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Abstract

Multi-party computation (MPC) enables a set of n mutually distrusting
players to perform some computation on their private inputs, such that
the correctness of the output as well as the privacy of the honest players’
inputs is guaranteed even in the presence of an adversary corrupting up
to ¢ of the players and making them misbehave arbitrarily.

In this thesis, we focus on the efficiency of multi-party computation
protocols, and present the following contributions:

o The main efficiency bottleneck in MPC is the computation of the
multiplication gates. However, since recently, for ¢ < n/3 multipli-
cation can be reduced to non-robust generation of correct sharings
of secret random values. We present a novel technique which al-
lows to perfectly and very efficiently generate such random shar-
ings. Based on this technique, we construct a perfectly secure MPC
protocol for t < n/3, communicating O(nk) bits per multiplication
(where £ denotes the bit-length of a value).

o An efficient way of limiting the number of times when the adver-
sary can disturb (and slow down) the computation is player elimi-
nation — every time an inconsistency is detected, a pair of players, at
least one of them corrupted, is localized and eliminated. However,
honest players can get eliminated as well, which causes several lim-
itations of this technique. We generalize and extend the player
elimination-technique, by finding other means (than elimination)
of preventing localized players from disturbing the computation
ever again. Our new technique, called dispute control, allows to con-
struct efficient MPC protocols in settings where player elimination
is not applicable: We present an actively secure MPC protocol that
provides optimal security (unconditional security against a faulty
minority) and communicates only O(n?k) bits per multiplication.



e Byzantine agreement (BA) is an MPC primitive which allows the
players to agree on a particular value. It is used as a building block
in many distributed protocols, and hence its efficiency is of partic-
ular importance. Known information-theoretically secure BA pro-
tocols with optimal resilience are very involved and inefficient —
the most efficient known BA protocol requires O(n'7 k) bits of com-
munication. We propose a new, conceptually simpler BA protocol
communicating O(n°r) bits per BA.

o Lastly, we concentrate on MPC in asynchronous networks, where
there is no upper bound on message delay. Known MPC protocols
for the asynchronous setting suffer from two main disadvantages:
they tend to have substantially higher communication complex-
ity, and they do not allow to take the inputs of all honest players.
We propose a solution to both these problems. We present a per-
fectly secure asynchronous MPC protocol that communicates only
O(n?k) bits per multiplication. Furthermore, we extend the proto-
col for a hybrid communication model, allowing all players to give
input if the very first round of the communication is synchronous,
and taking at least n — t inputs in a fully asynchronous setting.

All four mentioned contributions are optimal in all security parame-
ters, i.e., achieve statistical security where ¢ < n/2, and achieve perfect
security where t < n/3 (respectively ¢t < n/4 in the asynchronous world).



Zusammenfassung

Multi-Party Computation (MPC) erméglicht einer Menge von n sich
nicht vertrauenden Spielern, eine Funktion ihrer geheimen Inputs zu be-
rechnen, so dass die Korrektheit des Outputs sowie die Privacy der In-
puts garantiert ist, selbst wenn bis zu ¢ der Spieler unehrlich sind und
beliebig vom Protokoll abweichen.

In dieser Arbeit konzentrieren wir uns auf die Effizienz von MPC-
Protokollen, mit Beitrdgen in den folgenden Bereichen:

e Der grosste Kommunikationsaufwand in einer MPC wird fiir Mul-
tiplikationen erfordert. Seit kurzem kénnen jedoch bei ¢t < n/3 die
Multiplikationen auf die nicht-robuste Generierung von Sharings
von zufilligen Werten reduziert werden. Wir présentieren eine neu-
artige Technik, die es erlaubt, perfekt sicher und sehr effizient sol-
che zufélligen Sharings zu generieren. Basierend auf dieser Technik
konstruieren wir ein perfekt sicheres MPC-Protokoll fiir ¢t < n/3,
mit einer Kommunikationkomplexitdt von O(n«) Bits pro Multi-
plikation (wobei x die Bit-Lange eines Wertes bezeichnet).

e Ein effizienter Ansatz zur Beschrankung der Anzahl Stérungen, die
unehrliche Spieler bei der Berechnung verursachen (und dadurch
die Berechnung verlangsamen) kénnen, ist Player-Elimination —
jedesmal, wenn eine Inkonsistenz entdeckt wird, werden zwei Spie-
ler lokalisiert und eliminiert, wobei mindestens einer der beiden
Spielern unehrlich ist. Weil dabei auch ehrliche Spieler eliminiert
werden konnen, ist diese Technik nur sehr begrenzt einsetzbar.
Wir verallgemeinern und erweitern die Player-Elimination Tech-
nik, indem wir andere Methoden (als Elimination) finden, wel-
che ebenfalls verhindern, dass lokalisierte Spieler die Berechnung



wiederholt storen konnen. Unsere neue Technik, genannt Dispute-
Control, erlaubt die Konstruktion effizienter MPC-Protokolle in
Modellen, in denen Player-Elimination nicht anwendbar ist: Wir
prasentieren ein aktiv sicheres MPC-Protokoll mit optimaler Si-
cherheit (informations-theoretische Sicherheit bei einer unehrlichen
Minderheit), welches nur O(n?x) Bits pro Multiplikation kommu-
niziert.

e Byzantine Agreement (BA) ist eine MPC-Primitive, mit welcher
sich die Spieler auf einen Wert einigen konnen. Sie dient als Bau-
stein in vielen verteilten Protokollen und ihre Effizienz ist deswe-
gen von besonderer Bedeutung. Bekannte informations-theoretisch
sichere BA-Protokolle mit optimaler Sicherheit sind sehr komplex
und ineffizient — das effizienteste bekannte BA-Protokoll kommu-
niziert O(n'"x) Bits. Wir schlagen ein neues, konzeptionell einfa-
cheres BA-Protokoll vor, welches nur O(n°r) Bits kommuniziert.

o Schliesslich betrachten wir MPC in asynchronen Netzen, in de-
nen Nachrichten im Netzwerk beliebig verzogert werden kénnen.
Bekannte MPC-Protokolle fiir asynchrone Netze leiden an zwei
schwerwiegenden Nachteilen: Sie neigen zu hoher Kommunika-
tionskomplexitdt und es kénnen nicht die Inputs von allen ehrli-
chen Spielern berticksichtigt werden. Wir schlagen eine Losung fiir
diese beiden Probleme vor: Wir présentieren ein perfekt sicheres
asynchrones MPC-Protokoll, das nur O(n®k) Bits pro Multiplikati-
on kommuniziert. Dartiber hinaus erweitern wir das Protokoll fiir
ein hybrides Modell, so dass alle Inputs berticksichtigt werden, falls
die Nachrichten der ersten Runde des Protokolls synchron zugestellt
werden, und mindestens n — t Inputs bei voll asynchroner Kommu-
nikation berticksichtigt werden.

Die vier genannten Beitrdge sind optimal in allen Sicherheitsparame-
tern, das bedeutet statistische Sicherheit fiir t < n/2, und perfekte Sicher-
heit fiir t < n/3 (bzw. t < n/4 im asynchronen Fall).
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Chapter 1

Introduction

1.1 MPC

Secure multi-party computation (MPC) enables a set of mutually distrust-
ing parties to perform some computation on their private inputs even
when some of the parties misbehave and try to falsify the outcome of the
computation or violate the privacy of the honest parties’ inputs.

1.2 Models of MPC

We consider a set of parties consisting of a set of users ¢/, who can give
input and get output and a set P of n players, P = {P,...,P,}, who
perform the computation. It is possible that a party plays both roles, the
one of a user as well as the one of a player.

Many MPC protocols require the computation to be specified as an
arithmetic circuit over a finite field F with input, addition, multiplication,
random, and output gates. This kind of computation, in which all inputs
can be given at the beginning of the computation is called secure function
evaluation (SFE) or non-reactive multi-party computation.

Some protocols support the more general reactive multi-party computa-
tion, which allows to perform an arbitrary on-going (reactive) computa-
tion, where the users can give inputs and get outputs several times dur-
ing the computation.
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The faultiness of parties is modeled by a central adversary corrupting
players and users.

1.2.1 Communication Model

We assume a complete network of secure (private and authentic) chan-
nels pair-wisely connecting all players as well as connecting each user
to each player. According to timing assumptions, the following network
models are considered:

Synchronous Networks In a synchronous network, there is a com-
mon global clock and the maximal delay of messages in the network is
bounded by a known constant. Synchronous communication proceeds in
rounds — all messages sent in one round are delivered at the beginning of
the next round.

Asynchronous Networks In asynchronous networks, messages are de-
layed arbitrarily, in particular the order of the messages does not have
to be preserved. However, every sent message will eventually be deliv-
ered. As a worst-case assumption, the adversary is given the power to
schedule the delivery of messages. We model the privacy of the chan-
nels by considering oblivious schedulers — the only information known
to the scheduler is the sender, the recipient and possibly the length of the
message.

Hybrid Networks A hybrid network consist of few synchronous
rounds followed by a fully asynchronous communication.

1.2.2 Adversary

We consider a central adversary corrupting parties (players and users).
Once a party is corrupted it remains corrupted until the end of the com-
putation.

The concrete adversary model is defined according to the following
parameters:
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Corruption Capabilities In this thesis we only consider threshold ad-
versaries corrupting up to ¢ of the players and any number of users.

Adversary Type A passive (honest but curious) adversary can read the in-
ternal state of the corrupted parties, trying to obtain some information
he is not entitled to. An active (malicious) adversary can additionally make
the corrupted parties deviate from the protocol in any desired manner,
trying to falsify the outcome of the computation.

Adversary Power According to the computational power of the adver-
sary, unbounded or polynomially bounded (in some security parameter) ad-
versaries are considered.

Static vs. Adaptive A Static adversary has to choose which parties to
corrupt before the start of the actual computation, whereas an adaptive
adversary is allowed to corrupt the parties during the protocol execution
(based on the information received so far).

Adversary in the Synchronous Model Remember that communication
in the synchronous model proceeds in rounds and all messages sent in
one round are delivered at the beginning of the next round. However in
real life it is impossible to guarantee that all players send their messages
simultaneously. To model the worst case scenario, in every round the
adversary is given the right to read messages sent to corrupted players
before sending out their messages (of the same round). Such an adver-
sary is called rushing.

Adversary in the Asynchronous Model In the asynchronous commu-
nication model, the adversary can schedule the delivery of the messages
in the network, i.e., he can delay any message arbitrarily. However, every
sent message will eventually be delivered.

1.2.3 Security of MPC

Multi-party computation allows a set of parties to securely compute a
function of their inputs, even if some players are corrupted by an ad-
versary and are trying to disturb the computation.
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Depending on the computational power of the tolerable adversary
we speak about computationally (or cryptographically) secure protocols
(tolerating a computationally-bounded adversary only) and information-
theoretically secure protocols (tolerating an adversary with unlimited
computational power). An information-theoretically secure protocol is
called perfectly secure, if the computation is always secure, and statisti-
cally secure if some negligibly small error probability is allowed.

There are two main approaches in defining secure MPC: the property-
based approach and the simulation-based approach.

In the property-based approach an MPC protocol is called secure if the
following properties are satisfied:

o Correctness: The output of the computation is correct.

o Privacy: The adversary cannot obtain any information about the
honest parties inputs (other than what he can compute from the
corrupted parties” inputs and the outputs).

o Robustness: The adversary cannot abort the computation and pre-
vent honest parties from receiving their output.

In case that robustness cannot be guaranteed, at least fairness is required:
the adversary is not able to abort the computation after receiving some
information about the output, i.e. the adversary cannot prevent the hon-
est parties from receiving their output after receiving any information
himself. A list of other desirable properties, as for example input inde-
pendence, can be found in [MR98].

The more general and more precise simulation-based approach de-
fines secure MPC with respect to a so-called specification. A specification
is a protocol between the users and a trusted entity (trusted third party —
TTP) performing the actual computation. The goal of MPC is the simula-
tion of the trusted party. We say that a protocol securely implements some
specification if the protocol achieves the same as the specification and the
adversary cannot achieve more than what he could achieve in the speci-
fication. More precisely, the adversary can simulate the real world given
the information he obtains in the ideal world (in the specification).

Precise simulation-based security definitions can be found in [Can98,
Can00, Can01, BPWO04].

The MPC protocols in this theses can be proven secure according to
the security definition of [Can00].
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Non-Robust (Detectable) Computation Whereas all our MPC proto-
cols are robust, many of the used sub-protocols are not — the adversary
can prevent the parties from getting their output. The idea of non-robust
(or detectable) computation is the following: The adversary can cause the
output to be incorrect, however this will be noticed by at least one hon-
est player (who will inform other players and thus the output will not be
used). More precisely: Every player has an internal state (the happy-bit),
which is set to “happy” at the beginning of the computation. If a player
detects a fault, he gets unhappy (sets his happy-bit to “unhappy’). We
say that the protocol succeeded if all players remained happy, otherwise,
the protocol failed.

