext decrypts to a message different from | under one of these keys,
this only happens if robustness is violated. Using the result on robustness derived in the proof of
Proposition 5.8, this implies

Pr/i[Wen N =B N ~G1 N =Ge] < Pri[We,, | =B N —G1 N —Gs)] <

We also have

Prili[We,n] — Prit (W,
= Prili[Wen N =B N (G1 U Go)] + Prii[We,, N (B U (G, U Gy))]

— PrHi+1[We,n N =B N (G U Go)] — Pritt [We,n N (BU—(G1 U Gy))]
< Prili[Wen N =B N (G U Gy)] — Prii+t[We,, N =B N (G U Gy)]

+ Pri[B] + Prii[We,, N —(G1 U Go)],

and
priti [Wsan N _‘(Gl U GQ)] < pr'hi [Wsan N-BN _'(Gl U G2)] + Prfh [B]

This implies

P [Wean] — Prifict [Wean] < Prffi[Wen N =B N (G1 U Gy)]
96 +1

— Prii+i W, N =B N (G UGL)] + 2 - Prii[B] + T

(3)

We now define the adversary Abp,. On input (X,Y,T), A5py chooses j « {0,1} uniformly
at random and sets ekj;1 <— X. All remaining keys, including ek; 2, are generated as in H;, and
A is invoked on (spSPKE, ekf)PKE = (eko,1, €ko,2), ekﬁPKE = (eky1, 6]47172)). The adversary AiDDH
then emulates an execution of H;. Since it has all keys except for the decryption key dk; 1, only
the emulation of the decryption oracle Ogp, is nontrivial. To answer queries to this oracle,
Appy sanitizes and decrypts the second ciphertext component instead of the first one using dk; .
When A outputs (co, cq, st), both ciphertexts are sanitized and decrypted as in the emulation of
the decryption oracles, except that m; ; is not set to L during decryption if m;; ¢ M. If ¢, # L,
it is replaced by ¢} « (Y, T - m; ;). Moreover, A5, decrypts ¢; » and checks whether it contains
the encryption keys corresponding to ekj-PKE. If this is not the case, it terminates and returns 0.
Otherwise, it continues with the emulation. Finally, when A terminates, App,, outputs d = 1 if
Wsan occurs, and d = 0 otherwise.

Note that B not occurring implies that .AiDDH emulates the decryption oracle perfectly since
in this case, all submitted valid ciphertexts contain two encryptions of the same message under
a signed key pair. Moreover, due to —Bj3, the first encryption key matches the first key of the
oracle if and only if the second keys match. If they match, decryption with either key yields the
correct message with probability 1. Otherwise, the message (before potentially being set to L) is
a uniform group element for both keys, as shown in the robustness proof of Proposition 5.8.

Furthermore, if (X,Y,T) are three independent uniform group elements, ¢, gets replaced
by two uniformly random group elements if ¢ # L, as in H;;1. On the other hand, if =B and
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G, occur and if ¢ # L, then ¢; = (¢ 1, ¢i2, ¢, ™) is a valid encryption of m; ; under eijKE.

Hence, there exist r1, s1 € Z, such that
cin = (9™, (ki)™ g% (ekja)™ -mig) = (g™, X", g% X - my ).

In H;, this ciphertext is sanitized to ¢} = (g”'”sl,X”‘tJrsl -mi,j) for ¢ «- Zy. If we further have
X =¢% Y =g° and T = g%, then this corresponds to d = (g“’”fl,ga'(”'t*sl) ~mi’j), which is
equally distributed as the sanitization (Y,7T" - m; ;) generated by App,. Since we also have that

the probability of =B N Gj is equal in DDH™. and H;, as well as in DDH™¢  and Hy, 1, we
g"ADDH g"ADDH

can conclude

DDHreal, H;
Pr 9 AbpH [d: lﬁ—\BﬂG]’] =Pr Z[Wsanm_‘BmGj]’

DDHran(% s
Pr 9%on[d =1N-BNG;] =Prt [Wen N BN Gyl

Hence,
DDHreal_ DDHrand_
AdvPO! =Pr o fbon[d = 1] - Pr ¢*bon[d = 1]
9>1DDH
DD real | real'
=Pr 9%on[d=1N-BNG,;|+Pr “*ou[d=1N(BU-G,)
DDHrand DDHrand

—Pr  2%on[d=1N=-BNG;]—Pr ¢%ou[d=1N(BU-Gj)]
> Prii[Wen N =B NG| — Pril+ W, N =B NGy

DDHrand DDH?nd
— Pr 9-AppH [d=1NB]—Pr 9-ADpH [d=1nN ﬂGj]-

If =B occurs, then ¢; , contains the correct encryption keys and thus, if also =G occurs, AiDDH
DDHrand

always returns 0. This implies Pr ~ 9%bor[d = 1N =G; N =B] = 0, and therefore

DDHrandi DDHran(% DDHran(%
Pr o%poH[d=1N-G;]=Pr o%ou[d=1N-G;N-B]+Pr o%ou[d =1N~-G; N B]
DDHrand
<Pr o4bou[B].

DDHrand

Using Pr ¢4bou[B] = Prli+1[B], we obtain

AdvgagDH > Prii[Wen N =B N Gy] — Priont (W, N =B N Gj] — 2 - Prin[B].
Combining this with equation (3) and the fact that given G1 U G2 and —B, G occurs with
probability 1/2 (independently of Wsap), we can conclude

Pri [Wean] — PrHitt (W] < 2 - Pr¥i[Wen N =B N Gy] — 2 - Prit (W, N =B N Gj]
2
, gn+1
2. PB4+ G T~
g +1

<2-AdVPPH 4+ 4.prflin B+ 2. Prfli[B] + T

9-Abon
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Using Claim 4 and equation (2), we obtain

sPKE-SAN-CCA
AdvepKE

= 2. Prio[W,,] — 1

=2 (Pr0[Waan] — Pr [Wiaan] + Pr [Wian] — Pr2 [Wian] + Pri®2[Wean]) — 1

i +1
2" —1°

<4. Adv?i‘é’m +4- Advii@m +4.-Pro[B] +12-Pr'[B] + 8 - Pr2[B] + 4 -

Claims 1 to 3 further imply

2
H; NIZK-snd Sig-EUF-CMA | 2(qG + 2)
ProvBl s (asp +2) - Advigicar +AdVG g+ Toe g

Hence,

sPKE-SAN-CCA DDH DDH NIZK-snd
AdVSPKE7.A S 4 . Ava:A%DH + 4 . Advg»‘A%)DH + (4qu + 8) . Ava'ZK,.Agnd

+ (12qsp + 24) - AdvyZcst? - (8qsp + 16) - Advy 7

Sig-EUF-CMA Sig-EUF-CMA Sig-EUF-CMA
+4- AdvgE 2, +12- Advg® a8, +8 - Advg® a2,
N 48(qe +2)% +4¢% + 4
2k _ 1 '

We define the adversary Appn as running AY -, and ALp,, with probability % each, the adver-
sary Asng as running A2, with probability 2332%’ Al . with probability ;ig‘;%, and A2
%, and the adversary Asjg as running Agig with probability 24—4, Aéig with

probability %, and A%ig with probability %. Using the result above, we finally conclude

with probability

AQVEELE SPCN < 5. ADVEDL,, + (24gsp +18) - ABRIE Y,

2
Sig-EUF-CMA |, 92qg + 192q¢ + 196
+24- AdVSig,Asag + on — 1 .

6 Construction of an ACE Scheme

6.1 Construction for Equality

Following Fuchsbauer et al. [FGKO17|, we first construct an ACE scheme for the equality policy,
ie., P(i,j) =1 < i =j, and then use such a scheme in another construction for richer policies.
We base our construction on an sPKE scheme, which already has many important properties
needed for a secure ACE scheme. A syntactical difference between sSPKE and ACE schemes is
that the key generation of the former on every invocation produces a fresh key pair, while the
latter schemes allow the generation of keys for a given role. To bind key pairs to some role i € [n],
we use the output of a pseudorandom function on input ¢ as the randomness for the sPKE key
generation. For role-respecting security, we have to ensure that an adversary can only produce
ciphertexts for keys obtained from the key generation oracle. This is achieved by signing all keys
with a signing key generated at setup. To prevent malleability attacks as the ones described in
Section 3, the encryption algorithm additionally signs all ciphertexts with a separate signing key
that is tied to the encryption key. To maintain anonymity, the signatures are not part of the
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ciphertext but the encrypters prove in zero-knowledge that they know such signatures. Finally,
the modification detection simply checks whether the ciphertexts (without the NIZK proofs) are
equal. Intuitively, this is sufficient since we assume the underlying sPKE scheme to be CCA
secure, which implies that it is not possible to meaningfully modify a given ciphertext. Hence,
a ciphertext is either equal to an existing one (and thus detected by the algorithm) or a fresh
encryption.

Our construction. Let sPKE be a sanitizable public-key encryption scheme, let Sig be a
signature scheme, and let F' be a PRF. Further let NIZK be a NIZK proof of knowledge system
for the language L = {z | Jw (z,w) € R}, where the relation R is defined as follows: for
T = (Uk:Sig,é) and w = (ek?PKE,m,T, vk:is'g,ais'g,ag'g), (z,w) € R if and only if
c= sPKE.Enc(ek?PKE,m; r) A Sig.Ver(kaig, [ekaKE, vk?ig],afig) =1
A Sig.Ver(vkl-Sig,é, oY) = 1.
We define an ACE with modification detection scheme ACE as follows:
Setup: On input a security parameter 1* and a policy P: [n] x [n] — {0,1} with P(i,j) =1 <
1 = j, the algorithm ACE.Setup picks a random PRF key K for a PRF F', and runs
(spSPKE, mskSPKE) <+ sPKE.Setup(17%),
(kaig, skSig) + Sig.Gen(1%),
ersN?K  NIZK.Gen(1%).

It outputs the master secret key msk”E = (K, mskSTKE oSt giSe, crleZK) and the

sanitizer parameters spCE = (spSPKE, vk>'E, crsN'ZK).

Key generation: The algorithm ACE.Gen on input a master secret key msk”F = (K , msksPKE,
vk>€, skSi8, crsN'ZK), arole i € [n], and a type t € {sen, rec}, computes

(eksPRE, dikSTHE) < sPKE.Gen(msk*P*E; Fi([i,0])).
If ¢ = sen, it further computes
(kS8 sk>®) < Sig.Gen (1%; Fie([i, 1)),
o8 Sig.Sign(skSig, [ekZS»PKE, vk?ig] s Fre([4, 2]))

(2

If t = sen, it outputs the encryption key ek?CE = (kaig, ek?PKE, vk?ig, sk?ig, aiSig, crsN'ZK);

if t = rec, it outputs the decryption key dk?CE = dkls-PKE.
Encryption: On input an encryption key ek?CE = (kaig, ekZS-PKE, UkZ-Sig, sk?ig, aiSig, crsN'ZK) and

a message m € MACE the algorithm ACE.Enc samples randomness 7 and computes

¢+ sPKE.Enc(ek?PKE, m; 7"),
oo Sig.Sign(skfig, ¢,
aNIZK NIZK.Prove(crsNIZK,a: = (kaig,E),w = (ek‘?PKE,m,T, vk?ig,afig,afig)).

It outputs the ciphertext ¢ := (E, WN'ZK).
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Sanitization: On input sanitizer parameters sp”AcE = (spSPKE, UkSig, crsN'ZK) and a ciphertext
c = (6,7TN'ZK), ACE.San outputs the sanitized ciphertext ¢ < sPKE.San(spSPKE,é) if
NIZK.Ver(crsN'ZK,x = (Uks'g, 6,),7TN'ZK) = 1; otherwise, it outputs L.

ACE
k)

Decryption: The algorithm ACE.Dec on input a decryption key d and a sanitized cipher-

text ¢/, outputs the message m <« sPKE.Dec(dk?‘CE, ).

Modification detection: The algorithm ACE.DMod on input sp”‘E, ¢; = (61,7T1N'ZK), and

co = (62, 772'\"ZK), outputs 1 if ¢; = ¢9, and 0 otherwise.

We first show that our scheme is correct and strongly detectable.

Proposition 6.1. Let ACE be the scheme from above. Then, ACE is perfectly correct, i.e.,
AdvﬁEEjORR =0 for all A. Moreover, if F is pseudorandom and sPKE is unrestricted strongly
robust, then ACE is strongly detectable.

Proof. Perfect correctness follows from the perfect correctness of the sPKE and signature schemes
and the perfect completeness of the NIZK proof system.

To prove strong detectability, let A be a probabilistic algorithm. We assume without loss of
generality that A returns (m,r,4,j) with P(i,j) = 0 since doing otherwise can only reduce the
advantage. Let Hy = ExpﬁEEfETCT, let H; be as Hy where F is replaced by a truly uniform

function U, and let W be the event that A wins the strong detectability game, i.e.,
W := [ACE.Dec(dk%“F, ACE.San(sp"“F, ACE.Enc(ek}*F, m;7))) # L].

We first show that the difference in the winning probability in Hy and Hi is bounded by the
PRF advantage.

Claim 1. There exists a probabilistic algorithm A(Pglgg such that
Prio[w] — P (W] = AdvERE .

Proof of claim. Consider A(F?Fg'F) that emulates an execution of Hp, where all invocations of Fg (+)
are replaced by a call to the oracle O(-). When A wins, Apgg outputs 1, and 0 otherwise. In case
O(+) corresponds to Fi(-), Aprr perfectly emulates Hy, if it corresponds to U(+), it perfectly
emulates Hi. Hence,

prio[] — Pr[W] = Pr [AE{;F(')M) - 1} —Pr [Agggm - 1} = AdVPRE o

We now construct a winner A,qp for the robustness game for sPKE. The algorithm A,qp
on input sp°PKE emulates an execution of H;. To answer queries of A to the key-generation
oracle, A,op uses the oracle Og to obtain encryption and decryption keys for sPKE; the required
signature keys are generated internally. For each query (i,t), A,op remembers the generated
keys ek?CE and dkaE, and returns the same keys for subsequent queries with the same i.
When A returns (m,r,i,7), App first checks whether i and j have been queried by A to
the key-generation oracle. If not, A,,, now generates these keys as above. Let 7 be the
randomness used by ACE.Enc(ekZ-ACE,m; r) for the algorithm sPKE.Enc. Then, A, computes
c sPKE.Enc(ekaKE, m; f), and returns (¢, ig,71), such that the ip-th query and the i;-th query
to the key-generation oracle were for the roles ¢ and j, respectively. Since P is the equality
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predicate, P(i,7) = 0 is equivalent to ig # i1. We further have by the perfect correctness of sPKE
that sPKE.Dec(dkaKE, sPKE.San(spSPKE, c)) # 1. Hence, Ao, wins the robustness game if and
only if A wins the strong detectability game in Hy. Using Claim 1, we can therefore conclude

ACE-sDTCT H PRF H PRF PKE-USROB
AdVACE,i\ =Pr O[W] = AdVFa-APRF + Prt [W] = AdVFnAPRF + AdV:PKE,Amb . ]

In the following, we prove the security of our scheme, which is summarized by the theorem
below.

Theorem 6.2. If F' is pseudorandom, NIZK is zero-knowledge and extractable, Sig is EUF-CMA
secure, and sPKE is IND-CCA, IK-CCA, SAN-CCA, USROB, and UPD-CTXT secure and has

negligible encryption-key collision probability, then the scheme ACE from above is PRV-CCA,
SANON-CCA, SAN-CCA, UDEC, and RR secure, and has NDTCT-FENC.

We first show that our scheme satisfies the privacy definition from Definition 4.2 if the
underlying sanitizable public-key encryption scheme is IND-CCA secure, the PRF is secure, and
the NIZK is zero-knowledge.

