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Abstract

Access control encryption (ACE) was proposed by Damgård et al. to enable the control
of information flow between several parties according to a given policy specifying which
parties are, or are not, allowed to communicate. By involving a special party, called the
sanitizer, policy-compliant communication is enabled while policy-violating communication is
prevented, even if sender and receiver are dishonest. To allow outsourcing of the sanitizer, the
secrecy of the message contents and the anonymity of the involved communication partners
is guaranteed.

This paper shows that in order to be resilient against realistic attacks, the security
definition of ACE must be considerably strengthened in several ways. A new, substantially
stronger security definition is proposed, and an ACE scheme is constructed which provably
satisfies the strong definition under standard assumptions.

Three aspects in which the security of ACE is strengthened are as follows. First,
CCA security (rather than only CPA security) is guaranteed, which is important since
senders can be dishonest in the considered setting. Second, the revealing of an (unsanitized)
ciphertext (e.g., by a faulty sanitizer) cannot be exploited to communicate more in a policy-
violating manner than the information contained in the ciphertext. We illustrate that this
is not only a definitional subtlety by showing how in known ACE schemes, a single leaked
unsanitized ciphertext allows for an arbitrary amount of policy-violating communication.
Third, it is enforced that parties specified to receive a message according to the policy cannot
be excluded from receiving it, even by a dishonest sender.

1 Introduction

1.1 Access Control Encryption—Model and Security Requirements

The concept of access control encryption (ACE) was proposed by Damgård, Haagh, and Or-
landi [DHO16

.

] in order to enforce information flow using cryptographic tools rather than a
standard access control mechanism (e.g., a reference monitor) within an information system. If
the encryption scheme provides certain operations (e.g., ciphertext sanitization) and satisfies
an adequate security definition, then the reference monitor can be outsourced, as a component
called the sanitizer, to an only partially trusted service provider. The goal of ACE is that the
sanitizer learns nothing not intrinsically necessary. Security must also be guaranteed against
dishonest users, whether senders or receivers of information, and against certain types of sanitizer
misbehavior.
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The information flow problem addressed by ACE is defined in a context with a set R of roles
corresponding, for example, to different security clearances. Each user in a system can be assigned
several roles. For example the users are employees of a company collaborating on a sensitive
project, and they need to collaborate and exchange information by sending messages. Since the
information is sensitive, which information a party can see must be restricted (hence the term
access control), even if some parties are dishonest. In the most general form, the specification
of which role may send to which other role corresponds to a relation (a subset of R ×R) or,
equivalently, to a predicate P : R×R → {0, 1}, where s ∈ R is allowed to communicate to r ∈ R
if and only if P (s, r) = 1. The predicate P is called the (security) policy. Typical examples of
such policies arise from the Bell-LaPadula [BL73

.

] model where roles are (partially) ordered, and
the so-called “no-write-down” rule specifies that it is forbidden for a user to send information to
another user with a lower role. Note that for this specific example, the relation is transitive, but
ACE also allows to capture non-transitive security policies.

ACE was designed to work in the following setting. Users can communicate anonymously
with a sanitizer. If a user wants to send a message, it is encrypted under a key corresponding
to the sender’s role. Then the ciphertext is sent (anonymously) to the sanitizer who applies a
certain sanitization operation and writes the sanitized ciphertext on a publicly readable bulletin
board providing anonymous read-access to the users (receivers). Users who are supposed to
receive the message according to the policy (and only those users) can decrypt the sanitized
ciphertext.

To ensure security in the described setting, the ACE scheme must at least provide the
following guarantees:

1. The encryption must assure privacy and anonymity against dishonest receivers as well as
the sanitizer, i.e., neither the sanitizer nor dishonest receivers without access allowed by
the policy should be able to obtain information about messages or the sender’s role.

2. A dishonest sender must be unable to communicate with a (potentially dishonest) receiver,
unless this is allowed according to the policy. In other words, the system must not provide
covert channels allowing for policy-violating communication.

As usual in a context with dishonest senders, the first goal requires security against chosen-
ciphertext attacks (CCA) because dishonest users can send a ciphertext for which they do
not know the contained message and by observing the effects the received message has on
the environment, potentially obtain information about the message. This corresponds to the
availability of a decryption oracle, as in the CCA-security definition.

Note that the second goal is only achievable if users cannot directly write to the repository or
communicate by other means bypassing the sanitizer, and if the sanitizer is not actively dishonest
because a dishonest sanitizer can directly write any information received from a dishonest sender
to the repository. The assumption that a user cannot bypass the sanitizer and communicate to
another party outside of the system can for example be justified by assuming that users, even if
dishonest, want to avoid being caught communicating illegitimately, or if only a user’s system
(not the user) is corrupted, and the system can technically only send message to the sanitizer.

Since the sanitizer is not fully trusted in our setting, one should consider the possibility
that an unsanitized ciphertext is leaked (intentionally or unintentionally) to a dishonest party.
This scenario can be called (unsanitized) ciphertext-revealing attack. Obviously, all information
contained in this ciphertext gets leaked to that party. While this cannot be avoided, such an
attack should not enable dishonest parties to violate the security requirements beyond that.
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We point out that previously proposed encryption techniques (before ACE), such as attribute-
based encryption [SW05

.

; GPSW06

.

] and functional encryption [BSW11

.

], enable the design of
schemes where a sender can encrypt messages such that only designated receivers (who possess the
required key) can read the message. This captures the access control aspects of read permissions,
but it does not allow to capture the control of write/send permissions. In other words, such
schemes only achieve the first goal listed above, not the second one.

1.2 Contributions of this Paper

While the proposal of the ACE-concept and of efficient ACE-schemes were important first steps
toward outsourcing access control, the existing security definition turns out to be insufficient
for several realistic attack scenarios. The main contributions of this paper consist of uncovering
issues with existing definitions and schemes, fixing these issues by proposing stronger security
notions, and constructing a scheme satisfying our stronger notions.

Issues with existing definitions and schemes. As argued above, chosen-ciphertext attacks
should be considered since the use case for ACE includes dishonest senders. Existing definitions,
however, do not take this into account, i.e., the adversary does not have access to a decryption
oracle in the security games.

Furthermore, existing notions do not consider ciphertext-revealing attacks. Technically
speaking, the security game that is supposed to prevent dishonest senders from transmitting
information to dishonest receivers (called no-write game), gives the adversary only access to
an encryption oracle that sanitizes ciphertexts before returning them. This means that the
adversary has no access to unsanitized ciphertexts. This is not only a definitional subtlety, but
can completely break down any security guarantees. We demonstrate that existing ACE schemes
allow the following attack: Assume there are three users A, M , and E in the system, where
A is honest and by the policy allowed to send information to E, and M and E are dishonest
and not allowed to communicate. If A sends an (innocent) message to E and the corresponding
unsanitized ciphertext is leaked to M , malleability of the ciphertext can be exploited by M
to subsequently communicate an arbitrary number of arbitrary messages chosen by M to E.
Note that while this attack crucially exploits malleability of ciphertexts, it is not excluded by
CCA security for two reasons: first, CCA security does not prevent an adversary from producing
valid ciphertexts for unrelated messages, and second, the integrity should still hold if the adversary
has the decryption key (but not the encryption key).

Finally, existing security definitions focus on preventing dishonest parties from communicating
if disallowed by the policy, but they do not enforce information flow. For example, if user A only
has a role such that according to the policy, users B and C can read what A sends, existing
schemes do not prevent A from sending a message that can be read by B but not by C, or
sending a message such that B and C receive different messages. This is not as problematic
as the two issues above, and one can argue that A could anyway achieve something similar by
additionally encrypting the message with another encryption scheme. Nevertheless, for some use
cases, actually precisely enforcing the policy can be required (consider, e.g., a logging system),
and one might intuitively expect that ACE schemes achieve this.

New security definitions. We propose new, stronger security definitions for ACE that exclude
all issues mentioned above. First, we give the adversary access to a decryption oracle. More
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precisely, the oracle first sanitizes the given ciphertext and then decrypts it, since this is what
happens in the application if a dishonest party sends a ciphertext to the sanitizer. Second, we
incorporate ciphertext-revealing attacks by giving the adversary access to an encryption oracle
that returns unsanitized ciphertexts for arbitrary roles. Finally, we introduce a new security
game in which an adversary can obtain encryption keys and decryption keys from an oracle and
has to output a ciphertext such that one of the following events occur: either the set of roles
that can successfully decrypt the ciphertext (to an arbitrary message) is inconsistent with the
policy for all sender roles for which the adversary has an encryption key (in this case, we say
the adversary is not role-respecting); or the ciphertext can be successfully decrypted with two
keys such that two different messages are obtained (in this case, we say the uniform-decryption
property is violated).

Construction of an ACE scheme for our stronger notions. Our construction proceeds
in three steps and follows the general structure of the generic construction by Fuchsbauer et
al. [FGKO17

.

]. Since we require much stronger security notions in all three steps, our constructions
and proofs are consequently more involved than existing ones. First, we construct a scheme
for a primitive we call enhanced sanitizable public-key encryption (sPKE). Second, we use an
sPKE scheme to construct an ACE scheme satisfying our strong security notion for the equality
policy, i.e., for the policy that allows s to send to r if and only if r = s. Third, we show how to
lift an ACE scheme for the equality policy to an ACE scheme for the disjunction of equalities
policy. This policy encodes roles as vectors x = (x1, . . . , x`) and allows role x to send to role y if
and only if x1 = y1 ∨ . . . ∨ x` = y`. As shown by Fuchsbauer et al. [FGKO17

.

], useful policies
including the inequality predicate corresponding to the Bell-LaPadula model can efficiently be
implemented using this policy by encoding the roles appropriately.

Enhanced sanitizable PKE. An sPKE scheme resembles publicy-key encryption with an
additional setup algorithm that outputs sanitizer parameters and a master secret key. The
master secret key is needed to generate a public/private key pair and the sanitizer parameters
can be used to sanitize a ciphertext. A sanitized ciphertext cannot be linked to the original
ciphertext without the decryption key. We require the scheme to be CCA secure (with respect to
a sanitize-then-decrypt oracle) and anonymous. Sanitization resembles rerandomization [Gro04

.

;
PR07

.

], also called universal re-encryption [GJJS04

.

], but we allow sanitized ciphertexts to be
syntactically different from unsanitized ciphertexts. This allows us to achieve full CCA security,
which is needed for our ACE construction and unachievable for rerandomizable encryption.

Our scheme is based on ElGamal encryption [Elg85

.

], which can easily be rerandomized and
is anonymous. We obtain CCA security using the technique of Naor and Yung [NY90

.

], i.e.,
encrypting the message under two independent keys and proving in zero-knowledge that the
ciphertexts are encryptions of the same message, which was shown by Sahai to achieve full
CCA security if the zero-knowledge proof is simulation-sound [Sah99

.

]. A technical issue is that if
the verification of the NIZK proof was done by the decrypt algorithm, the sanitization would
also need to sanitize the proof. Instead, we let the sanitizer perform the verification. Since we
want to preserve anonymity, this needs to be done without knowing under which public keys the
message was encrypted. Therefore, the public keys are part of the witness in the NIZK proof.
Now the adversary could encrypt the same message under two different public keys that were
not produced together by the key-generation, which would break the reduction. To prevent
this, the pair of public keys output by the key-generation is signed using a signature key that is
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contained in the master secret key and the corresponding verification key is contained in the
sanitizer parameters.

ACE for equality. The basic idea of our ACE scheme for the equality policy is to use for each
role, encryption and decryption keys of an sPKE scheme as the encryption and decryption keys of
the ACE scheme, respectively. Since we need to prevent dishonest senders without an encryption
key for some role from producing valid ciphertexts for that role even after seeing encryptions of
other messages for this role and obtaining encryption keys for other roles, we add a signature
key to the encryption key, sign this pair using a separate signing key, where the corresponding
verification key is part of the sanitizer parameters, and let senders sign their ciphertexts. To
preserve anonymity, this signature cannot be part of the ciphertext. Instead, senders prove in
zero-knowledge that they know such a signature and that the encryption was performed properly.

ACE for disjunction of equalities. The first step of our lifting is identical to the lifting
described by Fuchsbauer et al. [FGKO17

.

]: for each component of the role-vector, the encryption
and decryption keys contain corresponding keys of an ACE scheme for the equality policy. To
encrypt a message, this message is encrypted under each of the key-components. In a second
step, we enforce role-respecting security with the same trick we used in our ACE scheme for
equality; that is, we sign encryption key-vectors together with a signing key for that role, and
senders prove in zero-knowledge that they have used a valid key combination to encrypt and
that they know a signature of the ciphertext vector.

1.3 Related Work

The concept of access control encryption has been introduced by Damgård et al. [DHO16

.

]. They
provided the original security definitions and first schemes. Subsequent work by Fuchsbauer et
al. [FGKO17

.

], by Tan et al. [TZMT17

.

], and by Kim and Wu [KW17

.

] focused on new schemes that
are more efficient, based on different assumptions, or support more fine grained access control
policies. In contrast to our work, they did not attempt to strengthen the security guarantees
provided by ACE.

2 Preliminaries

2.1 Notation

We write x← y for assigning the value y to the variable x. For a finite set X, x� X denotes
assigning to x a uniformly random value in X. For n ∈ N, we use the convention

[n] := {1, . . . , n}.

By Zn we denote the ring of integers modulo n, and by Z∗n its multiplicative group of units. The
probability of an event A in an experiment E is denoted by PrE [A], e.g., Prx�{0,1}[x = 0] = 1

2 .
If the experiment is clear from the context, we omit the superscript. The conditional probability
of A given B is denoted by Pr[A | B] and the complement of A is denoted by ¬A. For a
probabilistic algorithm A and r ∈ {0, 1}∗, we denote by A(x; r) the execution of A on input x
with randomness r. For algorithms A and O, AO(·)(x) denotes the execution of A on input x,
where A has oracle access to O.
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2.2 Security Definitions, Advantages, Efficiency, and Negligibility

We define the security of a scheme via a random experiment (or game) involving an adversary
algorithm A. For a given scheme E and adversary A, we define the advantage of A, which is a
function of the security parameter κ. To simplify the notation, we omit the security parameter
when writing the advantage, e.g., we write AdvSig-EUF-CMA

E,A instead of AdvSig-EUF-CMA
E,A (κ) for the

advantage of A in the existential unforgeability game for the signature scheme E . Such a scheme
is considered secure if AdvSig-EUF-CMA

E,A is negligible for all efficient A. An algorithm A is efficient
if it runs in probabilistic polynomial time (PPT), i.e., A has access to random bits and there is
a polynomial p such that A(x) terminates after at most p(|x|) steps (on some computational
model, e.g., Turing machines) for all inputs x, where |x| denotes the bit-length of x. A function f
is negligible if for every polynomial p, there exists n0 ∈ N such that f(n) < 1/p(n) for all n ≥ n0.
While these asymptotic definitions yield concise statements, we will in all proofs derive precise
bounds on the advantages, following a concrete security approach.

2.3 Access Control Encryption

We recall the definition of access control encryption by Damgård et al. [DHO16

.

]. For definitions
of other cryptographic primitives used in this paper, see Appendix A

.

. Following Fuchsbauer et
al. [FGKO17

.

], we do not have sanitizer keys and require Gen to be deterministic. The set of roles
is assumed to be R = [n].

Definition 2.1. An access control encryption (ACE) scheme E consists of the following five
PPT algorithms:

Setup: The algorithm Setup on input a security parameter 1κ and a policy P : [n]× [n]→ {0, 1},
outputs a master secret key msk and sanitizer parameters sp. We implicitly assume that
all keys include the finite message space M and the ciphertext spaces C, C′.

Key generation: The algorithm Gen is deterministic and on input a master secret key msk , a
role i ∈ [n], and the type sen, outputs an encryption key ek i; on input msk , j ∈ [n], and
the type rec, outputs a decryption key dk j .

Encryption: The algorithm Enc on input an encryption key ek i and a message m ∈M, outputs
a ciphertext c ∈ C.

Sanitization: The algorithm San on input sanitizer parameters sp and a ciphertext c ∈ C,
outputs a sanitized ciphertext c′ ∈ C′ ∪ {⊥}.

Decryption: The algorithm Dec on input a decryption key dk j and a sanitized ciphertext c′ ∈ C′,
outputs a message m ∈M∪ {⊥}; on input dk j and ⊥, it outputs ⊥.

For a probabilistic algorithm A, consider the experiment ExpACE-CORR
E,A that given a security

parameter 1κ and a policy P , executes (sp,msk) ← Setup(1κ, P ), (m, i, j) ← AGen(msk ,·,·)(sp),
ek i ← Gen(msk , i, sen), and dk j ← Gen(msk , j, rec). We define the correctness advantage of A
(for security parameter κ and policy P ) as

AdvACE-CORR
E,A := Pr

[
P (i, j) = 1 ∧ Dec

(
dk j ,San(sp,Enc(ek i,m))

)
6= m

]
,

where the probability is over the randomness in ExpACE-CORR
E,A and the random coins of Enc, San,

and Dec. The scheme E is called correct if AdvACE-CORR
E,A is negligible for all efficient A, and

perfectly correct if AdvACE-CORR
E,A = 0 for all A.
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Remark. Correctness of an encryption scheme is typically not defined via a game with an
adversary, but by requiring that decryption of an encryption of m yields m with probability 1.
This perfect correctness requirement is difficult to achieve for ACE schemes and not necessary for
applications because it is sufficient if a decryption error only occurs with negligible probability in
any execution of the scheme. Damgård et al. [DHO16

.

] define correctness by requiring that for
all m, i, and j with P (i, j) = 1, the probability that a decryption fails is negligible, where the
probability is over setup, key generation, encrypt, sanitize, and decrypt. While this definition
is simpler than ours, it does not guarantee that decryption errors only occur with negligible
probability in any execution of the scheme. For example, a scheme could on setup choose a
random message m and embed it into all keys such that decryption always fails for encryptions of
this particular message. This does not violate the definition by Damgård et al. since for any fixed
message, the probability that this message is sampled during setup is negligible (if the message
space is large). Nevertheless, an adversary can always provoke a decryption error by sending
that particular message m, which is not desirable. The above example might at first sight seem
somewhat artificial, and typically, schemes do not have such a structure. However, capturing
correctness via an experiment is important when thinking of composition, since we expect that
the correctness guarantee still holds when the ACE scheme is run as part of a larger system. In
order to meet this expectation, and to exclude the above issue, we formalize correctness via an
experiment.

Additionally, Fuchsbauer et al. have defined detectability, which guarantees that decrypting
with a wrong key yields ⊥ with high probability [FGKO17

.

]. This allows receivers to detect
whether a message was sent to them. As for correctness, we define it via an experiment. The
notion is related to robustness for public-key encryption [ABN10

.

]. We additionally define strong
detectability, in which the randomness for the encryption is adversarially chosen.

Definition 2.2. Let E = (Setup,Gen,Enc,San,Dec) be an ACE scheme and let A be a probabilis-
tic algorithm. Consider the experiment ExpACE-DTCT

E,A that given a security parameter 1κ and a pol-
icy P , executes (sp) ← Setup(1κ, P ), (m, i, j) ← AGen(msk ,·,·)(sp,msk), ek i ← Gen(msk , i, sen),
and dk j ← Gen(msk , j, rec). We define the detectability advantage of A as

AdvACE-DTCT
E,A := Pr

[
P (i, j) = 0 ∧ Dec

(
dk j ,San(sp,Enc(ek i,m))

)
6= ⊥

]
,

where the probability is over the randomness in ExpACE-DTCT
E,A and the random coins of Enc, San,

and Dec. The scheme E is called detectable if AdvACE-DTCT
E,A is negligible for all efficient A. The

experiment ExpACE-sDTCT
E,A is identical to ExpACE-DTCT

E,A except that A returns (m, r, i, j). The
strong detectability advantage of A is defined as

AdvACE-sDTCT
E,A := Pr

[
P (i, j) = 0 ∧ Dec

(
dk j , San(sp,Enc(ek i,m; r))

)
6= ⊥

]
,

where the probability is over the randomness in ExpACE-sDTCT
E,A and the random coins of San and

Dec. The scheme E is called strongly detectable if AdvACE-sDTCT
E,A is negligible for all efficient A.

2.4 Existing Security Definitions

Existing notions for ACE specify two core properties: the so-called no-read rule and the no-
write rule. The no-read rule formalizes privacy and anonymity: roughly, an honestly generated
ciphertext should not leak anything about the message, except possibly its length, or about the
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Experiment ExpACE-no-read
E,A

Input: (1κ, P ), κ ∈ N, P : [n]× [n]→ {0, 1}
(sp,msk)← Setup(1κ, P )

(m0,m1, i0, i1, st)← AOG(·,·),OE(·,·)
1 (sp)

b� {0, 1}
ek ib ← Gen(msk , ib, sen)
c← Enc(ek ib ,mb)

b′ ← AOG(·,·),OE(·,·)
2 (st , c)

Experiment ExpACE-no-write
E,A

Input: (1κ, P ), κ ∈ N, P : [n]× [n]→ {0, 1}
(sp,msk)← Setup(1κ, P )

(c0, i′, st)← AOG(·,·),OES(·,·)
1 (sp)

b� {0, 1}
m′ �M
c1 ← Enc(Gen(msk , i′, sen),m′)

b′ ← AOG(·,·),OES(·,·)
2 (st , San(sp, cb))

Figure 1: The no-read and no-write experiments for an ACE scheme E and an adversary A =
(A1,A2). The oracles are defined as OG(·, ·) := Gen(msk , ·, ·), OE(·, ·) := Enc(Gen(msk , ·, sen), ·),
and OES(·, ·) := San(sp,Enc(Gen(msk , ·, sen), ·)).

role of the sender. The security game allows an adversary to interact with a key-generation
oracle (to obtain encryption and decryption keys for selected roles), and an encryption oracle
to obtain encryptions of chosen messages for roles for which the adversary does not possess the
encryption key. This attack model reflects that an adversary cannot obtain useful information
by observing the ciphertexts that are sent to the sanitizer. To exclude trivial attacks, it is not
considered a privacy breach if the adversary knows a decryption key that allows to decrypt the
challenge ciphertext according to the policy. Similarly, it is not considered an anonymity breach
if the encrypted messages are different. We next state the definition of the no-read rule.1

.

Definition 2.3. Let E = (Setup,Gen,Enc, San,Dec) be an ACE scheme and let A = (A1,A2)
be a pair of probabilistic algorithms. Consider the experiment ExpACE-no-read

E,A in Figure 1

.

and
let J be the set of all j such that A1 or A2 issued the query (j, rec) to the oracle OG. The
payload-privacy advantage and the sender-anonymity advantage of A are defined as

AdvACE-no-read,priv
E,A := 2 · Pr

[
b′ = b ∧ |m0| = |m1| ∧ ∀j ∈ J P (i0, j) = P (i1, j) = 0

]
− 1,

AdvACE-no-read,anon
E,A := 2 · Pr

[
b′ = b ∧ m0 = m1 ∧ ∀j ∈ J P (i0, j) = P (i1, j)

]
− 1,

respectively, where the probabilities are over the randomness of all algorithms in ExpACE-no-read
E,A .

The scheme E satisfies the payload-privacy no-read rule and the sender-anonymity no-read rule
if AdvACE-no-read,priv

E,A and AdvACE-no-read,anon
E,A are negligible for all efficient A, respectively. If it

satisfies both, it is said to satisfy the no-read rule.

The no-write rule of ACE is the core property to capture access control. In a nutshell, if
the adversary only possesses encryption keys for roles i and decryption keys for roles j with
P (i, j) = 0, then he should not be able to create a ciphertext from which, after being sanitized,
he can retrieve any information. Technically, in the corresponding security game, the adversary is
given a key-generation oracle as above, and in addition an oracle to obtain sanitized ciphertexts
for selected messages and roles. This attack model corresponds to a setting where an adversary
only sees the outputs of a sanitizer, but not its inputs, and in particular no unsanitized ciphertexts
generated for roles for which he does not possess the encryption key. The adversary wins if
he manages to distinguish the sanitized version of a ciphertext of his choice from a sanitized

1For anonymity, we adopt here the definition of [DHO16

.

], which is stronger than the one used by Fuchsbauer
et al. [FGKO17

.

] since there, anonymity is not guaranteed against parties who can decrypt.
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version of a freshly generated encryption of a random message, and if he does not obtain the
encryption key for any role i and the decryption key of any role j for which P (i, j) = 1, as this
would trivially allow him to distinguish.

Definition 2.4. Let E = (Setup,Gen,Enc, San,Dec) be an ACE scheme and let A = (A1,A2)
be a pair of probabilistic algorithms. Consider the experiment ExpACE-no-write

E,A in Figure 1

.

, let I1
be the set of all i such that A1 issued the query (i, sen) to OG, and let J be the set of all j such
that A1 or A2 issued the query (j, rec) to OG. We define the no-write advantage of A as

AdvACE-no-write
E,A := 2 · Pr

[
b′ = b ∧ i′ ∈ I1 ∧ ∀i ∈ I1 ∀j ∈ J P (i, j) = 0 ∧ San(sp, c0) 6= ⊥

]
− 1,

where the probability is over the randomness of all algorithms in ExpACE-no-write
E,A . The scheme E

satisfies the no-write rule if AdvACE-no-write
E,A is negligible for all efficient A.

Remark. Our definition follows the one by Fuchsbauer et al. [FGKO17

.

] by requiring San(sp, c0) 6=
⊥ in the winning condition for the no-write rule, which was not required in the original definition
by Damgård et al. [DHO16

.

]. Schemes can be made secure with respect to the original definition
by letting the algorithm San create a fresh ciphertext for a random message when given an invalid
ciphertext.

The condition i′ ∈ I1 together with ∀i ∈ I1 ∀j ∈ J P (i, j) = 0 ensures that A does not have
a key to decrypt c1, which would trivially allow to distinguish. Requiring that A obtains a key
for i′ however excludes adversaries that obtain no key at all. The original definitions [DHO16

.

]
therefore include a special role 0 with P (0, j) = 0 for all j. One can then assume without loss
of generality that anyone obtains a key for this role. Since assuming the existence of such a
role appears to be a technicality that is only needed for the no-write rule, we do not make this
assumption and present new security definitions in Section 4.2

.

that do not rely on such a role.

3 Ciphertext-Revealing Attacks Against Existing Schemes

3.1 Generic Description of Attack

We describe a fundamental practical issue of schemes which meet the above no-read and no-write
definitions and show why the guarantees expected from an ACE scheme need to be strengthened.
We show that schemes fulfilling the definition can suffer from what we call a malleability attack,
which effectively bypasses the given policy and allows communication that is forbidden by the
policy. The attack does not abuse any peculiarities of existing models and in fact only requires
that the semi-honest sanitizer shares its inputs and outputs with colluding parties, which is
arguably possible when the sanitizer is outsourced. In particular, security against such a sanitizer
is desirable from a practical point of view.

We first give a high-level explanation of the attack, formalize it as a second step, and show
that several existing schemes are vulnerable. Assume there are three parties, Alice, Bob, and
Charlie, each having a different role assigned. We denote by A, B, and C the associated roles. In
our example, Alice and Charlie are always honest. Alice is allowed to communicate with Bob and
Charlie. Bob is dishonest and forbidden to send messages to Charlie (and to Alice). The attack
now proceeds as follows: When Alice sends her first message, Bob requests the corresponding
ciphertext and the sanitized ciphertext from the semi-honest sanitizer. He then decrypts the
sanitized ciphertext and thus receives the message Alice has sent. With the knowledge of this
message, as we show below, he is able to create a valid ciphertext for a chosen message m′,
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which will be correctly sanitized and later decrypted by Charlie, hence allowing unrestricted
communication from Bob to Charlie. Details follow.

Consider the policy defined by

P (i, j) :=

{
1, i = A,

0, otherwise.

For the sake of presentation, we assume that the ACE scheme E under consideration enjoys
perfect correctness. Also, we assume that the setup-phase has completed and the three parties
thus possess the encryption and decryption keys, ek i and dk i, respectively. Now, imagine that
the ACE scheme admits an efficient function maulE with the following property (later we show
how to implement such a function for some existing schemes): For all messages m and m′, any
role i, and sanitizer parameters sp in the range of Setup, and for any fixed randomness r,

maulE
(
Enc(ek i,m; r), sp,m,m′)

)
= Enc(ek i,m

′; r). (1)

If such a malleability function exists, the communication policy can be bypassed as follows:

1. Alice encrypts a message c← Enc(ekA,m) and the sanitizer computes c′ ← San(sp, c) and
gives c and c′ to Bob.

2. Bob computes m← Dec(dkB, c
′) and creates a new ciphertext ĉ← maulE(c, sp,m,m

′) and
sends it to the sanitizer.

3. The ciphertext is sanitized ĉ′ ← San(sp, ĉ) and subsequently sent to Charlie. By the
(perfect) correctness of the assumed ACE scheme and by our assumption on maulE , ĉ′

is a valid ciphertext (under the encryption key of Alice) and Charlie is able to decrypt
m′ ← Dec(dkC, ĉ

′), effectively receiving Bob’s message m′.

In the following sections, we show that several existing ACE schemes E admit an efficient
function maulE . More specifically, we consider the “linear” scheme by Damgård et al. [DHO16

.

]
based on ElGamal and the ElGamal-based scheme by Fuchsbauer et al. [FGKO17

.

].

3.2 DHO Scheme Based on ElGamal

We briefly recall the ElGamal based ACE scheme for a single identity. The sanitizer parameters
of the scheme contain the description of a finite cyclic group G = 〈g〉 and its group order q,
and additionally an element h = gx for a uniform random x ∈ Zq. The encryption key for
A is a random value ek ∈ Zq, and the decryption key is −x. The algorithm Enc on input an
encryption key ek i and a message m ∈M, samples r1, r2 ∈ Zq uniformly at random and outputs
the ciphertext

c = (c0, c1, c2, c3) := (gr1 , hr1gek i , gr2 ,m · hr2).