Definition 1 A non-robust (or detectable) protocol is a passively secure pro-
tocol with the following properties:

o Completeness: If all players follow the protocol then the protocol suc-
ceeds.

o Correctness: If the protocol succeeds than all outputs of the honest players
are correct.

o Privacy: The privacy is guaranteed independently of the fact whether or
not the protocol succeeds.

1.3 History and Efficiency of MPC

The MPC problem dates back to Yao [Yao82]. The first generic solu-
tions presented in [GMW87, CDG87, GHY87] (based on cryptographic
intractability assumptions) and later in [BGW88, CCD88, RB89, Bea91b]
(with information-theoretic security) assume the existence of a syn-
chronous network.

Later [BCGY3] initiated the study of MPC in the more realistic
asynchronous networks, followed by [BKR94] (both with information-
theoretic security).

1.3.1 Existential Results

The maximal number of players that can be tolerated to be corrupted de-
pends on the type of the adversary (passive or active), on the underlying
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communication model (synchronous or asynchronous) and on whether
or not a trusted setup is available.

Passive information-theoretically secure MPC is possible if and only
if t < n/2 [BGW88, CCD88], whereas passive security against bounded
adversaries is possible if and only if ¢ < n [GMW87].

Synchronous actively secure MPC from scratch (without trusted
setup) is possible if and only if ¢ < n/3. In this setting, the maximal
possible security — perfect security — is achievable [BGW88]. If a trusted
setup is available ¢ < n/2 is possible. However, for n/3 < t < n/2, only
statistical security can be achieved [RB89, Bea91b]. Thus, in both syn-
chronous models (with and without setup), the maximal thresholds are
achievable with information-theoretical security.

In the asynchronous setting, perfect information-theoretic security
against an active adversary is possible if and only if t < n/4 [BCG93],
whereas cryptographic and statistical security are possible if and only if
t < n/3 [BT85, BKR%4].

1.3.2 Efficiency of Synchronous MPC

In the last years, a lot of research concentrated on designing
communication-efficient MPC protocols.

A number of works focused on designing protocols with only a few
rounds of communication (e.g. [BB89, BMR90, BFKR90, DI05]), while
others concentrated on minimizing the number of bits sent during the
computation (e.g. [BFKR90, FY92, GRR98, CDD*99, HMP00, CDNO1,
CDF01, HMO01, HNO5, HN06, DNO7]). The cryptographically secure
protocol of [DI06] combines low round complexity with a low bit-
complexity, however for the price of a non-optimal threshold.

The main efficiency bottleneck of bit-efficient MPC protocols is the
computation of the multiplication gates. The following table gives an
overview on the currently (excluding results presented in this thesis)
most bit-efficient synchronous MPC protocols (with an optimal thresh-
old in the respective security model). Where « denotes the bit-length of
a field element (resp. the security parameter), D the multiplicative depth
of the circuit, and BC(-) the number of broadcasted bits.
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Security Model Thresh. Bits/Mult. Reference
perfect passive t<n/2 O(nk) [DNO7]
cryptographic t<n/2 O(nk) [HNO6]
statistical t<n/3 O(nk +n2D) [DNO07]
perfect t<n/3 O(n3k) [HMP00]
statist. with setup | ¢ < n/2 O(n®) BA(k) [CDD199]

1.3.3 Efficiency of Synchronous Byzantine Agreement

Byzantine agreement enables the parties to reach agreement on some
value.!

In the synchronous model without trusted setup, Byzantine agree-
ment among n players is achievable for ¢ < n/3 communicating O(n?)
bits [BGP92, CW92]. In the model with a trusted setup, the communica-
tion complexity of BA heavily depends on whether information-theoretic
security is required or cryptographic security is sufficient. When crypto-
graphic security is sufficient, then O(n®k) bits are sufficient for reach-
ing agreement, where x denotes the security parameter [DS83]. When
information-theoretic security is desired, then reaching agreement with
the currently most efficient BA protocols requires at least O(n%x) bits of
communication [BPW91, PW96, Fit03].

However, the latter result consumes the setup, i.e., a given setup can
be used only for one single BA operation. Of course, one can start with
an m times larger setup which supports m BA operations, but the num-
ber of BA operations is a priori fixed, and the size of the setup grows
linearly with the number of intended BA operations. This diametrically
contrasts the cryptographic scenario, where a fixed-size setup is sufficient
for polynomially many BA operations. In [PW96], a method for refreshing
the setup is shown: They start with a compact setup, use some part of
the setup to perform the effective BA operation, and the remaining setup
to generate a new, full-fledged setup. With this approach, a constant-size
setup is sufficient for polynomially many BA invocations. However, with
every BA invocation, the setup must be refreshed, which requires a com-
munication of O(n'"k) bits [PW96, Fit03]. Hence, when the initial setup
should be compact, then the costs for a BA operation of [PW96] is as high
as O(n'"k) bits.

1For more precise definition see Section 2.3.
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1.3.4 Efficiency of Asynchronous MPC

The first MPC protocols for asynchronous networks feature (imprac-
tically) high communication complexities. The most efficient asyn-
chronous protocol is the one of [HNP08] communicating O(n?) per mul-
tiplication while providing cryptographic security only. The most ef-
ficient information-theoretically secure protocols up to now were pro-
posed in [SR00, PSR02]. Both protocols are secure against an unbounded
adversary corrupting up to t < n/4 players. The first one makes exten-
sive use of the (communication-intensive) BA primitive — O(n?) invoca-
tions per multiplication, which amounts to 2(n®) bits of communication
per multiplication.? The second one requires only O(n?) invocations to
BA in total, however, still communicates O(n?) bits per multiplication,
and provides statistical security only (for which ¢ < n/4 is not optimal).

1.4 Contributions

In this theses we concentrate on bit-complexity of MPC protocols, mea-
sured in bits sent by honest parties.

In the synchronous model, we consider the two settings optimal in all
security parameters:

o MPC from scratch: with perfect security and ¢ < n/3

o MPC with setup: with statistical security and ¢t < n/2.

In the asynchronous model, only the perfect t < n/4 setting is consid-
ered.

Additionally in the synchronous setting with setup, we propose an
efficient protocol for statistically secure Byzantine agreement with ¢ <
n/2.

1.4.1 Actively Secure MPC from Scratch

The main efficiency bottleneck in MPC is the computation of the multi-
plication gates. However, thanks to techniques from [Bea91a, HMP0O,

2The most efficient known asynchronous BA protocol requires Q(n?).
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DNO07], for ¢ < n/3, multiplication can be reduced to non-robust gener-
ation of correct sharings of secret random values. Up to now, the most
efficient way to generate random values was the following: First every
player privately shares a random value, and the correctness of these shar-
ings is checked by checking a blinded random linear combination of the
sharings. Then, if the check succeeds, a set of independent secret random
sharings is extracted from the original sharings using super-invertible
matrices. While being very efficient, this approach has two drawbacks:
it requires the generation of a random challenge (which again requires
generation of random sharings), and it yield an error probability.

We present a novel technique which, at the same time, allows to per-
fectly and very efficiently verify a bunch of sharings and (if successful) to
extract a set of (new) correct random sharings given that a sub-set of the
original sharings is random.

More precisely, given n supposedly random sharings, up to ¢ of them
distributed by corrupted players (and thus possibly inconsistent, non-
random, etc), we can check whether they are all correct, and if so, (lo-
cally) compute n — 2t correct and uniform random sharings. The check
is (despite of being perfectly secure) highly efficient; it only requires the
reconstruction of 2¢ sharings, each towards a single player.

In other words, we can non-robustly but detectably generate (n)
uniform random sharings, unknown to the adversary, with perfect se-
curity and communicating O(n?) field elements.

The novel technique is based on so-called hyper-invertible matrices, i.e.,
matrices whose every square sub-matrix is invertible. Applying n shar-
ings to such a matrix results in n sharings with the property that (i) if
any (up to t) of the inputs sharings are inconsistent, then this can be seen
in every subset of ¢ output sharings, and (ii) if any n — t input sharings
are uniform random, then every subset of size n — ¢ of output sharings is
uniform random.

Using hyper-invertible matrices and some techniques from [Bea91a,
HMPO00, DN07], we construct a perfectly secure multi-party protocol with
optimal resilience and linear communication complexity. This can be
seen as an efficiency improvement (the most efficient known MPC pro-
tocol with perfect security communicates O(n?) field elements per multi-
plication [HMPOQQ]), or alternatively as a security improvement (the most
secure known MPC protocol with linear communication provides error
probability [DNO7]). In either case, we consider the new protocol to be
more elegant, as it employs neither two-dimensional sharings (like all
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previous perfectly-secure MPC protocols) nor probabilistic checks (like
all previous MPC protocols with linear communication complexity).

These results were presented in [BHOS]

1.4.2 Actively Secure MPC with Setup

In this work, we show that information-theoretic MPC with adaptive
active security for ¢t < n/2 is achievable with sending O(n?) field ele-
ments per multiplication, and broadcasting O(n?) field elements overall,
for the whole computation. This improves on previous protocols for this
setting which require broadcasting Q(n®) field elements per multiplica-
tion [CDD199].

At the time of the publication of this result, all known MPC proto-
cols required at least O(n?x) bits of communication per multiplication,
even protocols providing security against passive or bounded adver-
saries only.

Technically, the new protocol improves the approach of [CDD199],
which requires 2(n®) broadcasts per multiplication. We introduce a new
concept, so-called dispute control, that allows to substantially reduce the
communication complexity. The goal of dispute control is to reduce the
frequency of faults that the adversary can provoke by identifying a pair
of disputing players (at least one of them corrupted) whenever a fault is
observed and preventing this pair from getting into dispute ever again.
Hence, the number of faults that can occur during the whole protocol is
limited to ¢(t + 1). This technique is inspired by the player-elimination
framework [HMP00], and shares many advantages with it. However,
player elimination is not to be suited for models with ¢t > n/3.

These results were presented in [BHO06]

1.4.3 Broadcast

We present a protocol for information-theoretically secure Byzantine
agreement (both consensus and broadcast) which communicates O(n*x)
bits when the setup may be consumed (i.e., the number of BA operations
per setup is a priori fixed). This contrasts to the communication com-
plexity of O(n®k) bits of previous information-theoretically secure BA
protocols [BPW91, PW96].
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More importantly, we present a refresh operation for our BA protocol,
communicating only O(n°k) bits, contrasting the complexity of O(n'"k)
bits of previous refresh protocols [PW96]. This new result allows for
polynomially many information-theoretically secure BA operations from
a fixed-size setup, where each BA operations costs O(n°k) bits.

This substantial speed-up is primarily due to a new concept, namely
that the refresh operation does not need to succeed all the time. When-
ever the setup is to be refreshed, the players try to do so, but if they fail,
they pick a fresh setup from an a priori prepared stock. Furthermore,
using techniques from the player-elimination framework [HMPO00], the
number of failed refresh operations can be limited to ¢. Using alge-
braic information-theoretic pseudo-signatures [SHZI02] for appropriate
parameters, the function to be computed in the refresh protocol becomes
algebraic, more precisely a circuit over a finite field with multiplicative
depth 1. Such a function is very well suited for efficient non-robust com-
putation; in fact, it can be computed based on a simple one-dimensional
Shamir-sharing, although ¢ < n/2.3 This allows a very simple refresh
protocol with low communication overhead.

Compared to the refresh protocol of [PW96], our refresh protocol has
the disadvantage that it requires ¢ < n/2, whereas the protocol of [PW96]
can cope with ¢ < n. However, almost all applications using BA as sub-
protocol (like voting, biding, multi-party computation, etc.) inherently
require ¢ < n/2, hence the limitation on our BA protocol is usually of
theoretical relevance only.

These results were published in [BHR07].

1.4.4 Asynchronous MPC

Known MPC protocols for the asynchronous setting suffer from two main
disadvantages in contrast to their more restrictive synchronous counter-
parts, both significantly reducing their practicability: Asynchronous pro-
tocol tend to have substantially higher communication complexity, and
they do not allow to take the inputs of all honest players. We propose a
solution to both these problems.