Lemma 6.3. Let ACE be the scheme from above, let A = (A1, A2) be an attacker on the privacy
such that Ay makes at most qs queries of the form (-,sen) to the oracle Og, and at most qp

queries to Ogp. Then, there exist probabilistic algorithms Aprr, Az, and Aspke (which are all

roughly as efficient as emulating an execution of ExpﬁgEjRV’ANON’CCA) such that

ACE-PRV-CCA PRF NIZK-ZK sPKE-IND-CCA
AdVACE 4 <2 Advp e T2 AdvNiZk dg t (@5 + D + 1) - AdVPKE e -

Proof. We assume without loss of generality that A ensures ig = i1 and P(ig,j) = 0 for all j € J,

since doing otherwise can only decrease the advantage. Let Hy := ExpﬁEEﬁRV‘ANON'CCA and H;

be as Hy where Ff is replaced by a truly uniform random function U. The following can be
proven as Claim 1 in the proof of Proposition 6.1.

Claim 1. There exists a probabilistic algorithm .A(F?,gg such that
Prio[ = b] — Prif ) = b] = AdviRh ..

Now let Hy be as Hy, where we replace crsN'#K « NIZK.Gen(1%) by (crsN#K 7NIZK)
SNIZK(1%) in ACE.Setup, and for the generation of the challenge ciphertext c*, we replace
aNIZK NIZK.Prove(crleZK,az,w) in ACE.Enc by 7NIZK S%“ZK(C’FSNIZK,TNIZK,JZ).

Claim 2. There exists a probabilistic algorithm Agg“) such that
Priiy = b] — Pr2[t = b] = Advyize Gy

Proof of claim. The algorithm A?é"') on input crsN?K proceeds as follows. It emulates an

execution of Hy, where in ACE.Setup, crsN'?K is used instead of generating it, and for the
generation of c*, NIZK.Prove(crsN'ZK, x,w) in ACE.Enc is replaced by the oracle query (z,w).
Finally, Agg") outputs b = 1 if Ay returns ¥ = b, and b = 0 otherwise. Note that if crsN'ZK
is generated by NIZK.Gen and O(-, ) corresponds to NIZK.Prove(crsN'ZK, ° '), .Agg") perfectly
emulates Hy. Moreover, if crsN?K is generated together with 7NZK by SNIZK and O(z, w) returns
SS“ZK(CTSNIZK,TNIZK,I‘), A?,g") perfectly emulates Hy. Thus, the claim follows. O
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We finally show how to transform any winner A for Hy to a winner Aspkg for the IND-CCA
game for the scheme sPKE. The strategy of our reduction is to guess which oracle queries of
A are for the role ig, use the key from the sPKE-scheme for these queries, and generate all
other keys as Hy. Details follow. On input (spsPXE, ekSPKE), Aspke initializes iq, < L, kg < 1,
chooses qp « {0,...,qs + gp} uniformly at random, runs (Uk:Sig,skSig) + Sig.Gen(1"), and
(crsN'ZK, TNIZK) + SNIZK(1%), and gives spA°E = (spSPKE, vk, crsN'ZK) to Aj. It emulates the
oracles for A; as follows.

Oc(+,-): On query (i,sen), if k; # qo and i # i4,, then generate an encryption key ekNCE =

(kaig, ekaKE, vk?ig, sk?ig, Ul-Sig, crsN'ZK) as Hy does, where (ek?PKE, dk?PKE) is obtained via
O¢ and remembered for future queries. If k; = qo or ¢ = i4,, replace ekaKE by eksPKE
and set iq, < 4. In both cases, set k; < k; + 1 at the end. On query (j,rec), obtain a

decryption key via Og.

Osp(+,+): On query (j,c = (¢, 7N1ZK)), if kg # qo and j # g, Tun ¢ <+ ACE.San(spA‘E,¢),
generate a decryption key dk?CE as above, decrypt ¢’ using dk’;‘CE, and return the resulting
message. If k; = qo or j = ig4,, set 74, < j and use the oracle Ogp of the IND-CCA
experiment to obtain a decryption m of ¢. If NIZK.Ver(crsN'ZK, x = (kaig, E,),WN'ZK) =1,
return m, otherwise, return L. In all cases, set k; < k; + 1 at the end.

When A; returns (mg, mi, g, 1, st), output (mg,my) to the challenger of the IND-CCA
experiment to obtain a challenge ciphertext . Then run 7NZK « SS“ZK(CTSMZK, TNIZK
(kaig, 6*)), and give st and the ciphertext ¢* = (E*, WNIZK) to As. Emulate the oracles for A,

as follows.

, T =

O¢(+-): On query (i,sen), if ¢ # iy, then generate an encryption key ekiACE = (kaig, ekZS-PKE,
vk;is'g, sk:is'g,ais'g, crsN'ZK) as Hy does, where (ekZS-PKE, dk?PKE) is obtained via Og and re-
membered for future queries. If i = ig, replace ek?PKE by ek*PXE. On query (7, rec), obtain

a decryption key from Og.

Osp=(+,-): On query (j,c = (6, WNlZK)), run ACE.DMod(sp”“E, ¢*, ¢). If the output is 1, return
test. Otherwise, if j # ig, run ¢ < ACE.San(sp”‘E. ¢), generate a decryption key
koACE as above, decrypt ¢ using dk?‘CE, and return the resulting message. If j = iy,
use the oracle Ogp of the IND-CCA experiment to obtain a decryption m of ¢. If
NIZK.Ver(crsN'ZK,a; = (kaig, 6,),7TN'ZK) = 1, return m, otherwise, return L.

Note that we never query the decryption oracle of the IND-CCA experiment on ¢* because
we return test whenever this would be necessary. Denote by @) the event that either iy, = 1o,
or go = 0 and A; does not make the query (ip, sen) to Og and no queries for role ig to Ogp.
When A returns a bit ¥’ and @ holds, Aspkg returns the same bit b” < ¥, if =Q, Aspkg returns
a uniform bit b” « {0,1}.

Let b be the bit chosen by the IND-CCA challenger. Note that by our assumption on A,
io = i1 and A does not query (i, rec) to Og, i.e., ig ¢ J, since P(ig,i9) = 1. Hence, if Q occurs,
the view of A is identical to the one in Hy with b = b. This implies

sPKE-IND-CCA

PrEPsPKE Agpice [ =b | Q] =P [V =],
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and therefore

SPKE-IND-CCA ~ SPKE-IND-CCA SPKE-IND-CCA
PrEXPsPKE,ASPKE [b” — b] — PrEXpsPKE.A PKE [b” — b ‘ Q] EXpsPKE,AspKE [Q]

sPKE-IND-CCA sPKE-IND-CCA

+ PEVRESE [y | Q)RR g

sPKE-IND-CCA sPKE-IND-CCA

= pri2 [b’ = b] . PrEPRPKE A Q] + 3 PrEXpsPKE,ASPKE [-Q].

Using that the probability of @ is 1/(¢s + gp + 1), this yields
Pri2 [t = b]

1 sPKE-IND-CCA ~ 1 SPKE-IND-CCA
= SPIEND-CCA ) PrEXpSPKE’ASPKE [b” = b} - — (1 — PI‘EXpSPKEvAsPKE [Q])

PrEPPRE Aspie @

—
[\

sPKE-IND-CCA ~ 1
=(gs+aqp+1)- (PrEXPsPKEVAsPKE [b" = b} - 2) + 5

Combining this with Claims 1 and 2, we can conclude

ACE- PRV CCA
Adv VACE, A

=2.prfloy =] -1
—2. (PrHO o = b — Prii [y = ] + Prili [y = b — Prif2[y = p] + Priy = b}) 1

SPKE-IND-CCA ~ 1 1
_o. {AdvEﬁPRF + ADNEZISZE 1 (g5 4 ap + 1) <PrEXp5PKE’AsPKE b =] - ) + ] 4
PRF NIZK-ZK PKE-IND-CCA
== 2 . AdVF7APRF + 2 . Ava'ZK,.AZK + (qS + QD + 1) . AdV:PKEv-ASPKE . D

The proofs of the other properties use similar techniques and can be found in Appendix D.

6.2 Lifting Equality to Disjunction of Equalities

We finally show how an ACE scheme for equality, as the one from Section 6.1, can be used to
construct a scheme for the policy Ppgq: D! x DY — {0, 1} with

14

PDEq(X: (xlv"ww[)vy: (y17-~-7y£)) =1 = \/xl = Yi,
i=1

where D is some finite set and ¢ € IN.* This policy can for example be used to implement
the no read-up and now write-down principle (P(i,5) = 1 <& i < j) from the Bell-LaPadula
model [BL73| via an appropriate encoding of the roles [FGKO17].

The intuition of our construction is as follows. A key for a role x = (z1,...,xy) contains
one key of the ACE scheme for equality for each component x; of the role vector. To encrypt
a message, this message is encrypted with each of these keys. To decrypt, one tries to decrypt
each ciphertext component with the corresponding key. If at least one component of the sender
and receiver roles match (i.e., if the policy is satisfied), one of the decryptions is successful. So

“In this section, we denote roles by x and y instead of i and j. To be compatible with our definitions that
consider policies [n] x [n] — {0, 1}, one needs to identify elements of D* with numbers in [n]. We will ignore this
technicality to simplify the presentation.
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far, the construction is identical to the one by Fuchsbauer et al. [FGKO17]|. That construction
is, however, not role-respecting, since a dishonest sender with keys for more than one role can
arbitrarily mix the components of the keys for the encryption. Moreover, the construction does
not guarantee uniform decryption, because different messages can be encrypted in different
components. We fix these issues using the same techniques we used in our construction of the
scheme for equality, i.e., we add a signature of the key vector to the encryption keys, sign the
ciphertexts, and require a zero-knowledge proof of knowledge that a valid key combination was
used to encrypt the same message for each component and that all signatures are valid.

Our construction. Let ACE- be an ACE with modification detection scheme for the equality
predicate on D x [¢], let Sig be a signature scheme, let F' be a PRF, and let NIZK be a NIZK proof
of knowledge system for the language L = {z | 3w (z,w) € R}, where the relation R is defined as
follows: for x = (vks'g,cl, .. .,Cg) and w = (ek(AxCl’f), el ek@i%,m,m, ce, T, vki'g,ai'g,acs'g),
(z,w) € R if and only if

e . .

/\ ci = ACE:.Enc(ekACE: m; ri) A Sig.Ver(vki'g, [c1,. .., e, Us'g) =1

(:Bi 71) ’ ¢
=1

A Sig.Ver (vk>®, [ek'(b‘xcliz), e ek(AxCZ%, k€], ooi8) = 1.

We define an ACE scheme ACEpg, as follows:
Setup: On input a security parameter 17 and the policy Ppgq, the algorithm ACEpgq.Setup
picks a random key K for F' and runs
(mskACE:, spACE:) + ACE=.Setup(1"),
(kaig, skSig) + Sig.Gen(17),
ersNZK  NIZK.Gen(1%).

It outputs the master secret key msk”ACEves = (K, mskPCE= yiSie sSie, crsN'ZK) and the
sanitizer parameters sp”CEDEs = (spACE:, vk>€, crsN'ZK).

Key generation: The algorithm ACEpgq.Gen on input a master secret key mskCEvEs —
(K, mskACE= vkSi€ skSE, crsN'ZK), a role x € DY, and the type sen, generates
ek'(A‘ij): — ACE:.Gen(mskACE:, (zi,1),sen) (fori € [{]),
(vk3'8, sk3®) « Sig.Gen(1%; Fx([x,0])),

028 + Sig.Sign (skSig, [ek'(a‘wcliz), e ek’(o‘xi%, vkiig} s Fre([x,1])),
and outputs the encryption key ek‘iCEDEq = (Uk’Sig, ek:'(A‘xclElz), el ek?xi%, vk sk U,S(ig,

crsN'ZK); on input mskACEDEq, a role y € D!, and the type rec, it generates for i € [,

dkfyf_'i; < ACE_.Gen(msk"E=, (y;,1), rec),

and outputs the decryption key dkéCEDEq = (dkf‘yclElz), cees dk@i%)
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Encryption: On input an encryption key ekiCEDEq = (vk:Sig, ekNCE= L ek CEs ke sk

z1,1) z0,0)°
J)S(ig, crsN'ZK) and a message m € MACEDEs | the algorithm ACI(EDEq) .Enc sarr(qjle)s randomness
r1,...,7p and computes
Ci ACE:.Enc(ek@SE):,m; r;) (for i € [{]),
O'Sig + Sig.Sign (sk:,scig, [c1,... ,Cg]),
NIz NIZK.Prove(crsN'ZK,x = (UkSig,cl, ),
w = (ek’(Axch:), e ek?wi%,m, T, ..., T¢, vk,s(ig, a}scig, asig)).

It outputs the ciphertext ¢ := (cl, .., Cp, WNIZK).

Sanitization: On input sanitizer parameters sp”“Epea = (spACE:, vk>e, crsN'ZK) and a cipher-
text ¢ = (cl, e ,C[,?TNIZK), the algorithm ACEpgq.San checks whether NIZK.Ver(crsN'ZK,
T = (UkSig,Cl,...,Cg),’]TNIZK) = 1. If this is the case, it runs ¢, «+ ACE:.San(ci) for
i€ [l). If ¢, # L for all i € [¢], it outputs the sanitized ciphertext ¢ = (c’l, .. ,c’g). If the
verification fails or any of the sanitized ciphertexts is L, it outputs L.

Decryption: On input a decryption key dkéCEDEq = (dk(AyclEf), . dk?yce%) and a sanitized
ciphertext ¢ == (f,...,¢}), the algorithm ACEpgq.Dec computes for i € [{] the message

7

m; ACE:.DeC(dk(AZ/;E):,c’). If m; # L for some i € [¢], ACEpgq.Dec outputs the first
such m;; otherwise it outputs L.

Modification detection: On input sanitizer parameters sp"CEpea .= (spACE= e, crleZK)
~NIZK

and two ciphertexts ¢ = (cl, e ,Cg,WNIZK) and ¢ = (61, ceey Cp, T ), the algorithm
ACEpeq-DMod checks for i € [¢] whether ACE—.DMod(sp”“F=,¢;, &) = 1. If this is the
case for some i € [{], it outputs 1; otherwise, it outputs 0.

Weak and strong anonymity. As we show below, our scheme enjoys weak anonymity. It is
easy to see that it does not have strong anonymity: Given a decryption key for the role (1, 2), one
can decrypt ciphertexts encrypted under a key for the roles (1,1) and (2,2). One does, however,
also learn which of the two components decrypted successfully. If it is the first one, the sender
role must be (1, 1), if it is the second one, the sender role must be (2,2). For similar reasons, we
do not achieve strong sanitization security.

A similar construction can be used to achieve strong anonymity for less expressive policies:
If a sender role still corresponds to a vector (z1,...,z) € D! but a receiver role only to one
component (j,y) € [f] x D, one can consider the policy that allows to receive if z; = y. Now,
we do not need several components for the decryption key and the problem sketched above
disappears.

Proposition 6.4. If ACE= is correct and detectable, then the scheme ACEpgq from above is
correct and detectable. If ACE— is strongly detectable, then ACEpgq is also strongly detectable.
More precisely, for all probabilistic algorithms A, there exist probabilistic algorithms Acorr, Adtct,
Lictr and Asgeer such that
ACE-CORR ACE-CORR ACE-DTCT
AdVACE A < ADVACE AL, + (0= 1) - AdVACE  Ag

corr

AdvﬁgE—DTE‘T </ AdVACE—DTFT’

DEq» ACE= A,
ACE-sDTCT ACE-sDTCT
AdVACEDEq ,.A S E ’ AdvACE:aAsdtct :
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Proof. We first prove correctness. Let A be a probabilistic algorithm and let (m,x,y) with
Ppeq(x,y) = 1 be the output of A in an execution of ExpﬁEEE)CEgiR. Correctness of the signa-
ture scheme and completeness of the NIZK imply that the verification in the sanitizer algo-
rithm succeeds with probability 1. Note that Ppgq(x,y) = 1 implies that there exists i € [{]
with x; = y;. Let ig be the first such i. Then, A only wins the correctness game if either

ACE:.Dec(dk’(Ay;Ejo), c,) # m, or ACE:.Dec(dkac_Ei): d;) # L for some i < 9. The probability of
ZO7 1
ACE-CORR

the former event is bounded by AdvACE: A, Where Acorr emulates this experiment and returns
(m, (T4, %0), (yz-o,io)). For the latter event, note that there are at most £ — 1 such ¢, so the
probability that ACE_.Dec returns a message different from 1 for any of them can be bounded
by ({—1) - AdvﬁEEBEE)IE‘Lt for the adversary Agict that emulates the experiment and returns
(m, (4,1), (yi, 1)) for a uniformly chosen i < 4.