We can define the function maulDHO as

maulDHO

(
(c0, c1, c2, c3), sp,m,m

′) :=
(
c0, c1, c2,m

′ ·m−1 · c3
)
.

Since the group order q is part of sp, this function is efficiently computable. For c3 = m · hr2 , we
thus get a new fourth component c′3 = m′ · hr2 and equation (1)

.

is satisfied.
The malleability for more than one identity (and in particular in our scenario described above)

follows since the scheme for several identities is composed of independent instances of the basic
single-identity scheme.
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3.3 FGKO Scheme Based on ElGamal

Description of the scheme. In that scheme, the sanitizer parameters consist of the description
of a finite cyclic group G = 〈g〉 including the group order q and a generator g, a verification
key vkSig of a signature scheme Sig, and a common-reference string crsNIZK of a NIZK proof
system NIZK for the language L := {x | ∃w (x,w) ∈ R}, where R is defined as follows: for
x =

(
vkSig, c0, c1, c2, c3

)
and a witness w =

(
gx, σSig,m, r, s

)
, R(x,w) = 1 if and only if

Sig.Ver
(
vkSig, gx, σSig

)
= 1 ∧ (c0, c1, c2, c3) =

(
gr, gx·r, gs,m · gx·s

)
.

The encryption and decryption keys are given by ek := (gx, σSig), dk := x for a uniformly
chosen x� Zq, where σSig is a signature on gx. To encrypt a message m, first choose r � Z∗q
and s� Zq uniformly at random and compute (c0, c1, c2, c3) := (gr, gx·r, gs,m · gx·s). Then run
πNIZK ← NIZK.Prove

(
crsNIZK, (vkSig, c0, c1, c2, c3), (g

x, σSig,m, r, s)
)
and output the ciphertext

c := (c0, c1, c2, c3, π).

Potential malleability. We define the function maulFGKO as

maulFGKO
(
(c0, c1, c2, c3, π), sp,m,m′

)
:=
(
c0, c1, c2,m

′ ·m−1 · c3, π
)
.

This function satisfies equation (1)

.

if, for example, the non-interactive zero-knowledge proof is
independent of the last component c3. We show that such a NIZK proof system exists without
violating the properties assumed by Fuchsbauer et al. [FGKO17

.

]. To this end, let NIZK′ be a
NIZK proof system for the language L′ := {x | ∃w (x,w) ∈ R′}, where the relation R′ is defined
as follows: for x =

(
vkSig, c0, c1, c2

)
and w =

(
gx, σSig, r, s

)
, (x,w) ∈ R′ if and only if

Sig.Ver
(
vkSig, gx, σSig

)
= 1 ∧ (c0, c1, c2) =

(
gr, gx·r, gs

)
.

Given NIZK′, we construct a NIZK proof system NIZK for the original language L as follows:

NIZK.Gen(1κ) := NIZK′.Gen(1κ),

NIZK.Prove
(
crsNIZK, (vkSig, c0, c1, c2, c3), (g

x, σSig,m, r, s)
)

:=

NIZK′.Prove
(
crsNIZK, (vkSig, c0, c1, c2), (g

x, σSig, r, s)
)
,

NIZK.Ver
(
crsNIZK, (vkSig, c0, c1, c2, c3), π

NIZK
)

:= NIZK′.Ver
(
crsNIZK, (vkSig, c0, c1, c2), π

NIZK
)
.

Correctness and zero-knowledge of NIZK follow straightforwardly from the underlying scheme
NIZK′. For knowledge-extraction, assume that NIZK′ is capable of extracting a valid wit-
ness (gx, σSig, r, s) given a valid proof for the statement (vkSig, c0, c1, c2). Given a statement(
vkSig, c0, c1, c2, c3

)
in the original language L, we can obtain a valid message encoded in c3 by

computing m := c3 · (gx·s)−1, and thus also a witness
(
gx, σSig,m, r, s

)
for the given statement.

Finally, for soundness, note that if (vkSig, c0, c1, c2) ∈ L′, this implies that any group element
c3 ∈ G is a valid last component, i.e., (vkSig, c0, c1, c2, c3) ∈ L for any c3 ∈ G, since there exists
the message m := c3 · (gx·s)−1, and thus a valid witness w = (gx, σSig,m, r, s).

For the constructed scheme NIZK and the function maulFGKO, equation (1)

.

clearly holds.
Hence, the FGKO scheme can be instantiated such that the malleability attack works. It could
potentially be excluded by requiring stronger properties from the NIZK scheme.
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4 A Stronger Notion of ACE

In this section, we introduce our new security definitions, which exclude the issues we have
discovered.

4.1 ACE with Modification Detection

To be resilient against the ciphertext-revealing attacks described in Section 3

.

, the sanitizer should
ideally only sanitize fresh encryptions and block ciphertexts that are either replays or obtained
by modifying previous ciphertexts. Therefore, we introduce an additional algorithm for detecting
modified ciphertexts. If the sanitizer receives a ciphertext that is detected to be a modification
of a previously received one, this ciphertext is blocked. Since such ciphertexts will not be stored
in the repository and consequently not be decrypted, we define chosen-ciphertext security with
respect to a decryption oracle that does not return a decryption if the received ciphertext is
detected to be a modification of the challenge ciphertext. Our definitions can therefore be seen
as a variant of publicly-detectable replayable-CCA security, which was introduced by Canetti et
al. [CKN03

.

] for public key encryption. Before defining the security, we define the syntax of ACE
schemes with this additional algorithm.

Definition 4.1. An access control encryption with modification detection scheme is an ACE
scheme E together with a PPT algorithm DMod that on input sanitizer parameters sp and two
ciphertexts c, c̃ ∈ C, outputs a bit b (where b = 1 means that c̃ was obtained via modifying c).

Except for Section 4.3

.

, where we show that our new definitions imply the existing ones, we
will from now on only consider ACE schemes with modification detection and thus often refer to
them simply as ACE schemes.

The algorithm DMod should output 1 if c̃ is an adversarial modification of c, and 0 otherwise.
We have the following intuitive requirements on DMod:

1. All ciphertexts c̃ an adversary can produce given ciphertexts c1, . . . , cl and no encryption key,
are either invalid (i.e., sanitize to ⊥) or we have DMod(sp, ci, c̃) = 1 for some i ∈ {1, . . . , n}.

2. Given encryption and decryption keys, an adversary is unable to produce a ciphertext c
such that a ciphertext produced by Enc for a message of the adversary’s choice is detected
to be a modification of c. In particular, independent encryptions of messages collide only
with negligible probability.

The first requirement is captured by role-respecting security as defined in Definition 4.5

.

, the
second one by non-detection of fresh encryptions defined in Definition 4.4

.

.

Remark. Canetti et al. (translated to our setting) also require that if DMod(sp, c, c̃) = 1, then c
and c̃ decrypt to the same message [CKN03

.

]. For our purpose, this is not needed. This means
that we do not want to detect replays in the sense that the same message is replayed, but more
generally, whether the given ciphertext was obtain via some modification of another ciphertext.

4.2 New Security Definitions

We formalize chosen-ciphertext attacks by giving the adversary access to an oracle OSD that
first sanitizes a given ciphertext and then decrypts the result. One could also consider chosen-
sanitized-ciphertext attacks by providing the adversary access to an oracle OD that only decrypts.
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This is potentially stronger since the adversary can emulate the oracle OSD by first sanitizing
the ciphertexts and then giving the result to OD, but given OSD, it is not necessarily possible to
emulate OD. Since in the application, users can only send ciphertexts to the sanitizer but not
directly write ciphertexts to the repository such that they are decrypted without being sanitized,
the weaker notion is sufficient.

In principle, the adversary has in all definitions access to OSD, as well as to an encryption
oracle and a key-generation oracle. To simplify the definitions, we omit the encryption or
decryption oracles if the winning condition places no restriction on the encryption or decryption
keys obtained from the key-generation oracle, respectively.

Privacy and anonymity. We now define (payload) privacy and sender-anonymity. The former
guarantees that encryptions of different messages under the same encryption key cannot be
distinguished as long as the adversary has no decryption key that allows to decrypt. We also
require this for messages of different length, i.e., schemes satisfying our definition do not leak
the length of the encrypted message, which means that the message space has to be bounded.
Anonymity guarantees that encryptions of the same message under different keys cannot be
distinguished. We distinguish a weak and a strong variant of anonymity, where the weak one
provides no guarantees if the adversary can decrypt the ciphertext, and the strong one guarantees
that even if the adversary has decryption keys, nothing is leaked about the sender role beyond
which of the adversary’s decryption keys can be used to decrypt.

Definition 4.2. Let E = (Setup,Gen,Enc,San,Dec,DMod), be an ACE with modification detec-
tion scheme and let A = (A1,A2) be a pair of probabilistic algorithms. Consider the experiment
ExpACE-PRV-ANON-CCA

E,A in Figure 2

.

and let J be the set of all j such that A1 or A2 issued the
query (j, rec) to the oracle OG. We define the privacy under chosen-ciphertext attacks advantage
and the sender-anonymity under chosen-ciphertext attacks advantages of A as

AdvACE-PRV-CCA
E,A := 2 · Pr

[
b′ = b ∧ i0 = i1 ∧ ∀j ∈ J P (i0, j) = 0

]
− 1,

AdvACE-wANON-CCA
E,A := 2 · Pr

[
b′ = b ∧ m0 = m1 ∧ ∀j ∈ J P (i0, j) = P (i1, j) = 0

]
− 1,

AdvACE-sANON-CCA
E,A := 2 · Pr

[
b′ = b ∧ m0 = m1 ∧ ∀j ∈ J P (i0, j) = P (i1, j)

]
− 1,

respectively, where all probabilities are in ExpACE-PRV-ANON-CCA
E,A . The scheme E is called private

under chosen-ciphertext attacks (PRV-CCA secure), weakly sender-anonymous under chosen-
ciphertext attacks (wANON-CCA secure), and strongly sender-anonymous under chosen-ciphertext
attacks (sANON-CCA secure) if AdvACE-PRV-CCA

E,A , AdvACE-wANON-CCA
E,A , and AdvACE-sANON-CCA

E,A are
negligible for all efficient A, respectively.

Remark. Weak anonymity corresponds to the anonymity notion considered by Fuchsbauer et
al. [FGKO17

.

] and strong anonymity to the one considered by Damgård et al. [DHO16

.

]. We
state both definitions because weak anonymity is easier to achieve but strong anonymity might
be required by some applications. If anonymity is only required against the sanitizer or if all
messages are anyway signed by the sender, weak anonymity is sufficient. Strong anonymity is
required in settings where senders also want to retain as much anonymity as possible against
legitimate receivers.

Sanitization security. We next define sanitization security, which excludes that dishonest
parties can communicate via the ciphertexts. We formalize this by requiring that the output
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Experiment ExpACE-PRV-ANON-CCA
E,A

Input: (1κ, P ), κ ∈ N, P : [n]× [n]→ {0, 1}
(sp,msk)← Setup(1κ, P )

(m0,m1, i0, i1, st)← AOG(·,·),OSD(·,·)
1 (sp)

b� {0, 1}
ek ib ← Gen(msk , ib, sen)
c∗ ← Enc(ek ib ,mb)

b′ ← AOG(·,·),OSD∗ (·,·)
2 (st , c∗)

Experiment ExpACE-SAN-CCA
E,A

Input: (1κ, P ), κ ∈ N, P : [n]× [n]→ {0, 1}
(sp,msk)← Setup(1κ, P )

(c0, c1, st)← AOG(·,·),OSD(·,·)
1 (sp)

c′0 ← San(sp, c0); c′1 ← San(sp, c1)
b� {0, 1}
b′ ← AOG(·,·),OSD(·,·)

2 (st , c′b)
for j ∈ [n] do

m0,j ← Dec
(
Gen(msk , j, rec), c′0

)
m1,j ← Dec

(
Gen(msk , j, rec), c′1

)

Experiment ExpACE-NDTCT-FENC
E,A

Input: (1κ, P ), κ ∈ N, P : [n]× [n]→ {0, 1}
(sp,msk)← Setup(1κ, P )
(m, i, c)← AOG(·,·)(sp)
ek i ← Gen(msk , i, sen)
c∗ ← Enc(ek i,m)
b← DMod(sp, c, c∗)

Experiment ExpACE-URR
E,A

Input: (1κ, P ), κ ∈ N, P : [n]× [n]→ {0, 1}
(sp,msk)← Setup(1κ, P )
c← AOG(·,·),OE(·,·)(sp)
dct← false

for c̃ ∈ {answers from OE} do
dct← dct ∨ DMod(sp, c̃, c) = 1

c′ ← San(sp, c)
for j ∈ [n] do

mj ← Dec
(
Gen(msk , j, rec), c′

)

Definitions of oracles

OG(i, t) := Gen(msk , i, t)

OE(i,m) := Enc
(
Gen(msk , i, sen),m

)
OSD(j, c) := Dec

(
Gen(msk , j, rec), San(sp, c)

)
OSD∗ (j, c) :=

{
Dec

(
Gen(msk , j, rec), San(sp, c)

)
, DMod(sp, c∗, c) = 0

test, else

Figure 2: Security experiments for an ACE with modification detection scheme E and an
adversary A, where A = (A1,A2) in the first two experiments.

of the sanitizer for two different ciphertexts cannot be distinguished, as long as both sanitized
ciphertexts are not ⊥ and the adversary has no decryption key that decrypts one of the ciphertexts.
This provides no security guarantees if the adversary can decrypt the ciphertexts, which does
not seem to be an issue since in this case, the parties can anyway directly communicate via the
messages. However, we additionally consider a stronger variant, where the adversary is allowed to
possess a decryption key that decrypts the ciphertexts, as long as they both decrypt to the same
message. This stronger variant excludes subliminal channels, i.e., even if the involved parties
are allowed to communicated by the policy, they cannot exchange information via ciphertexts
beyond the encrypted message.

Since the adversary provides the two ciphertexts that are sanitized, we do not know to which
roles they correspond; they could even be particularly crafted without belonging to an existing
role. Hence, we cannot state the requirement (in the weak variant) that the adversary should
not be able to decrypt by only considering the policy and the obtained decryption keys, as in the
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no-write rule in Definition 2.4

.

. Instead, we require that the decryption algorithm returns ⊥ for
all decryption keys the adversary possesses. For this to provide the intended security, we need
that the decrypt algorithm returns ⊥ whenever the receiver role corresponding to the used key is
not supposed to read the message. This is guaranteed by role-respecting security which is defined
later.

Definition 4.3. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE with modification detec-
tion scheme and let A = (A1,A2) be a pair of probabilistic algorithms. Consider the experiment
ExpACE-SAN-CCA

E,A in Figure 2

.

and let J be the set of all j such that A1 or A2 issued the query (j, rec)
to the oracle OG. We define the sanitization under chosen-ciphertext attacks advantage and the
strong sanitization under chosen-ciphertext attacks advantage of A as

AdvACE-SAN-CCA
E,A := 2 · Pr

[
b′ = b ∧ c′0 6= ⊥ 6= c′1 ∧ ∀j ∈ J m0,j = m1,j = ⊥

]
− 1,

AdvACE-sSAN-CCA
E,A := 2 · Pr

[
b′ = b ∧ c′0 6= ⊥ 6= c′1 ∧ ∀j ∈ J m0,j = m1,j

]
− 1,

respectively, where the probability is over the randomness in ExpACE-SAN-CCA
E,A . The scheme E

is called sanitization under chosen-ciphertext attacks secure (SAN-CCA secure) and strongly
sanitization under chosen-ciphertext attacks secure (sSAN-CCA secure) if AdvACE-SAN-CCA

E,A and
AdvACE-sSAN-CCA

E,A are negligible for all efficient A, respectively.

Non-detection of fresh encryptions. In the intended way of using a scheme satisfying our
notions, the sanitizer only adds sanitized ciphertexts to the repository if the given ciphertext
is not detected to be a modification of a previously received ciphertext. This means that if an
adversary can find a ciphertext c such that another ciphertext c∗ that is later honestly generated
is detected as a modification of c, the delivery of the message at that later point can be prevented
by sending the ciphertext c to the sanitizer earlier. We exclude this by the following definition,
which can be seen as an extended correctness requirement.

Definition 4.4. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE with modification detec-
tion scheme and let A be a probabilistic algorithm. Consider the experiment ExpACE-NDTCT-FENC

E,A
in Figure 2

.

. We define the non-detection of fresh encryptions advantage of A as

AdvACE-NDTCT-FENC
E,A := Pr

[
b = 1

]
,

where the probability is over the randomness in ExpACE-NDTCT-FENC
E,A . The scheme E is said to

have non-detecting fresh encryptions (NDTCT-FENC) if AdvACE-NDTCT-FENC
E,A is negligible for all

efficient A.

Role-respecting and uniform-decryption security. We finally define role-respecting and
uniform-decryption security. The former means that an adversary cannot produce a ciphertext
for which the pattern of roles that can decrypt does not correspond to a role for which the
adversary has an encryption key. For example, if the adversary has only an encryption key for
the role i such that roles j0 and j1 are the only roles j with P (i, j) = 1, all ciphertexts produced
by the adversary are either invalid (i.e., sanitized to ⊥ or detected as a modification) or decrypt
to a message different from ⊥ precisely under the decryption keys for j0 and j1. On the one
hand, this means that receivers who are not allowed to receive the message get ⊥ and hence
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know that the message is not for them.2

.

On the other hand, it also guarantees that the adversary
cannot prevent receivers with role j1 from receiving a message that is sent to receivers with
role j0. Furthermore, uniform decryption guarantees for all ciphertexts c output by an adversary
that if c decrypts to a message different from ⊥ for different decryption keys, it always decrypts
to the same message. In the example above, this means that j0 and j1 not only both receive
some message, but they both receive the same one.

Definition 4.5. Let E = (Setup,Gen,Enc, San,Dec,DMod) be an ACE with modification de-
tection scheme and let A be a probabilistic algorithm. Consider the experiment ExpACE-URR

E,A
in Figure 2

.

and let I and J be the sets of all i and j such that A issued the query (i, sen)
and (j, rec) to the oracle OG, respectively. We define the role-respecting advantage and the
uniform-decryption advantage of A as

AdvACE-RR
E,A := Pr

[
c′ 6= ⊥ ∧ dct = false ∧ ¬

(
∃i ∈ I ∀j ∈ J (mj 6= ⊥ ↔ P (i, j) = 1)

)]
,

AdvACE-UDEC
E,A := Pr

[
∃j, j′ ∈ J mj 6= ⊥ 6= mj′ ∧ mj 6= mj′

]
,

respectively, where the probabilities are over the randomness in ExpACE-URR
E,A . The scheme E is

role-respecting (RR secure) and uniform-decryption (UDEC) secure if AdvACE-RR
E,A and AdvACE-UDEC

E,A
are negligible for all efficient A, respectively.

Remark. Note that in Definition 4.5

.

, we only check the decryptions for receiver roles for which A
has requested the corresponding decryption key. This means that an adversary in addition to
producing a ciphertext that causes an inconsistency, also has to find a receiver role for which
this inconsistency manifests. If the total number of roles n is small (say polynomial in the
security parameter), A can simply query OG on all receiver keys, but for large n this condition
is nontrivial. For example, we consider a scheme secure if an adversary can efficiently produce
a ciphertext such that there is a receiver role that can decrypt it even though the policy does
not allow it, as long as this receiver role is hard to find. The rationale is that in this case, the
inconsistency cannot be exploited and will only be observed with negligible probability in an
execution of the protocol.

4.3 Relation to the Original Security Notions

In this section, we discuss how our notions relate to the original security definitions (see
Section 2.4

.

). First note that we assume the scheme has an additional algorithm DMod. As
explained in Section 4.1

.

, the intended usage of such a scheme is that the sanitizer discards
ciphertexts that are detected to be a modification of a previous ciphertext. This means that if
dishonest parties want to communicate even though disallowed by the policy (i.e., they want
to break the no-write rule), the sender must produce a ciphertext that is not detected as a
modification of a previous ciphertext. With this in mind, it is natural to adjust the no-write rule
such that an adversary only wins if the ciphertext he outputs is not detected to be a modification
of a ciphertext generated by the oracle OES (before sanitizing it).

2Detectability (Definition 2.2

.

) provides this guarantee for honest encryptions, role-respecting security extends
this to maliciously generated ciphertexts. Note, however, that detectability is not implied by role-respecting
security: If an adversary has encryption keys for two roles i and i′, role-respecting security does not exclude that
encrypting some message (depending on i′) with the key for role i can be decrypted with keys for roles that are
allowed to receive from i′.
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Definition 4.6. Let Let E = (Setup,Gen,Enc, San,Dec,DMod) be an ACE with modification
detection scheme and let A = (A1,A2) be a pair of probabilistic algorithms. The experiment
ExpACE-MD-no-write

E,A is identical to ExpACE-no-write
E,A in Figure 1

.

except that after A1 returns (c0, i
′, st),

it is checked whether the oracle OES has generated some c̃ and returned its sanitization such
that DMod(sp, c̃, c0) = 1. If this is the case, set dct← true, else dct← false. Let I1 be the
set of all i such that A1 issued the query (i, sen) to OG, and let J be the set of all j such that
A1 or A2 issued the query (j, rec) to OG. We define the no-write with modification detection
advantage of A as

AdvACE-MD-no-write
E,A := 2 · Pr

[
b′ = b ∧ dct = false ∧ i′ ∈ I1

∧ ∀i ∈ I1 ∀j ∈ J P (i, j) = 0 ∧ San(sp, c0) 6= ⊥
]
− 1,

where the probability is over the randomness of all algorithms in ExpACE-MD-no-write
E,A . The scheme E

satisfies the no-write with modification detection rule if AdvACE-MD-no-write
E,A is negligible for all

efficient A.

We show that our new security definitions from Section 4.2

.

imply the no-read rule and the
no-write with modification detection rule. We have to assume that the policy P allows for all i
that one can efficiently find some j with P (i, j) = 1. This seems to be the case for all practically
relevant policies, though. The results are summarized in the following theorem.

Theorem 4.7. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE with modification detection
scheme and let E ′ = (Setup,Gen,Enc,San,Dec) be the corresponding ACE scheme. If E is correct
and PRV-CCA, sANON-CCA, SAN-CCA, and RR secure, then it satisfies the the no-write with
modification detection rule for policies P such that for all i, one can efficiently find some j
with P (i, j) = 1, and E ′ satisfies the no-read rule. More precisely, for all adversaries A, A′,
and A′′, there exist adversaries APRV and AwANON (both roughly as efficient as emulating an
execution of ExpACE-no-read

E ′,A ), an adversary A′sANON (roughly as efficient as emulating an execution
of ExpACE-no-read

E ′,A′ ), and adversaries A′′SAN, A′′RR, and A′′CORR (all roughly as efficient as emulating
an execution of ExpACE-MD-no-write

E,A′′ ) such that

AdvACE-no-read,priv
E ′,A ≤ AdvACE-PRV-CCA

E,APRV
+ AdvACE-wANON-CCA

E,AwANON
,

AdvACE-no-read,anon
E ′,A′ = AdvACE-sANON-CCA

E,A′sANON
,

AdvACE-MD-no-write
E,A′′ ≤ AdvACE-SAN-CCA

E,A′′SAN
+ 4 · AdvACE-RR

E,A′′RR
+ 2 · AdvACE-CORR

E,A′′CORR
.

We here sketch the proof idea, a detailed proof of the theorem is provided in Appendix B

.

.
To prove the claim about the payload-privacy no-read rule, consider the hybrid experiment H
that is identical to ExpACE-no-read

E ′,A except that after A1 returns (m0,m1, i0, i1, st), i1 is replaced
by i0. If A wins the no-read privacy game, P (i0, j) = P (i1, j) = 0 for all j for which A obtained
a decryption key. Hence, in this case ExpACE-no-read

E ′,A and H are indistinguishable by weak sender-
anonymity. If A wins in H, one can construct an adversary against PRV-CCA security by
running A, returning (m0,m1, i0, i0, st) when A1 returns (m0,m1, i0, i1, st), and returning the
same guess as A2. Note that A has access to an encryption oracle OE in ExpACE-no-read

E ′,A , which is
not available in ExpACE-PRV-ANON-CCA

E,A . However, since the winning conditions do not restrict the
encryption keys obtained from OG, the oracle OE can be emulated by obtaining the encryption
key and then encrypting the message.
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Relating the sender-anonymity no-read rule to sANON-CCA security is a straightforward
reduction.

To prove the claim about the no-write rule, assume A′′ wins the corresponding game. If
A′′ does not obtain a decryption key that decrypts c0 or c1 to a message different from ⊥, this
adversary can be used to break SAN-CCA security as follows: when A′′1 returns (c0, i

′, st), output
c0 and the encryption of a uniformly chosen message for sender role i′ as c1; finally output the
same guess b′ as A′′2. Correctness ensures that c1 does not sanitize to ⊥,3

.

so the winning condition
of the SAN-CCA game is satisfied. If A′′ does obtain a decryption key that decrypts c0 or c1 to
a message different from ⊥, one can construct an adversary against role-respecting security.

Relation to original no-write rule. Perhaps surprisingly, one can also show that our new no-
tions imply the original no-write rule if DMod is symmetric in the sense that Pr[DMod(sp, c0, c1) =
1] = Pr[DMod(sp, c1, c0) = 1] (which is the case for all schemes considered in this paper). The
proof idea is to construct adversaries against correctness, and sanitization and role-respecting
security as above. Now, the role-respecting game is not won if the adversary A returns a
ciphertext c0 that is detected to be a modification of a ciphertext generated by OES . We show
that in this case, we can break sSAN-CCA security. Note that OES only gives A the sanitized
ciphertexts. The proof idea is as follows. A1 makes several queries to OES . For a uniformly
chosen one, encrypt the message twice, give the resulting ciphertexts c̃0, c̃1 to the sSAN-CCA
challenger, and give the obtained sanitized ciphertext c̃′b to A1. For all other queries, encrypt and
sanitize the message normally. When A1 returns a ciphertext c0, check whether c0 is detected
to be a modification of c̃0 or c̃1. Since the ciphertext c̃1−b is information-theoretically hidden
from A, it can be considered to be a fresh encryption. By our assumption, the probability that
c0 is detected to be a modification of c̃1−b is equal to the probability that c̃1−b is detected to be
a modification of c0, which contradicts non-detection of fresh encryptions. Hence, by checking
which of the two ciphertexts is detected, one can guess b and thus break sSAN-CCA security.
Note that A is allowed to obtain a decryption key that decrypts c̃′b, which is why we need strong
sanitization security.

Theorem 4.8. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE with modification detection
scheme such that Pr[DMod(sp, c0, c1) = 1] = Pr[DMod(sp, c1, c0) = 1] for all sp returned by Setup
and all ciphertexts c0, c1 ∈ C. Further let E ′ = (Setup,Gen,Enc,San,Dec) be the corresponding
ACE scheme. If E is correct, detectable, has NDTCT-FENC, and is sSAN-CCA and RR secure,
then E ′ satisfies the no-write rule for policies P such that for all i, one can efficiently find some j
with P (i, j) = 1. More precisely, for all adversaries A that make at most qES queries to the
oracle OES and at most qdk queries of the form (·, rec) to OG, there exist adversaries ASAN,
ARR, AsSAN, ANDTCT, ACORR, and Adtct (all roughly as efficient as emulating an execution of
ExpACE-no-write

E,A ) such that

AdvACE-no-write
E ′,A ≤ AdvACE-SAN-CCA

E,ASAN
+ 4 · AdvACE-RR

E,ARR
+ 2qES · AdvACE-sSAN-CCA

E,AsSAN

+ 4qES · AdvACE-NDTCT-FENC
E,ANDTCT

+ (8qESqdk + 2) · AdvACE-CORR
E,ACORR

+ 8qESqdk · AdvACE-DTCT
E,Adtct

.

See Appendix B

.

for a detailed proof.
3This is the only place where we need that one can efficiently find j with P (i′, j) = 1 since the adversary in

the correctness game has to provide such j.
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5 Enhanced Sanitizable Public-Key Encryption

5.1 Definitions

As a stepping stone toward ACE schemes satisfying our new security definitions, we introduce
enhanced sanitizable public-key encryption. Sanitizable public-key encryption has been considered
by Damgård et al. [DHO16

.

] and Fuchsbauer et al. [FGKO17

.

] as a relaxation of universal re-
encryption [GJJS04

.

] and rerandomizable encryption [Gro04

.

; PR07

.

]. It allows to sanitize a
ciphertext to obtain a sanitized ciphertext that cannot be linked to the original ciphertext except
that it decrypts to the correct message. In contrast to rerandomizable encryption, sanitized
ciphertexts can have a different syntax than ciphertexts, i.e., it is not required that a sanitized
ciphertext is indistinguishable from a fresh encryption. We introduce an enhanced variant with a
different syntax and stronger security guarantees.

Definition 5.1. An enhanced sanitizable public-key encryption (sPKE) scheme consists of the
following five PPT algorithms:

Setup: The algorithm Setup on input a security parameter 1κ, outputs sanitizer parameters sp,
and a master secret key msk . We implicitly assume that all parameters and keys include
the finite message space M and the ciphertext spaces C, C′.

Key generation: The algorithm Gen on input a master secret key msk , outputs an encryption
key ek and a decryption key dk .

Encryption: The algorithm Enc on input an encryption key ek and a message m ∈M, outputs
a ciphertext c ∈ C.