First, we present a perfectly secure asynchronous MPC protocol that
communicates only O(n?) field elements per multiplication. At the time

3Note that general MPC protocols for this model need a three-level sharing, namely
a two-dimensional Shamir sharing ameliorated with authentication tags [RB89, Bea91b,
BHO6].
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of the publication of this result, the same communication complexity was
also required by the most efficient known perfectly secure protocol for
the synchronous model [HMP00], as well as by the most efficient asyn-
chronous protocol only secure against computationally bounded adver-
saries [HNPO05]. The protocol provides perfect security against an un-
bounded adaptive active adversary corrupting up to ¢t < n/4 players,
which is optimal. In contrast to the previous asynchronous protocols, the
new protocol is very simple.

Second, we extended the protocol for a hybrid communication model
(with the same security properties and the same communication com-
plexity), allowing all players to give input if the very first round of the
communication is synchronous, and takes at least n — ¢ inputs in a fully
asynchronous setting. It is well-known that fully asynchronous proto-
cols cannot take the inputs of all players; however, we show that a single
round of synchronous communication is sufficient to take all inputs. We
stress that it is important that this round is the first round, because as-
suming the k-th round to be synchronous implies that all rounds up to
k must also be synchronous. Furthermore, the protocol achieves the best
of both worlds, i.e., takes the inputs of all players when indeed the first
round is synchronous, and still takes the inputs of at least n — ¢ players
even if the synchronity assumptions cannot be fulfilled. More precisely,
the protocol takes the inputs of at least n — ¢ players, and additionally,
always takes the inputs of players whose first-round messages are deliv-
ered synchronously.

These results were published in [BHO07].



Chapter 2

Preliminaries

2.1 Generic Approach to MPC

The goal of MPC is to allow a set of parties to perform some computation
on their inputs, such that the privacy of the inputs as well as the correct-
ness of the outputs is guaranteed, even in the presence of an adversary
corrupting some players.

The main tool for designing protocols secure against passive (honest
but curious) adversaries is secret sharing [Bla79, Sha79]. Secret sharing en-
ables the parties to divide (share) their input (or any other secret) among
the players such that any small-enough set of players has no joint infor-
mation about the secret, but any large-enough set of players has enough
information to uniquely determine (reconstruct) the secret.

Using secret sharing, the computation proceeds as follows: First, all
users share their inputs among the players. Then the circuit is evaluated
gate by gate on the shared values, such that every intermediate value is
shared among the players. At the end, the output is reconstructed.

Thus, most MPC protocols consist of sub-protocols for sharing and
reconstructing values, and of sub-protocols for adding (multiplying)
shared values, such that the sum (product) is shared among the players
and no information on the summands (factors) and the sum (product)
leaks to the adversary.

Actively secure protocols employ zero-knowledge proofs and consis-
tency checks to prevent faults caused by misbehaving players.
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In the following two section we describe the two most important
primitives of information-theoretically secure MPC: Secret Sharing and
Byzantine Agreement.

2.2 Secret Sharing

The intuition of secret sharing is to enable a dealer D to divide (share) a
secret s among the players (by sending each player F; a so called share
s; ), such that the corrupted players have no joint information about the
secret, however all players together can (later) reconstruct the secret.

Definition 2 A Verifiable Secret Sharing Scheme (VSS) (for a dealer holding
a secret s) is a pair of protocols VShare and VVRec with the following properties:

o Termination: Once the protocol VShare (VRec) is invoked, every honest
player will complete it.

o Correctness: After termination of \/Share there exists a fixed value r € F
such that:

— If the dealer was honest during VShare, than r is his secret, i.e. r =
s.
— Every honest player outputs r upon completing VRec.

o Privacy: If the dealer is honest, then the adversary obtains no information
about the shared secret before VRec is invoked.

Such VSS is achievable in the model with synchronous channels only.
In the asynchronous setting only a weaker termination property can be
achieved.

Definition 3 An Asynchronous Verifiable Secret Sharing Scheme (AVSS)
(for a dealer holding a secret s) is a pair of protocols VShare and VRec with the
following properties:

o Termination:

— If the dealer is honest, than every honest player will eventually com-
plete VShare.
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— If one honest player completes VShare, then all honest players will
eventually complete V/Share.

— If one honest player completes VShare, then all honest players will
eventually complete VRec (once it is invoked).

o Correctness: After one honest player has completed \/Share, there exists a
fixed value r € F such that:

— If the dealer was honest during V/Share, than r is his secret, i.e. r =
s.

— Every honest player outputs r upon completing VRec.

o Privacy: If the dealer is honest, then the adversary obtains no information
about the shared secret before VRec is invoked by at least one honest player.

These definitions themselves do not guarantee the feasibility of any
computation on the shared values and are thus not sufficient in the con-
text of multi-party computation.

In this thesis we will describe a VSS scheme by defining a correct shar-
ing of a value (a state uniquely defining the shared value) and by describ-
ing the protocol VShare which produces a correct sharing (of the honest
dealers secret), and the protocol VRec, which given a correct sharing re-
constructs the shared secret.

All our sharings are based on the Shamir sharing scheme [Sha79]. To
every player P; a unique fixed value «; € F\ {0} is publicly assigned and
the shares are evaluations of a polynomial at the points a, ..., as,.

2.3 Consistency Primitives

An active adversary can disturb the computation by trying to cause in-
consistencies in the views of the honest players. For example if a player
is supposed to send one value to all players, an actively corrupted player
might sent different values to different players. To cope with this prob-
lem some consistency primitives are needed.

The problem of Byzantine agreement (BA), as originally proposed by
Pease, Shostak, and Lamport [PSL80, LSP82], is the following: n play-
ers Py, ..., P, want to reach agreement on some value v, but up to ¢ of
them are faulty and try to prevent the others from reaching agreement.
There are two flavors of the BA problem: In the broadcast problem, a
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designated player (the sender) holds an input message m, and all players
should learn m and agree on it. In the consensus problem, every player P;
holds (supposedly the same) message m;, and the players want to agree
on this message.

More formally, a protocol with Pg giving input m is a broadcast proto-
col, when every honest P; outputs the same message m/ = m’ for some m’
(consistency), and when m’ = m, given that Ps is honest (validity). Anal-
ogously, a protocol with every player P; giving input m; is a consensus
protocol, when every honest P; outputs m; = m/ for some m’ (consistency),
and when m’ = m, given that every honest P, inputs the same message
m; = m for some m (validity).

The feasibility of broadcast and consensus depends on whether or not
a trusted setup (e.g. a PKI setup) is available. When no trusted setup is
available (“from scratch”), then consensus and broadcast are achievable
if and only if at most ¢ < n/3 players are corrupted. When a trusted
setup is available, then consensus is achievable if and only if at most
t < n/2 players are corrupted, and broadcast is achievable if and only
if at most ¢ < n players are corrupted. All bounds can be achieved with
information-theoretical security, and the bounds are tight even with re-
spect to cryptographic security. We stress in particular that no broadcast
protocol (even with cryptographic intractability assumptions) can exceed
the t < n/3 bound unless it can rely on a trusted setup [FLMS86, Fit03].
The main difference between protocols with information-theoretic secu-
rity and those with cryptographic security is their efficiency.

Note that in asynchronous networks, slightly different definitions of
BA are used (and will be explained in Chapter 7).



Chapter 3

Passive MPC

3.1 Introduction

In this chapter we present an MPC protocol perfectly secure against a
passive adversary corrupting up to ¢t < n/2 players and any number of
users. Remember that passively corrupted players correctly follow the
protocol, however the adversary has a complete view on their internal
state.

The first MPC protocol perfectly secure against a passive adversary
corrupting up to ¢t < n/2 players was the one of [BGW88]; communicat-
ing O(n?k) bits per multiplication. Recently [DN07] presented a protocol
for the same model, communicating only O(n«) bits per multiplication.
Both protocols use the standard Shamir-sharing scheme [Sha79] (and the
same share and reconstruct protocols), however [DN07] provides more
efficient sub-protocols for generating random values and for multiplica-
tion.

In the following sections we explain the formal model, define a cor-
rect secret sharing and present the protocols for sharing and reconstruct-
ing values. Then we explain how to perform computations on the shared
values, i.e. how to add shared values, how to generate sharings of ran-
dom values and how to multiply shared values.

This passively secure (sub-)protocols provide a basis for the actively
secure (sub-)protocols of the following chapters. As parts of our work are
based on the (simpler) approach of [BGW88] (with some simplifications
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from [GRR98]) whereas other parts follow the (more efficient) approach
of [DNO7], we will present both.

3.2 Model

We consider a set U of users, who can give input and receive output, and
a set P of n players, P = {P,..., P,}, who perform the computation.
The players and users are connected by a complete network of secure
(private and authentic) channels.

The function to be computed is specified as an arithmetic circuit over a
finite field F (with |F| > n), with input, addition, multiplication, random,
and output gates. We denote the number of gates of each type by ¢y, c4,
cm, cr, and co, respectively. We use « to denote the bit-length of the
elements in T, i.e. k = log|F|.

The faultiness of players or users is modeled in terms of a central ad-
versary corrupting players and users. The adversary can corrupt up to
t < n/2 players and any number of users. The adversary is computation-
ally unbounded, passive, and adaptive. The security of the protocol is
perfect, i.e., information-theoretic without any error probability.

To every player P; € P a unique, non-zero element o; € F \ {0} is
assigned.

3.3 Secret Sharing

In this section we first define a correct sharing of a value (and introduce
some notation) and then present protocols for sharing values and recon-
structing sharings.

Remember that as we are dealing with a passive adversary only, our
sole concern is privacy.

3.3.1 Definitions and Notations

As secret-sharing scheme, we use the standard Shamir sharing
scheme [Sha79].
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Definition 4 A value s is (correctly) d-shared (among the players in P) if
every player P; € P is holding a share s; of s, such that there exists a degree-
d polynomial p(-) with p(0) = s and p(ey;) = s; for every P, € P.* The
vector (s1,. .., Sn) of shares is called a d-sharing of s, and is denoted by [s]q. A
(possibly incomplete) set of shares is called d-consistent if these shares lie on a
degree d polynomial.

Note that a d-sharing [s]q = (s1,...,sn) well-defines a value if and only
if d < n and a random d-sharing does not leak any information to the
adversary if and only if d > ¢. Thus all sharings used in our protocols
will be d-sharings with ¢t < d < n.

By saying that the players in P compute (locally)

(s ™ Na) = F(2WVa,- .., [2™]a)

(for any function f : ™ — F™') we mean that every player P; applies
this function to his shares, i.e. computes

™) = £ e,

Note that by applying any linear or affine function to correct d-sharings
we get a correct d-sharing of the output. However, by multiplying
two correct d-sharings we get a correct 2d-sharing of the product, i.e.
[a]a[b]a = [ab]2a.

At some point we will use so called double-sharings.
Definition 5 A value x is (d,d')-shared among the players P, denoted as

[%]a,qr, if x is both d-shared and d'-shared. We denote such a sharing as a
double-sharing, and the pair of shares held by each player as his double-share.

We (trivially) observe that any sum of correct (d, d’')-sharings is a correct
(d, d’)-sharing of the sum.

3.3.2 The Share Protocol

The following protocol allows a dealer (a player or a user) to privately
share his secret s. The dealer Pp chooses a random degree-d polynomial
p(-) with p(0) = s and distributes the shares among the players in P.

4Where a; denotes the unique fixed value assigned to P;.
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Protocol Share(Pp € (P UU), s, d).

1. DISTRIBUTE SHARES: Pp chooses a random degree-d polynomial p(-)
with s = p(0) and sends to every player P; € P his share s; = p(a).

2. OUTPUT: Every player P; outputs the received share s;.

The sharing (s1, ..., s, ), defined by the shares outputted by the play-
ers Pi,...,P,, is a correct d-sharing of s, i.e. (s1,...,8,) = [s]a. The
protocol Share (and the sharing [s]4 itself) leaks no information about the
shared secret as long as d > ¢. Share communicates nx bits.

3.3.3 The Reconstruct Protocol

We present two reconstruction protocols, one for private reconstruction
(towards a designated recipient Pr) and one for public reconstruction
(towards every player in P).

Technically, public reconstruction can be achieved by n private recon-
structions — one to each player in P. However, the communication costs
of such public reconstruction are n times the costs of private reconstruc-
tion, which is unnecessarily high.

To privately reconstruct a shared secret s towards a designated recip-
ient Pr, every player sends his share of [s|; to the recipient. P then
reconstructs the secret, by finding the (unique) degree-d polynomial p(-)

with p(a;) = s; for every ¢ = 1,...,n, using the Lagrange interpolation
formula
T —aqj
pz) =Y 11 =5
— Ll a; —a;
)

and computing s as s = p(0). Respectively the secret can be computed
directly by setting « = 0 in the above formula

s =p(0) = Zwisi with w; = H %

s T

Protocol ReconsPrivPassive(Pr € (P UU),d, [s]q)-

1. SEND SHARES: Every player P; € P sends his share s; of s to Pg.
2. INTERPOLATE: P interpolates the received shares, i.e. he computes

_ Lo, : — o
sass =), w;s; withw; = H#i T
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3. OUTPUT: Pr outputs s.