For detectability, the adversary Al , emulates an execution of ExpﬁEE'DE(IS‘T and when A
returns (m,x,y), Al outputs (m, (x;,1), (y;,7)) for a uniformly chosen i € {1,...,¢}. Note
that A only wins if Ppgq(x,y) = 0, which implies that x; # y; for all i € [/]. In this case, A
wins if any of the ciphertext components decrypt to something different from L. Thus, AJ;,
also wins if the component i was guesses correctly, which happens with probability 1/¢. The
proof for strong detectability is similar, while Aggie; additionally outputs the randomness used
for encrypting the chosen component when the randomness output by A is used to generate the
whole ciphertext. ]

The following theorem summarizes the security properties we prove for our scheme.

Theorem 6.5. If F' is pseudorandom, NIZK is zero-knowledge and extractable, Sig is EUF-CMA
secure, and ACE— is perfectly correct, strongly detectable, has NDTCT-FENC, and is PRV-CCA,
wANON-CCA, SAN-CCA, RR, and UDEC secure, then the scheme ACEpgq from above has
NDTCT-FENC and is PRV-CCA, wANON-CCA, SAN-CCA, RR, and UDEC secure.

We prove this theorem in a sequence of lemmata proving the individual properties. We
begin by showing that privacy and weak anonymity of the scheme follow from the corresponding
properties of the underlying scheme for equality and the zero-knowledge property of the NIZK.
Note that security of the PRF is not needed for this step since it is only used for the signatures,
which are irrelevant here.

Lemma 6.6. Let ACEpgq, be the scheme from above, let A = (A1, Az) be a probabilistic algorithm.
Then, there exist probabilistic algorithms Azk, Aace, Ay, and Apcg (which are all roughly as

efficient as emulating an execution of Expﬁ%EB‘Z?X{ANON'CCA) such that

ACE-PRV-CCA NIZK-ZK ACE-PRV-CCA
AdVaCEpeq A < 2 AdVNIZK Az T € ADVACES Ance
ACE-wANON-CCA NIZK-ZK ACE-wANON-CCA
AdVACE e, A < 2- Advyzi iy, 0 AdvaceT g :
Proof. We only prove the statement about the privacy advantage. The proof for weak anonymity
is completely analogous. We assume without loss of generality that A ensures x° = x!
and P(x’,y) = 0 for all y € J, since doing otherwise can only decrease the privacy ad-

vantage. Let Hy = ExpﬁEE'DZ?\;{ANON'CCA and let H, be as Hy where we replace crsN?K

NIZK.Gen(1%) by (crsNZK 7NIZK) « GNIZK(1%) in ACEpgq.Setup, and for the generation of
the challenge ciphertext ¢*, we replace mNZK « NIZK.Prove(crsN'ZK,x,w) in ACEpgq.Enc by
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aNIZK SS“ZK(CTSNIZK,TNIZK,.%). It can be shown as in the proof of Lemma 6.3 that there

exists a probabilistic algorithm Azk such that
Prifofp) = b) — Prt [t/ = b] = AdviZk e (4)

For k € {0,...,¢}, we define Hyy, as follows. It is identical to Hy except that after A returns
(mo, m1,x°,x!, st), we replace the ciphertext components in c* by

c; ACE:.Enc(ek(ACOES,mO;m) (for 1 <i<k),

¢i ¢ ACE=.Enc(ek( i mairi)  (for k <i < ().
Note that Hs o corresponds to Hy with b = 1 and Hj corresponds to H; with b = 0. Now
consider the adversary Aacg that on input sp chooses ko «— {1,..., ¢} uniformly at random and
emulates an execution of Hy. It emulates the oracle Og by obtaining all the required sub-keys
from its own oracle Og. To emulate the oracle Ogp, it first checks the NIZK proof as ACEpgq.San
and if the verification succeeds, it uses its oracle Ogp to sanitize and decrypt all ciphertext
components. As ACEpgq.Dec, it outputs the first message different from L, or L if no such
message exists.

When A returns (mq, m1,x°,x!, st), Aace generates the challenge ciphertext ¢* by encrypting
mg under the key ek'(A‘xCQES to obtain ¢; for 1 <+ < kg, and by encrypting m; under the key ek(AxclEi:)
for kg < i < ¥4, where these keys can be obtained from Og without changing the advanteié;e.
For the k¢p-th component, it returns (mo, mq, xko,xk ) to the challenger and uses the obtained
challenge ciphertext as c,. It then proceeds with the emulation of H;. It emulates the oracle
O¢ as above and the oracle Ogsp+ as Ogp with the difference that if its own oracle returns test
for any of the components, it returns test as well. Finally, when A, returns o', Aacg returns
b < b'. Note that if b= 0 or b = 1, Aace perfectly emulates an execution of Hy g, or Hg j,—1,
respectively. Further note that since A by assumption does not query Og on a decryption key
for any y with P(x?,y) = 1, Aace also does not ask for a decryption that could decrypt the
challenge ciphertext. Hence, Aacg wins if b = b and we have

ACE-PRV-CCA ExpACES ANON-CCA Ly 0
AdVACE:,AACE =2. PI' ACE [b = b] 1
ExpACE-PRV-ANON-CCA ExpACE-PRV-ANON-CCA
— Py PACE=,Apce [b” =1|b=1]—Pr XPACE=, ApcE b ' =1 | b= 0]

k
= (Prf2o[y = 1) — Pr24[p = 1)) /¢
=Py =1|b=1-Pr'' [t =1]|b=10])/c.

We therefore have that 2-Prii[y = b —1 = ¢- AdvﬁEEji\/ﬁéCA. Combining this with equation (4)
concludes the proof. O

Next, we sketch how to prove sanitization security.

Lemma 6.7. If I is pseudorandom, NIZK is extractable, Sig is EUF-CMA secure, and ACE_ is
perfectly correct, strongly detectable, and SAN-CCA secure, then the scheme ACEpgq from above
is SAN-CCA secure.
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Proof sketch. The basic idea is to construct an adversary Asan against the sanitization security
of ACE_ that chooses kg « {1,...¢} uniformly at random and emulates an execution of

ExpﬁEEI'DsEﬁ‘":'L{CCA. When A; returns two ciphertexts cg, ¢1, Asan gives the sanitized ciphertext

(c’l, o c%) to Ag where ¢ ACE:.San(COJ) for 1 <i < ko, ¢, ACE:.San(CLi) for kg <1 <,
and czo is obtained from the challenger by submitting (COJW, Cl,k0)~ When Ajs returns the bit ¢/,
Asan returns the same bit . Note that Asan wins if the bit is guessed correctly and if both
returned ciphertexts sanitize properly and no decryption key has been obtained that decrypts
any of the ciphertexts. If the last two conditions are not satisfied, then also A does not win.
For the hybrid argument to go through, however, we need to ensure that Asayn still wins with
probability 1/2 when A violates one of these two conditions. To achieve this, Asan needs to detect
that this would next happen and in this case abort the emulation, return two valid ciphertexts
(if not done already) and guess a uniform bit. To detect this event before it happens, extract
witnesses from the ciphertexts returned by A;. If the ciphertexts are valid, the extractions are
successful, the signature scheme is EUF-CMA secure, and the PRF is pseudorandom, then the
ciphertexts have with overwhelming probability been obtained by encrypting messages with
encryption keys that A; has obtained from the oracle Og. Hence, Asan knows in this case
for which roles the messages have been encrypted. When As asks for a decryption key, Asan
checks whether the policy allows this key to decrypt any of the two ciphertexts. Given perfect
correctness and strong detectability, the decryptions yield L if and only if the policy does not
allow decryption. Therefore, Asan can detect when the bad event is about to happen and abort
in this case. O

Non-detection of fresh encryptions directly follows from the same property of the underlying
ACE scheme.

Lemma 6.8. Let ACEpgq, be the scheme from above and let A be an attacker on the non-detection
of fresh encryptions. Then, there exists a probabilistic algorithm A’ (which is roughly as efficient
as emulating an execution of ExpﬁEE’D’:BI‘CT'FENC) such that

ACE-NDTCT-FENC ACE-NDTCT-FENC
AdVACE e, A < - Advace_ .

Proof. Let A’ emulate an execution of ExpﬁEEbE?I‘CT'FENC, using O¢g to answer oracle queries
from A. When A returns (m, X,c = (01, N WNIZK)), A’ chooses k « {1,...,¢} uniformly at

random, and returns (m, (zk, k), ck). If A wins, a fresh encryption of m under x is detected as
a modification of ¢. Since encryption and modification detection are defined component-wise,
this means that there exists a component ko such that a fresh encryption of m under (z,, ko) is
detected to be a modification of ¢x,. Hence, A’ also wins if additionally k = ko, which happens
with probability 1/¢. O

We finally prove role-respecting and uniform decryption security.

Lemma 6.9. Let ACEpgq, be the scheme from above and let A be a probabilistic algorithm that
makes at most at most qg queries to the oracle Op. Then, there exist probabilistic algorithms
Aprr, Azk,, Azk,, Asig, and Aace (which are all roughly as efficient as emulating an execution
of ExpﬁEE;éSE\) such that
ACE-RR ACE-UDEC PRF NIZK-ext NIZK-ext
AdVACEDEq,A + AdVACEDEq,A < 2-Advpgpe. +2- AdVNIZK,lezél +2- AdVNIZK,j(ZEQ

Sig-EUF-CMA ACE-RR ACE-UDEC
+2(qp +1) - AdvgE ST MA 1 gp (AdvACE:7 R e T AdVASEY AACE).
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Proof sketch. As in the proof of Lemma D.5, we define hybrids Hy := ExpﬁEEl';éii, H, as Hy

where F is replaced by a uniform random function U, Hy as H; where crsNZK ig generated
by ElN'ZK, Hjs as Hy where a witness w = (ek(Axcll,Ef), e ek(Axcfg,m, Tlyee. T, vki'g, a,s('g, ocs'g) is
extracted from 7N'?K by EQ”ZK after A returned c := (01, e ,Cg,?TNIZK). We can bound the

probability that no valid witness is extracted even though 7NZK

is a valid proof by the knowledge
extraction advantage of a suitable adversary, and the probability that a valid witness was
extracted and the contained encryption key was not obtained via an oracle call by the signature
forgery advantage of another adversary as in the proof of Lemma D.5. If these events do not
occur, the ciphertext c is an encryption of the message m under a valid key that was returned by
O¢. Hence, A can in this case only win the role-respecting game or the uniform decryption game
if some ciphertext component violates one of these properties. We can construct an adversary
Aace that emulates the execution, guesses this component, and uses the corresponding ciphertext

component to win the game for the underlying scheme for equality. O

7 Conclusion and Directions for Future Work

In this paper, we have critically revisited existing notions for access control encryption, proposed
stronger security definitions, and presented a new scheme that provably achieves our strong
requirements. The need for stronger notions is not only a theoretical one as we have shown: In
particular, we have described a practical attack based on the observation that a semi-honest
sanitizer might leak an unsanitized ciphertext to a dishonest party.

An important question is whether all realistic attacks are excluded by our definitions. Further-
more, we would like to understand the fundamental limits of ACE. This includes investigating in
which scenarios it can or cannot be used. To settle these questions, the authors are currently
working on a theoretical model to capture the use case of ACE in a simulation-based framework.
Another interesting research direction is to find more efficient schemes for useful policies.

A Standard Cryptographic Primitives and Games

A.1 Decisional Diffie-Hellman Assumption

Definition A.1. Let G = (g) be a cyclic group of prime-order g and let g be a generator. Let
A be a probabilistic algorithm that on input ¢, g, and three elements X,Y,T € G returns a bit d.
Let DDH;‘?% be the experiment where A is given two random group elements X = g%, Y = ¢°,
and the value T' = ¢%. Let DDHg?f}ld be the experiment where A is given three random group
elements X = ¢, Y = g°, and T = ¢g¢. We define the decisional Diffie-Hellman (DDH) advantage
of A as

AdvPOH = PrPPHE g — 1] — PrPOHIE (g = 1],

The decisional Diffie-Hellman (DDH) assumption for the group G states that AdvgaH is negligible
for all efficient A.

A.2 Pseudorandom Functions

Definition A.2. For k € IN, let I, X, and ), be finite sets and let Fy.: K X X, — Y, be
a function. For K € K, we use the notation Fi := F,(K,-). Further let A be a probabilistic
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algorithm and consider the experiment in which A outputs a bit after interacting with an oracle
that either corresponds to F for a uniformly chosen K € K, or to a uniformly chosen function
U: X, — Y.. We define the pseudorandom function advantage of A as

AdvERE = Pr[ A% 0 (1%) = 1] — Pr[AY0(1%) = 1],
where the first probability is over the random coins of A and the choice of K, and the second

probability is over the random coins of A and the choice of U. The function family F' is called

pseudorandom if Adv?ﬁ is negligible for all efficient .A.

A.3 Public-Key Encryption

Definition A.3. A public-key encryption (PKE) scheme consist of the following three PPT
algorithms:

Key generation: The algorithm Gen on input a security parameter 17, outputs a public key ek
and a private key dk.

Encryption: The algorithm Enc on input a public key ek and a message m € M, outputs a
ciphertext c.

Decryption: The algorithm Dec on input a private key dk and a ciphertext ¢, outputs a message

me MU{L}
We require for all (ek, dk) in the range of Gen and all m € M that
Dec(dk, Enc(ek,m)) =m
with probability 1.

Definition A.4. Let £ = (Gen, Enc, Dec) be a PKE scheme and let A = (A1, .A2) be a pair of
probabilistic algorithms. Consider the experiment ExpgﬂE"ND'CPA in Figurc 4. We define the
ciphertext indistinguishability under chosen-plaintext attacks advantage of A as

Advgff"ND'CPA =2-Pr[t) =b A |mo| =|mi|] -1

where the probability is over the randomness in Expgﬂz’lND'CPA. The scheme £ has indistin-

guishable ciphertexts under chosen-plaintext attacks (is IND-CPA secure) if Advgﬂz"ND'CPA is
negligible for all efficient A.

A.4 Digital Signature Schemes
Definition A.5. A (digital) signature scheme consist of the following three PPT algorithms:

Key generation: The algorithm Gen on input a security parameter 1%, outputs a public key vk
and a private key sk.

Signing: The algorithm Sign on input a private key sk and a message m € M, outputs a
signature o.
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Sig-EUF-CMA

Experiment Exp?!‘f"ND'CPA Experiment ExpgyA
Input: 17,k € N Input: 17,k € N

(ek, dk) < Gen(1") (vk, sk) + Gen(1%)

(mo,m1, st) < Ai(ek) (m, o) + ASEn(sh:) (yk)

b« {0,1}
c¢* < Enc(ek, mp)
b <+ Aa(st,c*)

Figure 4: Experiments for the security definitions of public-key encryption and digital signature
schemes.

Verification: The algorithm Ver is deterministic and on input a public key vk, a message m,
and a signature o, outputs a bit b (where b = 1 means “valid” and b = 0 means “invalid”).

We require for all (vk, sk) in the range of Gen and all m € M that
Ver(v/c,m,Sign(sk,m)) =1
with probability 1.

Definition A.6. Let £ = (Gen,Sign, Ver) be a signature scheme and let A be a probabilistic
algorithm. Consider the experiment Exp?iEUF'CMA in Figure 4 and let ) be the set of queries
A issued to its oracle. We define the existential unforgeability under adaptive chosen-message

attacks advantage of A as
AdeiﬁEUF_CMA = Pr[Ver(vk,m,0) =1 A m ¢ Q],

Sig-EUF-CMA

where the probability is over the randomness in Expg° . The scheme & is existentially
unforgeable under adaptive chosen-message attacks (EUF-CMA secure) if Adv?i’lEUF'CMA is

negligible for all efficient A.

A.5 Non-Interactive Zero-Knowledge Proofs

We define non-interactive zero-knowledge proofs following Groth [Gro06].

Definition A.7. Let R be an efficiently computable binary relation and consider the language
L= {z | Jw (x,w) € R}. A non-interactive proof system for L (or for R) consists of the following
three PPT algorithms:

Key generation: The algorithm Gen on input a security parameter 17, outputs a common
reference string crs.