Sanitization: The algorithm San on input sanitizer parameters sp and a ciphertext c ∈ C,
outputs a sanitized ciphertext c′ ∈ C′ ∪ {⊥}.

Decryption: The algorithm Dec on input a decryption key dk and a sanitized ciphertext c′ ∈ C′,
outputs a message m ∈M∪ {⊥}; on input dk and ⊥, it outputs ⊥.

For correctness, we require for all (sp,msk) in the range of Setup, all (ek , dk) in the range of
Gen(msk), and all m ∈M that

Dec
(
dk , San

(
sp,Enc(ek ,m)

))
= m

with probability 1.

We require robustness in the sense that no ciphertext decrypts to a message different from ⊥ for
two different decryption keys (except with negligible probability). This is similar to detectability
for ACE schemes, but we allow the adversary to directly output a ciphertext, instead of a message,
which is then honestly encrypted. Our notion therefore closely resembles unrestricted strong
robustness (USROB), introduced by Farshim et al. [FLPQ13

.

] for public-key encryption, which
also allows the adversary to choose a ciphertext and, in contrast to strong robustness by Abdalla
et al. [ABN10

.

], gives the adversary access to decryption keys.

Definition 5.2. Let E = (Setup,Gen,Enc,San,Dec) be an sPKE scheme. For a probabilistic
algorithm A, we define the experiment ExpsPKE-USROB

E,A that executes (sp,msk) ← Setup(1κ)

and (c, i0, i1) ← AOG(·)(sp), where the oracle OG on input getNew, outputs a fresh key pair
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(ek , dk)← Gen(msk). Let q be the number of oracle queries and let for i ∈ {1, . . . , q}, (ek i, dk i)
be the i-th answer from OG. We define the (unrestricted strong) robustness advantage of A as

AdvsPKE-USROB
E,A := Pr

[
1 ≤ i0, i1 ≤ q ∧ i0 6= i1

∧ Dec
(
dk i0 , San(sp, c)

)
6= ⊥ 6= Dec

(
dk i1 , San(sp, c)

)]
,

where the probability is over the randomness in ExpsPKE-USROB
E,A and the random coins of San

and Dec (both executed independently twice). The scheme E is (unrestricted strongly) robust
(USROB secure) if AdvsPKE-USROB

E,A is negligible for all efficient A.

We next define IND-CCA security analogously to the definition for ordinary public-key
encryption. In contrast to the usual definition, we do not require the adversary to output two
messages of equal length, which implies that schemes satisfying our definition do not leak the
length of the encrypted message.

Definition 5.3. Let E = (Setup,Gen,Enc, San,Dec) be an sPKE scheme and let A = (A1,A2)
be a pair of probabilistic algorithms. Consider the experiment ExpsPKE-IND-CCA

E,A in Figure 3

.

and
let CA2 be the set of all ciphertexts that A2 queried to the oracle OSD. We define the ciphertext
indistinguishability under chosen-ciphertext attacks advantage of A as

AdvsPKE-IND-CCA
E,A := 2 · Pr

[
b′ = b ∧ c∗ /∈ CA2

]
− 1,

where the probability is over the randomness in ExpsPKE-IND-CCA
E,A . The scheme E has indistin-

guishable ciphertexts under chosen-ciphertext attacks (is IND-CCA secure) if AdvsPKE-IND-CCA
E,A is

negligible for all efficient A.

We also need that it is hard to predict a ciphertext generated by Enc from a message of
the adversary’s choice given encryption and decryption keys. Note that this is not implied by
IND-CCA security since the adversary here obtains the decryption key.

Definition 5.4. Let E = (Setup,Gen,Enc, San,Dec) be an sPKE scheme and let A be a prob-
abilistic algorithm. Consider the experiment ExpsPKE-UPD-CTXT

E,A in Figure 3

.

. We define the
ciphertext unpredictability advantage of A as

AdvsPKE-UPD-CTXT
E,A := Pr

[
c = c∗],

where the probability is over the randomness in ExpsPKE-UPD-CTXT
E,A . The scheme E has unpredictable

ciphertexts (is UPD-CTXT secure) if AdvsPKE-UPD-CTXT
E,A is negligible for all efficient A.

We further define anonymity or indistinguishability of keys following Bellare et al. [BBDP01

.

].

Definition 5.5. Let E = (Setup,Gen,Enc, San,Dec) be an sPKE scheme and let A = (A1,A2)
be a pair of probabilistic algorithms. Consider the experiment ExpsPKE-IK-CCA

E,A in Figure 3

.

and let
CA2 be the set of all ciphertexts that A2 queried to the oracle OSD0 or OSD1 . We define the
indistinguishability of keys under chosen-ciphertext attacks advantage of A as

AdvsPKE-IK-CCA
E,A := 2 · Pr

[
b′ = b ∧ c∗ /∈ CA2

]
− 1,

where the probability is over the randomness in ExpsPKE-IK-CCA
E,A . The scheme E has indistinguishable

keys under chosen-ciphertext attacks (is IK-CCA secure) if AdvsPKE-IK-CCA
E,A is negligible for all

efficient A.
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Experiment ExpsPKE-IND-CCA
E,A

Input: 1κ, κ ∈ N
(sp,msk)← Setup(1κ)
(ek , dk)← Gen(msk)

(m0,m1, st)← AOG(·),OSD(·)
1 (sp, ek)

b� {0, 1}
c∗ ← Enc(ek ,mb)

b′ ← AOG(·),OSD(·)
2 (st , c∗)

Experiment ExpsPKE-UPD-CTXT
E,A

Input: 1κ, κ ∈ N
(sp,msk)← Setup(1κ)
(ek , dk)← Gen(msk)
(m, c)← AOG(·)(sp, ek , dk)
c∗ ← Enc(ek ,m)

Experiment ExpsPKE-IK-CCA
E,A

Input: 1κ, κ ∈ N
(sp,msk)← Setup(1κ)
(ek0, dk0)← Gen(msk)
(ek1, dk1)← Gen(msk)

(m, st)← A
OG(·),OSD0

(·),OSD1
(·)

1 (sp, ek0, ek1)
b� {0, 1}
c∗ ← Enc(ekb,m)

b′ ← A
OG(·),OSD0

(·),OSD1
(·)

2 (st , c∗)

Experiment ExpsPKE-SAN-CCA
E,A

Input: 1κ, κ ∈ N
(sp,msk)← Setup(1κ)
(ek0, dk0)← Gen(msk)
(ek1, dk1)← Gen(msk)

(c0, c1, st)← A
OG(·),OSD0

(·),OSD1
(·)

1 (sp, ek0, ek1)
c′0 ← San(sp, c0); c′1 ← San(sp, c1)
m0,0 ← Dec(dk0, c′0); m0,1 ← Dec(dk1, c′0)
m1,0 ← Dec(dk0, c′1); m1,1 ← Dec(dk1, c′1)
b� {0, 1}
b′ ← A

OG(·),OSD0
(·),OSD1

(·)
2 (st , c′b)

Figure 3: Security experiments for an sPKE scheme E and an adversary A, where A = (A1,A2)
in the experiments ExpsPKE-IND-CCA

E,A , ExpsPKE-IK-CCA
E,A , and ExpsPKE-SAN-CCA

E,A . The oracle OSD is
defined as OSD(c) = Dec(dk ,San(sp, c)) and the oracle OSDj as OSDj (c) = Dec(dk j ,San(sp, c)).
Moreover, the oracle OG on input getNew, outputs a fresh key pair (ek , dk)← Gen(msk).

Sanitization security formalizes that given certain public keys and a sanitized ciphertext, it
is hard to tell which of two adversarially chosen ciphertexts was actually sanitized. To exclude
trivial attacks, we require that both ciphertexts are encryptions relative to the two challenge
public keys ek0 and ek1. Otherwise, the adversary could use the oracle OG to obtain a fresh
key-pair (ek , dk) and encrypt two different messages under ek . It could then decrypt the challenge
ciphertext using dk and win the game.

Definition 5.6. Let E = (Setup,Gen,Enc, San,Dec) be an sPKE scheme and let A = (A1,A2)
be a pair of probabilistic algorithms. Consider the experiment ExpsPKE-SAN-CCA

E,A in Figure 3

.

. We
define the sanitization under chosen-ciphertext attacks advantage of A as

AdvsPKE-SAN-CCA
E,A := 2 · Pr

[
b′ = b ∧ ∃j, j′ ∈ {0, 1} m0,j 6= ⊥ 6= m1,j′

]
− 1,

where the probability is over the randomness in ExpsPKE-IK-CCA
E,A . The scheme E is sanitization under

chosen-ciphertext attacks (SAN-CCA) secure if AdvsPKE-SAN-CCA
E,A is negligible for all efficient A.

We finally define the probability that two independent executions of the key-generation
algorithm produce the same encryption key. This probability has to be small for all IND-CCA-
secure schemes because an attacker can otherwise obtain a new key pair from OG and if the
obtained encryption key matches the one with which the challenge ciphertext is generated, the
attacker can decrypt and win the IND-CCA game. We anyway explicitly define this probability
to simplify our reductions later.
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Definition 5.7. Let E = (Setup,Gen,Enc,San,Dec) be an sPKE scheme. We define the
encryption-key collision probability ColekE as

ColekE := Pr(sp,msk)←Setup(1κ); (ek0,dk0)←Gen(msk); (ek1,dk1)←Gen(msk)[ek0 = ek1].

5.2 Constructing an sPKE Scheme

We next construct an sPKE scheme satisfying our security definitions. Our construction resembles
the weakly sanitizable PKE scheme by Fuchsbauer et al. [FGKO17

.

]. We use a variant of ElGamal
encryption and obtain security against chosen-ciphertext attacks using the technique of Naor
and Yung [NY90

.

], i.e., encrypting the message under two independent keys and proving in
zero-knowledge that the ciphertexts are encryptions of the same message, which was shown
to achieve full IND-CCA security if the zero-knowledge proof is one-time simulation sound by
Sahai [Sah99

.

].
Let PKE be a (IND-CPA secure) public-key encryption scheme, let Sig be a (EUF-CMA-

secure) signature scheme, and let NIZK be a (one-time simulation sound) NIZK proof system
for the language L := {x | ∃w (x,w) ∈ R}, where the relation R is defined as follows: for
x =

(
g, ekPKE, vkSig, c1, c2, cσ

)
and w = (m, ga, gb, r1, s1, r2, s2, σ, r), we have (x,w) ∈ R if and

only if

c1 = (gr1 , ga·r1 , gs1 , ga·s1 ·m) ∧ c2 = (gr2 , gb·r2 , gs2 , gb·s2 ·m)

∧ Sig.Ver
(
vkSig, (ga, gb), σ

)
= 1 ∧ cσ = PKE.Enc

(
ekPKE, (ga, gb, σ); r

)
.

We define an sPKE scheme as follows:

Setup: The setup algorithm sPKE.Setup first generates(
ekPKE, dkPKE

)
← PKE.Gen(1κ),(

vkSig, skSig
)
← Sig.Gen(1κ),

crs ← NIZK.Gen(1κ).

Let G = 〈g〉 be a cyclic group with prime order p generated by g, with p ≥ 2κ, and let
M ⊆ G such that |M|/p ≤ 2−κ. The sanitizer parameters spsPKE contain ekPKE, vkSig,
crs, and a description of G, including g and p. The master secret key msk sPKE consists of
ekPKE, vkSig, skSig, crs, and a description of G, including g and p.

Key generation: The algorithm sPKE.Gen on input msk sPKE, samples two elements dk1, dk2 �
Z∗p and computes ek1 ← gdk1 , ek2 ← gdk2 , as well as σ ← Sig.Sign

(
skSig, (ek1, ek2)

)
.

Finally, it outputs ek sPKE :=
(
g, p, crs, ekPKE, vkSig, ek1, ek2, σ

)
and dk sPKE := (dk1, dk2).

Encryption: The algorithm sPKE.Enc on input an encryption key ek sPKE =
(
g, p, crs, ekPKE,

vkSig, ek1, ek2, σ
)
and a message m ∈M, samples randomness r, chooses r1, s1, r2, s2 � Z∗p

uniformly at random, and computes

c1 ←
(
gr1 , ek r11 , g

s1 , eks11 ·m
)
,

c2 ←
(
gr2 , ek r22 , g

s2 , eks22 ·m
)
,

cσ ← PKE.Enc
(
ekPKE, (ek1, ek2, σ); r

)
.

It then generates π ← NIZK.Prove
(
crs, x := (g, ekPKE, vkSig, c1, c2, cσ), w := (m, ek1, ek2,

r1, s1, r2, s2, σ, r)
)
. It finally outputs the ciphertext c := (c1, c2, cσ, π).
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Sanitization: The algorithm sPKE.San on input sanitizer parameters spsPKE and a cipher-
text c = (c1, c2, cσ, π), first verifies the NIZK proof by evaluating NIZK.Ver

(
crs, x :=

(g, ekPKE, vkSig, c1, c2, cσ), π
)
. It then parses (c1,1, c1,2, c1,3, c1,4) ← c1. If the verification

succeeds and c1,1 6= 1 6= c1,2, then it chooses a random t� Z∗p and outputs the sanitized
ciphertext

c′ :=
(
(c1,1)

t · c1,3, (c1,2)
t · c1,4

)
.

If the verification fails or if c1,1 = 1 or c1,2 = 1, it outputs ⊥.

Decryption: The algorithm sPKE.Dec on input a decryption key dk sPKE = (dk1, dk2) and a
sanitized ciphertext c′ = (c′1, c

′
2), computes the message m← c′2 ·

(
(c′1)dk1

)−1. It outputs m
if m ∈M, and otherwise it outputs ⊥. On input dk sPKE and ⊥, it outputs ⊥.

We first prove correctness and other straightforward properties of the scheme.

Proposition 5.8. If Sig is correct and NIZK has perfect completeness, the scheme sPKE from
above is correct, robust, has unpredictable ciphertexts, and negligible encryption-key collision
probability.

Proof. To prove correctness, let (spsPKE,msk sPKE) in the range of sPKE.Setup, (ek sPKE, dk sPKE)
in the range of sPKE.Gen(msk sPKE), and let m ∈M. By correctness of Sig and completeness of
NIZK, the NIZK verification in sPKE.San in the correctness experiment succeeds with probability 1.
Moreover, since g generates G and r1, dk1 ∈ Z∗p, we have c1,1 = gr1 6= 1 and c1,2 = ek r11 =

gdk1·r1 6= 1. Hence,

c′ = sPKE.San
(
spsPKE, sPKE.Enc(ek sPKE,m)

)
=
(
(c1,1)

t · c1,3, (c1,2)
t · c1,4

)
=
(
gr1·t+s1 , ek r1·t+s11 ·m

)
.

and

sPKE.Dec
(
dk sPKE, c′

)
= ek r1·t+s11 ·m ·

((
gr1·t+s1

)dk1
)−1

= gdk1(r1·t+s1) ·m ·
(
gdk1(r1·t+s1)

)−1
= m.

This shows that sPKE is correct.
For ciphertext unpredictability, note that each ciphertext contains gr1 , gs1 , gr2 , and gs2 for

uniformly chosen r1, s1, r2, s2 ∈ Z∗p. Each of these elements can only be guessed with probability
1/|Z∗p| = 1/(p− 1), where p ≥ 2κ. We can therefore conclude that for any A,

AdvsPKE-UPD-CTXT
sPKE,A ≤ 1

(p− 1)4
≤ 1

(2κ − 1)4
.

Similarly, since the encryption keys contain the pairs (ek1 = gdk1 , ek2 = gdk2) for uniformly
chosen dk1, dk2 ∈ Z∗p, we have

ColeksPKE ≤
1

(p− 1)2
≤ 1

(2κ − 1)2
.

We finally prove robustness. To this end, let A be a probabilistic algorithm that makes at
most q queries to OG and consider ExpsPKE-USROB

E,A . Further let ek sPKEi and dk sPKEi = (dk i,1, dk i,2)
be the keys returned from OG for the i-th query and let (c, i0, i1) be the output of A, where
c := (c1, c2, cσ, π) and c1 = (ga, gb, gc, gd). Assume that i0 6= i1 and that c passes sanitization,
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since A cannot win otherwise. This implies a 6= 0 6= b and sanitizing and decrypting the ciphertext
with the two decryption keys yield m0 = gbt0+d−dk i0,1(at0+c) and m1 = gbt1+d−dk i1,1(at1+c),
respectively, where t0, t1 ∈ Z∗p are chosen uniformly during sanitization. We then have that A
wins if m0,m1 ∈M. Assume that m0 ∈M. Then,

m1 = m0 · g−b·t0−d+dk i0,1(a·t0+c) · gb·t1+d−dk i1,1(a·t1+c)

= m0 · g(dk i0,1−dk i1,1)c · g(a·dk i0,1−b)t0 · g(b−a·dk i1,1)t1 .

Note that if dk i0,1 6= dk i1,1 and a 6= 0 6= b, then a·dk i0,1−b and b−a·dk i1,1 cannot both be 0. Hence,
in this case, m1 is a uniformly random element in the group G. The probability that m1 ∈M is
therefore |M|/|G| ≤ 2−κ. Since A obtains at most q decryption keys and the dk i,1 are uniform
elements in Z∗p, the probability that dk i0,1 = dk i1,1 is bounded by q2 · 1/(p− 1) ≤ q2 · 1/(2κ − 1).
We can therefore conclude that

AdvsPKE-USROB
sPKE,A ≤ 2−κ +

q2

2κ − 1
≤ q2 + 1

2κ − 1
.

The main result of this section is the security of the scheme, summarized in the following
theorem.

Theorem 5.9. If the DDH assumption holds in the group G, PKE is IND-CPA secure, Sig is
EUF-CMA secure, and if NIZK is zero-knowledge, computationally sound, and one-time simulation
sound, then the scheme sPKE from above is IND-CCA secure, IK-CCA secure, and SAN-CCA
secure.

On a high level, our proof proceeds as follows. It is rather straightforward to show that our
variant of ElGamal encryption satisfies the CPA versions of the three properties. The proof
of CCA security follows the proof by Sahai for public-key encryption [Sah99

.

]: Since the NIZK
ensures that both ciphertext components are encryptions of the same message, it does not matter
which component is decrypted. In a reduction, where we assume an adversary A against the CCA
variants of the desired properties, and we want to break the corresponding CPA variants, we only
get one public key and no decryption oracle from the challenger. In order to emulate the view
toward A, the reduction chooses an additional public key and a CRS for the NIZK scheme. Since
the reduction thus knows one of the secret keys, it can emulate a decryption oracle. To generate
a challenge ciphertext, the reduction obtains one challenge ciphertexts from its CPA challenger,
and encrypts another, arbitrary message to get a second ciphertext. The reduction uses the
NIZK simulator to obtain an accepting proof that is indistinguishable from a “real proof”, even if
the underlying statement is not true. A crucial point here is that the NIZK scheme has to be
one-time simulation sound (see Definition A.11

.

). This ensures that even if the adversary sees one
simulated (accepting) proof of a wrong statement, it is not capable of producing accepting proofs
of wrong statements, except by reproducing the exact proof obtained within the challenge, but
which A is not allowed to ask to the decryption oracle by the CCA definition. The fundamental
result of Sahai [Sah99

.

] is that the above strategy successfully simulates a complete CCA attack
toward A.

An additional obstacle we have is that to preserve anonymity, the NIZK needs to be verified
without knowing which encryption keys were used. On the other hand, the reduction only works
if the two used keys “match”, since otherwise, the emulated decryption oracle would use an
incorrect key to decrypt. To prevent an adversary from mixing different key pairs for encryptions,
the key-generation process signs valid key pairs, and the NIZK ensures that a signed pair was
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used. Due to anonymity, this signature cannot be directly contained in the ciphertexts. Instead,
it is part of the witness. To prove that if a ciphertext is accepted, the used key pair was indeed
signed by the key-generation process, we show that if A manages to produce a ciphertext that
is accepted but the keys were not signed, we can break EUF-CMA security of the signature
scheme. In this reduction, we have to provide a forgery. Hence, the reduction needs to extract
the signature and the used encryption keys from the ciphertext. This could be achieved by
assuming that the NIZK is extractable. Extractability and simulation-soundness at the same
time is, however, a quite strong assumption. Instead, we add an encryption of the signature and
the key pair under a separate PKE scheme to the ciphertexts. The reduction can then generate
the keys for this PKE scheme itself and perform extraction by decrypting that ciphertext.

Since the proofs for IND-CCA and IK-CCA security closely follow the proof by Sahai [Sah99

.

],
we here prove SAN-CCA security and defer the other proofs to Appendix C

.

.

Lemma 5.10. Let sPKE be the scheme from above and let A = (A1,A2) be a pair of probabilistic
algorithms such that A1 and A2 together make at most qG queries to OG and at most qSD queries
to OSD0 and OSD1 combined. Then, there exist adversaries ADDH, Asnd, and ASig (which are all
roughly as efficient as emulating an execution of ExpsPKE-SAN-CCA

sPKE,A ) such that

AdvsPKE-SAN-CCA
sPKE,A ≤ 8 · AdvDDH

g,ADDH
+ (24qSD + 48) · AdvNIZK-snd

NIZK,Asnd

+ 24 · AdvSig-EUF-CMA
Sig,ASig

+
52q2G + 192qG + 196

2κ − 1
.

Proof. Let Wsan be the event that A wins the sanitization game, i.e.,

Wsan :=
[
b′ = b ∧ ∃j, j′ ∈ {0, 1} m0,j 6= ⊥ 6= m1,j′

]
.

We define hybrid experiments H0 to H2 as follows:

• H0 := ExpsPKE-SAN-CCA
sPKE,A is the sanitization experiment.

• H1 is identical to H0, except that if c′0 6= ⊥, then c′0 is replaced by two uniformly random
group elements (gb, gc).

• H2 is identical to H1, except that if c′1 6= ⊥, then c′1 is replaced by two uniformly random
group elements (gb, gc).

In H2, if c′0 6= ⊥ and c′1 6= ⊥, the view of A is independent of the bit b. Hence, A cannot
guess b with probability more than 1/2 in this case. On the other hand, if c′0 = ⊥ or c′1 = ⊥,
then m0,0 = m0,1 = ⊥ or m1,0 = m1,1 = ⊥, respectively, since ⊥ decrypts to ⊥. By definition of
the sanitization advantage, A cannot win in this case. Thus,

PrH2 [Wsan] ≤ 1

2
. (2)

To conclude the proof, we show that the probability of Wsan in H0 differs only negligibly
from its probability in H2. To this end, we first prove that three bad events occur only with
negligible probability in any of the hybrids.

Claim 1. Let i ∈ {0, 1, 2} and consider the experiment Hi. Further let B1 be the event that A
outputs as c0 or c1 or queries at least one of its decryption oracles with a valid but improper
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ciphertext (c1, c2, cσ, π), i.e.,
(
g, ekPKE, vkSig, c1, c2, cσ

)
/∈ L, but where π is an accepting proof,

i.e., NIZK.Ver
(
crs, x := (g, ekPKE, vkSig, c1, c2, cσ), π

)
= 1. Then, there exists an adversary Aisnd

such that
PrHi [B1] ≤ (qSD + 2) · AdvNIZK-snd

NIZK,Aisnd
.

Proof of claim. On input crs from the soundness challenger, Aisnd uses this CRS, generates
all needed keys itself, and emulates an execution of Hi toward A. It initially chooses q0 �
{−1, 0, 1, . . . , qSD} uniformly at random. If q0 > 0 and when A submits the q0-th query to a
decryption oracle, Aisnd outputs the corresponding statement and proof to the challenger. If
q0 ≤ 0 and when A outputs (c0, c1, st), then Aisnd submits the statement and proof from cq0+1 to
the challenger. If B1 occurs, then for some q0, Aisnd outputs an accepting proof for an incorrect
statement. Hence, the claim follows. ♦

Claim 2. Let i ∈ {0, 1, 2} and consider the experiment Hi. Further let B2 be the event that
A outputs as c0 or c1 or queries at least one of its decryption oracles with a valid and proper
ciphertext (c1, c2, cσ, π), i.e.,

(
g, ekPKE, vkSig, c1, c2, cσ

)
∈ L and π is accepting, but where cσ is

the encryption of a triple (ek1, ek2, σ), such that the pair (ek1, ek2) has never been output by the
experiment or the oracle OG. Then, there exists an adversary AiSig such that

PrHi [B2] ≤ AdvSig-EUF-CMA
Sig,AiSig

.

Proof of claim. On input a signature verification key vkSig, AiSig generates all keys except for
vkSig and skSig, and emulates an execution of Hi. To generate the encryption keys ek sPKE0 and
ek sPKE1 and to answer queries to OG, AiSig obtains the needed signature using the signing oracle of
ExpSig-EUF-CMA

Sig,AiSig
. The rest of Hi is straightforward to emulate since AiSig possesses all keys except

for skSig. Whenever A returns or submits a ciphertext (c1, c2, cσ, π) to one of the decryption
oracles, AiSig decrypts cσ to obtain a pair (ek ′1, ek

′
2) and a signature σ′. If it has never queried

(ek ′1, ek
′
2) to its signing oracle and if the signature is valid, then it outputs ((ek ′1, ek

′
2), σ

′) as its
forgery. Note that if B2 occurs, AiSig obtains a forgery, so the claim follows. ♦

Claim 3. Let i ∈ {0, 1, 2} and consider the experiment Hi. Further let B3 be the event that
Hi generates two different encryption keys ek sPKE =

(
g, p, crs, ekPKE, vkSig, ek1, ek2, σ

)
and(

ek sPKE
)′

=
(
g, p, crs, ekPKE, vkSig, ek ′1, ek

′
2, σ
′) such that ek1 = ek ′1 or ek2 = ek ′2. Then,

PrHi [B3] ≤
2(qG + 2)2

2κ − 1
.

Proof of claim. The experiment Hi initially generates two encryption keys and then one for
each query to OG. Hence, there are at most (qG + 2)2 such pairs. For each of these pairs, the
probability that one of the two components collides is at most 2 · (1/|Z∗p|) = 2/(p− 1). Using
p ≥ 2κ and the union bound implies the claim. ♦

We now bound the difference of the probabilities of Wsan in different hybrids. To this end, let
B := B1 ∪B2 ∪B3.

Claim 4. For all i ∈ {0, 1}, there exists an adversary AiDDH such that

PrHi [Wsan]− PrHi+1 [Wsan] ≤ 2 · AdvDDH
g,AiDDH

+ 2 · PrHi [B] + 4 · PrHi+1 [B] +
q2G + 1

2κ − 1
.
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Proof of claim. Let i ∈ {0, 1} and let G0 and G1 be the events that ci output by A is an
encryption under ek sPKE0 and ek sPKE1 , respectively. If B, G0, and G1 all do not occur, then ci is
either invalid or a valid encryption under a key different from ek sPKE0 and ek sPKE1 . Since Wsan

can only occur if the ciphertext decrypts to a message different from ⊥ under one of these keys,
this only happens if robustness is violated. Using the result on robustness derived in the proof of
Proposition 5.8

.

, this implies

PrHi [Wsan ∩ ¬B ∩ ¬G1 ∩ ¬G2] ≤ PrHi [Wsan | ¬B ∩ ¬G1 ∩ ¬G2] ≤
q2G + 1

2κ − 1
.

We also have

PrHi [Wsan]− PrHi+1 [Wsan]

= PrHi [Wsan ∩ ¬B ∩ (G1 ∪G2)] + PrHi [Wsan ∩ (B ∪ ¬(G1 ∪G2))]

− PrHi+1 [Wsan ∩ ¬B ∩ (G1 ∪G2)]− PrHi+1 [Wsan ∩ (B ∪ ¬(G1 ∪G2))]

≤ PrHi [Wsan ∩ ¬B ∩ (G1 ∪G2)]− PrHi+1 [Wsan ∩ ¬B ∩ (G1 ∪G2)]

+ PrHi [B] + PrHi [Wsan ∩ ¬(G1 ∪G2)],

and
PrHi [Wsan ∩ ¬(G1 ∪G2)] ≤ PrHi [Wsan ∩ ¬B ∩ ¬(G1 ∪G2)] + PrHi [B].

This implies

PrHi [Wsan]− PrHi+1 [Wsan] ≤ PrHi [Wsan ∩ ¬B ∩ (G1 ∪G2)]

− PrHi+1 [Wsan ∩ ¬B ∩ (G1 ∪G2)] + 2 · PrHi [B] +
q2G + 1

2κ − 1
. (3)

We now define the adversary AiDDH. On input (X,Y, T ), AiDDH chooses j � {0, 1} uniformly
at random and sets ek j,1 ← X. All remaining keys, including ek j,2, are generated as in Hi, and
A is invoked on

(
spsPKE, ek sPKE0 = (ek0,1, ek0,2), ek

sPKE
1 = (ek1,1, ek1,2)

)
. The adversary AiDDH

then emulates an execution of Hi. Since it has all keys except for the decryption key dk j,1, only
the emulation of the decryption oracle OSDj is nontrivial. To answer queries to this oracle,
AiDDH sanitizes and decrypts the second ciphertext component instead of the first one using dk j,2.
When A outputs

(
c0, c1, st

)
, both ciphertexts are sanitized and decrypted as in the emulation of

the decryption oracles, except that mi,j is not set to ⊥ during decryption if mi,j /∈M. If c′i 6= ⊥,
it is replaced by c′i ← (Y, T ·mi,j). Moreover, AiDDH decrypts ci,σ and checks whether it contains
the encryption keys corresponding to ek sPKEj . If this is not the case, it terminates and returns 0.
Otherwise, it continues with the emulation. Finally, when A terminates, AiDDH outputs d = 1 if
Wsan occurs, and d = 0 otherwise.