The protocol ReconsPrivPassive privately reconstructs every correctly
d-shared secret for d < n, communicating nx bits. If the recipient is hon-
est, the adversary obtains no information on s.

For public reconstruction (in P) the sharing [s]4 is first reconstructed
towards one designated player (say P;), who then distributes the recon-
structed value s among the other players in P.

Protocol ReconsPublicPassive(d, [s]4).

1. RECONSTRUCT TOWARDS P;: ReconsPrivPassive( P, d, [s]q) is invoked
to reconstruct s towards P;.

2. DISTRIBUTE: P; sends the reconstructed secret s to every P; € P.
3. OUTPUT: Every player outputs the received s.

The protocol ReconsPublicPassive publicly reconstructs every correctly
d-shared secret for d < n, communicating 2nx bits.

3.4 Computing Affine Functions

As already mentioned, for any affine function f : F™ — [F and any correct

d-sharings [z(V)]g, ..., [z(™)]4 it holds that [x]; defined as
[ela = f([eW]a, ... ["™]a)
is a correct d-sharing of z = f(2™), ... z(™).

This means, that any affine function can be computed locally without
any communication, by every player applying the function to his respec-
tive shares.

3.5 Generating Random Sharings

In this section we present a protocol for generating secret, uniformly-
random values shared among the players.
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We first present a trivial protocol which generates one random shar-
ing with communication costs O(n?k) bits and then a more involved pro-
tocol (along the lines of [HHNO06]) which has the same overall complexity
while generating O(n) independent random sharings.

Both protocols use the fact, that by summing up a bunch of values out
of which at least one is secret, random and independent of the others, we
get a secret random value.

3.5.1 Simple Approach

The following protocol ShareRandomPassiveSimple(d) generates a d-
sharing of a secret random value as a sum of n shared random contri-
butions (one from each player).

Protocol ShareRandomPassiveSimple(d).

1. SHARE: Every player P; € P chooses a uniform random valuer; €g F
and d-shares it, acting as a dealer in Share (P;, r;, d) — resulting in [r;]4.

2. OUTPUT: The players output the d-sharing [r]g = Y., [r;]q of the
sumr = 1.

As there is at least one honest player who contributed a uniform ran-
dom value unknown to the adversary in Step 1, the value generated by
ShareRandomPassiveSimple is uniformly random and unknown to the ad-
versary. The protocol ShareRandomPassiveSimple communicates n’ bits.

As one secret random contribution is sufficient to make the sum se-
cret and random, the complexity of ShareRandomPassiveSimple could be
reduced a little by having only ¢ + 1 players share a random value in
Step 1 (instead of all n). However such protocol would still communicate
O(n’k) bits.

In the next section we present super-invertible matrices, which enable
us to exploit the maximum: generate n —t secret random sharings from n
contributions out of which n — ¢ come from honest players (and thus are
random and unknown to the adversary).
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3.5.2 Efficient Approach

In the following we first introduce super-invertible matrices (SIM) and
then show how to use them to efficiently generate random sharings. This
technique was introduced by [HNO6].

We consider r-by-c matrices M over the field F. When r = ¢, M is
called invertible if all column-vectors are linearly independent. When
r < ¢, M is called super-invertible if every subset of r column-vectors are
linearly independent. Formally, for an r-by-c matrix M and an index set
C C {1,...,c}, we denote by M¢ the matrix consisting of the columns
i € C of M. Then, M is super-invertible if for all C with |C| = r, M¢ is
invertible.

Super-invertible matrices are of great help to extract random elements
from a set of some random and some non-random elements: Consider
a vector (x1,...,z.) of elements, where for some C C {1,...,c} with
|C| = r, the elements {x;};cc are chosen uniformly at random (by honest
players), and the elements {z;} ;¢ are chosen maliciously (by corrupted
players). Then, the vector (yi,...,y,) = M(x1,...,z.) is uniformly ran-
dom and unknown to the adversary.”

In the following protocol every player chooses and shares a random
value, resulting in n shared values out of which at least n — ¢ are random
and unknown to the adversary. Then using an n x n — t super-invertible
matrix M n — t sharings of random and secret values are computed (lo-
cally).

Protocol ShareRandomPassive(d).
1. SHARE: Every player P; € P chooses a uniform random value s; €g F
and d-shares it — resulting in [s;]4.
2. APrPLY M: The players (locally) compute

([Tl]d7 R [Tn—t]d) - M([Sl]d7 D [S’n]d)
In order to do so, every player computes his share of each r; as the
respective linear combination of his shares of the s;-values.
3. OUTPUT: The n — t sharings [r1]4, . . ., [Tn—t]a are outputted.
ShareRandomPassive generates n — ¢ > n/2 secret random sharings while

communicating n?x bits. Thus the amortized communication complexity
of ShareRandomPassive is less than 2n« bits per random sharing.

5This follows from the observation that the ¢ — r maliciously chosen elements {x;} jec
define a bijection from the r random elements {z; };cc onto (y1, ..., yr).
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3.6 Multiplication

The goal of this section is to present a protocol for computing a d-sharing
of the product of two d-shared values z and y.

Remember that [z]q[y]le = [zy]2q, thus by having every player mul-
tiply his shares of = and y, a correct 2d-sharing of the product 2y can
be computed without any communication. What remains to be done is
to reduce this 2d-sharing to an independent d-sharing of zy (without re-
vealing any information to the adversary). This can be done for d < n/2
(for d > n/2 a 2d-sharing does not well-define any value).

We first present a simpler multiplication protocol from [GRR98] with
quadratic communication complexity and then the more efficient multi-
plication protocol from [DN07] with linear communication complexity.

3.6.1 Simple Approach

Remember that a d-shared value s (with d < n) can be computed as a lin-
ear combination of the shares sy, . .. s, (using the Lagrange interpolation
formula):

n
. Qg
S:E wisiw1thwi:|| .
O[j — Q4

i=1 i
The same holds for any d’-sharings of s and s1, ..., s,: given the n d’-
sharings [s1]a, . . ., [Sn]a, the d’-sharing of s can be computed as:
r = ilsilar with w; = .
blar = 3wl with v = [T 20

This is used in the following protocol MultPassiveSimple
(from [GRR98]). The d-sharing [z]4 of the product z0zy is com-
puted from the (locally computed) 2d-sharing [z]2q = [zy]2q = [z]a[y]a DY
re-sharing: every player d-shares his 2d-share of [z]24 and the d-sharing
[2]4 is computed as a linear combination of the share-sharings (according
to Lagrange interpolation).
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Protocol MultPassiveSimple([z]q, [v]4)-

1. MULTIPLY SHARES: The players compute (locally) the 2d-sharing [z]24
of z = xy as [z]aq = [z]a[yla (by every player computing the product
of his shares).

2. REDUCE DEGREE:

2.1 RE-SHARE: Every player P; d-shares his 2d-share z; of z, acting as
a dealer in Share (P;, z;, d) — resulting in [z;]4.
2.1 INTERPOLATE: The players compute (locally) the d-sharing [z]; =
Z?:l w; [Zi]d with w; = Hj;éi aja:ai .
3. OUTPUT: The players output the d-sharing [z]4.

The above protocol correctly and privately multiplies any two d-shared
values for 2d < n. The communication complexity of MultPassiveSimple
is n times the communication complexity of Share, i.e. n’x bits. In the
following we present a more efficient multiplication protocol.

3.6.2 Efficient Approach

We first present the protocol MultPassive (from [DNO07]) which efficiently
multiplies two d-shared values x and y, given a secret random value r
which is both d- and 2d-shared. Then we show how many such secret
random double-sharings can be efficiently generated.

The main idea of MultPassive is to reduce [zy]2q to [zy]q by publicly
reconstructing the difference [0]24 = [#y]2q — [r]24 and then (locally) com-
puting [zy]q as [zylqs = [r]a + 6.

Protocol MultPassive([z]a, [y]d, [7]d,24)-

1. MULTIPLY SHARES: The players compute (locally) the 2d-sharing [z]24
of z = zy as [z]2q4 = [z]a[yla (by every player computing the product
of his shares).

2. REDUCE DEGREE

2.1 The players compute (locally) a 2d-sharing of the difference § =
z — r by computing [6]2q = [z]24 — []24-

2.2 Invoke ReconsPublicPassive([d]24) to reconstruct the difference ¢ to-
wards every player in P.

2.3 The players compute (locally) the d-sharing [z]s = [r]q + 9.
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3. OUTPUT: The players output the d-sharing [z]4.

The protocol MultPassive correctly multiplies any two d-shared values for
2d < n. The protocol MultPassive is private given that r is a secret ran-
dom value (as then reconstructing § = z — r leaks no information on z).
The communication complexity of MultPassive is the same as the one of
ReconsPublicPassive, i.e. 2nx bits.

The following protocol DoubleShareRandomPassive(d, d’) for efficient
generation of many secret random double-sharings works along the lines
of the protocol ShareRandomPassive(d) using a n x n — t super-invertible
matrix M.

Protocol DoubleShareRandomPassive(d, d').

1. SHARE: Every player P; € P chooses a uniform random value s; €g F
and shares it once with degree d and once with degree d’ acting as a
dealer in Share(P;, s;,d) and Share(P;, s;,d') — resulting in a double-
sharing [si]q.a

2. APPLY M: The players (locally) compute

([Tl]d,d/a ey [Tnft]d,d/) = M([sl]d,d/, ey [Sn]d,d/)~

In order to do so, every player computes his double-share of each r;
as the respective linear combination of his double-shares of the s;-
values.

3. OutrUT: The n — t double-sharings [r1]q.a’,- - ., [Fn—t]d,e are out-
putted.

The protocol DoubleShareRandomPassive generates independent ran-
dom double-sharings of n — t independent secret random values com-
municating 2n?x bits. Thus the amortized communication complexity of
DoubleShareRandomPassive is less than 4nk bits per one random double-
sharing.

3.7 The Passively-Secure MPC Protocol

The protocol PassiveMPC (from [DNO7]) proceeds in two phases: the
preparation phase and the computation phase.
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In the preparation phase many (¢, 2t)-sharings of secret random val-
ues are generated (in parallel), one for every multiplication gate. Fur-
thermore, for every random gate a t-sharing of a random r is generated.
For the sake of simplicity, we generate cj; + cg random (¢, 2t)-sharings,
where for random gates, only the first component of the double-sharing,
i.e. the t-sharing is used.

In the computation phase, the actual circuit is computed. For every
input gate the secret is shared with Share. Due to the linearity of the
used secret-sharing, the linear gates can be computed locally — without
communication. Random gates are evaluated simply by picking an un-
used pre-generated sharing of a random value r. Multiplication gates are
evaluated with the help of the pre-generated random double-sharings.
Output gates involve a secret reconstruction.

Protocol PassiveMPC.

1. PREPARATION PHASE: Invoke DoubleShareRandomPassive(t,2t)

[€A£ea] times in parallel.

2. COMPUTATION PHASE:
To every random and multiplication gate one of the pre-generated
random double-sharings is associated and the circuit is evaluated
as follows:

e INPUT GATE (USER U INPUTS s): Invoke Share(U, s, t) to let the
user U share his input s among the players in P.

e ADDITION/LINEAR GATE: Every P; € P applies the linear func-
tion to his respective shares.

e RANDOM GATE: Pick the ¢-sharing [r], associated with the gate.

e MULTIPLICATION GATE: Denote the factor sharings as [x]q, [y]¢
and the associated double-sharing as [r]s . The prod-
uct sharing [z]; is computed by invoking the sub-protocol
MultPassive([z]¢, [y, [T]¢,2t)-

e OUTPUT GATE (OUTPUT [s] TO USER U): Invoke the protocol
ReconsPrivPassive(U, t, [s]t).

Theorem 1 The MPC protocol PassiveMPC evaluates a circuit with ¢y in-
put, cp random, cp; multiplication, and co output gates, communicating
(cr +4cpr + 2cg + co)nk + n’k = O((C} +cr+em +co)nk + an) bits.
The protocol is perfectly secure against a passive adversary corrupting t < n/2
players.
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Proof: The security of PassiveMPC follows directly from the security of
Share, DoubleShareRandomPassive, MultPassive and ReconsPrivPassive.

The communication complexity of the preparation phase is [<AF¢2]
times the complexity of DoubleShareRandomPassive, i.e.