Proving: The algorithm Prove on input a common reference string crs, a statement z, and a
witness w, outputs a proof .

Verification: The algorithm Ver on input a common reference string crs, a statement x, and a
proof 7, outputs a bit b (where b = 1 means “accept” and b = 0 means “reject”).
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We require perfect completeness, i.e., for all crs in the range of Gen and for all (z,w) € R, we
have
Ver(crs, z, Prove(crs, z,w)) = 1

with probability 1.

Definition A.8 (Soundness). Let & = (Gen, Prove, Ver) be a non-interactive proof system for a
language L and let A be a probabilistic algorithm. We define the soundness advantage of A as

Advgz\K's"d = PrerseGen(1); (z,m)«Alers) [x ¢ L N Ver(ers,z,m) = 1].

The scheme &€ is computationally sound if AvaIZK snd §

sound if Ava7IZK snd — () for all A.

is negligible for all efficient A and perfectly

Definition A.9 (Computational zero-knowledge). Let £ = (Gen, Prove, Ver) be a non-interactive
proof system for a relation R and let S = (S, S2) be a pair of PPT algorithms, called simulator.
Further let S’(ers, 7, x,w) = Sa(crs,7,x) for (z,w) € R, and S'(crs, 7,z,w) = failure for
(x,w) ¢ R. We define the zero-knowledge advantage of a probabilistic algorithm A as

Adv (IéllglfélZK Prcrs<—Gen(1”) [AProve(crs,~,-)(Crs) _ 1] o Pr(crs,T)<—S1(1“) [.AS,(CTS’T"")(CT’S) — 1] )
We call (Gen, Prove, Ver, S1,S2) a non-interactive zero-knowledge (NIZK) proof system for R
if Adv?"ﬁ"ﬁ{ZK is negligible for all efficient A; it is called single-theorem NIZK proof system if

Adv?%ﬁ{ZK is negligible for all efficient A that make at most one query to their oracle.

Definition A.10 (Knowledge extraction). Let & = (Gen, Prove, Ver) be a non-interactive proof
system for a relation R and let £ = (E1, E3) be a pair of PPT algorithms, called knowledge
extractor. We define the knowledge extraction advantages of a probabilistic algorithm A as

Adv?%ﬁextl = prersGen(l”) [«4(07’8) = 1] — Prlers8ehn) [A(CTS) = 1},

Advgléﬁextg — Pr(crs,f)(—E&(l“); (z,m)A(crs); w—E2(crs,&,z,m) [VGF(CTS, z, 77) -1 A (iE, ’LU) ¢ R]
We call (Gen, Prove, Ver, E1, Es) a non-interactive proof of knowledge system for R if Advg’%'ifxt1
and Adv(';”]élfztext2 are negligible for all efficient A.

Definition A.11 (Simulation soundness). Let & = (Gen, Prove, Ver) be a non-interactive proof
system for a language L, let S = (S7,52) be a pair of PPT algorithms, and let A be a
probabilistic algorithm. Consider the experiment ExpNIZK sim-snd that executes (crs, ) S1(1%)
and (z,7) < A%2(77) (crs). Further let Q be the set of all (2/, 7') such that A queried ' to
its oracle and received 7’ as a response. We define the simulation soundness advantage of A as

Advg%ﬁdm's”d =Pr[(z,7)¢Q N v ¢ L A Ver(crs,z,m) =1].

We say (Gen, Prove, Ver, S1,.S2) is simulation sound if Ava'Z'leS'm snd

NIZK sim-snd
S, A

is negligible for all efficient A;

it is one-time simulation sound if Adv
most one query to the oracle So.

is negligible for all efficient A that make at

Note that in the above definition, A is allowed to issue queries 2’ ¢ L to its oracle. This
means that soundness is preserved even if an adversary sees simulated proofs of false statements.
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B Proof of Relation to the Original Security Notions

We prove the three claims in Theorem 4.7 as separate lemmata, starting with the payload-privacy
no-read rule.

Lemma B.1. Let & = (Setup, Gen, Enc, San, Dec, DMod) be an ACE with modification detection
scheme and let £ = (Setup, Gen, Enc, San, Dec) be the corresponding ACE scheme. Further let
A = (A1, A2) be a pair of probabilistic algorithms. Then, there exist adversaries Apry and
Awanon (both roughly as efficient as emulating an execution of Expé’cf'"wead) such that

ACE -no-read,priv ACE PRV-CCA ACE wANON- CCA
Adv ELA < Ad Aprv + Ad AwANON

Proof. We assume without loss of generality that A ensures |mg| = |m1| and P(ig,j) = P(i1,j) =
0 for all j € J, where J is the set of all j such that A; or Aj issued the query (j,rec) to the
oracle O¢g. Let H be identical to AdvACE no-read, priv except that after A; returns (mg, mi, i, i1, st),
i1 is replaced by ig. We first show that the probability that b is guessed correctly in H and
Adv ?,C E{no_read PV Qiffer only negligibly if the scheme satisfies weak anonymity. Note that if b = 0,

the two experiments are identical, which implies

ACE no-read

ProPe W = b | b=0]=Pri [ =b|b=0]. (5)
Claim 1. There exists an adversary Awanon Such that

ACE -no-read
ProPer T = b | b=1] —Prf [ = b | b= 1] = AdvACEWANON-CCA
Proof of claim. We construct Ayanon as follows. On input sp, it emulates an execution of

Exp?,c’f(”wead, where the oracles for A are emulated as follows.

ACE-PRV-ANON- CCA
WANON

Oc(+,+): Relay queries to the oracle Og of Expg 4

Og(-,-): On query (j,m), query (j,sen) to the oracle Og to receive the encryption key ek;.
Then compute ¢ < Enc(ek;,m) and return c.

When A outputs (mg, m1, o, i1, st), Awanon gives (m1,my,ig,41) to the challenger to obtain a
ciphertext ¢*, which is given to As. When As returns o', A,anon returns the same bit . Note
that if b = 0, Ayanon perfectly emulates H with b =1, and if b = 1, Ayanon perfectly emulates
Expé,c’i'"wead with b = 1. Hence,

ACE no-read

ProPea” Y = b b =1) —Prf [t = b | b=1]
= PR [ =1 b=1] — PR [ =1]b=0]

1 x ACE PRV-ANON-CCA 1 «pACE-PRV-ANON-CCA
:2<2PEP AWANON [,:b‘bzl]_5(1_PrEPE,AWANON [b,:b|b:0:|>>

ACE-PRV-ANON-CCA
= 2. Pro®e Auavon [0 =b] —1.

Note that A,anon returns the same message my twice and we have P(ig, j) = P(i1,) = 0 for all

ACE-PRV-ANON-CCA
j € J by the assumption on .A. This implies AdvaSf WANON-CCA — . PrEPE Auanon [0 =b]—-1

and concludes the proof of the claim. O
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Combining Claim 1 and equation (5), we obtain

ACE no-read ACE no-read ACE no-read

X 1 X X]
ProPe Y = b) = o et AT Y _b|b_0]+ PP W = b b= 1]
1 1
=§.PrH[b’:b\b=o] +5 (Ad EANON-CCA  prl [’:b[b:l])
— PrH [b/ — b] AdV?FEWXVI\ﬁ)',\I\‘ON CCA
Hence, _
Adv?/Ci—no—read,pnv —9. PI‘H [b/ _ b] — 1+ AdVACEWXV,Q)':ON CCA (6)

We now construct the adversary Apry. When invoked on input sp, it starts an emulation of H
by passing sp to A. The oracles for A are emulated as in the proof of Claim 1. When A; returns
(mg, mq, i, i1, st), AwanoN gives (mg, mq, i, i) to the challenger to obtain a ciphertext ¢*, which
is then given to As. When As returns b/, Apry returns the same bit &’. Note that the view of A
in this emulation is identical to its view in H. Since Apgry returns the same role iy twice and
P(ig,7) =0 for all j € J by the assumption on A, we have

ACE-PRV-ANON-CCA

AdVACEPRV-CCA _ o . pyBPe gy [ =b] —1=2-Prf [t/ =b] -

PRV
Using cquation (6), we conclude

ACE-no-read,priv. __ ACE PRV-CCA ACE wANON- CCA
Ade’,A Ad Aprv + Ad Awanon o

We next show that the sender-anonymity no-read rule is implied by strong sender anonymity.

Lemma B.2. Let & = (Setup, Gen, Enc, San, Dec, DMod) be an ACE with modification detection
scheme and let £’ = (Setup, Gen, Enc, San, Dec) be the corresponding ACE scheme. Further let
A = (A1, As) be a pair of probabilistic algorithms. Then, there exists an adversary AsanoN
(roughly as efficient as emulating an execution of Expg/CE,”O read ) such that

ACE no-read,anon ACE sANON- CCA
Adv ELA - Ad Asanon

Proof. We construct Asanon as follows. On input sp, it emulates an execution of EprCE no-read

where the oracles Og and Op for A are emulated as in the proof of Lemma B.1. When A1 returns
(mg, m, 0,11, st), AsanoN gives (mg, m1,ip,i1) to the challenger to obtain the ciphertext c*.
Then, Aj is invoked on input (st, c*) and the oracles are emulated as before. When Ay terminates
with output o/, Asanon returns the same bit b'. We observe that the view Asanon emulates
toward A is identical to the view of A in the experiment E><pACE no-read - Tyg,

AdvACE—no—read,anon

ELA
. EXpACE no-read ;) _ . . N . .
=2.Pr [b =b A mo=mq1 A VJEJP(/LO?j)*P(Zle)]_l
EXpACE-PRV-ANON-CCA / . . . . .
— 9. ProPeAanon ' =b A mg=m1 A VjeJ P(io,j) = Plir,j)] — 1
_ AdVACE SANON-CCA 0

sANON

To conclude the proof of Theorem 4.7, we prove the claim about the no-write with modification
detection rule.
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Lemma B.3. Let & = (Setup, Gen, Enc, San, Dec, DMod) be an ACE with modification detection
scheme and let A = (A1, A2) be a pair of probabilistic algorithms. Then, there exist adversaries
Asan, Arr, and Acorr (all roughly as efficient as emulating an execution of Exp?Sf'MD'm'W“te)

such that for policies P where for all i, one can efficiently find some j with P(i,j) =1,

ACE-MD-no-write ACE-SAN-CCA ACE-RR ACE-CORR
AdVg”A S AdvgnASAN + 4. AdVg7ARR + 2- AdvgaACORR

Proof. We first construct the adversary Asan. When invoked on input sp, it gives sp to Ay and

emulates Exp?Sf'MD'"“W”te. The oracles for A are emulated as follows.

Oq(+,-): Relay queries to the oracle Og of Exp?’(ifgf,\'?‘N'CCA.

Ogs(-,+): On query (j,m), Asan queries (j, sen) to its oracle Og to receive the encryption key
ek;.” Tt then computes ¢’ < San(sp, Enc(ek;,m)) and outputs ¢’ to A.

When A; outputs (cg, ', st), Asan chooses a uniformly random message m « M, queries (i’, sen)
to its oracle Og to receive the encryption key ek, and computes ¢; < Enc(ek;,m). Then, Asan
gives (o, c1) to the challenger to obtain a sanitized ciphertext ¢j. It then invokes A on input
(st,c,) and emulates the oracles as above. When Ajp outputs its guess b, Asan outputs the same
bit b’ as its own guess. Note that the view Agan emulates toward A is identical to the view
of A in the experiment Expéﬂz'MD'"“W”te. Let Wyow and W, be the events that A wins in the
no-write with modification detection experiment and Asan wins the sanitization experiment,
respectively, i.e.,

Whow == [t/ =b A dct =false A i'€1)
A Vi€l VjeJP(i,j)=0 A San(sp,co) # 1],
Wsan = [b,:b VAN CB#J_#C& A VjEJmo’j:ml,j:J_].

Further consider the events

C = [San(sp, 1) # 1,

R :=[Vj € J Dec(Gen(msk, j,rec),San(sp,cp)) = Dec(Gen(msk, j,rec),San(sp,c1)) = L].
We then have

ACE-SAN-CCA ACE-MD-no-write
PrEPEAA W] > PrEPeA “Waow NC N R (7)
We next show that the events =C' and —R only occur with negligible probability if the ACE
scheme is correct and role-respecting, respectively.

Claim 1. There exists an adversary Acorr (roughly as efficient as emulating an execution of
Exp?SE'MD'm’W”te ) such that
ACE-MD-no-write
PrEPea [—C] < AdveSE SORR

Proof of claim. On input sp, the adversary Acorr begins an emulation of Exp?ff‘MD'”o'Write

as Asan above. When A; outputs (cg, 7, st), Acorr chooses a uniformly random message
m « M and finds j with P(¢’,j) = 1. It finally returns (m, ', j). By definition of Dec, we have
Dec(Gen(msk, j,rec), L) = L. Hence, if =C occurs, then encrypting m for role i’ and sanitizing
and decrypting the result yields | # m. Therefore, Acorr Wins the correctness game in this
case, which implies the claim. O

Looking ahead, we note that obtaining additional encryption keys is not problematic in the sanitization game,
since the winning condition does not restrict the obtained encryption keys.
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Claim 2. There exists an adversary ARr (roughly as efficient as emulating an execution of
Exp?SE'MD'”O’W”te ) such that

ACE-MD-no-write
ProPeA [Waow NC N =R] < 2- Adve SRR,

Proof of claim. When invoked on input sp, Agrr internally emulates an execution of A on input sp
and emulates the oracles as follows.

Oq(+,-): Relay queries to the oracle Og of Exp?ﬁ'ﬁ;gRR.

Ogs(+,-): On query (j,m), query (j,m) to Op to receive the ciphertext c. Then, compute
¢ <+ San(sp,c) and return ¢'.

When A; outputs (co, ', st), Arr chooses a uniformly random message m « M, queries (i’, sen)
to its oracle O¢ to receive the encryption key ek, and computes ¢; < Enc(ek;, m). Then, Agrg
chooses ¢ « {cg, c1} uniformly at random and outputs ¢ to the challenger. Let Wyow be the
event that Agrg wins the role-respecting game, i.e.,

Wrr = [ #L A dct =false A =(FielVjeJ (mj# L+ P(i,j)=1))].

Note that Wyow and C imply that ¢/ # L, dct = false, and Vi € I Vj € J P(i,j) = 0. Hence,
if we additionally have —R, at least one of the two possible choices for ¢ yield m; # L for some
7 € J, and thus

ACE-MD-no-write

ACE-URR
prEeih [Waow N C N=R] < 2 Pro%ees [Wig] = 2- AdvASERR, 0

Combining equation (7) and Claims 1 and 2, we obtain

ACE-MD-no-write ACE-MD-no-write
PrEPe A [Waow] < PrEPea [(Waow N C N R
ACE-MD-no-write ACE-MD-no-write
+ PrEPeA [Waow N C N —R] + Pro®ei [-C]

E ACE-SAN-CCA : :
< PrEPedsuy [Wean] + 2 - AdvészER + Advésfch?RRR_

We can thus conclude

ACE-MD-no-write

AdvéSAllE—MD—no—write —9. PrEXPg,A [WnoW] —1
ACE-SAN-CCA
<2 PrEPEA T [Wian] — 1 +4- AdvASERR 2. AgvpCECORR -

— AdyACE-SAN-CCA
€, AsAN

We finally prove Theorem 4.8, which we first restate.