Note that B not occurring implies that AiDDH emulates the decryption oracle perfectly since
in this case, all submitted valid ciphertexts contain two encryptions of the same message under
a signed key pair. Moreover, due to ¬B3, the first encryption key matches the first key of the
oracle if and only if the second keys match. If they match, decryption with either key yields the
correct message with probability 1. Otherwise, the message (before potentially being set to ⊥) is
a uniform group element for both keys, as shown in the robustness proof of Proposition 5.8

.

.
Furthermore, if (X,Y, T ) are three independent uniform group elements, c′i gets replaced

by two uniformly random group elements if c′i 6= ⊥, as in Hi+1. On the other hand, if ¬B and
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Gj occur and if c′i 6= ⊥, then ci = (ci,1, ci,2, ci,σ, πi) is a valid encryption of mi,j under ek sPKEj .
Hence, there exist r1, s1 ∈ Z∗p such that

ci,1 =
(
gr1 , (ek j,1)

r1 , gs1 , (ek j,1)
s1 ·mi,j

)
=
(
gr1 , Xr1 , gs1 , Xs1 ·mi,j

)
.

In Hi, this ciphertext is sanitized to c′i =
(
gr1·t+s1 , Xr1·t+s1 ·mi,j

)
for t� Z∗p. If we further have

X = ga, Y = gb, and T = gab, then this corresponds to c′i =
(
gr1·t+s1 , ga·(r1·t+s1) ·mi,j

)
, which is

equally distributed as the sanitization (Y, T ·mi,j) generated by AiDDH. Since we also have that
the probability of ¬B ∩Gj is equal in DDHreal

g,AiDDH
and Hi, as well as in DDHrand

g,AiDDH
and Hi+1, we

can conclude

Pr
DDHreal

g,Ai
DDH [d = 1 ∩ ¬B ∩Gj ] = PrHi [Wsan ∩ ¬B ∩Gj ],

Pr
DDHrand

g,Ai
DDH [d = 1 ∩ ¬B ∩Gj ] = PrHi+1 [Wsan ∩ ¬B ∩Gj ].

Hence,

AdvDDH
g,AiDDH

= Pr
DDHreal

g,Ai
DDH [d = 1]− Pr

DDHrand
g,Ai

DDH [d = 1]

= Pr
DDHreal

g,Ai
DDH [d = 1 ∩ ¬B ∩Gj ] + Pr

DDHreal
g,Ai

DDH [d = 1 ∩ (B ∪ ¬Gj)]

− Pr
DDHrand

g,Ai
DDH [d = 1 ∩ ¬B ∩Gj ]− Pr

DDHrand
g,Ai

DDH [d = 1 ∩ (B ∪ ¬Gj)]
≥ PrHi [Wsan ∩ ¬B ∩Gj ]− PrHi+1 [Wsan ∩ ¬B ∩Gj ]

− Pr
DDHrand

g,Ai
DDH [d = 1 ∩B]− Pr

DDHrand
g,Ai

DDH [d = 1 ∩ ¬Gj ].

If ¬B occurs, then ci,σ contains the correct encryption keys and thus, if also ¬Gj occurs, AiDDH

always returns 0. This implies Pr
DDHrand

g,Ai
DDH [d = 1 ∩ ¬Gj ∩ ¬B] = 0, and therefore

Pr
DDHrand

g,Ai
DDH [d = 1 ∩ ¬Gj ] = Pr

DDHrand
g,Ai

DDH [d = 1 ∩ ¬Gj ∩ ¬B] + Pr
DDHrand

g,Ai
DDH [d = 1 ∩ ¬Gj ∩B]

≤ Pr
DDHrand

g,Ai
DDH [B].

Using Pr
DDHrand

g,Ai
DDH [B] = PrHi+1 [B], we obtain

AdvDDH
g,AiDDH

≥ PrHi [Wsan ∩ ¬B ∩Gj ]− PrHi+1 [Wsan ∩ ¬B ∩Gj ]− 2 · PrHi+1 [B].

Combining this with equation (3)

.

and the fact that given G1 ∪ G2 and ¬B, Gj occurs with
probability 1/2 (independently of Wsan), we can conclude

PrHi [Wsan]− PrHi+1 [Wsan] ≤ 2 · PrHi [Wsan ∩ ¬B ∩Gj ]− 2 · PrHi+1 [Wsan ∩ ¬B ∩Gj ]

+ 2 · PrHi [B] +
q2G + 1

2κ − 1

≤ 2 · AdvDDH
g,AiDDH

+ 4 · PrHi+1 [B] + 2 · PrHi [B] +
q2G + 1

2κ − 1
. ♦
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Using Claim 4

.

and equation (2)

.

, we obtain

AdvsPKE-SAN-CCA
sPKE,A

= 2 · PrH0 [Wsan]− 1

= 2 ·
(
PrH0 [Wsan]− PrH1 [Wsan] + PrH1 [Wsan]− PrH2 [Wsan] + PrH2 [Wsan]

)
− 1

≤ 4 · AdvDDH
g,A0

DDH
+ 4 · AdvDDH

g,A1
DDH

+ 4 · PrH0 [B] + 12 · PrH1 [B] + 8 · PrH2 [B] + 4 ·
q2G + 1

2κ − 1
.

Claims 1

.

to 3

.

further imply

PrHi [B] ≤ (qSD + 2) · AdvNIZK-snd
NIZK,Aisnd

+ AdvSig-EUF-CMA
Sig,AiSig

+
2(qG + 2)2

2κ − 1
.

Hence,

AdvsPKE-SAN-CCA
sPKE,A ≤ 4 · AdvDDH

g,A0
DDH

+ 4 · AdvDDH
g,A1

DDH
+ (4qSD + 8) · AdvNIZK-snd

NIZK,A0
snd

+ (12qSD + 24) · AdvNIZK-snd
NIZK,A1

snd
+ (8qSD + 16) · AdvNIZK-snd

NIZK,A2
snd

+ 4 · AdvSig-EUF-CMA
Sig,A0

Sig
+ 12 · AdvSig-EUF-CMA

Sig,A1
Sig

+ 8 · AdvSig-EUF-CMA
Sig,A2

Sig

+
48(qG + 2)2 + 4q2G + 4

2κ − 1
.

We define the adversary ADDH as running A0
DDH and A1

DDH with probability 1
2 each, the adver-

sary Asnd as running A0
snd with probability 4qSD+8

24qSD+48 , A
1
snd with probability 12qSD+24

24qSD+48 , and A
2
snd

with probability 8qSD+16
24qSD+48 , and the adversary ASig as running A0

Sig with probability 4
24 , A

1
Sig with

probability 12
24 , and A

2
Sig with probability 8

24 . Using the result above, we finally conclude

AdvsPKE-SAN-CCA
sPKE,A ≤ 8 · AdvDDH

g,ADDH
+ (24qSD + 48) · AdvNIZK-snd

NIZK,Asnd

+ 24 · AdvSig-EUF-CMA
Sig,ASig

+
52q2G + 192qG + 196

2κ − 1
.

6 Construction of an ACE Scheme

6.1 Construction for Equality

Following Fuchsbauer et al. [FGKO17

.

], we first construct an ACE scheme for the equality policy,
i.e., P (i, j) = 1⇔ i = j, and then use such a scheme in another construction for richer policies.
We base our construction on an sPKE scheme, which already has many important properties
needed for a secure ACE scheme. A syntactical difference between sPKE and ACE schemes is
that the key generation of the former on every invocation produces a fresh key pair, while the
latter schemes allow the generation of keys for a given role. To bind key pairs to some role i ∈ [n],
we use the output of a pseudorandom function on input i as the randomness for the sPKE key
generation. For role-respecting security, we have to ensure that an adversary can only produce
ciphertexts for keys obtained from the key generation oracle. This is achieved by signing all keys
with a signing key generated at setup. To prevent malleability attacks as the ones described in
Section 3

.

, the encryption algorithm additionally signs all ciphertexts with a separate signing key
that is tied to the encryption key. To maintain anonymity, the signatures are not part of the
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ciphertext but the encrypters prove in zero-knowledge that they know such signatures. Finally,
the modification detection simply checks whether the ciphertexts (without the NIZK proofs) are
equal. Intuitively, this is sufficient since we assume the underlying sPKE scheme to be CCA
secure, which implies that it is not possible to meaningfully modify a given ciphertext. Hence,
a ciphertext is either equal to an existing one (and thus detected by the algorithm) or a fresh
encryption.

Our construction. Let sPKE be a sanitizable public-key encryption scheme, let Sig be a
signature scheme, and let F be a PRF. Further let NIZK be a NIZK proof of knowledge system
for the language L := {x | ∃w (x,w) ∈ R}, where the relation R is defined as follows: for
x =

(
vkSig, c̃

)
and w =

(
ek sPKEi ,m, r, vkSigi , σSigi , σSigc

)
, (x,w) ∈ R if and only if

c̃ = sPKE.Enc
(
ek sPKEi ,m; r

)
∧ Sig.Ver

(
vkSig,

[
ek sPKEi , vkSigi

]
, σSigi

)
= 1

∧ Sig.Ver
(
vkSigi , c̃, σSigc

)
= 1.

We define an ACE with modification detection scheme ACE as follows:

Setup: On input a security parameter 1κ and a policy P : [n]× [n]→ {0, 1} with P (i, j) = 1⇔
i = j, the algorithm ACE.Setup picks a random PRF key K for a PRF F , and runs(

spsPKE,msk sPKE
)
← sPKE.Setup(1κ),(

vkSig, skSig
)
← Sig.Gen(1κ),

crsNIZK ← NIZK.Gen(1κ).

It outputs the master secret key mskACE :=
(
K,msk sPKE, vkSig, skSig, crsNIZK

)
and the

sanitizer parameters spACE :=
(
spsPKE, vkSig, crsNIZK

)
.

Key generation: The algorithm ACE.Gen on input a master secret key mskACE =
(
K,msk sPKE,

vkSig, skSig, crsNIZK
)
, a role i ∈ [n], and a type t ∈ {sen, rec}, computes(
ek sPKEi , dk sPKEi

)
← sPKE.Gen

(
msk sPKE;FK([i, 0])

)
.

If t = sen, it further computes(
vkSigi , skSigi

)
← Sig.Gen

(
1κ;FK([i, 1])

)
,

σSigi ← Sig.Sign
(
skSig,

[
ek sPKEi , vkSigi

]
;FK([i, 2])

)
.

If t = sen, it outputs the encryption key ekACEi :=
(
vkSig, ek sPKEi , vkSigi , skSigi , σSigi , crsNIZK

)
;

if t = rec, it outputs the decryption key dkACEi := dk sPKEi .

Encryption: On input an encryption key ekACEi =
(
vkSig, ek sPKEi , vkSigi , skSigi , σSigi , crsNIZK

)
and

a message m ∈MACE, the algorithm ACE.Enc samples randomness r and computes

c̃← sPKE.Enc
(
ek sPKEi ,m; r

)
,

σSigc ← Sig.Sign
(
skSigi , c̃

)
,

πNIZK ← NIZK.Prove
(
crsNIZK, x :=

(
vkSig, c̃

)
, w :=

(
ek sPKEi ,m, r, vkSigi , σSigi , σSigc

))
.

It outputs the ciphertext c :=
(
c̃, πNIZK

)
.
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Sanitization: On input sanitizer parameters spACE =
(
spsPKE, vkSig, crsNIZK

)
and a ciphertext

c =
(
c̃, πNIZK

)
, ACE.San outputs the sanitized ciphertext c′ ← sPKE.San

(
spsPKE, c̃

)
if

NIZK.Ver
(
crsNIZK, x :=

(
vkSig, c̃,

)
, πNIZK

)
= 1; otherwise, it outputs ⊥.

Decryption: The algorithm ACE.Dec on input a decryption key dkACEj and a sanitized cipher-
text c′, outputs the message m← sPKE.Dec(dkACEj , c′).

Modification detection: The algorithm ACE.DMod on input spACE, c1 =
(
c̃1, π

NIZK
1

)
, and

c2 =
(
c̃2, π

NIZK
2

)
, outputs 1 if c̃1 = c̃2, and 0 otherwise.

We first show that our scheme is correct and strongly detectable.

Proposition 6.1. Let ACE be the scheme from above. Then, ACE is perfectly correct, i.e.,
AdvACE-CORR

ACE,A = 0 for all A. Moreover, if F is pseudorandom and sPKE is unrestricted strongly
robust, then ACE is strongly detectable.

Proof. Perfect correctness follows from the perfect correctness of the sPKE and signature schemes
and the perfect completeness of the NIZK proof system.

To prove strong detectability, let A be a probabilistic algorithm. We assume without loss of
generality that A returns (m, r, i, j) with P (i, j) = 0 since doing otherwise can only reduce the
advantage. Let H0 := ExpACE-sDTCT

ACE,A , let H1 be as H0 where FK is replaced by a truly uniform
function U , and let W be the event that A wins the strong detectability game, i.e.,

W :=
[
ACE.Dec

(
dkACEj ,ACE.San(spACE,ACE.Enc(ekACEi ,m; r))

)
6= ⊥

]
.

We first show that the difference in the winning probability in H0 and H1 is bounded by the
PRF advantage.

Claim 1. There exists a probabilistic algorithm AO(·)PRF such that

PrH0 [W ]− PrH1 [W ] = AdvPRFF,APRF
.

Proof of claim. Consider AO(·)PRF that emulates an execution of H0, where all invocations of FK(·)
are replaced by a call to the oracle O(·). When A wins, APRF outputs 1, and 0 otherwise. In case
O(·) corresponds to FK(·), APRF perfectly emulates H0, if it corresponds to U(·), it perfectly
emulates H1. Hence,

PrH0 [W ]− PrH1 [W ] = Pr
[
AFK(·)

PRF (1κ) = 1
]
− Pr

[
AU(·)

PRF(1κ) = 1
]

= AdvPRFF,APRF
. ♦

We now construct a winner Arob for the robustness game for sPKE. The algorithm Arob

on input spsPKE emulates an execution of H1. To answer queries of A to the key-generation
oracle, Arob uses the oracle OG to obtain encryption and decryption keys for sPKE; the required
signature keys are generated internally. For each query (i, t), Arob remembers the generated
keys ekACEi and dkACEi , and returns the same keys for subsequent queries with the same i.
When A returns (m, r, i, j), Arob first checks whether i and j have been queried by A to
the key-generation oracle. If not, Arob now generates these keys as above. Let r̃ be the
randomness used by ACE.Enc(ekACEi ,m; r) for the algorithm sPKE.Enc. Then, Arob computes
c← sPKE.Enc

(
ek sPKEi ,m; r̃

)
, and returns (c, i0, i1), such that the i0-th query and the i1-th query

to the key-generation oracle were for the roles i and j, respectively. Since P is the equality
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predicate, P (i, j) = 0 is equivalent to i0 6= i1. We further have by the perfect correctness of sPKE
that sPKE.Dec

(
dk sPKEi , sPKE.San

(
spsPKE, c

))
6= ⊥. Hence, Arob wins the robustness game if and

only if A wins the strong detectability game in H1. Using Claim 1

.

, we can therefore conclude

AdvACE-sDTCT
ACE,A = PrH0 [W ] = AdvPRFF,APRF

+ PrH1 [W ] = AdvPRFF,APRF
+ AdvsPKE-USROB

sPKE,Arob
.

In the following, we prove the security of our scheme, which is summarized by the theorem
below.

Theorem 6.2. If F is pseudorandom, NIZK is zero-knowledge and extractable, Sig is EUF-CMA
secure, and sPKE is IND-CCA, IK-CCA, SAN-CCA, USROB, and UPD-CTXT secure and has
negligible encryption-key collision probability, then the scheme ACE from above is PRV-CCA,
sANON-CCA, SAN-CCA, UDEC, and RR secure, and has NDTCT-FENC.

We first show that our scheme satisfies the privacy definition from Definition 4.2

.

if the
underlying sanitizable public-key encryption scheme is IND-CCA secure, the PRF is secure, and
the NIZK is zero-knowledge.

Lemma 6.3. Let ACE be the scheme from above, let A = (A1,A2) be an attacker on the privacy
such that A1 makes at most qS queries of the form (·, sen) to the oracle OG, and at most qD
queries to OSD. Then, there exist probabilistic algorithms APRF, AZK, and AsPKE (which are all
roughly as efficient as emulating an execution of ExpACE-PRV-ANON-CCA

ACE,A ) such that

AdvACE-PRV-CCA
ACE,A ≤ 2 · AdvPRFF,APRF

+ 2 · AdvNIZK-ZK
NIZK,AZK

+ (qS + qD + 1) · AdvsPKE-IND-CCA
sPKE,AsPKE

.

Proof. We assume without loss of generality that A ensures i0 = i1 and P (i0, j) = 0 for all j ∈ J ,
since doing otherwise can only decrease the advantage. Let H0 := ExpACE-PRV-ANON-CCA

ACE,A and H1

be as H0 where FK is replaced by a truly uniform random function U . The following can be
proven as Claim 1

.

in the proof of Proposition 6.1

.

.

Claim 1. There exists a probabilistic algorithm AO(·)PRF such that

PrH0 [b′ = b]− PrH1 [b′ = b] = AdvPRFF,APRF
.

Now let H2 be as H1, where we replace crsNIZK ← NIZK.Gen(1κ) by
(
crsNIZK, τNIZK

)
←

SNIZK
1 (1κ) in ACE.Setup, and for the generation of the challenge ciphertext c∗, we replace
πNIZK ← NIZK.Prove

(
crsNIZK, x, w

)
in ACE.Enc by πNIZK ← SNIZK

2

(
crsNIZK, τNIZK, x

)
.

Claim 2. There exists a probabilistic algorithm AO(·,·)ZK such that

PrH1 [b′ = b]− PrH2 [b′ = b] = AdvNIZK-ZK
NIZK,AZK

.

Proof of claim. The algorithm AO(·,·)ZK on input crsNIZK proceeds as follows. It emulates an
execution of H1, where in ACE.Setup, crsNIZK is used instead of generating it, and for the
generation of c∗, NIZK.Prove

(
crsNIZK, x, w

)
in ACE.Enc is replaced by the oracle query (x,w).

Finally, AO(·,·)ZK outputs b̃ = 1 if A2 returns b′ = b, and b̃ = 0 otherwise. Note that if crsNIZK

is generated by NIZK.Gen and O(·, ·) corresponds to NIZK.Prove
(
crsNIZK, ·, ·

)
, AO(·,·)ZK perfectly

emulates H1. Moreover, if crsNIZK is generated together with τNIZK by SNIZK
1 and O(x,w) returns

SNIZK
2

(
crsNIZK, τNIZK, x

)
, AO(·,·)ZK perfectly emulates H2. Thus, the claim follows. ♦
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We finally show how to transform any winner A for H2 to a winner AsPKE for the IND-CCA
game for the scheme sPKE. The strategy of our reduction is to guess which oracle queries of
A1 are for the role i0, use the key from the sPKE-scheme for these queries, and generate all
other keys as H2. Details follow. On input (spsPKE, ek sPKE), AsPKE initializes iq0 ← ⊥, kq ← 1,
chooses q0 � {0, . . . , qS + qD} uniformly at random, runs

(
vkSig, skSig

)
← Sig.Gen(1κ), and(

crsNIZK, τNIZK
)
← SNIZK

1 (1κ), and gives spACE :=
(
spsPKE, vkSig, crsNIZK

)
to A1. It emulates the

oracles for A1 as follows.

OG(·, ·): On query (i, sen), if kq 6= q0 and i 6= iq0 , then generate an encryption key ekACEi :=(
vkSig, ek sPKEi , vkSigi , skSigi , σSigi , crsNIZK

)
as H2 does, where

(
ek sPKEi , dk sPKEi

)
is obtained via

OG and remembered for future queries. If kq = q0 or i = iq0 , replace ek sPKEi by ek sPKE

and set iq0 ← i. In both cases, set kq ← kq + 1 at the end. On query (j, rec), obtain a
decryption key via OG.

OSD(·, ·): On query
(
j, c =

(
c̃, πNIZK

))
, if kq 6= q0 and j 6= iq0 , run c′ ← ACE.San(spACE, c),

generate a decryption key dkACEj as above, decrypt c′ using dkACEj , and return the resulting
message. If kq = q0 or j = iq0 , set iq0 ← j and use the oracle OSD of the IND-CCA
experiment to obtain a decryption m of c̃. If NIZK.Ver

(
crsNIZK, x :=

(
vkSig, c̃,

)
, πNIZK

)
= 1,

return m, otherwise, return ⊥. In all cases, set kq ← kq + 1 at the end.

When A1 returns (m0,m1, i0, i1, st), output (m0,m1) to the challenger of the IND-CCA
experiment to obtain a challenge ciphertext c̃∗. Then run πNIZK ← SNIZK

2

(
crsNIZK, τNIZK, x :=(

vkSig, c̃∗
))
, and give st and the ciphertext c∗ :=

(
c̃∗, πNIZK

)
to A2. Emulate the oracles for A2

as follows.

OG(·, ·): On query (i, sen), if i 6= i0, then generate an encryption key ekACEi :=
(
vkSig, ek sPKEi ,

vkSigi , skSigi , σSigi , crsNIZK
)
as H2 does, where

(
ek sPKEi , dk sPKEi

)
is obtained via OG and re-

membered for future queries. If i = i0, replace ek sPKEi by ek sPKE. On query (j, rec), obtain
a decryption key from OG.

OSD∗(·, ·): On query
(
j, c =

(
c̃, πNIZK

))
, run ACE.DMod(spACE, c∗, c). If the output is 1, return

test. Otherwise, if j 6= i0, run c′ ← ACE.San(spACE, c), generate a decryption key
dkACEj as above, decrypt c′ using dkACEj , and return the resulting message. If j = i0,
use the oracle OSD of the IND-CCA experiment to obtain a decryption m of c̃. If
NIZK.Ver

(
crsNIZK, x :=

(
vkSig, c̃,

)
, πNIZK

)
= 1, return m, otherwise, return ⊥.

Note that we never query the decryption oracle of the IND-CCA experiment on c̃∗ because
we return test whenever this would be necessary. Denote by Q the event that either iq0 = i0,
or q0 = 0 and A1 does not make the query (i0, sen) to OG and no queries for role i0 to OSD.
When A2 returns a bit b′ and Q holds, AsPKE returns the same bit b′′ ← b′, if ¬Q, AsPKE returns
a uniform bit b′′ � {0, 1}.

Let b̃ be the bit chosen by the IND-CCA challenger. Note that by our assumption on A,
i0 = i1 and A does not query (i0, rec) to OG, i.e., i0 /∈ J , since P (i0, i0) = 1. Hence, if Q occurs,
the view of A is identical to the one in H2 with b = b̃. This implies

Pr
ExpsPKE-IND-CCA

sPKE,AsPKE

[
b′′ = b̃

∣∣ Q] = PrH2
[
b′ = b

]
,
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and therefore

Pr
ExpsPKE-IND-CCA

sPKE,AsPKE

[
b′′ = b̃

]
= Pr

ExpsPKE-IND-CCA
sPKE,AsPKE

[
b′′ = b̃

∣∣ Q] · Pr
ExpsPKE-IND-CCA

sPKE,AsPKE [Q]

+ Pr
ExpsPKE-IND-CCA

sPKE,AsPKE

[
b′′ = b̃

∣∣ ¬Q] · Pr
ExpsPKE-IND-CCA

sPKE,AsPKE [¬Q]

= PrH2
[
b′ = b

]
· Pr

ExpsPKE-IND-CCA
sPKE,AsPKE [Q] +

1

2
Pr

ExpsPKE-IND-CCA
sPKE,AsPKE [¬Q].

Using that the probability of Q is 1/(qS + qD + 1), this yields

PrH2
[
b′ = b

]
=

1

Pr
ExpsPKE-IND-CCA

sPKE,AsPKE [Q]
·
(

Pr
ExpsPKE-IND-CCA

sPKE,AsPKE

[
b′′ = b̃

]
− 1

2
·
(

1− Pr
ExpsPKE-IND-CCA

sPKE,AsPKE [Q]
))

= (qS + qD + 1) ·
(

Pr
ExpsPKE-IND-CCA

sPKE,AsPKE

[
b′′ = b̃

]
− 1

2

)
+

1

2
.

Combining this with Claims 1

.

and 2

.

, we can conclude

AdvACE-PRV-CCA
ACE,A

= 2 · PrH0 [b′ = b]− 1

= 2 ·
(

PrH0 [b′ = b]− PrH1 [b′ = b] + PrH1 [b′ = b]− PrH2 [b′ = b] + PrH2 [b′ = b]
)
− 1

= 2 ·
[
AdvPRFF,APRF

+ AdvNIZK-ZK
NIZK,AZK

+ (qS + qD + 1)

(
Pr

ExpsPKE-IND-CCA
sPKE,AsPKE

[
b′′ = b̃

]
− 1

2

)
+

1

2

]
− 1

= 2 · AdvPRFF,APRF
+ 2 · AdvNIZK-ZK

NIZK,AZK
+ (qS + qD + 1) · AdvsPKE-IND-CCA

sPKE,AsPKE
.

The proofs of the other properties use similar techniques and can be found in Appendix D

.

.

6.2 Lifting Equality to Disjunction of Equalities

We finally show how an ACE scheme for equality, as the one from Section 6.1

.

, can be used to
construct a scheme for the policy PDEq : D` ×D` → {0, 1} with

PDEq

(
x = (x1, . . . , x`),y = (y1, . . . , y`)

)
= 1 :⇐⇒

∨̀
i=1

xi = yi,

where D is some finite set and ` ∈ N.4

.

This policy can for example be used to implement
the no read-up and now write-down principle (P (i, j) = 1 ⇔ i ≤ j) from the Bell–LaPadula
model [BL73

.

] via an appropriate encoding of the roles [FGKO17

.

].
The intuition of our construction is as follows. A key for a role x = (x1, . . . , x`) contains

one key of the ACE scheme for equality for each component xi of the role vector. To encrypt
a message, this message is encrypted with each of these keys. To decrypt, one tries to decrypt
each ciphertext component with the corresponding key. If at least one component of the sender
and receiver roles match (i.e., if the policy is satisfied), one of the decryptions is successful. So

4In this section, we denote roles by x and y instead of i and j. To be compatible with our definitions that
consider policies [n]× [n]→ {0, 1}, one needs to identify elements of D` with numbers in [n]. We will ignore this
technicality to simplify the presentation.
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far, the construction is identical to the one by Fuchsbauer et al. [FGKO17

.

]. That construction
is, however, not role-respecting, since a dishonest sender with keys for more than one role can
arbitrarily mix the components of the keys for the encryption. Moreover, the construction does
not guarantee uniform decryption, because different messages can be encrypted in different
components. We fix these issues using the same techniques we used in our construction of the
scheme for equality, i.e., we add a signature of the key vector to the encryption keys, sign the
ciphertexts, and require a zero-knowledge proof of knowledge that a valid key combination was
used to encrypt the same message for each component and that all signatures are valid.

Our construction. Let ACE= be an ACE with modification detection scheme for the equality
predicate on D× [`], let Sig be a signature scheme, let F be a PRF, and let NIZK be a NIZK proof
of knowledge system for the language L := {x | ∃w (x,w) ∈ R}, where the relation R is defined as
follows: for x =

(
vkSig, c1, . . . , c`

)
and w =

(
ekACE=

(x1,1)
, . . . , ekACE=

(x`,`)
,m, r1, . . . , r`, vk

Sig
x , σSigx , σSigc

)
,

(x,w) ∈ R if and only if

∧̀
i=1

ci = ACE=.Enc
(
ekACE=

(xi,i)
,m; ri

)
∧ Sig.Ver

(
vkSigx , [c1, . . . , c`], σ

Sig
c

)
= 1

∧ Sig.Ver
(
vkSig,

[
ekACE=

(x1,1)
, . . . , ekACE=

(x`,`)
, vkSigx

]
, σSigx

)
= 1.

We define an ACE scheme ACEDEq as follows:

Setup: On input a security parameter 1κ and the policy PDEq, the algorithm ACEDEq.Setup
picks a random key K for F and runs(

mskACE= , spACE=
)
← ACE=.Setup(1κ),(

vkSig, skSig
)
← Sig.Gen(1κ),

crsNIZK ← NIZK.Gen(1κ).

It outputs the master secret key mskACEDEq :=
(
K,mskACE= , vkSig, skSig, crsNIZK

)
and the

sanitizer parameters spACEDEq :=
(
spACE= , vkSig, crsNIZK

)
.

Key generation: The algorithm ACEDEq.Gen on input a master secret key mskACEDEq =(
K,mskACE= , vkSig, skSig, crsNIZK

)
, a role x ∈ D`, and the type sen, generates

ekACE=

(xi,i)
← ACE=.Gen

(
mskACE= , (xi, i), sen

)
(for i ∈ [`]),(

vkSigx , skSigx

)
← Sig.Gen(1κ;FK([x, 0])),

σSigx ← Sig.Sign
(
skSig,

[
ekACE=

(x1,1)
, . . . , ekACE=

(x`,`)
, vkSigx

]
;FK([x, 1])

)
,

and outputs the encryption key ek
ACEDEq
x :=

(
vkSig, ekACE=

(x1,1)
, . . . , ekACE=

(x`,`)
, vkSigx , skSigx , σSigx ,

crsNIZK
)
; on input mskACEDEq , a role y ∈ D`, and the type rec, it generates for i ∈ [`],

dkACE=

(yi,i)
← ACE=.Gen

(
mskACE= , (yi, i), rec

)
,

and outputs the decryption key dk
ACEDEq
y :=

(
dkACE=

(y1,1)
, . . . , dkACE=

(y`,`)

)
.
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Encryption: On input an encryption key ek
ACEDEq
x =

(
vkSig, ekACE=

(x1,1)
, . . . , ekACE=

(x`,`)
, vkSigx , skSigx ,

σSigx , crsNIZK
)
and a message m ∈MACEDEq , the algorithm ACEDEq.Enc samples randomness

r1, . . . , r` and computes

ci ← ACE=.Enc
(
ekACE=

(xi,i)
,m; ri

)
(for i ∈ [`]),

σSigc ← Sig.Sign
(
skSigx , [c1, . . . , c`]

)
,

πNIZK ← NIZK.Prove
(
crsNIZK, x :=

(
vkSig, c1, . . . , c`

)
,

w :=
(
ekACE=

(x1,1)
, . . . , ekACE=

(x`,`)
,m, r1, . . . , r`, vk

Sig
x , σSigx , σSigc

))
.