(7%; i_ :R12n2/~@ < (73(%[2: cr) 1 22k
(73(01\/[2—’— cr) +1)2n%k
n

< 3(em +cr)nk + M2k

The communication complexity of the computation phase is
crShare + cprMultPassive + coReconsPrivPassive = cink + cy2nk + conk.
Thus the protocol PassiveMPC communicates less than
3(cM+CR)n/$+2n2/i—l—c[n/f—i—cM2n/~;+con/~@ = (c;+5cM—|—30R+co)n/~@+2n2n



Chapter 4

Active MPC (Without
Setup)

4.1 Introduction

In the active model the adversary can make the corrupted parties deviate
from the protocol in any desired manner.

Thus, in order to make a passively secure protocol detectable, correct-
ness checks have to be introduced to detect faults caused by actively cor-
rupted parties.® For robust protocols, additionally some fault recovery
procedures have to be invoked in case of faults.

For example, when invoking the passively secure sharing protocol
Share(d) in the presence of an active adversary, a corrupted dealer Pp
might distribute inconsistent shares (lying on a polynomial of a higher
degree than d), without the honest players noticing.

The first active MPC protocol perfectly secure for ¢t < n/3
(from [BGWS8S]) solves this problem by presenting a verifiable secret-
sharing scheme using two-dimensional polynomials’, which produces
correct sharings even for corrupted dealers. However, this protocol is
very inefficient (it requires many invocations to the BA primitives)

6Remember that according to Definition 1 a detectable protocol is a passively secure
protocol that can produce incorrect output if some players misbehave, however this will be
noticed by at least one honest player.

7explained in Chapter 7
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A more efficient approach (from [HMO1]) is to use the passively se-
cure protocol Share(d), and then to check the correctness of many shar-
ings in parallel by checking the correctness of a blinded random lin-
ear combination of these sharings. However, this approach yields a de-
tectable secret-sharing protocol only.

In order to transform a detectable protocol into a robust protocol a
general technique — Player Elimination - is presented in [HMPO0O]. The
goal of player elimination is to limit the number of faults the adversary
can cause, by localizing and eliminating a pair of players containing at
least one corrupted player, every time a fault is detected. Then the com-
putation is repeated with the reduced player set.

Based on the efficient passively-secure protocol presented in the pre-
vious chapter and the above ideas from [HMO01] and [HMPO00], an ac-
tively secure protocol for ¢ < n/3 with linear communication complexity
is constructed in [DNO07]. However, this protocol is only statistically se-
cure — there is a negligible error probability due to the probabilistic cor-
rectness checks.

In this chapter we present a novel technique which, at the same time,
allows to perfectly and very efficiently verify a bunch of sharings and (if
the check says that they are correct) to extract a set of (new) correct ran-
dom sharings given that a sub-set of the original sharings is random. The
novel technique is based on so-called hyper-invertible matrices, i.e., matri-
ces whose every square sub-matrix is invertible. Applying n sharings to
such a matrix results in n sharings with the property that (i) if any (up to t)
of the inputs sharings are incorrect, then this can be seen in every subset of
t output sharings, and (ii) if any n — ¢ input sharings are uniform random,
then every subset of size n — t of output sharings is uniform random.

Using hyper-invertible matrices and some techniques from [Bea91la,
HMP00, DN07], we construct a perfectly secure multi-party protocol with
optimal resilience and linear communication complexity (published in
[BHO8]).

We will first present a non-robust but fair protocol for non-reactive
MPC, constructed from the passively secure protocol (from the previ-
ous chapter) using hyper-invertible matrices. Then this protocol will be
extended using the circuit randomization technique from [Bea9la] to a
non-robust but fair protocol for reactive MPC. Lastly, using the player
elimination technique from [HMP00], the fair non-robust protocol for re-
active MPC will be transformed into a robust protocol for reactive MPC
with linear communication complexity.
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4.2 Model

We consider a set U of users and a set P of n players, P = {Pi,...,P,},
connected by a complete network of secure (private and authentic) syn-
chronous channels.

The function to be computed is specified as an arithmetic circuit over
a finite field F (with |F| > 2n), with input, addition, multiplication, ran-
dom, and output gates. We denote the number of gates of each type by
cr, ca, cM, Cr, and co, respectively.

The adversary can corrupt up to ¢ < n/3 players, any number of users
and is computationally unbounded, active, adaptive and rushing. The
security of our protocols is perfect, i.e., information-theoretic without any
error probability.

To every player P; € P a unique, non-zero element o; € F\ {0} is
assigned.

For the ease of presentation, we always assume that the messages sent
through the channels are from the right domain — if a player receives a
message which is not in the right domain (e.g., no message at all), he
replaces it with an arbitrary message from the specified domain.

4.3 Secret Sharing

4.3.1 Definitions and Notation

We define a correct sharing according to Definition 4, i.e. we say that a
value s is (correctly) d-shared (among the players in P) if every honest
player P; € P is holding a share s; of s, such that there exists a degree-d
polynomial p(-) with p(0) = s and p(«;) = s; for every P, € P8 The
vector (s1,...,sy) of shares is called a d-sharing of s, and is denoted by
[s]¢. A (possibly incomplete) set of shares is called d-consistent if these
shares lie on a degree d polynomial.

Note that in contrast to the passive case, a correct d-sharing with n —
t < d < n does not necessarily well-define any value (depending on the
actual number of corrupted players).

8Where «; denotes the unique fixed value assigned to P;.
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As in Chapter 3, by saying that the players in P compute (locally)

(s ™ Na) = F(2Wa,- .., [2™]a)

(for any function f : ™ — F™') we mean that every player P; applies
this function to his shares, i.e. computes

W) = @ 2™,

Remember that by applying any linear or affine function to correct d-
sharings we get a correct d-sharing of the output. However, by multiply-
ing two correct d-sharings we get a correct 2d-sharing of the product, i.e.
[a]a[b]a = [ablag.

In the multiplication protocol, we again use double-sharings as de-
fined in Definition 5: We say that a value x is (d,d’)-shared among the
players P, denoted as [z]4,4/, if x is both d-shared and d’-shared.

4.3.2 The Share Protocol

We use two sharing protocols: the protocol Share (from Section 3.3.2) and
the protocol VShare. The protocol Share outputs correct sharings if the
dealer follows the protocol, whereas the output of VShare is always a
correct sharing.

Remember, that the protocol Share allows an honest dealer Pp to cor-
rectly d-share a secret s among the players in P, while communicating
nk bits. However, this protocol does not ensure that the resulting sharing
is correct; a corrupted dealer might distribute totally inconsistent shares.
The correctness of sharings must be verified separately.

In order to have a dealer Pp verifiably share a value s with degree d the
following protocol VShare is invoked. VShare uses a random d-sharing
[r]¢ which is privately reconstructed towards the dealer (using the proto-
col ReconsPriv described in the next subsection). The dealer then broad-
casts the difference 6 = s — r and the players compute the d-sharing [s]q
of s as [s]g = [r]a + 9.

Protocol VShare(Pp € (P UU), s, d, [r]q)-

1. RECONSTRUCT 7: Invoke ReconsPriv(Pp, d, [r]4) to reconstruct [r]4 to-
wards the dealer Pp.
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2. BROADCAST DIFFERENCE: Pp computes and broadcasts (in P) the
difference § = s —r.

3. COMPUTE AND OUTPUT: The players in P compute and output the
d-sharing [s]q = [r]q + 0.

The above protocol is robust for d < n — 2¢ (as then ReconsPriv is robust).
The outputted sharing is a correct d-sharing of s’ = r+§ if [r], is a correct
d-sharing. For an honest dealer Pp additionally holds s’ = r + 4§ = r +
s —r = s. VShare is private if r is a secret random value (as thend = s —r
does not leak any information to the adversary). The communication
complexity of VShare is nx + BC(k).?

4.3.3 The Reconstruct Protocol

We use two reconstruction protocols: one for private and one for public
reconstruction. Both can be either robust or only detectable — depending
on the degree of the sharings to be reconstructed.

In the private reconstruction protocol the players simply send their
shares to the receiver Pr (a player or a user), who interpolates the secret
(if possible).

Protocol ReconsPriv(Pg € (P UU),d, [s]a).

1. SEND SHARES: Every player P; € P sends his share s; of s to Pg.

2. INTERPOLATE AND OUTPUT: If there exists a degree-d polynomial p(-)
such that at least d+ 1+t of the received shares lie on it, i.e. p(c;) = s;
, then Pr computes and outputs the secret s = p(0). Otherwise Pr
gets unhappy (sets his happy-bit to “unhappy”).!

Lemma1 For d < n — 2t, the protocol ReconsPriv robustly reconstructs [s]q
towards Pg. For d < n — t, ReconsPriv detectably reconstructs [s]q towards
Pr (ie., Pg either outputs s or gets unhappy, where the latter only happens
when some players deviate from the protocol). ReconsPriv communicates nk
bits.

9Where BC(-) denotes the number of broadcasted bits. Remember that in this model
broadcasting & bits corresponds to communicating n?« bits.

19Remember that every player has an internal state (the happy-bit) signalizing whether
or not he detected a fault in the computation.



46 Active MPC (Without Setup)

The public reconstruction protocol ReconsPubl takes T' = n—2t = Q(n)
correct d-sharings [s1]q, ..., [s7]q¢ and publicly (to all players in P) out-
puts the (correct) values si,...,sr, or fails (with at least one honest
player being unhappy). In ReconsPubl we use the idea of [DNO7]: first the
T sharings [s1]a, ..., [sT]q are expanded (using a linear error-correcting
code) to n sharings [u1]g,. . ., [u,]4,'' each of which is reconstructed to-
wards one player in P (using ReconsPriv). Then, every P; € P sends his
reconstructed value u; to every other player in P, who tries to decode
(with error correction) the received code word (u1,...,uy) to s1,...,s7.
ReconsPubl communicates O(n?k) bits to reconstruct T = Q(n) sharings.

Protocol ReconsPubl(d, [s1]d, - - -, [$T]d)-

1. EXPAND: For j =1, ..., n the players in P (locally) compute:
[ujla = [s1]a + [s2]aB; + [sslafB] + ... + [srlaff] "

for some fixed distinct values 1, ..., 8, € F\ {0}].

2. RECONSTRUCT: For every P; € P, ReconsPriv(P;, d, [u;]q) is invoked
to reconstruct [u;]4 towards P;.

3. SEND: Every P; € P sends u; (or L if unhappy) to every P; € P.

4. COMPUTE AND OUTPUT: VP; € P: If P, received atleast T+t (T'—1)-
consistent values (in the previous step), he computes (using Lagrange
Interpolation) s1, ..., s7. Otherwise he gets unhappy.

Lemma2 For d < n — 2t, the protocol ReconsPubl robustly reconstructs
[s1]ds - - -, [s7]a towards all players in P. For d < n—t, ReconsPubl detectably
reconstructs [silq, . .., [sT]a towards all players in P (i.e., every P; € P either
outputs si1,. .., st or gets unhappy, where the latter only happens when some
players are faulty).

ReconsPubl communicates 2n?r bits to reconstruct T = n— 2t > n/3 shar-
ings. Thus the amortized communication complexity per reconstructed sharing
is less than 6nk bits.

Ufor this we interpret s1,...,s7 as coefficients of a degree T" — 1 polynomial and
u1,...,un as evaluations of this polynomial at n fixed positions 1, ..., Bn.
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4.4 Computing of Affine Functions

The computation of affine functions is local. As in the passive case (Sec-
tion 3.4), the players apply the function to be computed directly to their
shares.

4.5 Generating Random Sharings

The non-robust actively-secure generation of random sharings starts sim-
ilarly as in the passively-secure protocol from Section 3.5.2, by having ev-
ery player d-share his random contribution with the protocol Share. How-
ever in the presence of the active adversary, up to ¢ of the contributed
sharings can be incorrect. Hence the correctness of the sharings has to be
verified.

In the past years, this was done by checking a blinded random linear
combination of the sharings. If the check succeeded (and thus the origi-
nal sharings were correct with overwhelming probability), the n—t secret
random sharing were extracted using super-invertible matrices. While
this approach is very efficient, it has two drawbacks: it requires a secure
generation of a random challenge (which typically again requires a gen-
eration of random sharings) and it has an error-probability.

In this section we present a new technique which at the same time
allows to perfectly (and with similar efficiency as before) check the cor-
rectness of the contributed sharings and (if the check says that they are
o0.k.) to extract O(n) correct secret random sharings.

In the following we introduce hyper-invertible matrices (the basis of
our novel technique), and then show how to use them in order to effi-
ciently detectably generate random sharings with perfect security.