Theorem 4.8. Let £ = (Setup, Gen, Enc, San, Dec, DMod) be an ACE with modification detection
scheme such that Pr[DMod(sp, co, ¢1) = 1] = Pr[DMod(sp, c1, co) = 1] for all sp returned by Setup
and all ciphertexts co,c1 € C. Further let &' = (Setup, Gen, Enc, San, Dec) be the corresponding
ACE scheme. If € is correct, detectable, has NDTCT-FENC, and is sSSAN-CCA and RR secure,
then £’ satisfies the no-write rule for policies P such that for all i, one can efficiently find some j
with P(i,7) = 1. More precisely, for all adversaries A that make at most qgs queries to the
oracle Ogg and at most qq queries of the form (-,rec) to Og, there exist adversaries Asan,
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Arr, Assan, AnpTcT, Acorr;s and Agict (all roughly as efficient as emulating an execution of
Exp??f'”o’wr'te ) such that

Adv ?CE‘ no-write < AdVACE -SAN-CCA +4. AdVACE-RR + 2QES AdVACE -sSAN-CCA

Asan E,ARR Assan
ACE-NDTCT- FENC ACE-CORR ACE-DTCT
+4qgs - Advf,ANDTCT + (8qmsqar +2) - Advg»ACORR + 8qrsqdk - AdvgwAdtct :

Proof. Let A = (Aj, A2) be an adversary and consider EprCE MD-no-write [ ot W, ow and

WMD-now be the events that A wins the no-write and no-write w1th modification detection game,
respectively. Note that we have Wiypnow = Whow N [dct = false]. Hence,

ACE MD-no-write

Ad ACE—no write - 92.Pr Expg; [WnoW] 1

ACE MD-no-write
=2 (PI“EXP [WMD noW] + PI“EXP

ACE-MD-no-write
< AdvACE MD-no-write 4 o  pyExpg 3 [dct = true].

ACE-MD-no-write [

Whow N [dct = true]]) -1

Lemma B.3 implies that there exist adversaries Asan, Arr, and Arggg (all roughly as efficient
as emulating an execution of EprCE MD-no-writey 1ch that

ACE—no write ACE SAN-CCA ACE-RR ACE-CORR
Adv2 < AdvACES! +4- AVE R 42 Adve

2. prEeEa e [det = true]. (8)
To bound the probability of [dct = true], we construct the adversary Assan. When invoked
on input sp, it first chooses gy « {1,...,qrs} uniformly at random, sets k < 1 and internally
emulates an execution of A on input sp. Oracle queries by A are answered as follows:

ACE-SAN-CCA
Assan ’

Oc(+,-): Relay queries to the oracle Og of Expg 4

Ops(,-): On query (i,m), if k # qo, Assan queries (i,sen) to its oracle Og to receive the
encryption key ek;. It then computes ¢ < San(sp, Enc(ek;,m)) and outputs ¢ to A.
Finally, it sets k < k + 1.

If k = qp, then Agsan queries (i, sen) to its oracle Og to receive the encryption key ek;.
It then creates two independent encryptions of m by computing ¢y < Enc(ek;,m) and
¢1 < Enc(eki,m), sets iy, < i, mg, < m, k < k+ 1, and gives ¢y, ¢; to the challenger to
obtain &,.

If A; terminates before k = ¢y is reached, Assan gives two fresh encryptions of some
fixed message mg, for a fixed role iy to the challenger and then returns a uniform bit o' «
{0,1}. Otherwise, when A; returns i’ and ¢y, Assan evaluates dy < DMod(sp, ¢, cp) and
dy < DMod(sp, ¢1,¢p). If dy = dy, then Agsan also returns a uniform bit; if dyy = 1 for exactly
one b’ € {0,1}, Assan returns b'.

Let @ be the event that dy =1 or d; = 1 and let D be the event that d;_, = 1. Note that if
Q and —D occur, Assan returns the correct bit ¥ = b. Moreover, if ) does not occur, Assan
returns a uniform bit. Hence,

= Pr[[t) =0)nQ@N=D] +Pr[[t) =b]n—~(QN=D)]
Pr(Q N D] + Pr[[t = b N =Q)]

Pr[Q N —-D] + Pr[b’ =b|-Q] - Pr[-Q]
=Pr[QN-D]+ 3 - (1-Pr[Q)]),

> Pr
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where all probabilities are in EprCE SiﬁN -CCA  This implies

Pr(Q] = Pr[Q N D] + Pr[Q N ~D] < Pr[D] + Pr[t = ] — 1 + L Pr[Q)

and therefore
Pr[Q] <2 -Pr[D] +2-Pr[t) =b] — 1.

ACE-MD-no- ACE-SAN-CCA with

Note that if [dct = true| occurs in Expe g write then @ occurs in EXPs Aconn

probability at least 1/qrs. We can therefore conclude that

ACE MD-no-write ACE-SAN-CCA

pro®E. [det = true] < ggg - ProPe Agan Q]

Pécf\ SAN-CCA Pécft SAN-CCA
< 2qgs - PI‘ sSAN [D] +qgEs <2 . PI“ SSAN [b = b] — 1).

Let Wsgan be the event that Assan wins the strong sanitization game and consider the events

R:= [VJ eJ (P(iqoaj) =0—=>mo; =my1; = J_)]

We then have that [’ = 0], C, and R together imply Wsan. Thus,

ACE SAN-CCA ACE SAN-CCA ACE-SAN-CCA
ProPedom  [if = b] = Pro®edsan [ = b N CNR] + Pro®edsan [ = 0] N —=(C N R)]
Ex pACE SAN-CCA pACE SAN-CCA
< PrPeAsan [Wisan] + PrEPeAgay [-C U =R].

Together with the previous result, this yields
ACE MD-no-write
PrExPe; [dct = true]
ACE-SAN-CCA ACE-SAN-CCA ACE-SAN-CCA

< 2qgs - PrEPEAgan [D] + qps [2 . PrEPe Agan [Wasan] —1+2- PrEPE Agan [~C U —R]

ACE-SAN-CCA

ACE-SAN-CCA
= 2ps - PrExpg’AsSAN [D] + qBs - AdVACE sSAN-CCA +2gps - Pr Expz 4 Aean [_'C' U —|R].

SAN

Now consider AnpTcT that emulates E><pACE SSA'QN CCA and outputs (Mg, iqq, Co). Note that the

view of Ay in the emulation is independent of ¢;_;. One can therefore assume that ¢;_j is generated
after A; outputs ¢, as ¢* in ExngENET'DCICT FENC By assumption, we have Pr[DMod(sp, ¢1_p,co) =

1] = Pr[DMod(sp, co, ¢1—p) = 1], and therefore

ACE SAN-CCA

Expe ACE NDTCT-FENC
P SAN [ ] Ad NDTCT
Further consider A{ggg that emulates EprCESiﬁ‘N CCA and if there exists j € J with

P(ig,,7) = 1, it chooses j « J uniformly at random and outputs (my,,ig,j). If such j € J
does not exist, Afqrg finds j € [n] with P(iq,,j) = 1 and then outputs (mg,, ig,,j). Note that
mo,; = mi; = Mg, implies ¢, # L # & since L decrypts to L. Hence, if such j € J exists and
—=C occurs, Alqrg Wins the correctness game with probability at least 1/(2]J|) > 1/(2qax); and
if no such j € J exists and ~C' occurs, A{qrg Wins with probability at least 1/2. The factor 1/2
is due to the fact that the message is encrypted twice in EprCE si/:N CCA but only once in the
correctness experiment. Overall, we get

ACE SAN-CCA

Expg; ACE- CORR
Pr AsSAN - <2 - Adv "
[ C] = 4dk d €, ACorr
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Finally consider Agi¢ that emulates EprCE SSA’Z‘N CCA, chooses j « J uniformly at random

and outputs (mgy,%q,,7). If "R occurs, Agie wins the detectability game with probability at
least 1/(2¢qx). Hence,

Ex ACE-SAN-CCA
Pr XPe AN [_‘R] < 2Qdk AdVACE DTCT.

dtct

Combining our results, we obtain

ACE sSAN-CCA

Expj g MD-no-write ACE NDTCT-FENC
P [d SSAN

t = true] < 2¢ps - AdvE A prer + qps - Advg

ACE-CORR

+ 4qES(]dk; - Advg"AgORR + 4QES(]dk AdVACE DTCT

dtct
Together with equation (8), this yields

ACE-nO-wrlte ACE SAN-CCA ACE-RR ACE-CORR ACE-NDTCT-FENC
d < Ad Asan + 4. Ast ARR —+ 2- Advg“A,CORR + 4QES . IA\th,;v ANDTCT

ACE sSAN-CCA
Assan

ACE-CORR

+ 8q¢Esqdr - Advg"A/C/ORR + 8¢ESGdk - AdVACE'DTCT_

dtct

+ 2qE5 Adv

For the adversary Acorr that runs Aggrg with probability m and A¢org With probabil-

; 89ESqdk . ACE-CORR ACE-CORR . ACE-CORR
ity gopoetis, we have (8qmsqar + 2) - Adve A oo = 2 Adv Ve Ao T 84ESqdk Advg’A,C,ORR

and the claim of the theorem follows.

C Proofs of Privacy and Anonymity of the sPKE Scheme

To complete the proof of Theorem 5.9, we first show that our sSPKE scheme is IND-CCA secure.
The proof follows Lindell’s proof for the construction of an IND-CCA secure public-key encryption
scheme from a IND-CPA secure one |Lin06].

Lemma C.1. Let sPKE be the scheme from Section 5.2 and let A = (A1, A2) be a pair of
probabilistic algorithms such that Ay and As together make at most qa queries to Og and at
most qsp queries to Osp. Then, there exist adversaries AppH, Azk, Asnd, and Asig (which are
all roughly as efficient as emulating an execution of ExpiEEEﬂ‘\'D’CCA) such that

SPKE-IND-CCA DDH NIZK-ZK NIZK -sim-snd
AdvpKE A <4-Advg a2 Advnizk 4, 295D - Advnizk AL,

2
Sig-EUF-cMA |, 4(gc +1)° +38
2 AdVEESur A SIEE S TS

Proof. We assume without loss of generality that As does not query the challenge ciphertext ¢*
to its decryption oracle Ogp since doing so can only decrease the advantage. For by, by € {0,1},
we define the hybrid experiment Hj, 3, as follows: Let Hp, 3, be as Exps,F;KE IND-CCA "hut where
the common reference string crs is obtained via (crs, 7) <= S1(1%) (instead of an 1nvocat10n of
NIZK.Gen). When A; outputs (mg, mu, st), Hp, p, computes ¢; as the encryption of my, under
ek1, co as the encryption of my, under eks, and ¢, as in the real experiment (namely as the
encryption of the two ElGamal public keys and the accompanying signature). It then simulates
the proof 7 using Sy and invokes A on input st and ¢* = (¢, c2, ¢, 7).

Claim 1. There exist adversaries Ay, and Ay« such that

H, Ex sPKE IND CCA NIZK-ZK
Pr o,o[b/: ] prEPe [ V=1 ’b:O]:AdVNIZK,A’ZK7
s - -CC
PrEeR e 1 =1 b= 1] — P [ = 1] = AdVNIZEES
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Proof of claim. We only prove the first part of the claim, the second one can be shown analogously.
The adversary A%, on input crs, emulates toward A the experiment Hpg. To this end, it generates
all required keys. When generating the challenge ciphertext ¢* = (¢1, ¢o, ¢, 7), it obtains 7 via
the proof oracle. Note that in Hy g, this ciphertext is a valid encryption of mg, so the statement
is correct and the proof oracle consequently returns a valid proof. When A returns a bit ¢/, A%,
returns 1 — b’. Observe that if the CRS and the proofs are real, then this emulation is equivalent
to the experiment ExpiEﬁE:%D'CCA when b = 0, and if the CRS and the proofs are simulated,

then it is equivalent to Hy . Hence,

AdVNIZK—ZK _ PrcrseGen(l“) [AProve(crs,~,-)(CTs) _ 1] o Pr(crs,r)(—Sl(lﬁ) [AS/(CTS’T"")(CT‘S) _ 1}

NIZK, ALy,
=1 PrPPRRE” ) =1 [ b= 0] — (1 Prffooly = 1))
_ PrHO’O[b/ _ 1] _ PrEpoEEE:'ﬁlD'CCA [b/ -1 ‘ bh— 0]. o

Analogous to the proof of Lemina 5.10, we next define three bad events. Let By be the
event that A queries its decryption oracle with a valid but improper ciphertext (c1,c9,C0,m),
ie., (g, ek PKE, vk:s'g,cl,cQ,cU) ¢ L, but where 7 is an accepting proof, i.e., NIZK.Ver(crs,:E =
(9, ekPRE kSE ¢y, o, o), 7r) = 1. As in the proof of Lemma 5.10, one can show that there exists

b1b2 Gch that

an adversary A}

PI‘Hbl’bQ Bl < 'AdVNIZK—sim—snd
[ 1} =~ 4spD NIZK’Abl,bQ 5

snd

except that we here need (one-time) simulation soundness since the proof in the challenge
ciphertext is simulated.

Further let By be the event that A queries its decryption oracle with a valid and proper
ciphertext (c1, c2, co, ), i€, (g, ekPKE vkSiE ¢, CQ,CO—) € L and = is accepting, but where ¢, is
the encryption of a triple (eki, eko, o), such that the pair (ek1, ek2) has never been output by
the experiment or the oracle Og. Again as in the proof of Lemma 5.10, it can be shown that
there exists an adversary AgliébQ such that

P]:'Hblva [BQ] S AdVSIg—EUF—CMA

. byyb
Slg,.ASilg 2

Finally, let B3 be the event that Hy, 3, generates two different encryption keys eksPKE —
(g,p, crs, ekPRE ukS€ eky, eko, 0) and (ekSPKE)/ = (g,p, crs, ekPRE vk, ek’ ekl a’) such that
ek = ek’ or eks = ekly. Then,

2(gq + 1)

Pritie: [Bs] <
T 12[ 3]_ 2[{_1 s

which can be shown as in the proof of Lemma 5.10. For B := By U Bs U Bs, we therefore have

. 2
el ia B < qgp - AdyNZKSim-snd | p g SigEUF-CMA 2(qc + 1)

NIZK, A 1:b2 Sig, AgL" 28 —1 )

snd
Claim 2. There exist adversaries Appy and Abpy such that
Prifofy = 1] — prifoofy = 1] < 2. Adv?BJ'DDH + Prfoo[B] + PrHio[B] 4 227",

Hiaqp — _ Hioqp — <9. DDI/-! 2—kK
Pritip’ =1 — Prtoy =1] <2 Advgw4DDH + 257"
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Proof of clatim. We define the adversary App,y as follows. On input a triple (X,Y,T'), it sets
ek < X. It further generates all the remaining keys of the experiment (and thus lacks only
the decryption key dki), samples b « {0,1}, and emulates Hy o toward A. The oracle Ogp
is emulated by decrypting the second ciphertext component instead of the first one using dks.
When A; returns (mg,ma, st), Appy samples r « Z and sets

Cl < (gT,XT,Y,T- mb).

It further computes co as an ElGamal encryption of mg, encrypts both keys and their signature
to obtain ¢,, and simulates the NIZK proof 7 using S3. It continues the emulation by giving
c* = (c1,¢2, ¢y, ) to Aa. When Ay outputs its decision bit ¥, Appy, outputs d = 1 if b’ = b, and
d = 0 otherwise.
First note that if (X,Y,T) are three uniform group elements, ¢; is independent of the bit b,
and thus | )
DDHrand
Pr ¢%ou[d = 1] = 3
On the other hand, if (X,Y,T) is a DDH triple, we have for a uniform s € Z,,
a= ¢ X" Y, T -my) = (9", ek}, g°, eki - my),

which corresponds to a proper ElGamal encryption of my if X # 1 and Y # 1. Further note that,
as in the proof of Lemma 5.10, Ogp is emulated perfectly if B does not occur. We therefore have

DDHreal

Pr *bon[d =1N-B| X #1# Y] =Priholy =bn-B].

This implies

DDHreal/ DDHrancll
Advga';DH =Pr  9%ou[d=1]—Pr  9%bon[d = 1]
DDHreal/ DDHreal/ 1
>Pr  fou[d=1N-B|X#1#Y]-Pr Q*ADDH[X;«ElyéY]—§
DD rcall 1
= Prilbo[) =bn=B]-Pr 9%oH[X #£1#Y] - 5
Using the union bound and |G| = p > 2%, we further have
DD real/ reall
Pr 9%oH[X #1#Y]=1—-Pr "or[X =1VY =1]
DHreall DDHreal/
>1—-Pr 9%ou[X =1]—-Pr 9%ou[Y =1]
>1-2.27%,
Hence,
Advga';m > Priboly =pn-B]—27F - =
Since

Privofy = b < Privo[(t) = bn—-B) U B] < Preo[tf = bn-B] + Prvo[B],
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we obtain

1
AdvDDH L2 Prifvo[py = p] — PrHvo[B] — 217F — 5
1 1 1 1 1
= ~ priloofy = —prifofy = 1) — Z— prifoo[B] — Z Priiio[B] — 217F — =
5 Proeolt’ = 0] + 5 Provef | = 5 ProflB] — o Prio(B] 5
1 1 1 1
=3 prifvofy = 1] — 3 prioofy = 1] — 3 priloo[B] — 3 prifio[B] — 217*,

Rearranging the inequality concludes the proof of the first part of the claim.