It outputs the ciphertext c :=
(
c1, . . . , c`, π

NIZK
)
.

Sanitization: On input sanitizer parameters spACEDEq =
(
spACE= , vkSig, crsNIZK

)
and a cipher-

text c =
(
c1, . . . , c`, π

NIZK
)
, the algorithm ACEDEq.San checks whether NIZK.Ver

(
crsNIZK,

x :=
(
vkSig, c1, . . . , c`

)
, πNIZK

)
= 1. If this is the case, it runs c′i ← ACE=.San

(
ci
)
for

i ∈ [`]. If c′i 6= ⊥ for all i ∈ [`], it outputs the sanitized ciphertext c′ :=
(
c′1, . . . , c

′
`

)
. If the

verification fails or any of the sanitized ciphertexts is ⊥, it outputs ⊥.

Decryption: On input a decryption key dk
ACEDEq
y =

(
dkACE=

(y1,1)
, . . . , dkACE=

(y`,`)

)
and a sanitized

ciphertext c′ :=
(
c′1, . . . , c

′
`

)
, the algorithm ACEDEq.Dec computes for i ∈ [`] the message

mi ← ACE=.Dec
(
dkACE=

(yi,i)
, c′i
)
. If mi 6= ⊥ for some i ∈ [`], ACEDEq.Dec outputs the first

such mi; otherwise it outputs ⊥.

Modification detection: On input sanitizer parameters spACEDEq :=
(
spACE= , vkSig, crsNIZK

)
and two ciphertexts c =

(
c1, . . . , c`, π

NIZK
)
and c̃ :=

(
c̃1, . . . , c̃`, π̃

NIZK
)
, the algorithm

ACEDEq.DMod checks for i ∈ [`] whether ACE=.DMod
(
spACE= , ci, c̃i

)
= 1. If this is the

case for some i ∈ [`], it outputs 1; otherwise, it outputs 0.

Weak and strong anonymity. As we show below, our scheme enjoys weak anonymity. It is
easy to see that it does not have strong anonymity: Given a decryption key for the role (1, 2), one
can decrypt ciphertexts encrypted under a key for the roles (1, 1) and (2, 2). One does, however,
also learn which of the two components decrypted successfully. If it is the first one, the sender
role must be (1, 1), if it is the second one, the sender role must be (2, 2). For similar reasons, we
do not achieve strong sanitization security.

A similar construction can be used to achieve strong anonymity for less expressive policies:
If a sender role still corresponds to a vector (x1, . . . , x`) ∈ D` but a receiver role only to one
component (j, y) ∈ [`] × D, one can consider the policy that allows to receive if xj = y. Now,
we do not need several components for the decryption key and the problem sketched above
disappears.

Proposition 6.4. If ACE= is correct and detectable, then the scheme ACEDEq from above is
correct and detectable. If ACE= is strongly detectable, then ACEDEq is also strongly detectable.
More precisely, for all probabilistic algorithms A, there exist probabilistic algorithms Acorr, Adtct,
A′dtct, and Asdtct such that

AdvACE-CORR
ACEDEq,A ≤ AdvACE-CORR

ACE=,Acorr
+ (`− 1) · AdvACE-DTCT

ACE=,Adtct
,

AdvACE-DTCT
ACEDEq,A ≤ ` · Adv

ACE-DTCT
ACE=,A′dtct

,

AdvACE-sDTCT
ACEDEq,A ≤ ` · AdvACE-sDTCT

ACE=,Asdtct
.
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Proof. We first prove correctness. Let A be a probabilistic algorithm and let (m,x,y) with
PDEq(x,y) = 1 be the output of A in an execution of ExpACE-CORR

ACEDEq,A . Correctness of the signa-
ture scheme and completeness of the NIZK imply that the verification in the sanitizer algo-
rithm succeeds with probability 1. Note that PDEq(x,y) = 1 implies that there exists i ∈ [`]
with xi = yi. Let i0 be the first such i. Then, A only wins the correctness game if either
ACE=.Dec

(
dkACE=

(yi0 ,i0)
, c′i0
)
6= m, or ACE=.Dec

(
dkACE=

(yi,i)
, c′i
)
6= ⊥ for some i < i0. The probability of

the former event is bounded by AdvACE-CORR
ACE=,Acorr

where Acorr emulates this experiment and returns(
m, (xi0 , i0), (yi0 , i0)

)
. For the latter event, note that there are at most ` − 1 such i, so the

probability that ACE=.Dec returns a message different from ⊥ for any of them can be bounded
by (` − 1) · AdvACE-DTCT

ACEDEq,Adtct
for the adversary Adtct that emulates the experiment and returns(

m, (xi, i), (yi, i)
)
for a uniformly chosen i < i0.

For detectability, the adversary A′dtct emulates an execution of ExpACE-DTCT
ACEDEq,A and when A

returns (m,x,y), A′dtct outputs (m, (xi, i), (yi, i)) for a uniformly chosen i ∈ {1, . . . , `}. Note
that A only wins if PDEq(x,y) = 0, which implies that xi 6= yi for all i ∈ [`]. In this case, A
wins if any of the ciphertext components decrypt to something different from ⊥. Thus, A′dtct
also wins if the component i was guesses correctly, which happens with probability 1/`. The
proof for strong detectability is similar, while Asdtct additionally outputs the randomness used
for encrypting the chosen component when the randomness output by A is used to generate the
whole ciphertext.

The following theorem summarizes the security properties we prove for our scheme.

Theorem 6.5. If F is pseudorandom, NIZK is zero-knowledge and extractable, Sig is EUF-CMA
secure, and ACE= is perfectly correct, strongly detectable, has NDTCT-FENC, and is PRV-CCA,
wANON-CCA, SAN-CCA, RR, and UDEC secure, then the scheme ACEDEq from above has
NDTCT-FENC and is PRV-CCA, wANON-CCA, SAN-CCA, RR, and UDEC secure.

We prove this theorem in a sequence of lemmata proving the individual properties. We
begin by showing that privacy and weak anonymity of the scheme follow from the corresponding
properties of the underlying scheme for equality and the zero-knowledge property of the NIZK.
Note that security of the PRF is not needed for this step since it is only used for the signatures,
which are irrelevant here.

Lemma 6.6. Let ACEDEq, be the scheme from above, let A = (A1,A2) be a probabilistic algorithm.
Then, there exist probabilistic algorithms AZK, AACE, A′ZK, and A′ACE (which are all roughly as
efficient as emulating an execution of ExpACE-PRV-ANON-CCA

ACEDEq,A ) such that

AdvACE-PRV-CCA
ACEDEq,A ≤ 2 · AdvNIZK-ZK

NIZK,AZK
+ ` · AdvACE-PRV-CCA

ACE=,AACE
,

AdvACE-wANON-CCA
ACEDEq,A ≤ 2 · AdvNIZK-ZK

NIZK,A′ZK
+ ` · AdvACE-wANON-CCA

ACE=,A′ACE
.

Proof. We only prove the statement about the privacy advantage. The proof for weak anonymity
is completely analogous. We assume without loss of generality that A ensures x0 = x1

and P (x0,y) = 0 for all y ∈ J , since doing otherwise can only decrease the privacy ad-
vantage. Let H0 := ExpACE-PRV-ANON-CCA

ACEDEq,A and let H1 be as H0 where we replace crsNIZK ←
NIZK.Gen(1κ) by

(
crsNIZK, τNIZK

)
← SNIZK

1 (1κ) in ACEDEq.Setup, and for the generation of
the challenge ciphertext c∗, we replace πNIZK ← NIZK.Prove

(
crsNIZK, x, w

)
in ACEDEq.Enc by
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πNIZK ← SNIZK
2

(
crsNIZK, τNIZK, x

)
. It can be shown as in the proof of Lemma 6.3

.

that there
exists a probabilistic algorithm AZK such that

PrH0 [b′ = b]− PrH1 [b′ = b] = AdvNIZK-ZK
NIZK,AZK

. (4)

For k ∈ {0, . . . , `}, we define H2,k as follows. It is identical to H1 except that after A returns
(m0,m1,x

0,x1, st), we replace the ciphertext components in c∗ by

ci ← ACE=.Enc
(
ekACE=

(x0i ,i)
,m0; ri

)
(for 1 ≤ i ≤ k),

ci ← ACE=.Enc
(
ekACE=

(x1i ,i)
,m1; ri

)
(for k < i ≤ `).

Note that H2,0 corresponds to H1 with b = 1 and H2,` corresponds to H1 with b = 0. Now
consider the adversary AACE that on input sp chooses k0 � {1, . . . , `} uniformly at random and
emulates an execution of H1. It emulates the oracle OG by obtaining all the required sub-keys
from its own oracle OG. To emulate the oracle OSD, it first checks the NIZK proof as ACEDEq.San
and if the verification succeeds, it uses its oracle OSD to sanitize and decrypt all ciphertext
components. As ACEDEq.Dec, it outputs the first message different from ⊥, or ⊥ if no such
message exists.

When A returns (m0,m1,x
0,x1, st), AACE generates the challenge ciphertext c∗ by encrypting

m0 under the key ekACE=

(x0i ,i)
to obtain ci for 1 ≤ i < k0, and by encrypting m1 under the key ekACE=

(x1i ,i)

for k0 < i ≤ `, where these keys can be obtained from OG without changing the advantage.
For the k0-th component, it returns

(
m0,m1, x

0
k0
, x1k0

)
to the challenger and uses the obtained

challenge ciphertext as ck0 . It then proceeds with the emulation of H1. It emulates the oracle
OG as above and the oracle OSD∗ as OSD with the difference that if its own oracle returns test
for any of the components, it returns test as well. Finally, when A2 returns b′, AACE returns
b′′ ← b′. Note that if b = 0 or b = 1, AACE perfectly emulates an execution of H2,k0 or H2,k0−1,
respectively. Further note that since A by assumption does not query OG on a decryption key
for any y with P (x0,y) = 1, AACE also does not ask for a decryption that could decrypt the
challenge ciphertext. Hence, AACE wins if b′′ = b and we have

AdvACE-PRV-CCA
ACE=,AACE

= 2 · Pr
ExpACE-PRV-ANON-CCA

ACE=,AACE [b′′ = b]− 1

= Pr
ExpACE-PRV-ANON-CCA

ACE=,AACE [b′′ = 1 | b = 1]− Pr
ExpACE-PRV-ANON-CCA

ACE=,AACE [b′′ = 1 | b = 0]

=
∑̀
k=1

1

`
PrH2,k−1 [b′ = 1]−

∑̀
k=1

1

`
PrH2,k [b′ = 1]

=
(
PrH2,0 [b′ = 1]− PrH2,` [b′ = 1]

)
/`

=
(
PrH1 [b′ = 1 | b = 1]− PrH1 [b′ = 1 | b = 0]

)
/`.

We therefore have that 2 ·PrH1 [b′ = b]−1 = ` ·AdvACE-PRV-CCA
ACE=,AACE

. Combining this with equation (4)

.

concludes the proof.

Next, we sketch how to prove sanitization security.

Lemma 6.7. If F is pseudorandom, NIZK is extractable, Sig is EUF-CMA secure, and ACE= is
perfectly correct, strongly detectable, and SAN-CCA secure, then the scheme ACEDEq from above
is SAN-CCA secure.
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Proof sketch. The basic idea is to construct an adversary ASAN against the sanitization security
of ACE= that chooses k0 � {1, . . . `} uniformly at random and emulates an execution of
ExpACE-SAN-CCA

ACEDEq,A . When A1 returns two ciphertexts c0, c1, ASAN gives the sanitized ciphertext(
c′1, . . . , c

′
`

)
to A2 where c′i ← ACE=.San

(
c0,i
)
for 1 ≤ i < k0, c′i ← ACE=.San

(
c1,i
)
for k0 < i ≤ `,

and c′k0 is obtained from the challenger by submitting
(
c0,k0 , c1,k0

)
. When A2 returns the bit b′,

ASAN returns the same bit b′. Note that ASAN wins if the bit is guessed correctly and if both
returned ciphertexts sanitize properly and no decryption key has been obtained that decrypts
any of the ciphertexts. If the last two conditions are not satisfied, then also A does not win.
For the hybrid argument to go through, however, we need to ensure that ASAN still wins with
probability 1/2 when A violates one of these two conditions. To achieve this, ASAN needs to detect
that this would next happen and in this case abort the emulation, return two valid ciphertexts
(if not done already) and guess a uniform bit. To detect this event before it happens, extract
witnesses from the ciphertexts returned by A1. If the ciphertexts are valid, the extractions are
successful, the signature scheme is EUF-CMA secure, and the PRF is pseudorandom, then the
ciphertexts have with overwhelming probability been obtained by encrypting messages with
encryption keys that A1 has obtained from the oracle OG. Hence, ASAN knows in this case
for which roles the messages have been encrypted. When A2 asks for a decryption key, ASAN

checks whether the policy allows this key to decrypt any of the two ciphertexts. Given perfect
correctness and strong detectability, the decryptions yield ⊥ if and only if the policy does not
allow decryption. Therefore, ASAN can detect when the bad event is about to happen and abort
in this case.

Non-detection of fresh encryptions directly follows from the same property of the underlying
ACE scheme.

Lemma 6.8. Let ACEDEq, be the scheme from above and let A be an attacker on the non-detection
of fresh encryptions. Then, there exists a probabilistic algorithm A′ (which is roughly as efficient
as emulating an execution of ExpACE-NDTCT-FENC

ACEDEq,A ) such that

AdvACE-NDTCT-FENC
ACEDEq,A ≤ ` · AdvACE-NDTCT-FENC

ACE=,A′ .

Proof. Let A′ emulate an execution of ExpACE-NDTCT-FENC
ACEDEq,A , using OG to answer oracle queries

from A. When A returns
(
m,x, c =

(
c1, . . . , c`, π

NIZK
))
, A′ chooses k � {1, . . . , `} uniformly at

random, and returns
(
m, (xk, k), ck

)
. If A wins, a fresh encryption of m under x is detected as

a modification of c. Since encryption and modification detection are defined component-wise,
this means that there exists a component k0 such that a fresh encryption of m under (xk0 , k0) is
detected to be a modification of ck0 . Hence, A′ also wins if additionally k = k0, which happens
with probability 1/`.

We finally prove role-respecting and uniform decryption security.

Lemma 6.9. Let ACEDEq, be the scheme from above and let A be a probabilistic algorithm that
makes at most at most qE queries to the oracle OE. Then, there exist probabilistic algorithms
APRF, AZK1 , AZK2 , ASig, and AACE (which are all roughly as efficient as emulating an execution
of ExpACE-URR

ACEDEq,A) such that

AdvACE-RR
ACEDEq,A + AdvACE-UDEC

ACEDEq,A ≤ 2 · AdvPRFF,APRF
+ 2 · AdvNIZK-ext1

NIZK,AZK1
+ 2 · AdvNIZK-ext2

NIZK,AZK2

+ 2(qE + 1) · AdvSig-EUF-CMA
Sig,ASig

+ 2` ·
(
AdvACE-RR

ACE=,AACE
+ AdvACE-UDEC

ACE=,AACE

)
.
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Proof sketch. As in the proof of Lemma D.5

.

, we define hybrids H0 := ExpACE-URR
ACEDEq,A, H1 as H0

where FK is replaced by a uniform random function U , H2 as H1 where crsNIZK is generated
by ENIZK

1 , H3 as H2 where a witness w =
(
ekACE=

(x1,1)
, . . . , ekACE=

(x`,`)
,m, r1, . . . , r`, vk

Sig
x , σSigx , σSigc

)
is

extracted from πNIZK by ENIZK
2 after A returned c :=

(
c1, . . . , c`, π

NIZK
)
. We can bound the

probability that no valid witness is extracted even though πNIZK is a valid proof by the knowledge
extraction advantage of a suitable adversary, and the probability that a valid witness was
extracted and the contained encryption key was not obtained via an oracle call by the signature
forgery advantage of another adversary as in the proof of Lemma D.5

.

. If these events do not
occur, the ciphertext c is an encryption of the message m under a valid key that was returned by
OG. Hence, A can in this case only win the role-respecting game or the uniform decryption game
if some ciphertext component violates one of these properties. We can construct an adversary
AACE that emulates the execution, guesses this component, and uses the corresponding ciphertext
component to win the game for the underlying scheme for equality.

7 Conclusion and Directions for Future Work

In this paper, we have critically revisited existing notions for access control encryption, proposed
stronger security definitions, and presented a new scheme that provably achieves our strong
requirements. The need for stronger notions is not only a theoretical one as we have shown: In
particular, we have described a practical attack based on the observation that a semi-honest
sanitizer might leak an unsanitized ciphertext to a dishonest party.

An important question is whether all realistic attacks are excluded by our definitions. Further-
more, we would like to understand the fundamental limits of ACE. This includes investigating in
which scenarios it can or cannot be used. To settle these questions, the authors are currently
working on a theoretical model to capture the use case of ACE in a simulation-based framework.
Another interesting research direction is to find more efficient schemes for useful policies.

A Standard Cryptographic Primitives and Games

A.1 Decisional Diffie-Hellman Assumption

Definition A.1. Let G = 〈g〉 be a cyclic group of prime-order q and let g be a generator. Let
A be a probabilistic algorithm that on input q, g, and three elements X,Y, T ∈ G returns a bit d.
Let DDHreal

g,A be the experiment where A is given two random group elements X = ga, Y = gb,
and the value T = gab. Let DDHrand

g,A be the experiment where A is given three random group
elements X = ga, Y = gb, and T = gc. We define the decisional Diffie-Hellman (DDH) advantage
of A as

AdvDDH
g,A := PrDDHreal

g,A [d = 1]− PrDDHrand
g,A [d = 1].

The decisional Diffie-Hellman (DDH) assumption for the group G states that AdvDDH
g,A is negligible

for all efficient A.

A.2 Pseudorandom Functions

Definition A.2. For κ ∈ N, let Kκ, Xκ, and Yκ be finite sets and let Fκ : Kκ × Xκ → Yκ be
a function. For K ∈ Kκ, we use the notation FK := Fκ(K, ·). Further let A be a probabilistic
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algorithm and consider the experiment in which A outputs a bit after interacting with an oracle
that either corresponds to FK for a uniformly chosen K ∈ Kκ, or to a uniformly chosen function
U : Xκ → Yκ. We define the pseudorandom function advantage of A as

AdvPRFF,A := Pr
[
AFK(·)(1κ) = 1

]
− Pr

[
AU(·)(1κ) = 1

]
,

where the first probability is over the random coins of A and the choice of K, and the second
probability is over the random coins of A and the choice of U . The function family F is called
pseudorandom if AdvPRFF,A is negligible for all efficient A.

A.3 Public-Key Encryption

Definition A.3. A public-key encryption (PKE) scheme consist of the following three PPT
algorithms:

Key generation: The algorithm Gen on input a security parameter 1κ, outputs a public key ek
and a private key dk .

Encryption: The algorithm Enc on input a public key ek and a message m ∈ M, outputs a
ciphertext c.

Decryption: The algorithm Dec on input a private key dk and a ciphertext c, outputs a message
m ∈M∪ {⊥}.

We require for all (ek , dk) in the range of Gen and all m ∈M that

Dec
(
dk ,Enc(ek ,m)

)
= m

with probability 1.

Definition A.4. Let E = (Gen,Enc,Dec) be a PKE scheme and let A = (A1,A2) be a pair of
probabilistic algorithms. Consider the experiment ExpPKE-IND-CPA

E,A in Figure 4

.

. We define the
ciphertext indistinguishability under chosen-plaintext attacks advantage of A as

AdvPKE-IND-CPA
E,A := 2 · Pr

[
b′ = b ∧ |m0| = |m1|

]
− 1

where the probability is over the randomness in ExpPKE-IND-CPA
E,A . The scheme E has indistin-

guishable ciphertexts under chosen-plaintext attacks (is IND-CPA secure) if AdvPKE-IND-CPA
E,A is

negligible for all efficient A.

A.4 Digital Signature Schemes

Definition A.5. A (digital) signature scheme consist of the following three PPT algorithms:

Key generation: The algorithm Gen on input a security parameter 1κ, outputs a public key vk
and a private key sk .

Signing: The algorithm Sign on input a private key sk and a message m ∈ M, outputs a
signature σ.
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Experiment ExpPKE-IND-CPA
E,A

Input: 1κ, κ ∈ N
(ek , dk)← Gen(1κ)
(m0,m1, st)← A1(ek)
b� {0, 1}
c∗ ← Enc(ek ,mb)
b′ ← A2(st , c∗)

Experiment ExpSig-EUF-CMA
E,A

Input: 1κ, κ ∈ N
(vk , sk)← Gen(1κ)
(m,σ)← ASign(sk,·)(vk)

Figure 4: Experiments for the security definitions of public-key encryption and digital signature
schemes.

Verification: The algorithm Ver is deterministic and on input a public key vk , a message m,
and a signature σ, outputs a bit b (where b = 1 means “valid” and b = 0 means “invalid”).

We require for all (vk , sk) in the range of Gen and all m ∈M that

Ver
(
vk ,m,Sign(sk ,m)

)
= 1

with probability 1.

Definition A.6. Let E = (Gen, Sign,Ver) be a signature scheme and let A be a probabilistic
algorithm. Consider the experiment ExpSig-EUF-CMA

E,A in Figure 4

.

and let Q be the set of queries
A issued to its oracle. We define the existential unforgeability under adaptive chosen-message
attacks advantage of A as

AdvSig-EUF-CMA
E,A := Pr

[
Ver(vk ,m, σ) = 1 ∧ m /∈ Q

]
,

where the probability is over the randomness in ExpSig-EUF-CMA
E,A . The scheme E is existentially

unforgeable under adaptive chosen-message attacks (EUF-CMA secure) if AdvSig-EUF-CMA
E,A is

negligible for all efficient A.

A.5 Non-Interactive Zero-Knowledge Proofs

We define non-interactive zero-knowledge proofs following Groth [Gro06

.

].

Definition A.7. Let R be an efficiently computable binary relation and consider the language
L := {x | ∃w (x,w) ∈ R}. A non-interactive proof system for L (or for R) consists of the following
three PPT algorithms:

Key generation: The algorithm Gen on input a security parameter 1κ, outputs a common
reference string crs.

Proving: The algorithm Prove on input a common reference string crs, a statement x, and a
witness w, outputs a proof π.

Verification: The algorithm Ver on input a common reference string crs , a statement x, and a
proof π, outputs a bit b (where b = 1 means “accept” and b = 0 means “reject”).
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We require perfect completeness, i.e., for all crs in the range of Gen and for all (x,w) ∈ R, we
have

Ver
(
crs, x,Prove(crs, x, w)

)
= 1

with probability 1.

Definition A.8 (Soundness). Let E = (Gen,Prove,Ver) be a non-interactive proof system for a
language L and let A be a probabilistic algorithm. We define the soundness advantage of A as

AdvNIZK-snd
E,A := Prcrs←Gen(1κ); (x,π)←A(crs)[x /∈ L ∧ Ver(crs, x, π) = 1

]
.

The scheme E is computationally sound if AdvNIZK-snd
E,A is negligible for all efficient A and perfectly

sound if AdvNIZK-snd
E,A = 0 for all A.

Definition A.9 (Computational zero-knowledge). Let E = (Gen,Prove,Ver) be a non-interactive
proof system for a relation R and let S = (S1, S2) be a pair of PPT algorithms, called simulator.
Further let S′(crs, τ, x, w) = S2(crs, τ, x) for (x,w) ∈ R, and S′(crs, τ, x, w) = failure for
(x,w) /∈ R. We define the zero-knowledge advantage of a probabilistic algorithm A as

AdvNIZK-ZK
E,S,A := Prcrs←Gen(1κ)

[
AProve(crs,·,·)(crs) = 1

]
− Pr(crs,τ)←S1(1κ)

[
AS′(crs,τ,·,·)(crs) = 1

]
.

We call (Gen,Prove,Ver, S1, S2) a non-interactive zero-knowledge (NIZK) proof system for R
if AdvNIZK-ZK

E,S,A is negligible for all efficient A; it is called single-theorem NIZK proof system if
AdvNIZK-ZK

E,S,A is negligible for all efficient A that make at most one query to their oracle.

Definition A.10 (Knowledge extraction). Let E = (Gen,Prove,Ver) be a non-interactive proof
system for a relation R and let E = (E1, E2) be a pair of PPT algorithms, called knowledge
extractor. We define the knowledge extraction advantages of a probabilistic algorithm A as

AdvNIZK-ext1
E,E,A := Prcrs←Gen(1κ)

[
A(crs) = 1

]
− Pr(crs,ξ)←E1(1κ)

[
A(crs) = 1

]
,

AdvNIZK-ext2
E,E,A := Pr(crs,ξ)←E1(1κ); (x,π)←A(crs); w←E2(crs,ξ,x,π)

[
Ver(crs, x, π) = 1 ∧ (x,w) /∈ R

]
.

We call (Gen,Prove,Ver, E1, E2) a non-interactive proof of knowledge system for R if AdvNIZK-ext1
E,E,A

and AdvNIZK-ext2
E,E,A are negligible for all efficient A.

Definition A.11 (Simulation soundness). Let E = (Gen,Prove,Ver) be a non-interactive proof
system for a language L, let S = (S1, S2) be a pair of PPT algorithms, and let A be a
probabilistic algorithm. Consider the experiment ExpNIZK-sim-snd

E,S,A that executes (crs, τ)← S1(1
κ)

and (x, π)← AS2(crs,τ,·)(crs). Further let Q be the set of all (x′, π′) such that A queried x′ to
its oracle and received π′ as a response. We define the simulation soundness advantage of A as

AdvNIZK-sim-snd
E,S,A := Pr

[
(x, π) /∈ Q ∧ x /∈ L ∧ Ver(crs, x, π) = 1

]
.

We say (Gen,Prove,Ver, S1, S2) is simulation sound if AdvNIZK-sim-snd
E,S,A is negligible for all efficient A;

it is one-time simulation sound if AdvNIZK-sim-snd
E,S,A is negligible for all efficient A that make at

most one query to the oracle S2.

Note that in the above definition, A is allowed to issue queries x′ /∈ L to its oracle. This
means that soundness is preserved even if an adversary sees simulated proofs of false statements.
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B Proof of Relation to the Original Security Notions

We prove the three claims in Theorem 4.7

.

as separate lemmata, starting with the payload-privacy
no-read rule.

Lemma B.1. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE with modification detection
scheme and let E ′ = (Setup,Gen,Enc, San,Dec) be the corresponding ACE scheme. Further let
A = (A1,A2) be a pair of probabilistic algorithms. Then, there exist adversaries APRV and
AwANON (both roughly as efficient as emulating an execution of ExpACE-no-read

E,A ) such that

AdvACE-no-read,priv
E ′,A ≤ AdvACE-PRV-CCA

E,APRV
+ AdvACE-wANON-CCA

E,AwANON
.

Proof. We assume without loss of generality that A ensures |m0| = |m1| and P (i0, j) = P (i1, j) =
0 for all j ∈ J , where J is the set of all j such that A1 or A2 issued the query (j, rec) to the
oracle OG. Let H be identical to AdvACE-no-read,priv

E ′,A except that after A1 returns (m0,m1, i0, i1, st),
i1 is replaced by i0. We first show that the probability that b is guessed correctly in H and
AdvACE-no-read,priv

E ′,A differ only negligibly if the scheme satisfies weak anonymity. Note that if b = 0,
the two experiments are identical, which implies

Pr
ExpACE-no-readE′,A

[
b′ = b | b = 0

]
= PrH

[
b′ = b | b = 0

]
. (5)

Claim 1. There exists an adversary AwANON such that

Pr
ExpACE-no-readE′,A

[
b′ = b | b = 1

]
− PrH

[
b′ = b | b = 1

]
= AdvACE-wANON-CCA

E,AwANON
.

Proof of claim. We construct AwANON as follows. On input sp, it emulates an execution of
ExpACE-no-read

E ′,A , where the oracles for A are emulated as follows.

OG(·, ·): Relay queries to the oracle OG of ExpACE-PRV-ANON-CCA
E,AwANON

.

OE(·, ·): On query (j,m), query (j, sen) to the oracle OG to receive the encryption key ek j .
Then compute c← Enc(ek j ,m) and return c.

When A outputs (m0,m1, i0, i1, st), AwANON gives (m1,m1, i0, i1) to the challenger to obtain a
ciphertext c∗, which is given to A2. When A2 returns b′, AwANON returns the same bit b′. Note
that if b = 0, AwANON perfectly emulates H with b = 1, and if b = 1, AwANON perfectly emulates
ExpACE-no-read

E ′,A with b = 1. Hence,

Pr
ExpACE-no-readE′,A

[
b′ = b | b = 1

]
− PrH

[
b′ = b | b = 1

]
= Pr

ExpACE-PRV-ANON-CCA
E,AwANON

[
b′ = 1 | b = 1

]
− Pr

ExpACE-PRV-ANON-CCA
E,AwANON

[
b′ = 1 | b = 0

]
= 2 ·

(
1

2
Pr

ExpACE-PRV-ANON-CCA
E,AwANON

[
b′ = b | b = 1

]
− 1

2

(
1− Pr

ExpACE-PRV-ANON-CCA
E,AwANON

[
b′ = b | b = 0

]))
= 2 · Pr

ExpACE-PRV-ANON-CCA
E,AwANON

[
b′ = b

]
− 1.