4.5.1 Hyper-Invertible Matrices (HIM)
4.5.1.1 Definition

A hyper-invertible matrix (HIM) is a matrix of which every (non-trivial)
square sub-matrix is invertible.
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Definition 6 An r-by-c matrix M is hyper-invertible if for any index sets
RC{l,...;r}and C C {1,...,c} with |R| = |C| > 0, the matrix M is
invertible, where Mp, denotes the matrix consisting of the rows i € Rof M, M©
denotes the matrix consisting of the columns j € C of M, and M = (Mg) <

4.5.1.2 Construction

We present a construction of a hyper-invertible n-by-n matrix M over
a finite field F with |[F| > 2n. A hyper-invertible r-by-c matrix can be
extracted as a sub-matrix of such a matrix with n = max(r, ¢).

Construction 1 Let oy, ..., an, b1, ..., Oy denote fixed distinct elements in F,
and consider the function f : F* — F", mapping (x1, ..., &) t0 (Y1, ..., Yn)
such that the points (81,91),- .., (Bn,yn) lie on the polynomial g(-) of de-
gree n — 1 defined by the points (a1,21),. .., (an,xy). Due to the linear-
ity of Lagrange interpolation, f is linear and can be expressed as a matrix
M = {)\i’j}jzl,...n where )\@j = H”Z‘:l Bizai

1=1,...,n’ ket O3 —Ok ‘
Lemma 3 Construction 1 yields a hyper-invertible n-by-n matrix M.

Proof: We have to show that for any index sets R,C C {1,...,n} with
|R| = |C| > 0, MY is invertible. As |R| = |C]|, it is sufficient to show
that the mapping defined by M§ is surjective, i.e., for every yr there
exists an Z¢ such that gy = Mgfc. Equivalently, we show that for
every yr there exists an 7 such that jr = MpZ and 75 = 0, where
C = {1,...,n}\ C. Remember that M is defined such that the points
(a1,21),- .., (on, n), (B1,¥1); - - -, (Bn, yn) lie on a polynomial ¢(-) of de-
gree n — 1. Given the n points {(a;, 0)}j¢c and {(8;,i) }, - the poly-
nomial g(-) can be determined by Lagrange interpolation, and Z¢ can be
computed linearly from §r. Hence, M§ is invertible. L

4.5.1.3 Properties

The mappings defined by hyper-invertible matrices have a very nice
symmetry property: Any subset of n input/output values can be ex-
pressed as a linear function of the remaining n input/output values:
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Lemma4 Let M be a hyper-invertible n-by-n matrix and (y1,...,yn) =
M (x1,...,xy). Then for any index sets A, B C {1,...,n} with |A|+|B| =n,
there exists an invertible linear function f : F™ — F", mapping the values
{i}iea, {yi}ien onto the values {x;}ig A, {yi}ign-

Proof: We have § = M7 and ijp = Mpi = M§{Ta + Mgfx. Due to
hyper-invertibility, Mg is invertible, and ¥4 = (Mg)_1 (gj’ B — M ‘gf A).
i/ can be computed similarly. L]

4.5.2 Generating Random Sharings Using HIM

The following non-robust protocol ShareRandom(d) either generates ' =
n — 2t independent secret random values 71, . .., 7, each independently
d-shared in P, or fails with at least one honest player being unhappy.

The generation of the random d-sharings employs hyper-invertible
matrices: First, every player P; € P selects and d-shares a random value
s;. Then, the players compute d-sharings of the values r;, defined as
(ri,...,rn) = M(s1,...,s,), where M is a hyper-invertible n-by-n ma-
trix. 2¢ of the resulting d-sharings are reconstructed, each towards a dif-
ferent player, who verifies the correctness of the d-sharing (and gets un-
happy in case of a fault). The remaining n — 2t = T sharings are out-
putted. This procedure guarantees that if all honest players are happy,
then at least n sharings are correct (the n — ¢ sharings inputted by honest
players, as well as the ¢ sharings verified by honest players), and due to
the hyper-invertibility of M, all 2n sharings must be correct (the remain-
ing sharings can be computed linearly from the good sharings). Further-
more, the outputted sharings are random and unknown to the adversary.

Protocol ShareRandom(d).

1. SECRET SHARE: Every player P; € P chooses a random s; €r F and
acts as a dealer in Share (7}, s;, d) to distribute the shares among the
players in P — resulting in a sharing [s;]4.

2. APPLY M: The players in P (locally) compute

([Tl]da ey [Tn]d) = M([Sl]d, ey [Sn]d)

In order to do so, every player computes his share of each r; as linear
combination of his shares of the s;-values.
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3. CHECK: Fori=T+1,...,n,every P; € P sends his share of [s;]4 to
P;, who checks that all n shares are d-consistent, i.e. P; checks that all
shares indeed lie on a degree-d polynomial. If not P; gets unhappy.

4. OUTPUT: The remaining 7T sharings [r1]q, ..., [rr]q are outputted.

Lemma 5 If all players follow the protocol, then the protocol succeeds (i.e., all
honest players remain happy). If ShareRandom(d) succeeds, it outputs T =
n — 2t correct and random d-sharings, unknown to the adversary.

ShareRandom communicates 3n?r bits to generate n— 2t random sharings.
The amortized communication complexity per sharing is less than 5nk bits.

Proof: CORRECTNESS: Assume that all honest players remain happy dur-
ing the protocol. Then for all honest P, with ¢ € {T'+1,...,n}, the sharing
of r; checked by P; in Step 3 is a correct d-sharing. As T' = n — 2t, there
are at least ¢ correct sharings of the values r. Furthermore, every shar-
ing of an s; distributed by an honest P; in Step 1 is a correct d-sharing.
Thus there are at least n — ¢ correct sharings of the values sj. Given these
(at least) n correct d-sharings, the sharings of all other values s; and ry,
can be computed linearly. As a linear combination of correct d-sharings
is again a correct d-sharing, it follows that all values s1,...,5,,71,...,7
are correctly d-shared.

PRIVACY: The adversary knows (at most) ¢ of the input sharings s
(those provided by corrupted players), and ¢ of the output sharings ry,
(with £ > T, those reconstructed towards corrupted players). When
fixing these 2t sharings, then there exists a bijective mapping between
any other honest I' = n — 2t input sharings (independent of the 2¢ shar-
ings known to the adversary) and the first T’ output sharings (Lemma 4),
hence the sharings [ri]q, . . ., [rr]q are uniformly at random, unknown to
the adversary.

COMMUNICATION: The protocol communicates
nShare + 2tnk < n’k +2/3n’s = 5/3n°k

bits to generate 7' = n — 2t > n/3 random sharings. Thus the amortized
communication complexity per generated sharing is less than 5nx bits. m
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4.6 Multiplication

The detectable multiplication protocol Mult is based on the passive mul-
tiplication protocol MultPassive (Section 3.6.2): it multiplies two d-shared
values using one (d, 2d)-sharing of a secret random value. We first de-
scribe the detectable protocol for generating random double-sharings
DoubleShareRandom and then the detectable protocol for multiplying val-
ues given random double-sharings.

The following protocol DoubleShareRandom works along the lines of
ShareRandom (from Section 4.5.2) using a hyper-invertible n-by-n matrix
M. It generates T' = n— 2t correct (d, d’')-sharings of secret random values
(or fails with at least one honest player being unhappy).

Protocol DoubleShareRandom(d, d’).

1. SECRET SHARE: Every player P; € P chooses a random s; €r F and
acts as a dealer in Share (P;, s;,d) and in Share (P;, s;, d’) to distribute
the shares of [s;]4 and [s;]¢ among the players in P — resulting in a
double-sharing [s;]4,q-

2. ApPrLY M: The players in P (locally) compute

([Tl]d,d’a ey [Tn]d,d’) = M([Sl]d’df, ceey [Sn]d,d’)-

In order to do so, every player computes his double-share of each r;
as linear combination of his double-shares of the s;-values.

3. CHECK: Fori = T +1,...,n, every P; € P sends his double-
share [s;]q,a to P;, who checks that all n double-shares define a cor-
rect double-sharing of some value s;. More precisely, P; checks that
all d-shares indeed lie on a polynomial g(-) of degree d, and that
all d’-shares indeed lie on a polynomial ¢/(-) of degree d’, and that
g(0) = ¢’(0). If any of the checks fails, P; gets unhappy.

4. OUTPUT: The remaining T double-sharings [r1]4a.a’, - - -, [rT]a,q are
outputted.

Lemma 6 If all players follow the protocol, then the protocol succeeds (i.e., all
honest players remain happy). If DoubleShareRandom(d, d’) succeeds, it out-
puts T = n—2t correct and random (d, d')-sharings, unknown to the adversary.

DoubleShareRandom communicates 12n’r bits to generate n — 2t double-

sharings. The amortized complexity per double-sharing is less than 10n« bits.
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The following multiplication protocol Mult is almost identical to the pas-
sive multiplication protocol MultPassive from Section 3.6.2. However, it
proceeds T' = n — 2t multiplications in parallel (as the used sub-protocol
ReconsPubl has linear communication complexity only if reconstructing
T = n — 2t values in parallel).

Protocol Mult([z1]a, [y1]da, [T1]d2d - - - [@T)d, [yT]ds [PT]d,24) -

1. MULTIPLY SHARES: For k£ = 1,...T the players compute (locally) the
2d-sharing [z]2q Of 2z = xkYk as [zk]2d = [Tk]d[yk]a (by every player
computing the product of his shares).

2. REDUCE DEGREE

2.1 For k = 1,...T the players compute (locally) the 2d-sharing of the
difference 5k = Z — Tk as [5k]2d = [Zk]gd — [’I“k]gd.
2.2 Invoke ReconsPubl([d1]ad, - . -, [07]24 to reconstruct the differences
d1,...,07 towards every player in P.
2.3 For k = 1,...T the players compute (locally) the d-sharing [21]s =
[rk]a + Ok
3. OUTPUT: The players output the d-sharings [z1]4, - - - , [#7]a-

The protocol Mult is robust for 2d < n—2t and detectable for 2d < n—t.
The security of Mult follows directly from the security of MultPassive and
ReconsPubl. The protocol Mult communicates at 2n?r bits to multiply
n — 2t > n/3 pairs, thus the amortized communication complexity per
one multiplication is less than 6nx bits.

4.7 Fault Detection

The following fault detection protocol allows the players to reach agree-
ment on whether or not all players are happy.

Protocol FaultDetection.
1. DISTRIBUTE HAPPY BITS: Every P; € P sends his happy-bit to every
P; € P, who gets unhappy if at least one P; claims to be unhappy.

2. FIND AGREEMENT: The players in P run a consensus protocol with
every player inputting his happy-bit.
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3. OUTPUT: If the consensus of the previous step outputs “happy”, out-
put “succeeded” otherwise output “failed”.

Note that the honest players always agree on the output of
FaultDetection and if at least one honest player is unhappy at the begin-
ning of the protocol, then the output is “failed “(regardless of the be-
havior of the corrupted players). If all honest players start the protocol
being happy and all players follow the protocol then FaultDetection out-
puts “succeeded”. However the adversary can always cause the output
to be “failed”, even if all honest players are happy at the beginning of the
protocol.

The communication complexity of FaultDetection is n? + BA(1).

The above protocol will be invoked at the end of the non-robust parts
of the computation to determine whether the computation was correct
and its outputs can be used in the following computation.

4.8 The Fair SFE Protocol

Using the sub-protocols presented by now, we are able to construct a non-
robust but fair protocol for non-reactive MPC (but not yet for fair reactive
MPC 12).

4.8.1 Overview

The protocol proceeds in three phases: the preparation phase, the com-
putation phase (without output gates) and the output phase.

In the preparation phase, secret random ¢, 2t-double-sharings are gen-
erated (in parallel), one for every multiplication gate. Furthermore, for
every random gate as well as for every input gate, a t-sharing of a ran-
dom 7 is generated. For the sake of simplicity, we generate cys + cr + ¢1
random double-sharings, where for random and input gates, only the
first component (the ¢-sharing) is used.

In the computation phase, the actual circuit is computed. Input gates
are robustly evaluated with the help of a pre-shared random value r. Due

12Remember that for d = t and t < n/3 the multiplication protocol is non-robust. Hence
if there is any multiplication gate strict after an output gate, the adversary can cause the
computation to fail after receiving output.
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to the linearity of the used secret-sharing, the linear gates can be com-
puted locally — without communication. Random gates are evaluated
simply by picking an unused pre-shared random value 7.

Multiplication gates are evaluated non-robustly with help of one
pre-generated double-sharing (at the cost of one non-robust public re-
construction of a 2¢-sharing). For the sake of efficiency, we evaluate
T = n — 2t multiplication gates of the same multiplicative depth at once
(such that we can publicly reconstruct 7" sharings at once).'?