The second part of the claim can be proven analogously, where Af)p,, sets eka <— X instead
of ek < X. Since it therefore has dkq, which is the key used by the decryption algorithm, the
decryption oracle can be emulated perfectly, even if B occurs. O

Using Claims 1 and 2, we get

SPKE-IND-CCA ExpSPKEIND-CCA
Ad SPKE < 2 PI‘ sPKE,. A [b — b] _ 1

sPKE IND CCA

_ 2( PI‘EXPSPKE IND- CCA[ / _ O | b _ 0] 2 PI‘EXP

[’:1|b:1]>—1

M =11]b=0

sPKE- IND CCA sPKE- IND CCA

— prExPeke [ =1|b=1]— ProPeke
_ PrEXpsPKE IND- CCA[ ’ _ 1 ’ b _ 1] . PrHl’l [b/ _ 1]
+ Prilvay = 1] — Prifvo[p) = 1] + Priio[y = 1] — Prioofy = 1]

sPKE-IND-CCA

+ Priloofy = 1] — PrBPrkeA [ =1 | b= 0]
NIZK-ZK NIZK-ZK DDH DDH
S AdVNIZK,AIZK ‘I_ AdvI\IIZK,.A/Z/K —I_ 2 * AdvgvA/DDH ‘I_ 2 N AdvgvAgDH
+ Proo[B] + Prio[B] 4 257",

Let Azk be the adversary that runs A%, and A%, with probability 1 / 2 each, let Appy run
Appy and Ay with probability 1/2 each, let Agyg run AS,;% and .Al "4 With probability 1/2
each, and let Asjz run AgIg and .Aé’ig with probability 1/2 each. Combing the result above with
equation (9), we can then conclude

AGVEIE O <A < 1 AR, 2 AEITE, + 205 AGIEICT

SigEUF-cmMa | 4(ge +1)% +8
2. AdvgERUReMa SO TS

We finally show that sPKE is IK-CCA secure.

Lemma C.2. Let sPKE be the scheme from Section 5.2 and let A = (A1, A2) be a pair of
probabilistic algorithms such that A1 and Ay together make at most qa queries to Og and at
most gsp queries to Osp, and Ogp, combined. Then, there exist adversaries AppH, Azk, Asnd,
Apke, and Asig (which are all roughly as efficient as emulating an execution of ExpiE&Ej}f'CCA

such that

PKE IK CCA DDH NIZK-ZK NIZK-sim-snd
CI S < 8. Advg,ADDH + 2- AdVNIZK,.AZK + 8qu . ACIVN|ZK:4I::dsn

PKE-IND-CPA Sig-EUF-cMA | 16(qq +2)% + 32
+ 2. AdVPKE,ApKE + 8- AdVSIg,Asig + 25 _ 1 :
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Proof. We assume without loss of generality that Ay does not query the challenge ciphertext c*
to any of its decryption oracles Ogp, or Ogp,, since doing so can only decrease the advantage.
We define hybrid experiments Hy to Hy as follows:

e Hj is identical to ExpiEﬁE:%‘CCA, except that the common reference string crs is obtained

via (ers,7) < S1(17) (instead of an invocation of NIZK.Gen), and the proof 7 in the
challenge ciphertext ¢* is simulated using So.

e H; is identical to Hp, but when A; outputs (m, st), the hybrid computes ¢, not as an
encryption of (eky 1, ekp2,05), but as the encryption of 0, where ¢ is the length of the
encoding of (eky 1, ekp 2, 0p) (Where the encoding needs to be chosen such that this length
is equal for all keys).

e H, is identical to Hi, except that for the generation of the challenge ciphertext ¢*, the
key ek 1 is replaced by g% for a freshly sampled dg 1 « Zy,.

e Hj is identical to Ha, except that for the generation of the challenge ciphertext ¢*, the
key eko is replaced by g%:2 for a freshly sampled do2 « Zy.

e H, is identical to Hs, except that for the generation of the challenge ciphertext ¢*, the
key ek1, is replaced by g% for a freshly sampled dig « Zy,.

e Hj is identical to Hy, except that for the generation of the challenge ciphertext ¢*, the
key ek1 2 is replaced by g™2 for a freshly sampled di2 « Zy,.

Note that the view of A in Hj is independent from the bit b, which implies

1

Prifsfy = pl = =.
| ] 5

(10)

It can be shown as in the proof of Lemma C.1 that there exist an adversary Az such that

PrEPIRREL [y = 3] — Prio[y = b] = AdVNIZEZK (11)

Claim 1. There exists an adversary Apke such that
Priofp) = b] — Pri (b = b] = AdvpKE e -

Proof of clatim. When Apkg obtains a public key ek from the CPA challenger, it generates all
remaining keys itself and emulates Hy (or H;) toward A. Note that Apkg never needs to decrypt
any of the ciphertexts ¢, in the experiment and thus, the missing decryption key is not needed for
the emulation. When A; outputs (m, st), Apke gives (OZ7 (ekp1, €kp 2, ab)) to its CPA challenger
to obtain a ciphertext ¢,, where £ is the length of the encoding of (eky 1, ekp2,04). The rest is
done as in Hy. When A returns a bit ¥, Apkg returns b’ = 1 if ¥’ = b, and b’ = 0 if b’ # b.

Note that if the CPA challenger chooses the bit bcpa = 0, ¢, is an encryption of 0¢, as in Hj,
and if bcpa = 1, ¢, is as in Hy. Hence,

PrOPHEAne [1 = 1 | bepa = 0] = PrAA Y = b,

PKE-IND-CPA
PrEPPKEAece [V = 1| bepa = 1] = Priofy = ).
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We can therefore conclude

_ _ E PKE-IND-CPA
Advpig IND-CPA — 9. Pr=PPREAee [ = bepa] — 1

E PKE-IND-CPA E PKE-IND-CPA
= Py PPKEApke (b7 = 0| bepa = 0] + Pr PPKEApke [ =1 | bepa = 1] — 1

E PKE-IND-CPA E PKE-IND-CPA
= PrPPKEAeke [ =1 | bepa = 1] — PrPPREApke (b = 1| bepa = 0]

= Prio[ = b] — Pr [t/ =b]. O

We define the event B analogous to the events in the proofs of Lemmata 5.10 and C.1. As
there, one can show for i € {0,...,5} that there exist adversaries A’ , and Aéig such that

2
H, NIZK-sim-snd Sig-EUF-CMA | 2(qG +2)
PI' [B] S QSD . AdVN|ZK,iIlstn + AdVSig,Agig + W (12)

Claim 2. There exist adversaries Abpy, - -, Abpy such that fori € {1,3}

Prilify) = p] — Prifvt[p = o] < AdvSH 4 Prfi[B] + Prifist [B] + 2277,
Y *DDH
and fori € {2,4}
H;ry! _ H; / DDH 2—
Priti[t’ = b — Prititt[b) = b] < Adng‘liDDH + 2471,
Proof of claim. On input (X,Y,T), AIDDH sets eko1 + X, ‘AQDDH sets ekoa + X, A%DH sets
eki11 < X, and .AéDH sets ek12 <= X. All adversaries generate the remaining keys themselves
and emulate H; (or H;11) toward A. To emulate the decryption oracles, ALy, and A2, decrypt
the second ciphertext component instead of the first one; AQDDH and A%)DH can emulate all oracles
perfectly. As in the proof of Lemma 5.10, Ogp is also emulated perfectly by ALy, and A3, if
the event B does not occur. When A; returns (m, st) and if b = 0, then ALy, samples r « 7,
sets
o« (Y, T",Y,T-m),

and generates the remaining ciphertext components as in the real experiment. The other
adversaries generate the ciphertext components analogously. When A, returns a bit o', then
Con returns d =1if 0 =band d=01if b # b for all i € {1,...,4}.
Consider the case i = 1 and note that if (X,Y,T) is a DDH triple, we have Y = ¢° and
T = X* for a uniform s € Z,, and thus, if b =0,

c] = (YT,XS'T, Y, X®. m) = (gs'r, (eko1)®", g%, (ekoq)® - m)

If X #1 # Y, this corresponds to an encryption of m under ekg1, as in H;. On the other
hand, if (X,Y,T) are three uniform group elements and X # 1 # Y, then there are (uniformly
distributed) s,dp € Zy, such that Y = g% and T' = g¥%.1. Hence, we have in this case

cr = (g5, g1 g% g0t m) = (g7, (9%1), g%, (g%01)7 - m),
which corresponds to an encryption under the fresh key ¢%1, as in H,. Further note that if

b =1, the emulation, Hy, and Hy are all equivalent. We therefore have

DDHrcal1 I ,
Pr 2%oH[d=1N-B|X #£1#£Y]=Pr''[t) =bnN-B],

DDHrand Ho 1
Pr gvADDH[dzlﬂ—‘B|X7é17§Y]:Pr 2 =bN-B.
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As in the proof of Lemma C.1, we obtain

DDHreal
Pl” g"A%DH [d — 1] Z PI.Hl [b/ — b} _ PrHl [B] — 21_}{,'

Moreover,

DDHrand DDHrand DDHrand
Pr 9%on[d=1]=Pr 2%on[d=1N-B|X #1#Y]-Pr  9%on[X £#1#Y]
rand

D
+Pr  fould=1N(BU[X =1VY =1])]

DDHrand DDHrand
<Pr2[y =bN=B]+Pr  o%ou[B]+Pr  “Aou[X =1VY =1]

rand

D
< Pr2[if =p] + Pr o4bou[B] 4 217",
Since the probability of B in DDH;ai(} is equal to its probability in Hy, we conclude
»ADDH

DD real rand
AdVDOH = Pr o Abon[d = 1] = Pr obon[d = 1]
Y *DDH
> Priy = b — Pr2[y = b] — Prit[B] — PrP2[B] — 227*.
The proofs for i € {2,3,4} are analogous, where for i € {2,4}, the occurrence of B does not
matter since the decryption oracle can always be emulated perfectly. O
Using equation (11), Claims 1 and 2, and equation (10), we obtain
PrEPRKEA B = b = PrEPRREA [i = b] — PrHo[yf = b] + PO = b] — PrAY = i)
+ (PrHi b = b] — Prif [y = b]) + Pris[y =]
i=1

4
1
NIZK-ZK PKE-IND-CPA E DDH H; —
S AdVN|ZK,AZK "‘ AdVPKE,APKE + (Advgv-A[L)DH + PI' [B]) _|_ 24 K + 5
i=1

For the adversary Ag,g that runs AL ... A%  with probability 1/4 each, and the adversary Asig

snd? snd

that runs Aéig’ . 7Aéig with probability 1/4 each, we obtain using equation (12),

4
. - ig-EUF- 8(qc + 2)?
S P B] < dasp - AGECE 4 A e+ S L0
i=1

Further defining Appy as running Abpy, ..., Appy with probability 1/4 each yields

sPKE-IK-CCA
AdvRRE SN < 2 PrERleke T = p] — 1

NIZK-ZK PKE-IND-CPA DDH NIZK-sim-snd
< 2 AdVNIZK Az + 2 - ADVRKE dpye - + 8 Advg e, + 845D - Advizi i,

2
Sig-EUF-CMA | 16(qq + 2) 5
+8- AdvgER B

Observing that 227" <

32 7 concludes the proof. O
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D Remaining Security Proofs of the ACE Scheme for Equality

After privacy, which was shown in Lemma 6.3, we prove anonymity, which can be shown similarly.
We provide a proof for strong anonymity. Note, however, that for the equality policy, strong
anonymity does not provide more guarantees than weak anonymity because anyone who can
decrypt directly learns that the sender role is equal to the receiver role.

Lemma D.1. Let ACE be the scheme from above, let A = (A1, Az) be an attacker on the
anonymity such that A1 makes at most qs queries of the form (-,sen) to the oracle Og, and
at most qp queries to Ogp. Then, there exist probabilistic algorithms Aprr, Azk, and Aspke

(which are all roughly as efficient as emulating an execution of ExpﬁEEjRV'ANON'CCA ) such that

ACE-sANON-CCA PRF NIZK-ZK 2 PKE-IK-CCA
AdVACE,,Sat <2 AdVF,ApRF +2- AdVNlZK,AZK + (g5 +qp +1)*- AdvaKE,AspKE :

Proof. We assume without loss of generality that A ensures mg = mq and P(ig, j) = P(i1, j) for all
j € J, since doing otherwise can only decrease the advantage. Since we have P(i,j) =1 < i = j,
the latter condition implies that if ig € J or 41 € J, then iy = 1. In case ig = i1 and mg = mq,
A cannot have positive advantage. Hence, we can further assume without loss of generality
that ig ¢ J and i1 ¢ J. As in the proof of Lemma 6.3, let Hy == ExpﬁEEﬁRV'ANON'CCA, let Hy
be as Hy where F is replaced by a truly uniform random function U, and let Hy be as Hj,
where crsN#K < NIZK.Gen(1%) in ACE.Setup is replaced by (crsN#K, 7NIZK) o gNIZK(1r) and
for the generation of the challenge ciphertext ¢*, 7NZK NIZK.Prove(crs'\”ZK7 T, w) in ACE.Enc
is replaced by mNIZK SSHZK(CTSNIZK, TNIZK, x) An identical proof as the one in the proof of
Lemma 6.3 shows that there exist Aprp and Azk such that

Prioft = b] — Pr'’2 [if = b] = AdVERE_ + AdVNIEEEE .

We now transform A to a winner Agpkg for the anonymity game for the scheme sPKE. The
reduction is similar to the one in the proof of Lemma 6.3, but Aspkg has to guess both iy and i1,
which is why we loose the quadratic factor (gs + gp 4+ 1)2. On input (spsFKE, ek$TKE eksPKE),
Aspke initializes ig,,iq, < L, kg < 1, chooses qo,q1 « {0,...,qs + ¢p} uniformly at ran-
dom, runs (UkSig, skSig) + Sig.Gen(1%), and (crsN'ZK,TN'ZK) < SNIZK(1%) | and gives spACE =

(SpsPKE NIZK)

, k™8, crs to Aj. It emulates the oracles for Ay as follows.

Oc(-,-): On query (i,sen), if ky ¢ {qo,q1} and i ¢ {iy,, 44}, then generate an encryption
key ekaE = (kaig, ekaKE, ka-Sig, sk?ig,af’ig, crsN'ZK) as Hs does, where (ekaKE, dk?PKE)
is obtained via Og and remembered for future queries. If k; = ¢ or ¢ = 7, for some
1 €{0,1}, replace ek$"¥E by ekiPHE (by ek§ KE if go = q1) and set iy, < 4. In both cases,
set kg < kg + 1 at the end. On query (j,rec), obtain a decryption key from Og and
remember it for later.

Osp(-,-): On query (j,¢ = (¢, WNIZK)), if kg ¢ {qo,q1} and j ¢ {ig,1q }, then execute ¢

ACE.San(sp”A“E, ¢), generate a decryption key dk:JACE as above, decrypt ¢’ using koACE,
and return the resulting message. If k; = ¢; or j = i, for some [ € {0,1}, set iy « j
and use the oracle Ogp, of the IK-CCA experiment to obtain a decryption m of ¢. If
NIZK.Ver(crsN'ZK,:E = (kaig, E,),WNIZK) =1, return m, otherwise, return L. In all cases,

set kg < k4 + 1 at the end.
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When A; returns (mq, mq, i, i1, st), Aspke outputs mg to the challenger of the anonymity ex-
periment to obtain a challenge ciphertext ¢*. It then runs SS"ZK(CTSN'ZK, TNIZK o = (vks'g, 6*)),
and gives st and the ciphertext ¢* := (6*, WN'ZK) to As. It emulates the oracles for Ay as follows:

Oc(-,-): On query (i,sen), if i ¢ {ig,i;}, then generate an encryption key ek?‘E = (vszig,
ekZS-PKE, vk‘?ig, sk:iSig,JiSig, crsN'ZK) as Hy does, where (ek?PKE, dkaKE) is obtained via O¢
and remembered for future queries. If i = 44, for some [ € {0, 1}, replace ek?PKE by ek?PKE.
On query (j,rec), obtain a decryption key as before.