Note that AwANON returns the same message m1 twice and we have P (i0, j) = P (i1, j) = 0 for all
j ∈ J by the assumption on A. This implies AdvACE-wANON-CCA

E,AwANON
= 2·Pr

ExpACE-PRV-ANON-CCA
E,AwANON

[
b′ = b

]
−1

and concludes the proof of the claim. ♦
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Combining Claim 1

.

and equation (5)

.

, we obtain

Pr
ExpACE-no-readE′,A

[
b′ = b

]
=

1

2
· Pr

ExpACE-no-readE′,A
[
b′ = b | b = 0

]
+

1

2
· Pr

ExpACE-no-readE′,A
[
b′ = b | b = 1

]
=

1

2
· PrH

[
b′ = b | b = 0

]
+

1

2
·
(
AdvACE-wANON-CCA

E,AwANON
+ PrH

[
b′ = b | b = 1

])
= PrH

[
b′ = b

]
+

1

2
· AdvACE-wANON-CCA

E,AwANON
.

Hence,
AdvACE-no-read,priv

E ′,A = 2 · PrH
[
b′ = b

]
− 1 + AdvACE-wANON-CCA

E,AwANON
. (6)

We now construct the adversary APRV. When invoked on input sp, it starts an emulation of H
by passing sp to A. The oracles for A are emulated as in the proof of Claim 1

.

. When A1 returns
(m0,m1, i0, i1, st), AwANON gives (m0,m1, i0, i0) to the challenger to obtain a ciphertext c∗, which
is then given to A2. When A2 returns b′, APRV returns the same bit b′. Note that the view of A
in this emulation is identical to its view in H. Since APRV returns the same role i0 twice and
P (i0, j) = 0 for all j ∈ J by the assumption on A, we have

AdvACE-PRV-CCA
E,APRV

= 2 · Pr
ExpACE-PRV-ANON-CCA
E,APRV

[
b′ = b

]
− 1 = 2 · PrH

[
b′ = b

]
− 1.

Using equation (6)

.

, we conclude

AdvACE-no-read,priv
E ′,A = AdvACE-PRV-CCA

E,APRV
+ AdvACE-wANON-CCA

E,AwANON
.

We next show that the sender-anonymity no-read rule is implied by strong sender anonymity.

Lemma B.2. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE with modification detection
scheme and let E ′ = (Setup,Gen,Enc, San,Dec) be the corresponding ACE scheme. Further let
A = (A1,A2) be a pair of probabilistic algorithms. Then, there exists an adversary AsANON

(roughly as efficient as emulating an execution of ExpACE-no-read
E ′,A′ ) such that

AdvACE-no-read,anon
E ′,A = AdvACE-sANON-CCA

E,AsANON
.

Proof. We construct AsANON as follows. On input sp, it emulates an execution of ExpACE-no-read
E ′,A ,

where the oracles OG and OE for A are emulated as in the proof of Lemma B.1

.

. When A1 returns
(m0,m1, i0, i1, st), AsANON gives (m0,m1, i0, i1) to the challenger to obtain the ciphertext c∗.
Then, A2 is invoked on input (st , c∗) and the oracles are emulated as before. When A2 terminates
with output b′, AsANON returns the same bit b′. We observe that the view AsANON emulates
toward A is identical to the view of A in the experiment ExpACE-no-read

E ′,A . Thus,

AdvACE-no-read,anon
E ′,A

= 2 · Pr
ExpACE-no-readE′,A

[
b′ = b ∧ m0 = m1 ∧ ∀j ∈ J P (i0, j) = P (i1, j)

]
− 1

= 2 · Pr
ExpACE-PRV-ANON-CCA
E,AsANON

[
b′ = b ∧ m0 = m1 ∧ ∀j ∈ J P (i0, j) = P (i1, j)

]
− 1

= AdvACE-sANON-CCA
E,AsANON

.

To conclude the proof of Theorem 4.7

.

, we prove the claim about the no-write with modification
detection rule.
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Lemma B.3. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE with modification detection
scheme and let A = (A1,A2) be a pair of probabilistic algorithms. Then, there exist adversaries
ASAN, ARR, and ACORR (all roughly as efficient as emulating an execution of ExpACE-MD-no-write

E,A )
such that for policies P where for all i, one can efficiently find some j with P (i, j) = 1,

AdvACE-MD-no-write
E,A ≤ AdvACE-SAN-CCA

E,ASAN
+ 4 · AdvACE-RR

E,ARR
+ 2 · AdvACE-CORR

E,ACORR
.

Proof. We first construct the adversary ASAN. When invoked on input sp, it gives sp to A1 and
emulates ExpACE-MD-no-write

E,A . The oracles for A are emulated as follows.

OG(·, ·): Relay queries to the oracle OG of ExpACE-SAN-CCA
E,ASAN

.

OES(·, ·): On query (j,m), ASAN queries (j, sen) to its oracle OG to receive the encryption key
ek j .5

.

It then computes c′ ← San(sp,Enc(ek j ,m)) and outputs c′ to A.

When A1 outputs (c0, i
′, st), ASAN chooses a uniformly random message m�M, queries (i′, sen)

to its oracle OG to receive the encryption key ek i′ , and computes c1 ← Enc(ek i′ ,m). Then, ASAN

gives (c0, c1) to the challenger to obtain a sanitized ciphertext c′b. It then invokes A2 on input
(st , c′b) and emulates the oracles as above. When A2 outputs its guess b′, ASAN outputs the same
bit b′ as its own guess. Note that the view ASAN emulates toward A is identical to the view
of A in the experiment ExpACE-MD-no-write

E,A . Let WnoW and Wsan be the events that A wins in the
no-write with modification detection experiment and ASAN wins the sanitization experiment,
respectively, i.e.,

WnoW :=
[
b′ = b ∧ dct = false ∧ i′ ∈ I1

∧ ∀i ∈ I1 ∀j ∈ J P (i, j) = 0 ∧ San(sp, c0) 6= ⊥
]
,

Wsan :=
[
b′ = b ∧ c′0 6= ⊥ 6= c′1 ∧ ∀j ∈ J m0,j = m1,j = ⊥

]
.

Further consider the events

C := [San(sp, c1) 6= ⊥],

R := [∀j ∈ J Dec
(
Gen(msk , j, rec), San(sp, c0)

)
= Dec

(
Gen(msk , j, rec),San(sp, c1)

)
= ⊥].

We then have
Pr

ExpACE-SAN-CCA
E,ASAN [Wsan] ≥ PrExp

ACE-MD-no-write
E,A [WnoW ∩ C ∩R]. (7)

We next show that the events ¬C and ¬R only occur with negligible probability if the ACE
scheme is correct and role-respecting, respectively.

Claim 1. There exists an adversary ACORR (roughly as efficient as emulating an execution of
ExpACE-MD-no-write

E,A ) such that

PrExp
ACE-MD-no-write
E,A [¬C] ≤ AdvACE-CORR

E,ACORR
.

Proof of claim. On input sp, the adversary ACORR begins an emulation of ExpACE-MD-no-write
E,A

as ASAN above. When A1 outputs (c0, i
′, st), ACORR chooses a uniformly random message

m�M and finds j with P (i′, j) = 1. It finally returns (m, i′, j). By definition of Dec, we have
Dec(Gen(msk , j, rec),⊥) = ⊥. Hence, if ¬C occurs, then encrypting m for role i′ and sanitizing
and decrypting the result yields ⊥ 6= m. Therefore, ACORR wins the correctness game in this
case, which implies the claim. ♦

5Looking ahead, we note that obtaining additional encryption keys is not problematic in the sanitization game,
since the winning condition does not restrict the obtained encryption keys.
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Claim 2. There exists an adversary ARR (roughly as efficient as emulating an execution of
ExpACE-MD-no-write

E,A ) such that

PrExp
ACE-MD-no-write
E,A [WnoW ∩ C ∩ ¬R] ≤ 2 · AdvACE-RR

E,ARR
.

Proof of claim. When invoked on input sp, ARR internally emulates an execution of A on input sp
and emulates the oracles as follows.

OG(·, ·): Relay queries to the oracle OG of ExpACE-URR
E,ARR

.

OES(·, ·): On query (j,m), query (j,m) to OE to receive the ciphertext c. Then, compute
c′ ← San(sp, c) and return c′.

When A1 outputs (c0, i
′, st), ARR chooses a uniformly random message m�M, queries (i′, sen)

to its oracle OG to receive the encryption key ek i′ , and computes c1 ← Enc(ek i′ ,m). Then, ARR

chooses c � {c0, c1} uniformly at random and outputs c to the challenger. Let WnoW be the
event that ARR wins the role-respecting game, i.e.,

WRR :=
[
c′ 6= ⊥ ∧ dct = false ∧ ¬

(
∃i ∈ I ∀j ∈ J (mj 6= ⊥ ↔ P (i, j) = 1)

)]
.

Note that WnoW and C imply that c′ 6= ⊥, dct = false, and ∀i ∈ I ∀j ∈ J P (i, j) = 0. Hence,
if we additionally have ¬R, at least one of the two possible choices for c yield mj 6= ⊥ for some
j ∈ J , and thus

PrExp
ACE-MD-no-write
E,A [WnoW ∩ C ∩ ¬R] ≤ 2 · Pr

ExpACE-URRE,ARR [WRR] = 2 · AdvACE-RR
E,ARR

. ♦

Combining equation (7)

.

and Claims 1

.

and 2

.

, we obtain

PrExp
ACE-MD-no-write
E,A [WnoW] ≤ PrExp

ACE-MD-no-write
E,A [WnoW ∩ C ∩R]

+ PrExp
ACE-MD-no-write
E,A [WnoW ∩ C ∩ ¬R] + PrExp

ACE-MD-no-write
E,A [¬C]

≤ Pr
ExpACE-SAN-CCA
E,ASAN [Wsan] + 2 · AdvACE-RR

E,ARR
+ AdvACE-CORR

E,ACORR
.

We can thus conclude

AdvACE-MD-no-write
E,A = 2 · PrExp

ACE-MD-no-write
E,A [WnoW]− 1

≤ 2 · Pr
ExpACE-SAN-CCA
E,ASAN [Wsan]− 1︸ ︷︷ ︸

=AdvACE-SAN-CCA
E,ASAN

+ 4 · AdvACE-RR
E,ARR

+ 2 · AdvACE-CORR
E,ACORR

.

We finally prove Theorem 4.8

.

, which we first restate.

Theorem 4.8. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE with modification detection
scheme such that Pr[DMod(sp, c0, c1) = 1] = Pr[DMod(sp, c1, c0) = 1] for all sp returned by Setup
and all ciphertexts c0, c1 ∈ C. Further let E ′ = (Setup,Gen,Enc,San,Dec) be the corresponding
ACE scheme. If E is correct, detectable, has NDTCT-FENC, and is sSAN-CCA and RR secure,
then E ′ satisfies the no-write rule for policies P such that for all i, one can efficiently find some j
with P (i, j) = 1. More precisely, for all adversaries A that make at most qES queries to the
oracle OES and at most qdk queries of the form (·, rec) to OG, there exist adversaries ASAN,
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ARR, AsSAN, ANDTCT, ACORR, and Adtct (all roughly as efficient as emulating an execution of
ExpACE-no-write

E,A ) such that

AdvACE-no-write
E ′,A ≤ AdvACE-SAN-CCA

E,ASAN
+ 4 · AdvACE-RR

E,ARR
+ 2qES · AdvACE-sSAN-CCA

E,AsSAN

+ 4qES · AdvACE-NDTCT-FENC
E,ANDTCT

+ (8qESqdk + 2) · AdvACE-CORR
E,ACORR

+ 8qESqdk · AdvACE-DTCT
E,Adtct

.

Proof. Let A = (A1,A2) be an adversary and consider ExpACE-MD-no-write
E,A . Let WnoW and

WMD-noW be the events that A wins the no-write and no-write with modification detection game,
respectively. Note that we have WMD-noW = WnoW ∩ [dct = false]. Hence,

AdvACE-no-write
E ′,A = 2 · PrExp

ACE-MD-no-write
E,A [WnoW]− 1

= 2
(

PrExp
ACE-MD-no-write
E,A [WMD-noW] + PrExp

ACE-MD-no-write
E,A

[
WnoW ∩ [dct = true]

])
− 1

≤ AdvACE-MD-no-write
E,A + 2 · PrExp

ACE-MD-no-write
E,A [dct = true].

Lemma B.3

.

implies that there exist adversaries ASAN, ARR, and A′CORR (all roughly as efficient
as emulating an execution of ExpACE-MD-no-write

E,A ) such that

AdvACE-no-write
E ′,A ≤ AdvACE-SAN-CCA

E,ASAN
+ 4 · AdvACE-RR

E,ARR
+ 2 · AdvACE-CORR

E,A′CORR

+ 2 · PrExp
ACE-MD-no-write
E,A [dct = true]. (8)

To bound the probability of [dct = true], we construct the adversary AsSAN. When invoked
on input sp, it first chooses q0 � {1, . . . , qES} uniformly at random, sets k ← 1 and internally
emulates an execution of A on input sp. Oracle queries by A are answered as follows:

OG(·, ·): Relay queries to the oracle OG of ExpACE-SAN-CCA
E,AsSAN

.

OES(·, ·): On query (i,m), if k 6= q0, AsSAN queries (i, sen) to its oracle OG to receive the
encryption key ek i. It then computes c′ ← San(sp,Enc(ek i,m)) and outputs c′ to A.
Finally, it sets k ← k + 1.

If k = q0, then AsSAN queries (i, sen) to its oracle OG to receive the encryption key ek i.
It then creates two independent encryptions of m by computing c̃0 ← Enc(ek i,m) and
c̃1 ← Enc(ek i,m), sets iq0 ← i, mq0 ← m, k ← k + 1, and gives c̃0, c̃1 to the challenger to
obtain c̃′b.

If A1 terminates before k = q0 is reached, AsSAN gives two fresh encryptions of some
fixed message mq0 for a fixed role iq0 to the challenger and then returns a uniform bit b′ �
{0, 1}. Otherwise, when A1 returns i′ and c0, AsSAN evaluates d0 ← DMod(sp, c̃0, c0) and
d1 ← DMod(sp, c̃1, c0). If d0 = d1, then AsSAN also returns a uniform bit; if db′ = 1 for exactly
one b′ ∈ {0, 1}, AsSAN returns b′.

Let Q be the event that d0 = 1 or d1 = 1 and let D be the event that d1−b = 1. Note that if
Q and ¬D occur, AsSAN returns the correct bit b′ = b. Moreover, if Q does not occur, AsSAN

returns a uniform bit. Hence,

Pr[b′ = b] = Pr
[
[b′ = b] ∩Q ∩ ¬D

]
+ Pr

[
[b′ = b] ∩ ¬(Q ∩ ¬D)

]
≥ Pr[Q ∩ ¬D] + Pr

[
[b′ = b] ∩ ¬Q

]
= Pr[Q ∩ ¬D] + Pr[b′ = b | ¬Q] · Pr[¬Q]

= Pr[Q ∩ ¬D] + 1
2 · (1− Pr[Q]),
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where all probabilities are in ExpACE-SAN-CCA
E,AsSAN

. This implies

Pr[Q] = Pr[Q ∩D] + Pr[Q ∩ ¬D] ≤ Pr[D] + Pr[b′ = b]− 1
2 + 1

2 Pr[Q]

and therefore
Pr[Q] ≤ 2 · Pr[D] + 2 · Pr[b′ = b]− 1.

Note that if [dct = true] occurs in ExpACE-MD-no-write
E,A , then Q occurs in ExpACE-SAN-CCA

E,AsSAN
with

probability at least 1/qES . We can therefore conclude that

PrExp
ACE-MD-no-write
E,A [dct = true] ≤ qES · Pr

ExpACE-SAN-CCA
E,AsSAN [Q]

≤ 2qES · Pr
ExpACE-SAN-CCA
E,AsSAN [D] + qES

(
2 · Pr

ExpACE-SAN-CCA
E,AsSAN [b′ = b]− 1

)
.

Let WsSAN be the event that AsSAN wins the strong sanitization game and consider the events

C :=
[
c̃′0 6= ⊥ 6= c̃′1 ∧ ∀j ∈ J (P (iq0 , j) = 1→ m0,j = m1,j = mq0)

]
,

R :=
[
∀j ∈ J (P (iq0 , j) = 0→ m0,j = m1,j = ⊥)

]
.

We then have that [b′ = b], C, and R together imply WsSAN. Thus,

Pr
ExpACE-SAN-CCA
E,AsSAN [b′ = b] = Pr

ExpACE-SAN-CCA
E,AsSAN

[
[b′ = b] ∩ C ∩R

]
+ Pr

ExpACE-SAN-CCA
E,AsSAN

[
[b′ = b] ∩ ¬(C ∩R)

]
≤ Pr

ExpACE-SAN-CCA
E,AsSAN [WsSAN] + Pr

ExpACE-SAN-CCA
E,AsSAN [¬C ∪ ¬R].

Together with the previous result, this yields

PrExp
ACE-MD-no-write
E,A [dct = true]

≤ 2qES · Pr
ExpACE-SAN-CCA
E,AsSAN [D] + qES

[
2 · Pr

ExpACE-SAN-CCA
E,AsSAN [WsSAN]− 1 + 2 · Pr

ExpACE-SAN-CCA
E,AsSAN [¬C ∪ ¬R]

]
= 2qES · Pr

ExpACE-SAN-CCA
E,AsSAN [D] + qES · AdvACE-sSAN-CCA

E,AsSAN
+ 2qES · Pr

ExpACE-SAN-CCA
E,AsSAN [¬C ∪ ¬R].

Now consider ANDTCT that emulates ExpACE-SAN-CCA
E,AsSAN

and outputs (mq0 , iq0 , c0). Note that the
view ofA1 in the emulation is independent of c̃1−b. One can therefore assume that c̃1−b is generated
afterA1 outputs c0, as c∗ in ExpACE-NDTCT-FENC

E,ANDTCT
. By assumption, we have Pr[DMod(sp, c̃1−b, c0) =

1] = Pr[DMod(sp, c0, c̃1−b) = 1], and therefore

Pr
ExpACE-SAN-CCA
E,AsSAN [D] = AdvACE-NDTCT-FENC

E,ANDTCT
.

Further consider A′′CORR that emulates ExpACE-SAN-CCA
E,AsSAN

and if there exists j ∈ J with
P (iq0 , j) = 1, it chooses j � J uniformly at random and outputs (mq0 , iq0 , j). If such j ∈ J
does not exist, A′′CORR finds j ∈ [n] with P (iq0 , j) = 1 and then outputs (mq0 , iq0 , j). Note that
m0,j = m1,j = mq0 implies c̃′0 6= ⊥ 6= c̃′1 since ⊥ decrypts to ⊥. Hence, if such j ∈ J exists and
¬C occurs, A′′CORR wins the correctness game with probability at least 1/(2|J |) ≥ 1/(2qdk); and
if no such j ∈ J exists and ¬C occurs, A′′CORR wins with probability at least 1/2. The factor 1/2
is due to the fact that the message is encrypted twice in ExpACE-SAN-CCA

E,AsSAN
but only once in the

correctness experiment. Overall, we get

Pr
ExpACE-SAN-CCA
E,AsSAN [¬C] ≤ 2qdk · AdvACE-CORR

E,A′′CORR
.
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Finally consider Adtct that emulates ExpACE-SAN-CCA
E,AsSAN

, chooses j � J uniformly at random
and outputs (mq0 , iq0 , j). If ¬R occurs, Adtct wins the detectability game with probability at
least 1/(2qdk). Hence,

Pr
ExpACE-SAN-CCA
E,AsSAN [¬R] ≤ 2qdk · AdvACE-DTCT

E,Adtct
.

Combining our results, we obtain

PrExp
ACE-MD-no-write
E,A [dct = true] ≤ 2qES · AdvACE-NDTCT-FENC

E,ANDTCT
+ qES · AdvACE-sSAN-CCA

E,AsSAN

+ 4qESqdk · AdvACE-CORR
E,A′′CORR

+ 4qESqdk · AdvACE-DTCT
E,Adtct

.

Together with equation (8)

.

, this yields

AdvACE-no-write
E ′,A ≤ AdvACE-SAN-CCA

E,ASAN
+ 4 ·AdvACE-RR

E,ARR
+ 2 ·AdvACE-CORR

E,A′CORR
+ 4qES ·AdvACE-NDTCT-FENC

E,ANDTCT

+ 2qES · AdvACE-sSAN-CCA
E,AsSAN

+ 8qESqdk · AdvACE-CORR
E,A′′CORR

+ 8qESqdk · AdvACE-DTCT
E,Adtct

.

For the adversary ACORR that runs A′CORR with probability 2
8qESqdk+2 and A′′CORR with probabil-

ity 8qESqdk
8qESqdk+2 , we have (8qESqdk + 2) · AdvACE-CORR

E,ACORR
= 2 · AdvACE-CORR

E,A′CORR
+ 8qESqdk · AdvACE-CORR

E,A′′CORR

and the claim of the theorem follows.

C Proofs of Privacy and Anonymity of the sPKE Scheme

To complete the proof of Theorem 5.9

.

, we first show that our sPKE scheme is IND-CCA secure.
The proof follows Lindell’s proof for the construction of an IND-CCA secure public-key encryption
scheme from a IND-CPA secure one [Lin06

.

].

Lemma C.1. Let sPKE be the scheme from Section 5.2

.

and let A = (A1,A2) be a pair of
probabilistic algorithms such that A1 and A2 together make at most qG queries to OG and at
most qSD queries to OSD. Then, there exist adversaries ADDH, AZK, Asnd, and ASig (which are
all roughly as efficient as emulating an execution of ExpsPKE-IND-CCA

sPKE,A ) such that

AdvsPKE-IND-CCA
sPKE,A ≤ 4 · AdvDDH

g,ADDH
+ 2 · AdvNIZK-ZK

NIZK,AZK
+ 2qSD · AdvNIZK-sim-snd

NIZK,Asnd

+ 2 · AdvSig-EUF-CMA
Sig,ASig

+
4(qG + 1)2 + 8

2κ − 1
.

Proof. We assume without loss of generality that A2 does not query the challenge ciphertext c∗

to its decryption oracle OSD since doing so can only decrease the advantage. For b1, b2 ∈ {0, 1},
we define the hybrid experiment Hb1,b2 as follows: Let Hb1,b2 be as ExpsPKE-IND-CCA

sPKE,A , but where
the common reference string crs is obtained via (crs, τ)← S1(1

κ) (instead of an invocation of
NIZK.Gen). When A1 outputs (m0,m1, st), Hb1,b2 computes c1 as the encryption of mb1 under
ek1, c2 as the encryption of mb2 under ek2, and cσ as in the real experiment (namely as the
encryption of the two ElGamal public keys and the accompanying signature). It then simulates
the proof π using S2 and invokes A2 on input st and c∗ := (c1, c2, cσ, π).

Claim 1. There exist adversaries A′ZK and A′′ZK such that

PrH0,0 [b′ = 1]− PrExp
sPKE-IND-CCA
sPKE,A [b′ = 1 | b = 0] = AdvNIZK-ZK

NIZK,A′ZK
,

PrExp
sPKE-IND-CCA
sPKE,A [b′ = 1 | b = 1]− PrH1,1 [b′ = 1] = AdvNIZK-ZK

NIZK,A′′ZK
.
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Proof of claim. We only prove the first part of the claim, the second one can be shown analogously.
The adversary A′ZK on input crs , emulates toward A the experimentH0,0. To this end, it generates
all required keys. When generating the challenge ciphertext c∗ = (c1, c2, cσ, π), it obtains π via
the proof oracle. Note that in H0,0, this ciphertext is a valid encryption of m0, so the statement
is correct and the proof oracle consequently returns a valid proof. When A returns a bit b′, A′ZK
returns 1− b′. Observe that if the CRS and the proofs are real, then this emulation is equivalent
to the experiment ExpsPKE-IND-CCA

sPKE,A when b = 0, and if the CRS and the proofs are simulated,
then it is equivalent to H0,0. Hence,

AdvNIZK-ZK
NIZK,A′ZK

= Prcrs←Gen(1κ)
[
AProve(crs,·,·)(crs) = 1

]
− Pr(crs,τ)←S1(1κ)

[
AS′(crs,τ,·,·)(crs) = 1

]
= 1− PrExp

sPKE-IND-CCA
sPKE,A [b′ = 1 | b = 0]−

(
1− PrH0,0 [b′ = 1]

)
= PrH0,0 [b′ = 1]− PrExp

sPKE-IND-CCA
sPKE,A [b′ = 1 | b = 0]. ♦

Analogous to the proof of Lemma 5.10

.

, we next define three bad events. Let B1 be the
event that A queries its decryption oracle with a valid but improper ciphertext (c1, c2, cσ, π),
i.e.,

(
g, ekPKE, vkSig, c1, c2, cσ

)
/∈ L, but where π is an accepting proof, i.e., NIZK.Ver

(
crs, x :=

(g, ekPKE, vkSig, c1, c2, cσ), π
)

= 1. As in the proof of Lemma 5.10

.

, one can show that there exists
an adversary Ab1,b2snd such that

PrHb1,b2 [B1] ≤ qSD · AdvNIZK-sim-snd
NIZK,Ab1,b2snd

,

except that we here need (one-time) simulation soundness since the proof in the challenge
ciphertext is simulated.

Further let B2 be the event that A queries its decryption oracle with a valid and proper
ciphertext (c1, c2, cσ, π), i.e.,

(
g, ekPKE, vkSig, c1, c2, cσ

)
∈ L and π is accepting, but where cσ is

the encryption of a triple (ek1, ek2, σ), such that the pair (ek1, ek2) has never been output by
the experiment or the oracle OG. Again as in the proof of Lemma 5.10

.

, it can be shown that
there exists an adversary Ab1,b2Sig such that

PrHb1,b2 [B2] ≤ AdvSig-EUF-CMA

Sig,Ab1,b2Sig

.

Finally, let B3 be the event that Hb1,b2 generates two different encryption keys ek sPKE =(
g, p, crs, ekPKE, vkSig, ek1, ek2, σ

)
and

(
ek sPKE

)′
=
(
g, p, crs, ekPKE, vkSig, ek ′1, ek

′
2, σ
′) such that

ek1 = ek ′1 or ek2 = ek ′2. Then,

PrHb1,b2 [B3] ≤
2(qG + 1)2

2κ − 1
,

which can be shown as in the proof of Lemma 5.10

.

. For B := B1 ∪B2 ∪B3, we therefore have

PrHb1,b2 [B] ≤ qSD · AdvNIZK-sim-snd
NIZK,Ab1,b2snd

+ AdvSig-EUF-CMA

Sig,Ab1,b2Sig

+
2(qG + 1)2

2κ − 1
. (9)

Claim 2. There exist adversaries A′DDH and A′′DDH such that

PrH1,0 [b′ = 1]− PrH0,0 [b′ = 1] ≤ 2 · AdvDDH
g,A′DDH

+ PrH0,0 [B] + PrH1,0 [B] + 22−κ,

PrH1,1 [b′ = 1]− PrH1,0 [b′ = 1] ≤ 2 · AdvDDH
g,A′′DDH

+ 22−κ.
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Proof of claim. We define the adversary A′DDH as follows. On input a triple (X,Y, T ), it sets
ek1 ← X. It further generates all the remaining keys of the experiment (and thus lacks only
the decryption key dk1), samples b � {0, 1}, and emulates Hb,0 toward A. The oracle OSD
is emulated by decrypting the second ciphertext component instead of the first one using dk2.
When A1 returns (m0,m1, st), A′DDH samples r � Z∗p and sets

c1 ← (gr, Xr, Y, T ·mb).

It further computes c2 as an ElGamal encryption of m0, encrypts both keys and their signature
to obtain cσ, and simulates the NIZK proof π using S2. It continues the emulation by giving
c∗ := (c1, c2, cσ, π) to A2. When A2 outputs its decision bit b′, A′DDH outputs d = 1 if b′ = b, and
d = 0 otherwise.

First note that if (X,Y, T ) are three uniform group elements, c1 is independent of the bit b,
and thus

Pr
DDHrand

g,A′
DDH [d = 1] =

1

2
.

On the other hand, if (X,Y, T ) is a DDH triple, we have for a uniform s ∈ Zp,

c1 = (gr, Xr, Y, T ·mb) = (gr, ek r1, g
s, eks1 ·mb),

which corresponds to a proper ElGamal encryption of mb if X 6= 1 and Y 6= 1. Further note that,
as in the proof of Lemma 5.10

.

, OSD is emulated perfectly if B does not occur. We therefore have

Pr
DDHreal

g,A′
DDH [d = 1 ∩ ¬B | X 6= 1 6= Y ] = PrHb,0 [b′ = b ∩ ¬B].

This implies

AdvDDH
g,A′DDH

= Pr
DDHreal

g,A′
DDH [d = 1]− Pr

DDHrand
g,A′

DDH [d = 1]

≥ Pr
DDHreal

g,A′
DDH [d = 1 ∩ ¬B | X 6= 1 6= Y ] · Pr

DDHreal
g,A′

DDH [X 6= 1 6= Y ]− 1

2

= PrHb,0 [b′ = b ∩ ¬B] · Pr
DDHreal

g,A′
DDH [X 6= 1 6= Y ]− 1

2
.