In the output phase the output gates are evaluated using secret recon-
struction which is robust for d = ¢.

The preparation and the computation phase can both fail in case of
faults, however the output phase is robust, given that preparation and
computation succeeded (all players remained happy).

4.8.2 Preparation Phase

The protocol PreparationPhase first invokes the non-robust protocol
DoubleShareRandom(t, 2t) (many times in parallel) to let the players gen-
erate a bunch of secret random double-sharings. Then FaultDetection is
invoked to let the players agree on whether or not the generation of the
double-sharings succeeded.

Protocol PreparationPhase.

1. GENERATION: Invoke DoubleShareRandom(t, 2t) [<E4ECr] times in
parallel.

2. FAULT DETECTION: Invoke FaultDetection.

3. OUTPUT: If the output of the previous step is “succeeded”, the
double-sharings generated in Step 1 are outputted. Otherwise, the
preparation phase failed.

The players always agree on whether PreparationPhase succeeded or
failed. If all players follow the protocol, then PreparationPhase succeeds.
If PreparationPhase succeeds, then it outputs ¢; + car + cg correct (¢, 2t)-
sharings of independent secret random values. The communication com-
plexity of PreparationPhase is less than 10(c; +cps +cr)nk+5n?k+BA(1),
which amounts to O((¢;n + cymn + cgn + n?)k) bits of communication.

13The multiplicative depth of a gate is the maximum number of multiplication gates on
any path from input/random gates to this gate.
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4.8.3 Computation Phase

In the computation phase, the actual circuit (except for the output gates)
is computed.

At the end of the computation phase FaultDetection is invoked to let
the players agree on whether or not all players are happy.

Protocol ComputationPhase.

1. CIRCUIT EVALUATION: To every input, random and multiplication
gate, one of the pre-generated random double-sharings is associated
and the gates of the circuit are evaluated as follows:

e INPUT GATE (USER U INPUTS s): Let [r];: denote the associated
random sharing. The protocol VShare(U, 1, s, [r]) is invoked to let
the user U verifiably ¢-share his input s.

e ADDITION/LINEAR GATE: Every P; € P applies the linear func-
tion on his respective shares.

e RANDOM GATE: Pick the sharing [r]; associated with the gate.

e MULTIPLICATION GATE: Up to 7" = n — 2t multiplication gates
are processed simultaneously. Denote the factor sharings as
([z1le, wale) s - - - ([z7]e, [yr)e), and the associated double-sharings
as [r1]e2t, - - - [r7)e,2¢. The product sharings [z1]¢, . . ., [27]: are com-
puted by invoking the sub-protocol Mult.

2. FAULT DETECTION: Invoke FaultDetection.

3. OUTPUT: If FaultDetection outputs “succeeded”, output the computed
t-sharing of the circuit output(s).

The players always agree on whether ComputationPhase succeeded or
failed. The following holds given that the pre-generated double-sharings
are correct, random and unknown to the adversary: If all players fol-
low the protocol, then ComputationPhase succeeds (completeness). If
ComputationPhase succeeds, then it outputs correct ¢-sharing of the cor-
rect circuit output(s) (correctness). ComputationPhase leaks no informa-
tion to the adversary (privacy).

The communication complexity of ComputationPhase is less than
cr(nk + BA(K)) + 6cynk + 2Dyn’k + nk + BA(1), which amounts to
O((ern?® + cn + Dyn® + n?)rk) bits of communication, where D) de-
notes the multiplicative depth of the circuit.
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4.8.4 Output Phase

In the output phase, every output gate is evaluated robustly by recon-
structing the output sharing towards the designated recipient with the
protocol ReconsPriv.

Protocol OutputPhase.
e OUTPUT GATE (OUTPUT [s] TO USER U): Invoke ReconsPriv(U, t, [s]:).

For every output gate holds: If the sharing [s] is a correct ¢-sharings of
some value s, then the recipient outputs s. The communication complex-
ity of the output phase is conk.

4.8.5 Main Protocol

The main protocol starts by invoking the detectable protocol
PreparationPhase which either generates a bunch of correctly shared
secret random double-sharings or fails (and the players agree on what
is the case). If PreparationPhase succeeds, the circuit (except for the
output gates) is detectably evaluated with ComputationPhase using the
pre-generated random double-sharings. At the end of ComputationPhase
the players again agree whether or not the protocol succeeded, and if
yes, the outputs are robustly reconstructed in OutputPhase.

Protocol MainSFE.

0. Every P; € P sets his happy-bit to “happy”.

1. PREPARATION PHASE: Invoke PreparationPhase.

2. COMPUTATION PHASE: If PreparationPhase succeeded invoke
ComputationPhase.

3. OUTPUT PHASE: If OutputPhase succeeded invoke OutputPhase.

Theorem 2 The protocol MainSFE non-robustly but fairly evaluates a function
with ¢y input, cg random, ¢y multiplication, and co output gates, communi-
cating O ((cin+cpn+cyn+con+ Dyn?)k+ cr BA(k)+n?+ BA(1)) bits,
which amounts to O ((cin®+crn+cyn+con+Dyn®+n?)k) bits, where Dy
denotes the multiplicative depth of the circuit. The protocol is perfectly secure
against an adaptive active adversary corrupting t < n/3 players.
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The fairness of this protocol follows from the fact that the output
phase (the only part of the computation where the adversary gets some
information) is robust, given that the preparation and the computation
phase succeeded (which the players have to agree on, before going on to
the output phase). To obtain a fair protocol for on-going computations
(where an output gate might be followed by an multiplication gate), we
have to make the computation of multiplication gates robust as well. To
achieve this, we use the Circuit randomization technique [Bea91a]. This
technique allows us to transfer “all the non-robust stuff” into the prepa-
ration phase (where we only work with random values completely in-
dependent of the inputs) such that the actual evaluation of the circuit is
fully robust (consisting of reconstructions of ¢-sharings only).

4.9 Circuit Randomization

Circuit randomization [Bea91a] allows to compute a sharing [z]; of the
product z of two factors = and y, shared as [z]4 and [y]4, at the costs of two
public reconstructions, when a pre-shared random triple ([a]q, [b]a, [c]a)
with ¢ = ab is available. This technique allows to first prepare c;s shared
multiplication triples ([alg, [b]4, [c]a), and then to evaluate a circuit with
¢y multiplications by a sequence of public reconstructions.

The trick of circuit randomization is that z = 2y can be expressed as

z=((x—a)+a)((y—b)+b),

hence
z = 0,0y + 020 + ady + c,

where (a, b, ¢) is a multiplication triple and §, = * — e and ¢, = y — b. For
a random multiplication triple, 6, and J,, are random values independent
of x and y, hence a sharing [z] can be linearly computed as

[2]a = [620y]a + 02[bla + by[ala + [cla,
by reconstructing [0;]q = [z]a — [a]a and [6y]a = [y]a — [b]a-

410 The Fair MPC Protocol

With help of the circuit randomization technique, we are now able to
convert the previous protocol for non-robust but fair non-reactive MPC
to a non-robust but fair protocol for reactive MPC.
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4.10.1 Overview

The protocol proceeds in two phases: the non-robust preparation phase
and the computation phase.

In the preparation phase, t-sharings of secret random multiplication
triples are non-robustly generated, one for every multiplication gate. Fur-
thermore, for every random gate as well as for every input gate, a t-
sharing of a random r is generated. For the sake of simplicity, we gen-
erate cys + cr + ¢y random multiplication triples, where for random and
input gates, only the first component of the triple is used.

In the computation phase, the actual circuit (including the output
gates) is robustly evaluated. Input gates are evaluated with the help of a
pre-shared random value 7. Linear gates are computed locally — without
communication. Random gates are evaluated simply by picking an un-
used pre-shared random value r. Multiplication gates are evaluated with
the help of one pre-generated random multiplication triple (at the cost of
two public reconstructions of ¢-sharings). For the sake of efficiency, we
evaluate up to 7'/2 multiplication gates at once (if possible), such that we
can publicly reconstruct 7" sharings at once. Output gates are evaluated
using a secret reconstruction.

Note that the preparation phase can fail in case of faults, however the
computation phase is robust, given that the preparation phase succeeded
(which the player agree on before going on to the computation phase).

4.10.2 Preparation Phase

We first present the non-robust protocol GenerateTriples which either gen-
erates T' = n— 2t correctly d-shared multiplication triples unknown to the
adversary or fails with at least one honest player being unhappy.

GenerateTriples generates 7 pairs of random d-sharings

([a1]a, [b1]a)s - - -, (ar)a, [br]e) and T  random  double-sharings.
Then the protocol Mult is invoked to compute the products
[Cl]d = [al]d[bl]d, ey [CT]d, = [aT]d[bT]d with the help of the double-
sharings.

Protocol GenerateTriples(d).
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1. GENERATE RANDOM a AND b: Invoke ShareRandom(d) two times in

parallel to generate T' = n — 2¢t random d-sharings [a1]4, - - - , [ar]q and
T random d-sharings [b1]4, - . . , [br]a-
2. MULTIPLY a AND b:
2.1 GENERATE RANDOM DOUBLE SHARING [r|g2¢ : Invoke
DoubleShareRandom(d, 2d) to generate T' random double sharings
[7“1](1,2(17 ceey [TT]d,Qd
2.2 MULTIPLY a AND b  USING [r]d,24: Invoke
Mult([al]d, [bl]da [Tl]d,Qd, ey [aT]d, [bT]d7 [TT]d,Qd) to compute
the d-sharings of the products ¢; = a1b1,...,cr = arbr.
3. OUTPUT: The players output the d-sharings of the T triples
(la1la, [b1]as [er]a)s - - -, ([aT)as [bT)as [er]a)-

Lemma 7 For 2d < n — t the protocol GenerateTriples(d) has the following
properties: If all players follow the protocol, then the protocol succeeds (com-
pleteness). If the protocol succeeds, than it outputs T = n — 2t independent

correct d-sharings ([a1]a, [b1]a, [c1]a), - - -, ([a7]a, [br]a, [cr]a) with a;, b; being
independent random values and ¢; = a;b; (correctness). The adversary gets no
information on the triples (a1,b1,c1), ..., (ap, by, cr) (privacy).

The communication complexity of GenerateTriples(d) is at most 22n?k. The
amortized communication complexity per triple is at most 26nx.

The following protocol PreparationPhase first invokes the non-robust
protocol GenerateTriples(t) (many times in parallel) to let the players gen-
erate a bunch of secret random multiplication triples. Then FaultDetection
is invoked to let the players agree on whether or not the generation of the
triples succeeded.

Protocol PreparationPhase.

0. Every P; € P sets his happy-bit to “happy”.
. GENERATION: Invoke GenerateTriples(t) [<t24Eea] times in parallel.
. FAULT DETECTION: Invoke FaultDetection.

. OUTPUT: If the output of the previous step is “succeeded” the multi-
plication triples generated in Step 1 are outputted.

W N =

The players always agree on whether PreparationPhase succeeded or
failed. If all players follow the protocol, then PreparationPhase succeeds
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(completeness). If PreparationPhase succeeds, then it outputs £ = c;+car+

cr independent correct t-sharings ([a1], [b1]:, [c1]e)s - - -, ([ae)e, [belt, [ce)t)
with a;, b; being independent random values and ¢; = a;b; (correctness).
The adversary gets no information on the triples (a1, b1, ¢1), . . ., (a¢, be, ¢o)
(privacy).

The communication complexity of PreparationPhase is less than
26(c; + ey + cr)nk + 10n2k + BA(1) which amounts to O((c; + cg +
ey )nk + n’k) bits of communication.

4.10.3 Computation Phase

We first present the protocol MultiplicationGate which robustly computes
up to |7T/2] (with T' = n — 2t ) products in parallel using pre-generated
multiplication triples.

Denote the factor sharings as ([z1]a, [y1]a), - - -, ([#1/2]a, [yr/2]4) and
the sharings of the triples as ([a1]a, [b1]4, [c1]a), - - -, ([az 2], [0 /2]a; [c1/2)a)-
Then the products [z1]4, . . ., [27/2]4 are computed as follows:

Protocol MultiplicationGate(d).

1. COMPUTE THE DIFFERENCES: For k = 1,...,T/2, the players com-
pute [di]a = [zx]a — [axla and [er]a = [yx]a — [bk]a.

2. RECONSTRUCT THE DIFFERENCES: Invoke ReconsPubl to publicly re-
construct the 7" d-sharings of (di,e1), ..., (dr/2, er/2). Note that this
is robust, as long as d < n — 2¢.