Osp+(+,-): On query (j,c = (E,WN'ZK)), run ACE.DMod(sp”“E, ¢*, ¢). If the output is 1, return
test. Otherwise, if j ¢ {ig,i1}, run ¢ < ACE.San(sp”“E,c), generate a decryption key
dk‘JACE as above, decrypt ¢’ using dk‘?CE, and return the resulting message. If j = i, for
some [ € {0,1}, use the oracle Ogp, of the IK-CCA experiment to obtain a decryption m
of ¢. If NIZK.Ver(crsN'ZK,$ = (kaig, 5,),7TN|ZK) = 1, return m, otherwise, return L.

Note that Aspkg never queries any of the decryption oracles of the IK-CCA experiment on ¢*
because we return test whenever this would be necessary. Denote by ) the event that for all
1 € {0,1} we have either i, = 7;, or ¢ = 0 and A; does not make the query (i;, sen) to Og and
no queries for role 7; to Ogp. When A returns a bit b and @ holds, Aspkg returns the same
bit 0" < ¥, if =Q, Aspke returns a uniform bit " « {0,1}.

Let b be the bit chosen by the IK-CCA experiment. Note that if @ occurs, the view of A is
identical to the one in Hs with b = b. This implies

PrEPREAne 1 = B | Q] = Pr/2 [ = b).
Using that the probability of Q is 1/(gs + ¢p + 1)?, it follows as in the proof of Lemma 6.3 that
ACE-sANON-CCA PRF NIZK-ZK 2 PKE-IK-CCA
AdVACE % =2 Advp aper + 2 AdvNizk g, T (@5 +ap + 1) - AdVepkE A - O

We next prove sanitization security of our scheme.

Lemma D.2. Let ACE be the scheme from above, and let A = (A1, As) be an attacker on the
sanitization security such that Ay makes at most qs, queries of the form (-, sen) and at most qg,
queries of the form (-,rec) to the oracle Og, and at most qp, queries to Ogp, and Az makes at
most qr, queries of the form (-,rec) to the oracle Og. Then, there exist probabilistic algorithms
Aprr, Azk,, Azk,, Asig, Aspke, and Aron (which are all roughly as efficient as emulating an
exzecution of ExpﬁEEjAN'CCA) such that

ACE-SAN-CCA PRF NIZK-ext, NIZK-exts Sig-EUF-CMA
Advace 4 <2 Adv sppe +2- AdVNIZK,AZKl +4- AdVNIZK,AZK2 4 Advgig g,

2 PKE-SAN-CCA PKE-USROB

+(gs; + qr, +ap.)” - AdVEPRE de  + 4(qR, + qry) - AdVEPKRE A, -

Proof. Let Hy = ExpﬁgEjAN'CCA, let H1 be as Hy where Fg is replaced by a truly uniform
random function U, and let Hy be as Hp, where crsN?K < NIZK.Gen(1%) in ACE.Setup is
replaced by (crsN'ZK,gN'ZK) <« ENZK(1%). Let Wacg denote the event that A wins, i.e.,

Wace = [b,:b A 6675J_7£C,1 A VjEJmO,j:ij:J_].

Similarly as in the proof of Lemma 6.3, it can be shown that there exist Apgrr and Azk, such
that
H H PRF NIZK-ex
Prio[Wacg] — Pr*2[Wace] = AdVFnAPRF + AdVNIZK,,eél;l‘ (13)
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Let H3 be identical to Hy except that after A; returns (CO = (60, w(')\"ZK),cl = (cl, 7T1NIZK) st),
Hj3 executes for b € {0,1}

kalg US|g

. PKE Si NIZK NIZK ~NIZK . Sig =~ NIZK
wy = (ekfg 1, T, VKT, 00, 0 'g) — Ey ( € ,Tp, = (vk ' cb) )

We clearly have

Pri’ [Wacg] = Pr2[Wace). (14)
Let Vj == [NIZK.Ver(crleZK,:UI;,WII)\HZK) = 1] and let Br be the event that (at least) one of the
extractions fail, i.e.,

Bg = [(Vb A (:L'o,w()) ¢R) V (Vl VAN (xl,wl) ¢R)]

If Bg occurs, the knowledge extraction of NIZK is broken. To prove this, we define Azk, as
follows. On input ¢rsN'?K | it emulates an execution of Hs, where in ACE.Setup, ersN1ZK s used
instead of generating it. When A returns (co, 1, st), Azk, flips a coin b « {0, 1} and returns

(:L‘b WNlZK) If the b’s extraction fails, Azk, wins the extraction game. Hence,
Hjs . NIZK-exto
Pr3[Bg] <2 AdVNIZK,AZKQ' (15)

For b € {0,1}, let By, be the event that (7, w;) € R and ek:SPKE is not contained in an answer
from Og to Ay, and Tet Bg be the union of Bgy and Bg ;. We next show that if Bg occurs, the
adversary found a forgery for the signature scheme.

Claim 1. There exists a probabilistic algorithm Asig such that

Prifs[Bg] < 2+ AdvgE BN MA, (16)

Proof of claim. On input vk, Asig emulate an execution of H3, where vk>'€ is used in msk"CE

and sp”“E. Queries (i,sen) by A; to the oracle Og are answered by executing ACE.Gen (with

Fg replaced by U) where o S' is generated using the signing oracle of ExpSIg EUF-CMA * After

extracting wo and wq, Asjg ﬂlpS a coin b « {0,1} and returns ([ek?EKE, vkisg'g], S'g) If By
occurs, [ek%P KE, vk?;g] was not queried to the signing oracle and (zj,w;) € R. The latter 1mphes

that aisl_j & is a valid signature and hence Asig successfully forged a signature. We conclude

. 1 3 1 : Sig-EUF-CMA_
Pri3[Bg] < 2- (2 Pr’3[Bg ] + 3 Pris [BSJ]) =2 Advgf sy O

Let Hy be identical to Hs with the difference that we replace for k € {0,1} and j € J,
my, ; < ACE.Dec(ACE.Gen(msk, j, rec), c}) by

ksPKE: ]gS.PKEf k‘S.PKE dk,sPKE — PKEG kSPKE.U i 0
mk,je{mh ek eks, - for (ek5T°F, dkSTRE) =5 en(ms ;U([5,00)), an

1, else,
where ekZS-EKE are the extracted keys. Note that if Vi, =Bpg, and —Bg occur, we have ¢, =

San(spPKE &), & = sPKE.Enc(ekaKE,mk;rk), and ek?EKE was generated by Og. Hence,
for j € J with ek;-PKE = ek‘iKE, we have by the correctness of the sPKE scheme that
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ACE.Dec(ACE.Gen(msk,j, rec),cﬁg) = my, i.e., mp; = my in both H3 and Hy. For other
j € J, decryption only yields a message different from L if robustness of the sSPKE scheme is
violated. Since |J| < qgr, + qr,, this implies for V =V, N Vy,

Pr3[Wace | VN=Bgn=Bs]—Pr™[Wace | VN=BgN~Bs] < 2(qr, +qr, ) AdVEKE 00, (18)

where A,op emulates the experiment and outputs ¢ for a uniformly chosen & € {0,1}, i such
that the i-th query to the key-generation oracle yields ekls-}'j KE "and a uniformly chosen j;.°

We finally construct an adversary Aspke against the sanitization security of sPKE. On
input (spsPXE, ekBPKE, ekslPKE), Aspke initializes ig,,iq, < L, kq < 1, chooses distinct go,q1 «
{1,...,4s, +qr, +qp, } uniformly at random, executes (kaig, skSig) + Sig.Gen(1%), and (crsM?K,
{N'ZK) — ENZK(17), and gives spACE = (spSPKE, vk, crsN'ZK) to Aj. It emulates the oracles
for A; as follows.

Oc(-,-): On query (i,sen), if k; ¢ {qo,q1} and i ¢ {igy,%q }, generate an encryption key
(kaig, ek?PKE, sk?ig, aiSig, crsN'ZK) as Hy, where (ekf-PKE, dkls-PKE) is obtained via Og and
remembered for future queries. If k, = ¢; or i = i, for some [ € {0, 1}, replace ekSPKE by
eksPXE and set i, « i. In both cases, set k, < k, + 1 at the end.

On query (j,rec), if kg ¢ {qo,q1} and j ¢ {iy, 14 }, obtain a decryption key from Og,
remember it, and set k, < ky + 1. If kg = q; or j = i, for some [ € {0, 1}, then return L
and set kq < kg + 1.

Osp(+,+): On query (j,c = (E, TI'NIZK)), if kg ¢ {qo,q1} and j ¢ {ig,iq, }, then execute ¢’

ACE.San(sp”°E, ¢), generate a decryption key dk’JACE as above, decrypt ¢ using dk‘?‘CE, and
return the resulting message. If k; = ¢ or j = i4, for some [ € {0,1}, set iq, < j, if
NIZK.Ver(crsN'ZK,$ = (kaig,é,),WN'ZK) = 0, return L, otherwise, use the oracle Ogp, of
the sPKE-sanitization experiment to obtain a decryption of ¢ and return it. In all cases,

set kg < kg + 1 at the end.

When A; returns (co = (&g, 70\'?K), e1 = (&1, 71'%K), st), Aspke verifies the proofs 7!'?K and

W{\"ZK and extracts the witnesses to check the events V', Bg, and Bg. Denote by @) the event that
ekZS-EKE, ekSTKE € {ek"RE, ekPHE}, where ek?EKE, ekSTKE are the extracted keys. Note that if V,

—Bg, and —~Bg occur, both ek‘fEKE and ekzs-fKE have been returned by O¢g to A;. This implies

sPKE-SAN-CCA

PrEPPREApke [Q | V N —Bg N —Bs| > 1/(qs, + qr, + ap,)%. (19)

If Q, V, -Bg, and = Bg occur, Agpkg returns (&g, ¢1) to the challenger of the sPKE-sanitization
experiment to obtain the sanitized ciphertext cé. It then gives (st, cé) to Az and emulates the
oracles as above. After A returned the bit o/, Aspkg returns b” < b'. If QNV N—=BgN—Bg does
not occur, Aspkg runs ¢ < sPKE.Enc(ek:f‘]PKE, m) for an arbitrary fixed message m and returns
(co :== ¢, c1 == ¢) to the challenger. After receiving back a sanitized ciphertext c;;, it returns a
uniform bit b” « {0,1}.

Let Wepke be the event that Aspke wins, i.e.,

Wipke = [b" =5 A 3j.j € (0,1} mil € # L #m$E))],

5Note that robustness is only defined for encryption and decryption keys generated by sPKE.Gen. Hence, it is
important to also condition on —Bg.
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where the messages refer to the ones generated by ExpiE&Ejﬂi’fCA. Note that if QNVN—-BgN—Bg
does not occur, we have m[SfOKE = mﬁf’OKE = m # L by the correctness of sPKE, and thus

sPKE-SAN-CCA

1
PrEXPPKE A pye (Wepke | ~(Q NV N =Bg N—-Bg)| = 3 (20)

Next consider the case that @ NV N—Bg N —Bg occurs. In this case, the view of A is identical to
the one in Hy with b = b, as long as the emulated Og never returns 1. Moreover, if A wins, we

have mgl;‘ = m{{; = 1 for all j € JH4, where the messages here refer to the ones in Hy, generated

according to (17), and JH4 is the set of all j such that A; or A issued the query (j,rec) to
the oracle Og. Therefore, Og is never gets a query for which it returns L in this case. The
event Q NV N—Bg implies that the ciphertexts are encryptions of some message under ekf)PKE or
ekiPKE. Correctness of sPKE now implies that m?fOKE #* 1 # meKE, i.e., the winning condition
for Aspke is satisfied. We can conclude that

sPKE-SAN-CCA

ProPPKEApke [Wipke | Q NV N =By N —Bg] > Pri*[Wace | V N —~Bg N —=Bg). (21)

Let

sPKE-SAN-CCA

DG = PrEXPsPKE,AspKE [Q N V M _'BE M _‘BS] .
Putting our results together, we obtain

ExpSPKE-SAN-CCA ExpSPKE-SAN-CCA
Pr " sPKE Aspke [WSPKE] = Pr " sPKEAspke [WsPKE ’ QNVN-BgN —|BS] - PG

sPKE-SAN-CCA

+ PrP e Aeke [Wepke | =(Q NV N ~Bg N =Bs)] - (1 - pe)

sPKE-SAN-CCA

20 1
) pr P Xk [Wapke | QN V N =B N—Bs] - pa + 5 (1= pc)-

This implies

ExpzBE-SAN-CCA 1 Expih/E-SAN-CCA 1
Pr"sPREAeke [Wepke | @ NV N B N —Bg] = — |PrsPkEAwke [Wpkg] — 3 (1-pa)
yZe

1 SPKE-SAN-CCA |, 1
= 5pg NVPKEAme T

(22)

Furthermore,

13),(14 -
AGAGESL R = 2 P Wace) —1 T 2 (AR - AT+ e Wace]) — 1

Since Bg, "B N Bg, and -Bg N = Bg partition the sample space, the law of total probability
implies
Py [WACE] — prlis [WACE N BE] + Py [WACE N-BgN BS]
+ PrB[Wace N =B N —Bs]

< Prf3[Bg| + Pr3[Bg] + Pr3[Wace N —~Bg N —Bg]

(15),(16) —ex Sig-EUF-CMA
S 2 Advuize 2 AdvgE QM 4 Pt [Wace N —~Be N - Bg).
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Note that Wacg implies ¢ # L # ¢} and thus also V because if the verification fails, ACE.San
returns L. Hence,

prits [WACE N-BgN ﬁBS] = prits [WACE NV N-BgN —‘Bs]

= PriB3[Wace | VN =Bg N =Bg| - Pri3[V N =Bg N —Bs]

o

(18)
< (PrH4 [Wace | V N =Bg N =Bs] + 2(qr, + dr,) AdviEEE:L{?jOB) - Pr5[V N =Bp N —Bg]

sPKE-SAN-CCA

2D Exp3EKE %
< Pr STREAPKE  [Wepke|QNVN-BEgN—Bs]

(22) 1 GAN. 1 2
= <2 oo AAVERRE e " g 200 Fam,) AdvzﬁﬁE,fiiifOB) Pr' [V 1B 1 -Bg)

sPKE-SAN-CCA

Since PrA3[V N =By N —Bg] = Pro®*Kedeke [V N =By N —Bg], we have

sPKE-SAN-CCA

Pr'[V N —~Bg N —Bg] ProPPREdeke [V N =By N —~Bg]
= ExpSPKE-SAN-CCA
pa PrPPKEApke [Q NV N —=Bg N —Bg|

ExpsPKE-SAN-CCA -1
= (Pr SPREApke [Q | V N —BgN ﬂBS])
(19) )
< (¢s, + qr, +an,)"

Therefore,

1 CANL 1 :
P [WaceN—BgN—Bg] < 5 (asi+ar, +CID1)Q'Advzgﬁg,%p'\iECCAﬂL§+2(QR1 +r, ) AdVERKE ROB.
This implies

ACE-SAN-CCA PRF NIZK-ext1 NIZK-exts Sig-EUF-CMA
AdvAcE A < 20 AdVE A + 2 AdvNizie T4 AdVNIZK g, T4 AdVsig g

+ (a5, +ary +apy)” - AdVEERE X A+ 4(am, + ar,) - AdVERRE R T
and concludes the proof. ]

We next prove non-detection of fresh encryptions, which directly follows from ciphertext
unpredictability of the underlying sSPKE scheme.