Using the union bound and |G| = p ≥ 2κ, we further have

Pr
DDHreal

g,A′
DDH [X 6= 1 6= Y ] = 1− Pr

DDHreal
g,A′

DDH [X = 1 ∨ Y = 1]

≥ 1− Pr
DDHreal

g,A′
DDH [X = 1]− Pr

DDHreal
g,A′

DDH [Y = 1]

≥ 1− 2 · 2−κ.

Hence,

AdvDDH
g,A′DDH

≥ PrHb,0 [b′ = b ∩ ¬B]− 21−κ − 1

2
.

Since

PrHb,0 [b′ = b] ≤ PrHb,0 [(b′ = b ∩ ¬B) ∪B] ≤ PrHb,0 [b′ = b ∩ ¬B] + PrHb,0 [B],
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we obtain

AdvDDH
g,A′DDH

≥ PrHb,0 [b′ = b]− PrHb,0 [B]− 21−κ − 1

2

=
1

2
PrH0,0 [b′ = 0] +

1

2
PrH1,0 [b′ = 1]− 1

2
PrH0,0 [B]− 1

2
PrH1,0 [B]− 21−κ − 1

2

=
1

2
PrH1,0 [b′ = 1]− 1

2
PrH0,0 [b′ = 1]− 1

2
PrH0,0 [B]− 1

2
PrH1,0 [B]− 21−κ.

Rearranging the inequality concludes the proof of the first part of the claim.
The second part of the claim can be proven analogously, where A′′DDH sets ek2 ← X instead

of ek1 ← X. Since it therefore has dk1, which is the key used by the decryption algorithm, the
decryption oracle can be emulated perfectly, even if B occurs. ♦

Using Claims 1

.

and 2

.

, we get

AdvsPKE-IND-CCA
sPKE,A ≤ 2 · PrExp

sPKE-IND-CCA
sPKE,A [b′ = b]− 1

= 2

(
1

2
· PrExp

sPKE-IND-CCA
sPKE,A [b′ = 0 | b = 0] +

1

2
· PrExp

sPKE-IND-CCA
sPKE,A [b′ = 1 | b = 1]

)
− 1

= PrExp
sPKE-IND-CCA
sPKE,A [b′ = 1 | b = 1]− PrExp

sPKE-IND-CCA
sPKE,A [b′ = 1 | b = 0]

= PrExp
sPKE-IND-CCA
sPKE,A [b′ = 1 | b = 1]− PrH1,1 [b′ = 1]

+ PrH1,1 [b′ = 1]− PrH1,0 [b′ = 1] + PrH1,0 [b′ = 1]− PrH0,0 [b′ = 1]

+ PrH0,0 [b′ = 1]− PrExp
sPKE-IND-CCA
sPKE,A [b′ = 1 | b = 0]

≤ AdvNIZK-ZK
NIZK,A′ZK

+ AdvNIZK-ZK
NIZK,A′′ZK

+ 2 · AdvDDH
g,A′DDH

+ 2 · AdvDDH
g,A′′DDH

+ PrH0,0 [B] + PrH1,0 [B] + 23−κ.

Let AZK be the adversary that runs A′ZK and A′′ZK with probability 1/2 each, let ADDH run
A′DDH and A′′DDH with probability 1/2 each, let Asnd run A0,0

snd and A1,0
snd with probability 1/2

each, and let ASig run A0,0
Sig and A1,0

Sig with probability 1/2 each. Combing the result above with
equation (9)

.

, we can then conclude

AdvsPKE-IND-CCA
sPKE,A ≤ 4 · AdvDDH

g,ADDH
+ 2 · AdvNIZK-ZK

NIZK,AZK
+ 2qSD · AdvNIZK-sim-snd

NIZK,Asnd

+ 2 · AdvSig-EUF-CMA
Sig,ASig

+
4(qG + 1)2 + 8

2κ − 1
.

We finally show that sPKE is IK-CCA secure.

Lemma C.2. Let sPKE be the scheme from Section 5.2

.

and let A = (A1,A2) be a pair of
probabilistic algorithms such that A1 and A2 together make at most qG queries to OG and at
most qSD queries to OSD0 and OSD1 combined. Then, there exist adversaries ADDH, AZK, Asnd,
APKE, and ASig (which are all roughly as efficient as emulating an execution of ExpsPKE-IK-CCA

sPKE,A )
such that

AdvsPKE-IK-CCA
sPKE,A ≤ 8 · AdvDDH

g,ADDH
+ 2 · AdvNIZK-ZK

NIZK,AZK
+ 8qSD · AdvNIZK-sim-snd

NIZK,Asnd

+ 2 · AdvPKE-IND-CPA
PKE,APKE

+ 8 · AdvSig-EUF-CMA
Sig,ASig

+
16(qG + 2)2 + 32

2κ − 1
.
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Proof. We assume without loss of generality that A2 does not query the challenge ciphertext c∗

to any of its decryption oracles OSD0 or OSD1 , since doing so can only decrease the advantage.
We define hybrid experiments H0 to H5 as follows:

• H0 is identical to ExpsPKE-IK-CCA
sPKE,A , except that the common reference string crs is obtained

via (crs, τ) ← S1(1
κ) (instead of an invocation of NIZK.Gen), and the proof π in the

challenge ciphertext c∗ is simulated using S2.

• H1 is identical to H0, but when A1 outputs (m, st), the hybrid computes cσ not as an
encryption of (ek b,1, ek b,2, σb), but as the encryption of 0`, where ` is the length of the
encoding of (ek b,1, ek b,2, σb) (where the encoding needs to be chosen such that this length
is equal for all keys).

• H2 is identical to H1, except that for the generation of the challenge ciphertext c∗, the
key ek0,1 is replaced by gd0,1 for a freshly sampled d0,1 � Z∗p.

• H3 is identical to H2, except that for the generation of the challenge ciphertext c∗, the
key ek0,2 is replaced by gd0,2 for a freshly sampled d0,2 � Z∗p.

• H4 is identical to H3, except that for the generation of the challenge ciphertext c∗, the
key ek1,1 is replaced by gd1,1 for a freshly sampled d1,1 � Z∗p.

• H5 is identical to H4, except that for the generation of the challenge ciphertext c∗, the
key ek1,2 is replaced by gd1,2 for a freshly sampled d1,2 � Z∗p.

Note that the view of A in H5 is independent from the bit b, which implies

PrH5 [b′ = b] =
1

2
. (10)

It can be shown as in the proof of Lemma C.1

.

that there exist an adversary AZK such that

PrExp
sPKE-IK-CCA
sPKE,A [b′ = b]− PrH0 [b′ = b] = AdvNIZK-ZK

NIZK,AZK
. (11)

Claim 1. There exists an adversary APKE such that

PrH0 [b′ = b]− PrH1 [b′ = b] = AdvPKE-IND-CPA
PKE,APKE

.

Proof of claim. When APKE obtains a public key ek from the CPA challenger, it generates all
remaining keys itself and emulates H0 (or H1) toward A. Note that APKE never needs to decrypt
any of the ciphertexts cσ in the experiment and thus, the missing decryption key is not needed for
the emulation. When A1 outputs (m, st), APKE gives

(
0`, (ek b,1, ek b,2, σb)

)
to its CPA challenger

to obtain a ciphertext cσ, where ` is the length of the encoding of (ek b,1, ek b,2, σb). The rest is
done as in H0. When A2 returns a bit b′, APKE returns b′′ = 1 if b′ = b, and b′′ = 0 if b′ 6= b.

Note that if the CPA challenger chooses the bit bCPA = 0, cσ is an encryption of 0`, as in H1,
and if bCPA = 1, cσ is as in H0. Hence,

Pr
ExpPKE-IND-CPA

PKE,APKE [b′′ = 1 | bCPA = 0] = PrH1 [b′ = b],

Pr
ExpPKE-IND-CPA

PKE,APKE [b′′ = 1 | bCPA = 1] = PrH0 [b′ = b].
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We can therefore conclude

AdvPKE-IND-CPA
PKE,APKE

= 2 · Pr
ExpPKE-IND-CPA

PKE,APKE [b′′ = bCPA]− 1

= Pr
ExpPKE-IND-CPA

PKE,APKE [b′′ = 0 | bCPA = 0] + Pr
ExpPKE-IND-CPA

PKE,APKE [b′′ = 1 | bCPA = 1]− 1

= Pr
ExpPKE-IND-CPA

PKE,APKE [b′′ = 1 | bCPA = 1]− Pr
ExpPKE-IND-CPA

PKE,APKE [b′′ = 1 | bCPA = 0]

= PrH0 [b′ = b]− PrH1 [b′ = b]. ♦

We define the event B analogous to the events in the proofs of Lemmata 5.10

.

and C.1

.

. As
there, one can show for i ∈ {0, . . . , 5} that there exist adversaries Aisnd and AiSig such that

PrHi [B] ≤ qSD · AdvNIZK-sim-snd
NIZK,Aisnd

+ AdvSig-EUF-CMA
Sig,AiSig

+
2(qG + 2)2

2κ − 1
. (12)

Claim 2. There exist adversaries A1
DDH, . . . ,A4

DDH such that for i ∈ {1, 3}

PrHi [b′ = b]− PrHi+1 [b′ = b] ≤ AdvDDH
g,AiDDH

+ PrHi [B] + PrHi+1 [B] + 22−κ,

and for i ∈ {2, 4}
PrHi [b′ = b]− PrHi+1 [b′ = b] ≤ AdvDDH

g,AiDDH
+ 22−κ.

Proof of claim. On input (X,Y, T ), A1
DDH sets ek0,1 ← X, A2

DDH sets ek0,2 ← X, A3
DDH sets

ek1,1 ← X, and A4
DDH sets ek1,2 ← X. All adversaries generate the remaining keys themselves

and emulate Hi (or Hi+1) toward A. To emulate the decryption oracles, A1
DDH and A3

DDH decrypt
the second ciphertext component instead of the first one; A2

DDH and A4
DDH can emulate all oracles

perfectly. As in the proof of Lemma 5.10

.

, OSD is also emulated perfectly by A1
DDH and A3

DDH if
the event B does not occur. When A1 returns (m, st) and if b = 0, then A1

DDH samples r � Z∗p,
sets

c1 ←
(
Y r, T r, Y, T ·m

)
,

and generates the remaining ciphertext components as in the real experiment. The other
adversaries generate the ciphertext components analogously. When A2 returns a bit b′, then
AiDDH returns d = 1 if b′ = b and d = 0 if b′ 6= b for all i ∈ {1, . . . , 4}.

Consider the case i = 1 and note that if (X,Y, T ) is a DDH triple, we have Y = gs and
T = Xs for a uniform s ∈ Zp, and thus, if b = 0,

c1 =
(
Y r, Xs·r, Y,Xs ·m

)
=
(
gs·r, (ek0,1)

s·r, gs, (ek0,1)
s ·m

)
.

If X 6= 1 6= Y , this corresponds to an encryption of m under ek0,1, as in H1. On the other
hand, if (X,Y, T ) are three uniform group elements and X 6= 1 6= Y , then there are (uniformly
distributed) s, d0,1 ∈ Z∗p such that Y = gs and T = gs·d0,1 . Hence, we have in this case

c1 =
(
gs·r, gs·d0,1·r, gs, gs·d0,1 ·m

)
=
(
gs·r,

(
gd0,1

)s·r
, gs,

(
gd0,1

)s ·m),
which corresponds to an encryption under the fresh key gd0,1 , as in H2. Further note that if
b = 1, the emulation, H1, and H2 are all equivalent. We therefore have

Pr
DDHreal

g,A1
DDH [d = 1 ∩ ¬B | X 6= 1 6= Y ] = PrH1 [b′ = b ∩ ¬B],

Pr
DDHrand

g,A1
DDH [d = 1 ∩ ¬B | X 6= 1 6= Y ] = PrH2 [b′ = b ∩ ¬B].
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As in the proof of Lemma C.1

.

, we obtain

Pr
DDHreal

g,A1
DDH [d = 1] ≥ PrH1 [b′ = b]− PrH1 [B]− 21−κ.

Moreover,

Pr
DDHrand

g,A1
DDH [d = 1] = Pr

DDHrand
g,A1

DDH [d = 1 ∩ ¬B | X 6= 1 6= Y ] · Pr
DDHrand

g,A1
DDH [X 6= 1 6= Y ]

+ Pr
DDHrand

g,A1
DDH [d = 1 ∩ (B ∪ [X = 1 ∨ Y = 1])]

≤ PrH2 [b′ = b ∩ ¬B] + Pr
DDHrand

g,A1
DDH [B] + Pr

DDHrand
g,A1

DDH [X = 1 ∨ Y = 1]

≤ PrH2 [b′ = b] + Pr
DDHrand

g,A1
DDH [B] + 21−κ.

Since the probability of B in DDHrand
g,A1

DDH
is equal to its probability in H2, we conclude

AdvDDH
g,A1

DDH
= Pr

DDHreal
g,A1

DDH [d = 1]− Pr
DDHrand

g,A1
DDH [d = 1]

≥ PrH1 [b′ = b]− PrH2 [b′ = b]− PrH1 [B]− PrH2 [B]− 22−κ.

The proofs for i ∈ {2, 3, 4} are analogous, where for i ∈ {2, 4}, the occurrence of B does not
matter since the decryption oracle can always be emulated perfectly. ♦

Using equation (11)

.

, Claims 1

.

and 2

.

, and equation (10)

.

, we obtain

PrExp
sPKE-IK-CCA
sPKE,A [b′ = b] = PrExp

sPKE-IK-CCA
sPKE,A [b′ = b]− PrH0 [b′ = b] + PrH0 [b′ = b]− PrH1 [b′ = b]

+
4∑
i=1

(
PrHi [b′ = b]− PrHi+1 [b′ = b]

)
+ PrH5 [b′ = b]

≤ AdvNIZK-ZK
NIZK,AZK

+ AdvPKE-IND-CPA
PKE,APKE

+
4∑
i=1

(
AdvDDH

g,AiDDH
+ PrHi [B]

)
+ 24−κ +

1

2
.

For the adversary Asnd that runs A1
snd, . . . ,A4

snd with probability 1/4 each, and the adversary ASig

that runs A1
Sig, . . . ,A4

Sig with probability 1/4 each, we obtain using equation (12)

.

,

4∑
i=1

PrHi [B] ≤ 4qSD · AdvNIZK-sim-snd
NIZK,Asnd

+ 4 · AdvSig-EUF-CMA
Sig,ASig

+
8(qG + 2)2

2κ − 1
.

Further defining ADDH as running A1
DDH, . . . ,A4

DDH with probability 1/4 each yields

AdvsPKE-IK-CCA
sPKE,A ≤ 2 · PrExp

sPKE-IK-CCA
sPKE,A [b′ = b]− 1

≤ 2 · AdvNIZK-ZK
NIZK,AZK

+ 2 · AdvPKE-IND-CPA
PKE,APKE

+ 8 · AdvDDH
g,ADDH

+ 8qSD · AdvNIZK-sim-snd
NIZK,Asnd

+ 8 · AdvSig-EUF-CMA
Sig,ASig

+
16(qG + 2)2

2κ − 1
+ 25−κ.

Observing that 25−κ ≤ 32
2κ−1 concludes the proof.
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D Remaining Security Proofs of the ACE Scheme for Equality

After privacy, which was shown in Lemma 6.3

.

, we prove anonymity, which can be shown similarly.
We provide a proof for strong anonymity. Note, however, that for the equality policy, strong
anonymity does not provide more guarantees than weak anonymity because anyone who can
decrypt directly learns that the sender role is equal to the receiver role.

Lemma D.1. Let ACE be the scheme from above, let A = (A1,A2) be an attacker on the
anonymity such that A1 makes at most qS queries of the form (·, sen) to the oracle OG, and
at most qD queries to OSD. Then, there exist probabilistic algorithms APRF, AZK, and AsPKE

(which are all roughly as efficient as emulating an execution of ExpACE-PRV-ANON-CCA
ACE,A ) such that

AdvACE-sANON-CCA
ACE,A ≤ 2 · AdvPRFF,APRF

+ 2 · AdvNIZK-ZK
NIZK,AZK

+ (qS + qD + 1)2 · AdvsPKE-IK-CCA
sPKE,AsPKE

.

Proof. We assume without loss of generality thatA ensuresm0 = m1 and P (i0, j) = P (i1, j) for all
j ∈ J , since doing otherwise can only decrease the advantage. Since we have P (i, j) = 1⇔ i = j,
the latter condition implies that if i0 ∈ J or i1 ∈ J , then i0 = i1. In case i0 = i1 and m0 = m1,
A cannot have positive advantage. Hence, we can further assume without loss of generality
that i0 /∈ J and i1 /∈ J . As in the proof of Lemma 6.3

.

, let H0 := ExpACE-PRV-ANON-CCA
ACE,A , let H1

be as H0 where FK is replaced by a truly uniform random function U , and let H2 be as H1,
where crsNIZK ← NIZK.Gen(1κ) in ACE.Setup is replaced by

(
crsNIZK, τNIZK

)
← SNIZK

1 (1κ) and
for the generation of the challenge ciphertext c∗, πNIZK ← NIZK.Prove

(
crsNIZK, x, w

)
in ACE.Enc

is replaced by πNIZK ← SNIZK
2

(
crsNIZK, τNIZK, x

)
. An identical proof as the one in the proof of

Lemma 6.3

.

shows that there exist APRF and AZK such that

PrH0
[
b′ = b

]
− PrH2

[
b′ = b

]
= AdvPRFF,APRF

+ AdvNIZK-ZK
NIZK,AZK

.

We now transform A to a winner AsPKE for the anonymity game for the scheme sPKE. The
reduction is similar to the one in the proof of Lemma 6.3

.

, but AsPKE has to guess both i0 and i1,
which is why we loose the quadratic factor (qS + qD + 1)2. On input (spsPKE, ek sPKE0 , ek sPKE1 ),
AsPKE initializes iq0 , iq1 ← ⊥, kq ← 1, chooses q0, q1 � {0, . . . , qS + qD} uniformly at ran-
dom, runs

(
vkSig, skSig

)
← Sig.Gen(1κ), and

(
crsNIZK, τNIZK

)
← SNIZK

1 (1κ), and gives spACE :=(
spsPKE, vkSig, crsNIZK

)
to A1. It emulates the oracles for A1 as follows.

OG(·, ·): On query (i, sen), if kq /∈ {q0, q1} and i /∈ {iq0 , iq1}, then generate an encryption
key ekACEi :=

(
vkSig, ek sPKEi , vkSigi , skSigi , σSigi , crsNIZK

)
as H2 does, where

(
ek sPKEi , dk sPKEi

)
is obtained via OG and remembered for future queries. If kq = ql or i = iql for some
l ∈ {0, 1}, replace ek sPKEi by ek sPKEl (by ek sPKE0 if q0 = q1) and set iql ← i. In both cases,
set kq ← kq + 1 at the end. On query (j, rec), obtain a decryption key from OG and
remember it for later.

OSD(·, ·): On query
(
j, c =

(
c̃, πNIZK

))
, if kq /∈ {q0, q1} and j /∈ {iq0 , iq1}, then execute c′ ←

ACE.San(spACE, c), generate a decryption key dkACEj as above, decrypt c′ using dkACEj ,
and return the resulting message. If kq = ql or j = iql for some l ∈ {0, 1}, set iql ← j
and use the oracle OSDl of the IK-CCA experiment to obtain a decryption m of c̃. If
NIZK.Ver

(
crsNIZK, x :=

(
vkSig, c̃,

)
, πNIZK

)
= 1, return m, otherwise, return ⊥. In all cases,

set kq ← kq + 1 at the end.

57



When A1 returns (m0,m1, i0, i1, st), AsPKE outputs m0 to the challenger of the anonymity ex-
periment to obtain a challenge ciphertext c̃∗. It then runs SNIZK

2

(
crsNIZK, τNIZK, x :=

(
vkSig, c̃∗

))
,

and gives st and the ciphertext c∗ :=
(
c̃∗, πNIZK

)
to A2. It emulates the oracles for A2 as follows:

OG(·, ·): On query (i, sen), if i /∈ {i0, i1}, then generate an encryption key ekACEi :=
(
vkSig,

ek sPKEi , vkSigi , skSigi , σSigi , crsNIZK
)
as H2 does, where

(
ek sPKEi , dk sPKEi

)
is obtained via OG

and remembered for future queries. If i = iql for some l ∈ {0, 1}, replace ek sPKEi by ek sPKEl .
On query (j, rec), obtain a decryption key as before.

OSD∗(·, ·): On query
(
j, c =

(
c̃, πNIZK

))
, run ACE.DMod(spACE, c∗, c). If the output is 1, return

test. Otherwise, if j /∈ {i0, i1}, run c′ ← ACE.San(spACE, c), generate a decryption key
dkACEj as above, decrypt c′ using dkACEj , and return the resulting message. If j = iql for
some l ∈ {0, 1}, use the oracle OSDl of the IK-CCA experiment to obtain a decryption m
of c̃. If NIZK.Ver

(
crsNIZK, x :=

(
vkSig, c̃,

)
, πNIZK

)
= 1, return m, otherwise, return ⊥.

Note that AsPKE never queries any of the decryption oracles of the IK-CCA experiment on c̃∗

because we return test whenever this would be necessary. Denote by Q the event that for all
l ∈ {0, 1} we have either iql = il, or ql = 0 and A1 does not make the query (il, sen) to OG and
no queries for role il to OSD. When A2 returns a bit b′ and Q holds, AsPKE returns the same
bit b′′ ← b′, if ¬Q, AsPKE returns a uniform bit b′′ � {0, 1}.

Let b̃ be the bit chosen by the IK-CCA experiment. Note that if Q occurs, the view of A is
identical to the one in H2 with b = b̃. This implies

Pr
ExpsPKE-IK-CCA

sPKE,AsPKE

[
b′′ = b̃

∣∣ Q] = PrH2
[
b′ = b

]
.

Using that the probability of Q is 1/(qS + qD + 1)2, it follows as in the proof of Lemma 6.3

.

that

AdvACE-sANON-CCA
ACE,A = 2 · AdvPRFF,APRF

+ 2 · AdvNIZK-ZK
NIZK,AZK

+ (qS + qD + 1)2 · AdvsPKE-IK-CCA
sPKE,AsPKE

.

We next prove sanitization security of our scheme.

Lemma D.2. Let ACE be the scheme from above, and let A = (A1,A2) be an attacker on the
sanitization security such that A1 makes at most qS1 queries of the form (·, sen) and at most qR1

queries of the form (·, rec) to the oracle OG, and at most qD1 queries to OSD, and A2 makes at
most qR2 queries of the form (·, rec) to the oracle OG. Then, there exist probabilistic algorithms
APRF, AZK1, AZK2, ASig, AsPKE, and Arob (which are all roughly as efficient as emulating an
execution of ExpACE-SAN-CCA

ACE,A ) such that

AdvACE-SAN-CCA
ACE,A ≤ 2 · AdvPRFF,APRF

+ 2 · AdvNIZK-ext1
NIZK,AZK1

+ 4 · AdvNIZK-ext2
NIZK,AZK2

+ 4 · AdvSig-EUF-CMA
Sig,ASig

+ (qS1 + qR1 + qD1)2 · AdvsPKE-SAN-CCA
sPKE,AsPKE

+ 4(qR1 + qR2) · AdvsPKE-USROB
sPKE,Arob

.

Proof. Let H0 := ExpACE-SAN-CCA
ACE,A , let H1 be as H0 where FK is replaced by a truly uniform

random function U , and let H2 be as H1, where crsNIZK ← NIZK.Gen(1κ) in ACE.Setup is
replaced by

(
crsNIZK, ξNIZK

)
← ENIZK

1 (1κ). Let WACE denote the event that A wins, i.e.,

WACE :=
[
b′ = b ∧ c′0 6= ⊥ 6= c′1 ∧ ∀j ∈ J m0,j = m1,j = ⊥

]
.

Similarly as in the proof of Lemma 6.3

.

, it can be shown that there exist APRF and AZK1 such
that

PrH0 [WACE]− PrH2 [WACE] = AdvPRFF,APRF
+ AdvNIZK-ext1

NIZK,AZK1
. (13)
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Let H3 be identical to H2 except that after A1 returns
(
c0 =

(
c̃0, π

NIZK
0

)
, c1 =

(
c̃1, π

NIZK
1

)
, st
)
,

H3 executes for b̃ ∈ {0, 1}

wb̃ :=
(
ek sPKEib̃

,mb̃, rb̃, vk
Sig
ib̃
, σSigib̃

, σSigcb̃

)
← ENIZK

2

(
crsNIZK, ξNIZK, xb̃ :=

(
vkSig, c̃b̃

)
, πNIZK
b̃

)
.

We clearly have
PrH3 [WACE] = PrH2 [WACE]. (14)

Let Vb̃ :=
[
NIZK.Ver

(
crsNIZK, xb̃, π

NIZK
b̃

)
= 1
]
and let BE be the event that (at least) one of the

extractions fail, i.e.,

BE :=
[
(V0 ∧ (x0, w0) /∈ R) ∨ (V1 ∧ (x1, w1) /∈ R)

]
.

If BE occurs, the knowledge extraction of NIZK is broken. To prove this, we define AZK2 as
follows. On input crsNIZK, it emulates an execution of H3, where in ACE.Setup, crsNIZK is used
instead of generating it. When A1 returns (c0, c1, st), AZK2 flips a coin b̃� {0, 1} and returns(
xb̃, π

NIZK
b̃

)
. If the b̃’s extraction fails, AZK2 wins the extraction game. Hence,

PrH3 [BE ] ≤ 2 · AdvNIZK-ext2
NIZK,AZK2

. (15)

For b̃ ∈ {0, 1}, let BS,b̃ be the event that (xb̃, wb̃) ∈ R and ek sPKEib̃
is not contained in an answer

from OG to A1, and let BS be the union of BS,0 and BS,1. We next show that if BS occurs, the
adversary found a forgery for the signature scheme.

Claim 1. There exists a probabilistic algorithm ASig such that

PrH3 [BS ] ≤ 2 · AdvSig-EUF-CMA
Sig,ASig

. (16)

Proof of claim. On input vkSig, ASig emulate an execution of H3, where vkSig is used in mskACE

and spACE. Queries (i, sen) by A1 to the oracle OG are answered by executing ACE.Gen (with
FK replaced by U) where σSigi is generated using the signing oracle of ExpSig-EUF-CMA

E,A . After

extracting w0 and w1, ASig flips a coin b̃ � {0, 1} and returns
([

ek sPKEib̃
, vkSigib̃

]
, σSigib̃

)
. If BS,b̃

occurs,
[
ek sPKEib̃

, vkSigib̃

]
was not queried to the signing oracle and (xb̃, wb̃) ∈ R. The latter implies

that σSigib̃ is a valid signature and hence ASig successfully forged a signature. We conclude

PrH3 [BS ] ≤ 2 ·
(

1

2
PrH3 [BS,0] +

1

2
PrH3 [BS,1]

)
= 2 · AdvSig-EUF-CMA

Sig,ASig
. ♦

Let H4 be identical to H3 with the difference that we replace for k ∈ {0, 1} and j ∈ J ,
mk,j ← ACE.Dec

(
ACE.Gen(msk , j, rec), c′k

)
by

mk,j ←

{
mk, ek sPKEj = ek sPKEik

for
(
ek sPKEj , dk sPKEj

)
= sPKE.Gen

(
msk sPKE;U([j, 0])

)
,

⊥, else,
(17)

where ek sPKEik
are the extracted keys. Note that if Vk, ¬BE , and ¬BS occur, we have c′k =

San(spsPKE, c̃k), c̃k = sPKE.Enc
(
ek sPKEik

,mk; rk
)
, and ek sPKEik

was generated by OG. Hence,
for j ∈ J with ek sPKEj = ek sPKEik

, we have by the correctness of the sPKE scheme that
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ACE.Dec
(
ACE.Gen(msk , j, rec), c′k

)
= mk, i.e., mk,j = mk in both H3 and H4. For other

j ∈ J , decryption only yields a message different from ⊥ if robustness of the sPKE scheme is
violated. Since |J | ≤ qR1 + qR2 , this implies for V := V0 ∩ V1,

PrH3 [WACE | V ∩¬BE∩¬BS ]−PrH4 [WACE | V ∩¬BE∩¬BS ] ≤ 2(qR1+qR2)AdvsPKE-USROB
sPKE,Arob

, (18)

where Arob emulates the experiment and outputs c̃k for a uniformly chosen k ∈ {0, 1}, i such
that the i-th query to the key-generation oracle yields ek sPKEik

, and a uniformly chosen j.6

.

We finally construct an adversary AsPKE against the sanitization security of sPKE. On
input (spsPKE, ek sPKE0 , ek sPKE1 ), AsPKE initializes iq0 , iq1 ← ⊥, kq ← 1, chooses distinct q0, q1 �
{1, . . . , qS1 +qR1 +qD1} uniformly at random, executes

(
vkSig, skSig

)
← Sig.Gen(1κ), and

(
crsNIZK,

ξNIZK
)
← ENIZK

1 (1κ), and gives spACE :=
(
spsPKE, vkSig, crsNIZK

)
to A1. It emulates the oracles

for A1 as follows.

OG(·, ·): On query (i, sen), if kq /∈ {q0, q1} and i /∈ {iq0 , iq1}, generate an encryption key(
vkSig, ek sPKEi , skSigi , σSigi , crsNIZK

)
as H4, where

(
ek sPKEi , dk sPKEi

)
is obtained via OG and

remembered for future queries. If kq = ql or i = iql for some l ∈ {0, 1}, replace ek sPKEi by
ek sPKEl and set iql ← i. In both cases, set kq ← kq + 1 at the end.

On query (j, rec), if kq /∈ {q0, q1} and j /∈ {iq0 , iq1}, obtain a decryption key from OG,
remember it, and set kq ← kq + 1. If kq = ql or j = iql for some l ∈ {0, 1}, then return ⊥
and set kq ← kq + 1.

OSD(·, ·): On query
(
j, c =

(
c̃, πNIZK

))
, if kq /∈ {q0, q1} and j /∈ {iq0 , iq1}, then execute c′ ←

ACE.San(spACE, c), generate a decryption key dkACEj as above, decrypt c′ using dkACEj , and
return the resulting message. If kq = ql or j = iql for some l ∈ {0, 1}, set iql ← j, if
NIZK.Ver

(
crsNIZK, x :=

(
vkSig, c̃,

)
, πNIZK

)
= 0, return ⊥, otherwise, use the oracle OSDl of

the sPKE-sanitization experiment to obtain a decryption of c̃ and return it. In all cases,
set kq ← kq + 1 at the end.

When A1 returns
(
c0 =

(
c̃0, π

NIZK
0

)
, c1 =

(
c̃1, π

NIZK
1

)
, st
)
, AsPKE verifies the proofs πNIZK0 and

πNIZK
1 and extracts the witnesses to check the events V , BE , and BS . Denote by Q the event that

ek sPKEi0 , ek sPKEi1 ∈ {ek sPKE0 , ek sPKE1 }, where ek sPKEi0 , ek sPKEi1 are the extracted keys. Note that if V ,
¬BE , and ¬BS occur, both ek sPKEi0 and ek sPKEi1 have been returned by OG to A1. This implies

Pr
ExpsPKE-SAN-CCA

sPKE,AsPKE [Q | V ∩ ¬BE ∩ ¬BS ] ≥ 1/(qS1 + qR1 + qD1)2. (19)

If Q, V , ¬BE , and ¬BS occur, AsPKE returns (c̃0, c̃1) to the challenger of the sPKE-sanitization
experiment to obtain the sanitized ciphertext c′

b̃
. It then gives

(
st , c′

b̃

)
to A2 and emulates the

oracles as above. After A2 returned the bit b′, AsPKE returns b′′ ← b′. If Q∩V ∩¬BE ∩¬BS does
not occur, AsPKE runs c̄← sPKE.Enc(ek sPKE0 , m̄) for an arbitrary fixed message m̄ and returns
(c0 := c̄, c1 := c̄) to the challenger. After receiving back a sanitized ciphertext c′

b̃
, it returns a

uniform bit b′′ � {0, 1}.
Let WsPKE be the event that AsPKE wins, i.e.,

WsPKE :=
[
b′′ = b̃ ∧ ∃j, j′ ∈ {0, 1} msPKE

0,j 6= ⊥ 6= msPKE
1,j′ )

)]
,

6Note that robustness is only defined for encryption and decryption keys generated by sPKE.Gen. Hence, it is
important to also condition on ¬BS .
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where the messages refer to the ones generated by ExpsPKE-SAN-CCA
sPKE,AsPKE

. Note that ifQ∩V ∩¬BE∩¬BS
does not occur, we have msPKE

0,0 = msPKE
1,0 = m̄ 6= ⊥ by the correctness of sPKE, and thus

Pr
ExpsPKE-SAN-CCA

sPKE,AsPKE [WsPKE | ¬(Q ∩ V ∩ ¬BE ∩ ¬BS)] =
1

2
. (20)

Next consider the case that Q∩V ∩¬BE ∩¬BS occurs. In this case, the view of A is identical to
the one in H4 with b = b̃, as long as the emulated OG never returns ⊥. Moreover, if A wins, we
have mH4

0,j = mH4
1,j = ⊥ for all j ∈ JH4 , where the messages here refer to the ones in H4, generated

according to (17

.

), and JH4 is the set of all j such that A1 or A2 issued the query (j, rec) to
the oracle OG. Therefore, OG is never gets a query for which it returns ⊥ in this case. The
event Q∩V ∩¬BE implies that the ciphertexts are encryptions of some message under ek sPKE0 or
ek sPKE1 . Correctness of sPKE now implies that msPKE

0,0 6= ⊥ 6= msPKE
1,0 , i.e., the winning condition

for AsPKE is satisfied. We can conclude that

Pr
ExpsPKE-SAN-CCA

sPKE,AsPKE [WsPKE | Q ∩ V ∩ ¬BE ∩ ¬BS ] ≥ PrH4 [WACE | V ∩ ¬BE ∩ ¬BS ]. (21)

Let
pG := Pr

ExpsPKE-SAN-CCA
sPKE,AsPKE [Q ∩ V ∩ ¬BE ∩ ¬BS ].

Putting our results together, we obtain

Pr
ExpsPKE-SAN-CCA

sPKE,AsPKE [WsPKE] = Pr
ExpsPKE-SAN-CCA

sPKE,AsPKE [WsPKE | Q ∩ V ∩ ¬BE ∩ ¬BS ] · pG

+ Pr
ExpsPKE-SAN-CCA

sPKE,AsPKE [WsPKE | ¬(Q ∩ V ∩ ¬BE ∩ ¬BS)] · (1− pG)

(20

.

)
= Pr

ExpsPKE-SAN-CCA
sPKE,AsPKE [WsPKE | Q ∩ V ∩ ¬BE ∩ ¬BS ] · pG +

1

2
(1− pG).

This implies

Pr
ExpsPKE-SAN-CCA

sPKE,AsPKE [WsPKE | Q ∩ V ∩ ¬BE ∩ ¬BS ] =
1

pG

[
Pr

ExpsPKE-SAN-CCA
sPKE,AsPKE [WsPKE]− 1

2
(1− pG)

]
=

1

2 pG
· AdvsPKE-SAN-CCA

sPKE,AsPKE
+

1

2
.

(22)

Furthermore,

AdvACE-SAN-CCA
ACE,A = 2 · PrH0 [WACE]− 1

(13

.

),(14

.

)
= 2 ·

(
AdvPRFF,APRF

+ AdvNIZK-ext1
NIZK,AZK1

+ PrH3 [WACE]
)
− 1.

Since BE , ¬BE ∩BS , and ¬BE ∩ ¬BS partition the sample space, the law of total probability
implies

PrH3 [WACE] = PrH3 [WACE ∩BE ] + PrH3 [WACE ∩ ¬BE ∩BS ]

+ PrH3 [WACE ∩ ¬BE ∩ ¬BS ]

≤ PrH3 [BE ] + PrH3 [BS ] + PrH3 [WACE ∩ ¬BE ∩ ¬BS ]

(15

.

),(16

.

)
≤ 2 · AdvNIZK-ext2

NIZK,AZK2
+ 2 · AdvSig-EUF-CMA

Sig,ASig
+ PrH3 [WACE ∩ ¬BE ∩ ¬BS ].
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Note that WACE implies c′0 6= ⊥ 6= c′1 and thus also V because if the verification fails, ACE.San
returns ⊥. Hence,

PrH3 [WACE ∩ ¬BE ∩ ¬BS ] = PrH3 [WACE ∩ V ∩ ¬BE ∩ ¬BS ]

= PrH3 [WACE | V ∩ ¬BE ∩ ¬BS ] · PrH3 [V ∩ ¬BE ∩ ¬BS ]

(18

.

)
≤
(

PrH4 [WACE | V ∩ ¬BE ∩ ¬BS ]︸ ︷︷ ︸
(21

.

)
≤ Pr

ExpsPKE-SAN-CCA
sPKE,AsPKE [WsPKE|Q∩V ∩¬BE∩¬BS ]

+ 2(qR1 + qR2) · AdvsPKE-USROB
sPKE,Arob

)
· PrH3 [V ∩ ¬BE ∩ ¬BS ]

(22

.

)
≤
(

1

2 pG
· AdvsPKE-SAN-CCA

sPKE,AsPKE
+

1

2
+ 2(qR1 + qR2) · AdvsPKE-USROB

sPKE,Arob

)
· PrH3 [V ∩ ¬BE ∩ ¬BS ].

Since PrH3 [V ∩ ¬BE ∩ ¬BS ] = Pr
ExpsPKE-SAN-CCA

sPKE,AsPKE [V ∩ ¬BE ∩ ¬BS ], we have

PrH3 [V ∩ ¬BE ∩ ¬BS ]

pG
=

Pr
ExpsPKE-SAN-CCA

sPKE,AsPKE [V ∩ ¬BE ∩ ¬BS ]

Pr
ExpsPKE-SAN-CCA

sPKE,AsPKE [Q ∩ V ∩ ¬BE ∩ ¬BS ]

=
(

Pr
ExpsPKE-SAN-CCA

sPKE,AsPKE [Q | V ∩ ¬BE ∩ ¬BS ]
)−1

(19

.

)
≤ (qS1 + qR1 + qD1)2.

Therefore,

PrH3 [WACE∩¬BE∩¬BS ] ≤ 1

2
(qS1+qR1+qD1)2·AdvsPKE-SAN-CCA

sPKE,AsPKE
+

1

2
+2(qR1+qR2)·AdvsPKE-USROB

sPKE,Arob
.

This implies

AdvACE-SAN-CCA
ACE,A ≤ 2 · AdvPRFF,APRF

+ 2 · AdvNIZK-ext1
NIZK,AZK1

+ 4 · AdvNIZK-ext2
NIZK,AZK2

+ 4 · AdvSig-EUF-CMA
Sig,ASig

+ (qS1 + qR1 + qD1)2 · AdvsPKE-SAN-CCA
sPKE,AsPKE

+ 4(qR1 + qR2) · AdvsPKE-USROB
sPKE,Arob

and concludes the proof.

We next prove non-detection of fresh encryptions, which directly follows from ciphertext
unpredictability of the underlying sPKE scheme.

Lemma D.3. Let ACE be the scheme from above and let A be an attacker on the non-detection
of fresh encryptions that makes at most q queries to the oracle OG. Then, there exist probabilistic
algorithms APRF and AsPKE (which are both roughly as efficient as emulating an execution of
ExpACE-NDTCT-FENC

ACE,A ) such that

AdvACE-NDTCT-FENC
ACE,A ≤ AdvPRFF,APRF

+ (q + 1) · AdvsPKE-UPD-CTXT
sPKE,AsPKE

.

Proof. Let H0 := ExpACE-NDTCT-FENC
ACE,A and H1 be as H0 where FK is replaced by a truly uniform

random function U . As in the proof of Lemma 6.3

.

, one can show that there exists APRF such
that

PrH0 [b = 1]− PrH1 [b = 1] = AdvPRFF,APRF
.

The adversary AsPKE on input
(
spsPKE, ek sPKE, dk sPKE

)
, sets iq0 ← ⊥, kq ← 1, chooses q0 �

{0, . . . , q} uniformly at random, runs
(
vkSig, skSig

)
← Sig.Gen(1κ), crsNIZK ← NIZK.Gen(1κ),
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and gives spACE :=
(
spsPKE, vkSig, crsNIZK

)
to A. It emulates the oracle OG for A1 as fol-

lows. On query (i, t), if kq 6= q0 and i 6= iq0 , then generate an encryption key ekACEi :=(
vkSig, ek sPKEi , vkSigi , skSigi , σSigi , crsNIZK

)
and a decryption key dkACEi := dk sPKEi as H1 does, where(

ek sPKEi , dk sPKEi

)
is obtained via OG and remembered for future queries. Return ekACEi if t = sen,

and dkACEi if t = rec. If kq = q0 or i = iq0 , replace ek sPKEi and dk sPKEi by ek sPKE and dk sPKE,
respectively, and set iq0 ← i. In both cases, set kq ← kq + 1 at the end. When A returns(
m, i, c =

(
c̃, πNIZK

))
, AsPKE returns

(
m, c̃

)
.

Let Q be the event that iq0 = i, or q0 = 0 and A does not make the query (i, sen) or (i, rec)
to OG. Note that the probability of Q is 1/(q + 1) and since b = ACE.DMod

(
spACE,

(
c̃, πNIZK

)
,(

c̃∗, πNIZK∗)) = 1 if and only if c̃∗ = c̃, we have

Pr
ExpsPKE-UPD-CTXT

sPKE,AsPKE [c = c∗ | Q] = PrH1 [b = 1].

Hence, we can conclude

AdvACE-NDTCT-FENC
ACE,A = PrH0

[
b = 1

]
= AdvPRFF,APRF

+ PrH1 [b = 1]

= AdvPRFF,APRF
+ Pr

ExpsPKE-UPD-CTXT
sPKE,AsPKE [c = c∗ | Q]

≤ AdvPRFF,APRF
+ (q + 1) · Pr

ExpsPKE-UPD-CTXT
sPKE,AsPKE [c = c∗]

= AdvPRFF,APRF
+ (q + 1) · AdvsPKE-UPD-CTXT

sPKE,AsPKE
.

We finally prove the uniform decryption and role-respecting properties.

Lemma D.4. Let ACE be the scheme from above and let A be an attacker on the uniform-
decryption security that makes at most qR queries of the form (·, rec) to the oracle OG. Then,
there exist probabilistic algorithms APRF, AZK1, AZK2, ASig, and Arob (which are all roughly as
efficient as emulating an execution of ExpACE-URR

ACE,A ) such that

AdvACE-UDEC
ACE,A ≤ AdvPRFF,APRF

+AdvNIZK-ext1
NIZK,AZK1

+AdvNIZK-ext2
NIZK,AZK2

+AdvSig-EUF-CMA
Sig,ASig

+ qR ·AdvsPKE-USROB
sPKE,Arob

.

Proof. Note that we can assume without loss of generality that A does not use the oracle OE
since obtaining encryption keys from OG does not decrease the advantage. Let H0 := ExpACE-URR

ACE,A
and let WUDec be the event that A wins the uniform-decryption game:

WUDec :=
[
∃j, j′ ∈ J mj 6= ⊥ 6= mj′ ∧ mj 6= mj′

]
.

As in the proof of Lemma D.2

.

, let H1 be as H0 with FK replaced by a uniform random function U ,
let H2 be as H1 with crsNIZK being generated by ENIZK

1 , and let H3 be as H2, but after A returns
c =

(
c̃, πNIZK

)
, a witness

w :=
(
ek sPKEiw ,mw, rw, vk

Sig
iw
, σSigiw , σ

Sig
c,w

)
for the statement x :=

(
vkSig, c̃

)
is extracted from the proof πNIZK by ENIZK

2 . We define the
events V :=

[
NIZK.Ver

(
crsNIZK, x, πNIZK

)
= 1

]
, BE :=

[
V ∧ (x,w) /∈ R

]
, and BS as the event

that (x,w) ∈ R and ek sPKEiw is not contained in an answer from OG to A. Is can be shown as in
the proof of Lemma D.2

.

that there exist APRF, AZK1 , AZK2 , and ASig such that

PrH0 [WUDec]− PrH3 [WUDec] = AdvPRFF,APRF
+ AdvNIZK-ext1

NIZK,AZK1
,

PrH3 [BE ] ≤ AdvNIZK-ext2
NIZK,AZK2

,

PrH3 [BS ] ≤ AdvSig-EUF-CMA
Sig,ASig

,
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where the last inequality uses that A does not query the oracle OE . Now let H4 be as H3 where
for j ∈ J , mj ← ACE.Dec

(
ACE.Gen(msk , j, rec), c′

)
is replaced by

mj ←

{
mw, ek sPKEj = ek sPKEiw for

(
ek sPKEj , dk sPKEj

)
= sPKE.Gen

(
msk sPKE;U([j, 0])

)
,

⊥, else.

One can show as in the proof of Lemma D.2

.

that there exists a probabilistic algorithm Arob such
that

PrH3 [WUDec | V ∩ ¬BE ∩ ¬BS ]− PrH4 [WUDec | V ∩ ¬BE ∩ ¬BS ] ≤ qR · AdvsPKE-USROB
sPKE,Arob

.

Note that A cannot win in H4 since if mj 6= ⊥ 6= mj′ , then mj = mw = mj′ . This implies that
PrH3 [WUDec | V ∩¬BE ∩¬BS ] ≤ qR AdvsPKE-USROB

sPKE,Arob
. Note that A can only win in H3 if V occurs

since otherwise c′ = ⊥ and consequently mj = ⊥ for all j ∈ J . We therefore obtain

PrH3 [WUDec] = PrH3 [WUDec ∩ V ∩BE ] + PrH3 [WUDec ∩ V ∩ ¬BE ∩BS ]

+ PrH3 [WUDec ∩ V ∩ ¬BE ∩ ¬BS ]

≤ PrH3 [BE ] + PrH3 [BS ] + PrH3 [WUDec | V ∩ ¬BE ∩ ¬BS ]

≤ AdvNIZK-ext2
NIZK,AZK2

+ AdvSig-EUF-CMA
Sig,ASig

+ qR · AdvsPKE-USROB
sPKE,Arob

.

Together with PrH0 [WUDec] − PrH3 [WUDec] = AdvPRFF,APRF
+ AdvNIZK-ext1

NIZK,AZK1
, this concludes the

proof.

Lemma D.5. Let ACE be the scheme from above and let A be an attacker on the role-respecting
security that makes at most qS queries of the form (·, sen) and at most qR queries of the form
(·, rec) to the oracle OG, and at most qE queries to the oracle OE. Then, there exist probabilistic
algorithms APRF, AZK1 , AZK2 , ASig, and Arob (which are all roughly as efficient as emulating an
execution of ExpACE-URR

ACE,A ) such that

AdvACE-RR
ACE,A ≤ AdvPRFF,APRF

+ AdvNIZK-ext1
NIZK,AZK1

+ AdvNIZK-ext2
NIZK,AZK2

+ (qE + 1) · AdvSig-EUF-CMA
Sig,ASig

+ qR · AdvsPKE-USROB
sPKE,Arob

+ (qS + qR + qE)2 · ColeksPKE.

Proof. Let H0, . . . ,H4, V :=
[
NIZK.Ver

(
crsNIZK, x, πNIZK

)
= 1
]
, and BE :=

[
V ∧ (x,w) /∈ R

]
for

the statement x :=
(
vkSig, c̃

)
and the extracted witness w :=

(
ek sPKEiw ,mw, rw, vk

Sig
iw
, σSigiw , σ

Sig
c,w

)
be

defined as in the proof of Lemma D.4

.

, and let WRR be the event that A wins the role-respecting
game:

WRR :=
[
c′ 6= ⊥ ∧ dct = false ∧ ¬

(
∃i ∈ I ∀j ∈ J (mj 6= ⊥ ↔ P (i, j) = 1)

)]
.

As in that proof, there exist APRF, AZK1 , and AZK2 such that

PrH0 [WRR]− PrH3 [WRR] = AdvPRFF,APRF
+ AdvNIZK-ext1

NIZK,AZK1
, (23)

and
PrH3 [BE ] ≤ AdvNIZK-ext2

NIZK,AZK2
. (24)
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Let EG be the event that the extracted key ek sPKEiw is contained in an answer from OG to A. One
can show similarly as in the proof of Lemma D.2

.

that there exists an algorithm Arob such that

PrH3 [WRR ∩ V ∩ ¬BE ∩ EG]− PrH4 [WRR ∩ V ∩ ¬BE ∩ EG] ≤ qR · AdvsPKE-USROB
sPKE,Arob

. (25)

We first show that if V , ¬BE , and EG occur in H4, A can only win if two encryption keys
generated by sPKE.Gen are equal, which happens only with negligible probability.

Claim 1. We have

PrH4 [WRR ∩ V ∩ ¬BE ∩ EG] ≤ (qS + qR + qE)2 · ColeksPKE.

Proof of claim. If V , ¬BE , and EG occur, then there is an i0 ∈ I such that ek sPKEi0 = ek sPKEiw for(
ek sPKEi0 , dk sPKEi0

)
= sPKE.Gen

(
msk sPKE;U([i0, 0])

)
. Using P (i, j) = 1 ⇔ i = j, we have that A

only wins if there exists j ∈ J\{i0} such thatmj 6= ⊥ or if i0 ∈ J andmi0 = ⊥. Because inH4,mj

for j ∈ J is equal to mw if ek sPKEj = ek sPKEiw for
(
ek sPKEj , dk sPKEj

)
= sPKE.Gen

(
msk sPKE;U([j, 0])

)
,

and ⊥ otherwise, we have mi0 6= ⊥ if i0 ∈ J . Moreover, for i0 6= j ∈ J , we have mj = ⊥ unless
ek sPKEj = ek sPKEi0 . This means that A can only win if sPKE.Gen generates the same encryption key
for the randomness values U([i0, 0]) and U([j, 0]) for some i0 6= j ∈ J . Since at most qS + qR + qE
key pairs are generated in the experiment, there are at most (qS + qR + qE)2 pairs of encryption
keys that could collide. For each such pair, the collision probability is bounded by ColeksPKE
because for i 6= i′, U([i, 0]) and U([i′, 0]) are independent and uniformly distributed. Hence, the
claim follows. ♦

Now let EE be the event that A made a query (i, ·) to OE such that ek sPKEi = ek sPKEiw

and vkSigi = vkSigiw for
(
ek sPKEi , dk sPKEi

)
= sPKE.Gen

(
msk sPKE;U([i, 0])

)
and

(
vkSigi , skSigi

)
=

Sig.Gen
(
1κ;U([i, 1])

)
. We next show that if A wins and V ∩ ¬BE ∩ ¬EG ∩ EE occurs, A forged

a signature on c̃.

Claim 2. There exists a probabilistic algorithm ASig1 such that

PrH3 [WRR ∩ V ∩ ¬BE ∩ ¬EG ∩ EE ] ≤ qE · AdvSig-EUF-CMA
Sig,ASig1

.

Proof of claim. On input vkSig∗, ASig1 initializes iq0 ← ⊥, kq ← 1, chooses q0 � {1, . . . , qE} uni-
formly at random, generates

(
spsPKE,msk sPKE

)
← sPKE.Setup(1κ),

(
vkSig, skSig

)
← Sig.Gen(1κ),

and
(
crsNIZK, ξNIZK

)
← ENIZK

1 (1κ) as H3, and gives spACE :=
(
spsPKE, vkSig, crsNIZK

)
to A. It

emulates the oracles for A as follows.

OG(·, ·): Generate the requested key exactly as H3 does and return it.

OE(·, ·): On query
(
i,m

)
, if kq 6= q0 and i 6= iq0 , generate an encryption key ekACEi as H3, encrypt

m using ekACEi , and return the resulting ciphertext. If kq = q0 or i = iq0 , set iq0 ← i, execute(
ek sPKEi , dk sPKEi

)
← sPKE.Gen

(
msk sPKE;U([i, 0])

)
, σSigi ← Sig.Sign

(
skSig,

[
ek sPKEi , vkSigi

]
;

U([i, 2])
)
, and set vkSigi := vkSig

∗. Then, sample randomness r and compute c̃ ←
sPKE.Enc

(
ek sPKEi ,m; r

)
, query the signing oracle on c̃ to obtain a signature σSigc , and

run

πNIZK ← NIZK.Prove
(
crsNIZK, x :=

(
vkSig, c̃

)
, w :=

(
ek sPKEi ,m, r, vkSigi , σSigi , σSigc

))
.

Finally, return the ciphertext c :=
(
c̃, πNIZK

)
. In all cases, set kq ← kq + 1 at the end.
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When A returns c =
(
c̃, πNIZK

)
, ASig1 extracts a witness

w :=
(
ek sPKEiw ,mw, rw, vk

Sig
iw
, σSigiw , σ

Sig
c,w

)
← ENIZK

2

(
crsNIZK, ξNIZK, x :=

(
vkSig, c̃

)
, πNIZK

)
.

It finally returns the forgery attempt
(
c̃, σSigc,w

)
.

Note that if A wins the role-respecting game, ACE.DMod
(
spACE, ĉ, c

)
= 0 for all ĉ that OE

has returned. Since ACE.DMod checks for equality of sPKE ciphertexts, this means that ASig1
has not issued the query c̃ to its signing oracle. Furthermore, if the extraction and verification
succeed, σSigc,w is a valid signature for c̃. Let Q be the event that ek sPKEiq0

= ek sPKEiw and vkSigiq0
= vkSigiw .

If Q and V ∩ ¬BE ∩ ¬EG ∩ EE occur, A has not requested ekACEiq0
from OG and hence ASig1

perfectly emulates H3. This implies

Pr
ExpSig-EUF-CMA

Sig,ASig1 [WSig | V ∩ ¬BE ∩ ¬EG ∩ EE ∩Q] ≥ PrH3 [WRR | V ∩ ¬BE ∩ ¬EG ∩ EE ],

where WSig denotes the event that ASig1 wins in the signature forgery game. We further have

Pr
ExpSig-EUF-CMA

Sig,ASig1 [Q | V ∩ ¬BE ∩ ¬EG ∩ EE ] = 1/qE .

This implies for pG := Pr
ExpSig-EUF-CMA

Sig,ASig1 [V ∩ ¬BE ∩ ¬EG ∩ EE ∩Q],

AdvSig-EUF-CMA
Sig,ASig1

= Pr
ExpSig-EUF-CMA

Sig,ASig1 [WSig] ≥ Pr
ExpSig-EUF-CMA

Sig,ASig1 [WSig | V ∩ ¬BE ∩ ¬EG ∩ EE ∩Q] · pG

≥ PrH3 [WRR | V ∩ ¬BE ∩ ¬EG ∩ EE ] · pG
= PrH3 [WRR ∩ V ∩ ¬BE ∩ ¬EG ∩ EE ] · pG

PrH3 [V ∩ ¬BE ∩ ¬EG ∩ EE ]
.

Since [V ∩ ¬BE ∩ ¬EG ∩ EE ] in H3 has the same probability as in ExpSig-EUF-CMA
Sig,ASig1

, we have

pG

PrH3 [V ∩ ¬BE ∩ ¬EG ∩ EE ]
= Pr

ExpSig-EUF-CMA
Sig,ASig1 [Q | V ∩ ¬BE ∩ ¬EG ∩ EE ] =

1

qE
,

which implies the claim. ♦

Finally, we show that if A wins and V ∩ ¬BE ∩ ¬EG ∩ ¬EE occurs, A forged a signature on[
ek sPKEiw , vkSigiw

]
.

Claim 3. There exists a probabilistic algorithm ASig2 such that

PrH3 [WRR ∩ V ∩ ¬BE ∩ ¬EG ∩ ¬EE ] ≤ AdvSig-EUF-CMA
Sig,ASig2

.

Proof of claim. The algorithm ASig2 on input vkSig∗ runs
(
spsPKE,msk sPKE

)
← sPKE.Setup(1κ)

and
(
crsNIZK, ξNIZK

)
← ENIZK

1 (1κ), and gives spACE :=
(
spsPKE, vkSig

∗
, crsNIZK

)
to A. It emulates

the oracles for A as follows.

OG(·, ·): Generate the requested key as H3, but obtain the signature σSigi via a query to the
signing oracle. Remember the signature and when asked again for the same i, reuse σSigi
instead of issuing another query. This ensures that the oracle behaves as the one in H3

and returns the same key for repeated queries.
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OE(·, ·): On query
(
i,m

)
, generate an encryption key as for a query (i, sen) to OG, encrypt m

using that key, and return the resulting ciphertext.

When A returns c =
(
c̃, πNIZK

)
, ASig1 extracts a witness

w :=
(
ek sPKEiw ,mw, rw, vk

Sig
iw
, σSigiw , σ

Sig
c,w

)
← ENIZK

2

(
crsNIZK, ξNIZK, x :=

(
vkSig, c̃

)
, πNIZK

)
.

It finally returns the forgery attempt
([
ek sPKEiw , vkSigiw

]
, σSigiw

)
. Note that if WRR ∩ V ∩ ¬BE ∩

¬EG ∩ ¬EE occurs, σSigiw is a valid signature for
[
ek sPKEiw , vkSigiw

]
and ASig2 has not requested a

signature for this value from the signing oracle. Therefore, ASig2 wins the forgery game and thus
the probability of that event is bounded by AdvSig-EUF-CMA

Sig,ASig2
. ♦

Combining Claims 2

.

and 3

.

, we obtain

PrH3 [WRR ∩ V ∩ ¬BE ∩ ¬EG] ≤ qE · AdvSig-EUF-CMA
Sig,ASig1

+ AdvSig-EUF-CMA
Sig,ASig2

.

Let ASig be the algorithm that runs ASig1 with probability qE
qE+1 and ASig2 with probability 1

qE+1 .
We then have

AdvSig-EUF-CMA
Sig,ASig

=
qE

qE + 1
· AdvSig-EUF-CMA

Sig,ASig1
+

1

qE + 1
· AdvSig-EUF-CMA

Sig,ASig2

≥ 1

qE + 1
· PrH3 [WRR ∩ V ∩ ¬BE ∩ ¬EG].

(26)

Note that WRR implies c′ 6= ⊥ and therefore V , i.e., the events WRR and WRR ∩ V are equal.
Thus,

PrH3 [WRR] = PrH3 [WRR ∩BE ] + PrH3 [WRR ∩ V ∩ ¬BE ∩ EG] + PrH3 [WRR ∩ V ∩ ¬BE ∩ ¬EG]

(24

.

),(25

.

),(26

.

)
≤ AdvNIZK-ext2

NIZK,AZK2
+ qR · AdvsPKE-USROB

sPKE,Arob
+ PrH4 [WRR ∩ V ∩ ¬BE ∩ EG]

+ (qE + 1) · AdvSig-EUF-CMA
Sig,ASig

.

Combined with Claim 1

.

and equation (23)

.

, this concludes the proof.
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