Lemma D.3. Let ACE be the scheme from above and let A be an attacker on the non-detection
of fresh encryptions that makes at most q queries to the oracle Og. Then, there exist probabilistic

algorithms Apre and Aspke (which are both roughly as efficient as emulating an execution of

ExpﬁEE:E{DTCT'FENC) such that

AGASENTETFENE < A, 4 (04 1) AERETDT
Proof. Let Hy = Expﬁ%E;ﬂDTCT'FENC and H; be as Hy where Fk is replaced by a truly uniform
random function U. As in the proof of Lemma 6.3, one can show that there exists Apgrr such
that
H H PRF
Prio[b = 1] — Pr™'[b = 1] = Advp 4. -
The adversary Aspke on input (spSPKE, eksPKE, dkSPKE), sets ig, < L, kg < 1, chooses qp «

{0,...,¢} uniformly at random, runs (Uk:Sig,skSig) < Sig.Gen(1%), crsN1?K < NIZK.Gen(1%),
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and gives spACE = (spSPKE,kaig, crsN'ZK) to A. It emulates the oracle Og for A; as fol-
lows. On query (i,t), if k; # qgo and ¢ # 144, then generate an encryption key ekNCE =
(kaig, ekaKE, fukiSig, sk?g, UiSig, crsN'ZK) and a decryption key dk’fCE = dkaKE as Hq does, where
(ek?PKE, dk?PKE) is obtained via O and remembered for future queries. Return ek?“E if t = sen,
and dk?F if t = rec. If k, = qo or i = iy, replace ek KE and dk$TXE by ekSPKE and dksPKE,
respectively, and set i4, < ¢. In both cases, set k; <— k; + 1 at the end. When A returns
(m,i,c = (é,ﬂN'ZK)), Aspke returns (m,é).

Let @ be the event that iy, = 7, or go = 0 and A does not make the query (i,sen) or (i, rec)
to Og. Note that the probability of @ is 1/(¢ + 1) and since b = ACE.DMod(spACE, (E, WNIZK),

NIZK*))

(E*, T = 1 if and only if ¢* = ¢, we have

sPKE-UPD-CTXT
ProPPEdpe  [c = ¢ | Q] = Pri[b =1].
Hence, we can conclude

AdvacE NP TETFENG = Prflo[p = 1] = AdvERE . + Pri[b =1]

ExpsPKE-UPD-CTXT
= AdVIP*“sL'\:pRF 4 Py T*PsPKE, Apye [C =c*| Q]

sPKE-UPD-CTXT
S Adepwﬂ:PRF + (q + 1) . PI‘EXPSPKE’ASPKE [C — c*]

PRF PKE-UPD-CTXT
= AdanAPRF + (q + 1) . AdvszEv-AsPKE . O
We finally prove the uniform decryption and role-respecting properties.

Lemma D.4. Let ACE be the scheme from above and let A be an attacker on the uniform-
decryption security that makes at most qr queries of the form (-,rec) to the oracle Og. Then,
there exist probabilistic algorithms Aprr, Azk,, Azk,, Asig, and Ao, (which are all roughly as
efficient as emulating an execution of ExpﬁEE"}iRR) such that

ACE-UDEC PRF NIZK-ext; NIZK-exto Sig-EUF-CMA sPKE-USROB
AdVace 4~ = AdVE e, T AdVNIZK Az, T ADVNIZK 2y, T AVSig g, +qr - AdvepRe A, -

Proof. Note that we can assume without loss of generality that A does not use the oracle Og
since obtaining encryption keys from Og does not decrease the advantage. Let Hy = ExpﬁgE:}iRR

and let Wypec be the event that A wins the uniform-decryption game:
WuDec = [Hj,j/ € J m; #* 1 # my AN m; %+ mj/}.

As in the proof of Lemma D.2, let Hy be as Hg with F replaced by a uniform random function U,
let Hy be as Hy with crsN'ZK being generated by E'l\”ZK, and let Hs be as Ho, but after A returns
c= (6,7TN'ZK), a witness

Sig oSie

o sPKE Sig
W = (ekiw s Mays Tans ”kiw 0 c’w)

for the statement = = (kaig, ¢) is extracted from the proof 7NZK by ES”ZK. We define the
events V = [NIZK.Ver(crsN'ZK,JJ,WN'ZK) = 1], Bg = [V A (z,w) ¢ R], and Bg as the event
that (z,w) € R and ekZS»UFjKE is not contained in an answer from Og to A. Is can be shown as in
the proof of Lemma D.2 that there exist Aprr, Azk,, Azk,, and As;g such that
NIZK-
prfho [(Wubec] — Prfhs [(Wubec) = Adv?‘s"‘:PRF + AdVNIZK:Izt;l’

H NIZK-exto
Pr'[Bg] < Advaigk e

H. Sig-EUF-CMA
PI' S[BS] S AdVSig7ASig ;

63



where the last inequality uses that A does not query the oracle Og. Now let Hy be as Hs where
for j € J, m; « ACE.Dec(ACE.Gen(msk,j, rec), c’) is replaced by
s {mw, ekS™HE = ekTE for (ekSTRE, dkSPHE) = sPKE.Gen(msks™"F; U ([4,0])),
1, else.

One can show as in the proof of Lemma D.2 that there exists a probabilistic algorithm A,qp such
that

Pr3(Wypec | V N =Bp N —=Bs] — Pr*[Wypec | V N ~Bg N =Bs] < qr - AdvibRE L 0P,

Note that A cannot win in Hy since if m; # L # mj:, then m; = m,, = m . This implies that
Pr [(Wypec | VN—=BgN—Bs] < qr AdviEﬁE;}iijOB. Note that A can only win in H3 if V' occurs
since otherwise ¢ = L and consequently m; = L for all j € J. We therefore obtain

Pri3[Wypec] = Pri[Wypee NV N Bg] + Pri3[Wypec NV N —Bg N Bg]
+ prits [WUDec NV N-BgN —|Bs]

< PriB3[Bg| + Pr3[Bg] + Pr [Wypec | V N —Bg N —Bs]

NIZK-exts Sig-EUF-CMA sPKE-USROB
< AdVNIZK,AZK2 + AdVSig,ASig +ar - AdVepRE AL, -

Together with Prio[Wype] — Pri3([Wyped] = Adv?ﬁpRF + Advmgﬁi@t& , this concludes the
B 5 1

proof. O

Lemma D.5. Let ACE be the scheme from above and let A be an attacker on the role-respecting
security that makes at most qs queries of the form (-,sen) and at most qr queries of the form
(-,rec) to the oracle Og, and at most qg queries to the oracle Og. Then, there exist probabilistic
algorithms Aprr, Azk,, Azk,, Asig, and Arwob (which are all roughly as efficient as emulating an
exzecution of ExpﬁgE:}iRR) such that

AdVACE R < AdVERL . + Advyizk o+ Advyizic S + (ap +1) - Advge oM

PKE-USROB K
+qr- AdV:PKE,B\ibO + (g5 + qr + qp)* - ColSfke.

Proof. Let Hy,...,Hy, V = [NIZK.Ver(crsN'ZK,x,WN'ZK) = 1], and Bp = [V A (z,w) ¢ R] for
the statement = = (kaig, 5) and the extracted witness w = (ek?ZKE, Maws Tw, vk?;g, J?J}g, 02'5;,) be
defined as in the proof of Lemma D.4; and let Wgrg be the event that A wins the role-respecting

game:
Wrr = [ # L A det =false A ~(JieIVjeJ (m;# L« Pi,j) =1))].

As in that proof, there exist Apgrf, Azk,, and Azk, such that

Prifo[Wig] — Prifs[Wre] = AdvE . + AdvyZic 5o (23)
and
Pr3[Bg] < Adv“}%ﬁfﬁé. (24)
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Let E¢ be the event that the extracted key ek?EKE is contained in an answer from O¢g to A. One
can show similarly as in the proof of Lemma D.2 that there exists an algorithm A, such that

Pr3[Wrr NV N =Bp N Eg] — Pr*[Wrr NV N =Bp N Eg] < qr - AdvipRE AR08, (25)

We first show that if V, -Bp, and Fg occur in Hy, A can only win if two encryption keys
generated by sPKE.Gen are equal, which happens only with negligible probability.

Claim 1. We have
PrH[Wrr NV N =B N Eg] < (g5 + qr + qr)* - ColSke.

Proof of claim. 1If V, =Bg, and Eg occur, then there is an ig € I such that ekﬁfKE = ekaKE for
(ek?EKE, dkaKE) = sPKE.Gen(msk*"*E; U([io,0])). Using P(i,j) = 1 < i = j, we have that A
only wins if there exists j € J\{ig} such that m; # L orifiy € J and m;, = L. Because in Hy, m;
for j € J is equal to my, if ekj-PKE = ekPKE for (ekj-PKE, dkj-PKE) = sPKE.Gen (msks"¥E; U([5,0))),
and L otherwise, we have m;, # L if ig € J. Moreover, for ig # j € J, we have m; = L unless
eijKE = ekffKE. This means that A can only win if sSPKE.Gen generates the same encryption key
for the randomness values U ([io, 0]) and U([7,0]) for some ig # j € J. Since at most ¢gs +qr + qr
key pairs are generated in the experiment, there are at most (qs + qr + qg)? pairs of encryption
keys that could collide. For each such pair, the collision probability is bounded by CoIE'F‘,KE
because for i #i', U([i,0]) and U([¢’,0]) are independent and uniformly distributed. Hence, the
claim follows. O

Now let Ep be the event that A made a query (i,-) to Op such that ek$"HE = ek?EKE
and kaig = fukisjug for (ekSTE, dkSPKE) = sPKE.Gen(msks"¥E; U([i,0])) and (kaig,skfig) =
Sig.Gen(1%; U([i,1])). We next show that if A wins and V N —Bg N —Eg N Eg occurs, A forged
a signature on c.

Claim 2. There exists a probabilistic algorithm Asig, such that

Prs[Wer NV N =Bg N —Eg N Bg < gp - Advg 300 M,
b I, 1

Proof of claim. On input vk>&", Asig, initializes ig, <= L, k, <= 1, chooses qg «= {1,...,qg} uni-
formly at random, generates (spSPKE, msk‘SPKE) <+ sPKE.Setup(1*), (kaig, skSig) + Sig.Gen(1%),
and (crsN'ZK,fN'ZK) +— ENZK(1%) as Hj, and gives spPCE = (spSPKE, vk>€, crsN'ZK) to A. It
emulates the oracles for A as follows.

Oq(+,-): Generate the requested key exactly as Hs does and return it.

Og(+,+): On query (i, m)7 if k4 # qo and 7 # 14,, generate an encryption key ekiACE as Hs, encrypt
m using ek?CE, and return the resulting ciphertext. If £, = qo or @ = iy, set i, < 7, execute
(eksPRE, dkSPRE) < SPKE.Gen(msks™*E; U ([i,0])), oY Sig.Sign (sk>®, [ekFKE, vkis'g];

1

U([i,2])), and set vk:iSig = vk>8". Then, sample randomness r and compute ¢ <
sPKE.Enc(ekZS»PKE,m;r), query the signing oracle on ¢ to obtain a signature a?'g, and
run

aNIZK NIZK.Prove(crsNIZK,a: = (kaig,é),w = (ek?PKE,m,r, vk?'g,af'g,afig)).

Finally, return the ciphertext c := (6, WN'ZK). In all cases, set kg < k; 4+ 1 at the end.
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When A returns ¢ = (E, FNIZK), Asig, extracts a witness

w = (ekfzKE,mw,rw, vk?i%, ais;g, afjf,) — E'Q\"ZK(crsN'ZK,ﬁN'ZK,m = (kaig,E),TrN'ZK).
It finally returns the forgery attempt (5, agg).

Note that if A wins the role-respecting game, /-\CE.DI\/Iod(spACE, ¢, c) =0 for all ¢ that Og
has returned. Since ACE.DMod checks for equality of sSPKE ciphertexts, this means that Asig,
has not issued the query ¢ to its signing oracle. Furthermore, if the extraction and verification
succeed, oo is a valid signature for & Let @ be the event that ek?Z}KE = eksPKE and vk?q'f = vkii)g :
If Q and V N —=Bg N -EgN Eg occur, A has not requested ekf;gE from O¢ and hence As;g,
perfectly emulates Hs. This implies

Sig-EUF-CMA

Expg2.
Pr "o®4ss [Wsy | VN =BgN—EgN EgNnQ| > PriBWgg | V N —=Bg N -Eqn Egl,

where Ws;g denotes the event that Asgjg , wins in the signature forgery game. We further have

Sig-EUF-CMA

Exp>i
Py Xps'gvASigl [Q | V N—-Bg ﬂﬁEgﬂEE] = 1/QE.

Sig-EUF-CMA

Expg!
This implies for pg = Pr “Psie Asiy [VN=BgN-EcNEgNQ],

Sig-EUF-CMA Sig-EUF-CMA

ig-EUF- Expsig g, XPoe Ac
Advg:g”il;:chA = Pr SE,ASIgl [WSIg] Z Pr Sg,ASlg1 [WSIg | V N _‘BE M _‘EG M EE N Q] - pG
> Pri3[Wgg | VN =Bg N—Eqg N Eg] - pg
= P [Wrg NV N —Bp N —Eg N Eg) - bG

Pr3[V N —-Bg N -Eg N Eg]

Since [V N —=Bg N —Eg N Eg] in Hz has the same probability as in Expggg'ig_:'CMA, we have
9 I, 1
ExpSiE-EUF-CMA 1
= ba =Pr ®Ase [Q|VN-BgN-EgNEg = —,
r [Vﬂ—'BEﬂ—!EgﬂEE] qE
which implies the claim. O

Finally, we show that if A wins and V N —-Bg N —=FEg N —Eg occurs, A forged a signature on
[eksPKE ’U]{:-Sig]
Lw ) tw J°

Claim 3. There exists a probabilistic algorithm ASng such that

Sig-EUF-CMA
SigvASigz

Pri3[Wrr NV N =B N =Eg N —-Eg] < Adv

Proof of claim. The algorithm As;g, on input vk3€" runs (spSPKE, mskSPKE) <+ sPKE.Setup(1%)
and (crsN'ZK,fN'ZK) — ENZK(1%), and gives spACE = (spSPKE, okSie”, crsN'ZK) to A. It emulates
the oracles for A as follows.

Sig

Oq(+,-): Generate the requested key as Hs, but obtain the signature Ul-i via a query to the

signing oracle. Remember the signature and when asked again for the same i, reuse O_iS|g
instead of issuing another query. This ensures that the oracle behaves as the one in Hg

and returns the same key for repeated queries.
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Og(-,-): On query (i, m), generate an encryption key as for a query (i,sen) to Og, encrypt m
using that key, and return the resulting ciphertext.

When A returns ¢ = (é, WNIZK), Asig, extracts a witness

ek?EKE’ Maw, T vkijjgv USlg USig) — E'Q\“ZK(CTSNIZK, gNIZK7 T o= (UkSig, é)’WNIZK)_

w_( Gw 07 CWw

>&). Note that if Wrg NV N =Bg N
", 1s a valid signature for [ekiKE, Ukijjg] and Asig, has not requested a
signature for this value from the signing oracle. Therefore, As;g, Wins the forgery game and thus

the probability of that event is bounded by Advggg:i:;CMA. O

It finally returns the forgery attempt ([ekaKE, vkislg] o

' T
S
-FEqg N —Eg occurs, o, &

Combining Claims 2 and 3, we obtain

PrB[Wrr NV N =Bg N —Eg] < qr - AdvaEEUFEMA L pg, 2iE-EUF-CMA.

SIgv-ASigl Sigv-ASigz
Let Asig be the algorithm that runs Asgjg, with probability qg’il and Asjg, with probability ﬁ.
We then have
AVSEEUF-CMA _ 4B a4 Sig-EUF-CMA L p g Sie-EUF-CMA
S|g7vASig qE + 1 SlgvASigl qE + 1 Slg:-ASng (26)

> 7 - Pri3[Wrr NV N =B N —=Eg].

Note that Wgg implies ¢ # L and therefore V| i.e., the events Wgrr and Wgrr NV are equal.
Thus,

Prf3[Wgrg] = Prf3[Wggr N Bg] + Pr3[Wrr NV N =B N Eg] + Pri3[Wrr NV N =B N —E(]
(24),(25),(26)
< dvNIZK S, + ar  AVERRE 40 0F + P’ W NV N =B 1 Eg]
Sig-EUF-CMA
+(gp +1) - Advgg 3

Combined with Claim 1 and equation (23), this concludes the proof. O
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