3. COMPUTE AND OUTPUT THE PrODUCTS: For k = 1,...,7/2, the
players compute the product sharings [zx]q = drer+dg [br]a+ex[ar]a+
[Ck]d-

Lemma 8 For d < n — 2t the protocol MultiplicationGate(d) perfectly securely
computes up to | T /2] multiplications, given |T' /2| pre-shared correct random
multiplication triples. The communication complexity of MultiplicationGate is
2n2k bits.

As the computation phase involves t-sharings only and ¢ < n — 2t, the
evaluation of the multiplication gates is robust. Hence all circuit gates can
be evaluated robustly, i.e once the computation phase starts, the adver-
sary cannot prevent the honest players from receiving their output. Thus
we can evaluate output gates at any point in the computation (according
to the circuit).
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Protocol ComputationPhase.

To every input, random and multiplication gate one pre-generated ran-
dom triple is associated and the gates of the circuit are evaluated as fol-
lows:

e INPUT GATE (USER U INPUTS s): Let [r]; denote the associated ran-
dom sharing. The protocol VShare(U, t, s, [r];) is invoked to let the
user U verifiably ¢-share his input s.

e ADDITION/LINEAR GATE: Every P; € P applies the linear function
on his respective shares.

e RANDOM GATE: Pick the sharing [r]; associated with the gate.

e MULTIPLICATION  GATE: Up to [T/2] multiplication
gates are processed in parallel by invoking the protocol
MultiplicationGate(¢) (using the associated multiplication triples
([al]t7 [[t]blL [Cl]t)’ ERR ([aT/Q]t’ [bT/Q]t’ [CT/Q]t))-

e OUTPUT GATE (OUTPUT [s] TO USER U): Invoke ReconsPriv(U, t, [s]:).

Lemma 9 The protocol ComputationPhase perfectly securely evaluates a cir-
cuit with cy input, cr random, cpr multiplication, and co output gates, given
cr + cr + car pre-shared correct, random multiplication triples, with communi-
cating O ((cin + cyn + con + Dyn?)k + ¢y BA(k)) bits, where Dy denotes
the multiplicative depth of the circuit.

4.10.4 Main Protocol

The protocol NonRobusteMPC consists of a non-robust preparation phase
and a robust computation phase which is invoked only if the preparation
phase succeeded.

Protocol NonRobusteMPC.

1. PREPARATION PHASE: Invoke PreparationPhase.

2. COMPUTATION PHASE: If PreparationPhase succeeded invoke
ComputationPhase, otherwise abort the computation.
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Theorem 3 The protocol NonRobusteMPC non-robustly but fairly evaluates a
(reactive) circuit with cy input, cg random, cpr multiplication, and co output
gates, communicating O ((cyn+cgn-+cyn-+con+Dyn?+n?)k+cr BA(k)+
B.A(1)) bits, which amounts to O ((cin?® + crn+ cpn+ con+ Dpyn? +n?)k)
bits, where D denotes the multiplicative depth of the circuit. The protocol
is perfectly secure against an adaptive active adversary corrupting t < n/3
players.

If all players follow the protocol then PreparationPhase succeeds (and all
honest players agree on that). If the PreparationPhase succeeds it gener-
ates correct multiplication triples unknown to the adversary and thus the
invoked ComputationPhase robustly, correctly, and privately evaluates the
circuit.

Note that (as the computation phase is robust given that the prepara-
tion phase succeeded) by making the preparation phase robust we get a
robust protocol for reactive MPC.

In the following sections we present Player Elimination [HMPO00] - a
general technique for transforming non-robust protocols into robust pro-
tocols at essentially no additional costs.

4.11 Player-Elimination

Player Elimination (PE) is a general technique (from [HMPO00]), used for
constructing efficient MPC protocols. It allows to transform (typically
very efficient) non-robust protocols into robust protocols at essentially
no additional costs.

The basic idea is to divide the computation into segments and repeat
the non-robust evaluation of each segment until it succeeds, whereby lim-
iting the total number of times the adversary can cause a segment to fail.
Each evaluation of a segment proceeds in three steps: (1.) detectable com-
putation (2.) fault detection and (3.) fault localization.

In the detectable computation, the actual non-robust (but detectable)
protocol is invoked to compute the segment. In the fault detection the
players agree on whether or not there are some unhappy players. If all
players are happy, the computation of the segment was successful, the
players keep the output and proceed to the next segment. Otherwise the
segment failed, the output is discarded and a pair of players E = {P;, P; }
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containing at least one corrupted player is localized in the fault localiza-
tion, eliminated from the actual player set and the segment is repeated
with the new player set.!* We denote the original player set as P (con-
taining n players, up to ¢ of them faulty), and the actual (reduced) player
set as P’ (containing n’ players, up to ¢’ of them faulty).

By selecting the size of a segment such that there are ¢ segments, the
overall costs of the resulting robust protocol are at most twice the costs
of the non-robust protocol (plus the overhead costs for the fault detection
and the player elimination).

Technically, a player-elimination protocol proceeds as follows:

Protocol with Player-Elimination.

Let P" «— P, n’ «— n,t «— t. Divide computation into ¢ segments of
similar size, and do the following for each segment:

0. Every P; € P’ sets his happy-bit to “happy” (i.e., P; did not observe a
fault).

1. DETECTABLE COMPUTATION: Compute the actual segment in de-
tectable manner, such that (i) if all players in P’ follow their protocol,
then the computation succeeds and all players remain happy, and (ii)
if the output is incorrect, then at least one honest player in P’ detects
so and gets unhappy.

2. FAULT DETECTION: Reach agreement on whether or not all players
in P’ are happy (involves Byzantine Agreement). If all players are
happy, proceed with the next segment. If at least one player is un-
happy, proceed with the following fault-localization procedure.

3. FAULT LOCALIZATION: Find E C P’ with |E| = 2, containing at least
one corrupted player.

4. PLAYER ELIMINATION: Set P/ «— P\ E,n «—n’ —2,# «— ¢ —1,and
repeat the segment.

14Note that we eliminate players and not users. If a party playing the role of a player as
well as the role of a user is eliminated from the player set, it still keeps its user role — can
give input and receive output.
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412 The Robust MPC Protocol

When applying the player-elimination technique to a concrete detectable
protocol, two main issues have to be considered: privacy in the fault lo-
calization and the shrinking player set.

In our setting, privacy in the fault localization is no problem. We use
PE in the preparation phase only, where we work with independent ran-
dom values only. Thus, in case of faults, everything from the actual seg-
ment can be discarded and so privacy is of no concern.

However, special care needs to be taken such that the computation
after a (sequence of) player elimination is “compatible” with the outputs
of previous segments. We ensure this compatibility be fixing the degree
of all sharings to ¢, independent of the actual threshold #'.

Note that a sharing (among P’) of degree ¢ can be robustly recon-
structed as long as ¢t + 2t' < n/, what is clearly satisfied when ¢t < n/3.
Thus the circuit can be robustly evaluated by the players in P’ invoking
the old protocol ComputationPhase for the actual player set P’. However,
the old protocol GenerateTriples from the preparation phase does not nec-
essarily work for P’ C P: In order to detectably reconstruct a 2¢-sharing
(in the multiplication protocol) 2t + ' < n' is required, which is not nec-
essarily satisfied in P’. Thus in order to use PE in the preparation phase,
the protocol GenerateTriples has to be adjusted to be able to generate mul-
tiplication triples ¢-shared among the players in P’.

412.1 Protocol Overview

The (robust) actively secure protocol consists of a preparation phase and
a computation phase (both robust).

In the preparation phase a bunch of correct t-shared secret random
triples is generated. The preparation phase uses player elimination, i.e.
the triples are generated in a non-robust computation and every time the
computation fails a pair of players is localized and eliminated from the
player set. Thus the generated triples are shared among the players in
the actual player set P’ C P (whereby after every elimination holds ¢ <
n' — 2t').

After the preparation phase the users are informed about the actual
player set P’.
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The computation phase is very similar to the one of NonRobusteMPC
(Section 4.10.3) — the gates of the circuit are robustly evaluated with the
help of the pre-generated t-sharings of random triples. However, as the
triples from the preparation phase are t-shared among the players in P’
rather than P, the circuit is evaluated by the players in P’ (whereby all
intermediate values are t-shared among the players in P’). The compu-
tation phase is still robust, as t < n’ — 2t/, which is enough for robust
reconstruction of a t-sharing in P’.

4.12.2 Preparation Phase

The goal of the preparation phase is to generate correct ¢-sharings of cys+
cr + cs secret random triples (a, bk, cx), such that ¢, = agby, for k =
1,...,cm+cr+cr. We stress that all resulting sharings must be ¢-sharings
(rather than t’-sharings) among the player set P’.

Remember, that the protocol GenerateTriples(t) cannot be ran in P’
(with n’ players and threshold t'), as it would require 2t < n’ —t'. This is
due to the reconstruction of a 2¢-sharing for the degree reduction in the
multiplication protocol.’> Thus we adjust GenerateTriples for the reduced
player set P’ by computing 2t'-sharings (instead of 2¢-sharings) of the
products and reducing them to ¢-sharings..

The new protocol GenerateTriples” allows (if successful) the players in
P’ to generate random multiplication triples t-shared among the players
in P’. The protocol GenerateTriples’ (and all invoked sub-protocols) is run
in the actual player set P’ with n’ players and threshold ¢'.

The idea of GenerateTriples’ is the following: First DoubleShareRandom
is invoked 3 times to generated the random double-sharings
[al]t,tu ceey [CLT]t,t', [bl]t,tu ceey [bT]t,t', and [rl]t,QtH ceey [TT]t,Qt', re-
spectively. Then for every pair aj,bs, a t-sharing of the product
¢t = apby is computed by reducing the locally computed 2t’-sharing
[ck]or = [ak]y[br]e to a t-sharing [c]; using the t-sharing [ry]; and the
2t'-sharing [ri]op of the random value ry.

Protocol GenerateTriples’.

15Remember that in order to detectably reconstruct a correct d-sharing in P/, it must hold
d<n' —t.
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1. GENERATE RANDOM DOUBLE SHARINGS [a]y; AND [b]y; : Invoke
DoubleShareRandom(t,t’) two times in parallel to generate 7' random
(t,t')-double-sharings [a1]sv, - - -, [ar]:,v and T random (¢, t’)-double-
sharings [b1]¢v, . .., [br]ee-

2. GENERATE RANDOM DOUBLE SHARINGS [r]i2r :  Invoke
DoubleShareRandom(t, 2t") to generate 7' random double sharings
[Tl]t,2t/, ceey [TT]t,2t/

3. COMPUTE ¢-SHARING OF ¢ = ab USING [r]; 24

3.1 COMPUTE [c]oy : For k = 1,...T the players compute (locally)
the 2t/-sharing [ci]ar Of ¢k = agbi as [ckloy = [ak]v[bk]r (bY
every player computing the product of his shares).

3.2. COMPUTE [c]oyr — [c]¢:

3.2.1 For k = 1,...T the players compute (locally) the 2t'-sharing
of the difference 0, = ¢, — i as [0g]or = [ck]or — [rk]2e-

3.2.2 Invoke ReconsPubl([d1]2¢/, . . ., [07]2t to reconstruct the dif-
ferences 41, ..., d7 towards every player in P’.

3.2.3 For k = 1,...T the players compute (locally) the t-sharing
[ek)e = [rE]t + Ok-

4. OUTPUT: The players output the t-sharings of the T triples
([aa]e, [Da]e: [ea]e), - s ([are, [brl, [er]e)-

Lemma 10 If GenerateTriples’ succeeds (i.e., all honest players are happy),
it outputs independent random t-sharings of T = n — 2t random triples
(a1,b1,¢1), ..., (ar, by, cr) with ay, by, independent uniform random values
and ¢, = agby, for k =1,...,T. GenerateTriples’ communicates O(n*k) bits.

Now we can describe the preparation phase.

The following protocol PreparationPhase divides the generation of the
cm + cr + ¢; triples into ¢ segments of length ¢ = [<uteater] In
each segment the triples are generated invoking the non-robust protocol
GenerateTriples’ (as often as necessary), then the players reach agreement
on whether or not all players are happy. If yes, they proceed to the next
segment. Otherwise, a pair of players is identified in FaultLocalization,
excluded from the actual player set P’ and the segment is repeated (with
the new P’ and all players setting their happy-bit to “happy”).

Protocol PreparationPhase.

For each segment k = 1,...,¢ do:
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0. Every P; € P’ sets his happy-bit to “happy”.

1. TRIPLE GENERATION: Invoke GenerateTriples’ [4] times in parallel.

2. FAULT DETECTION: Invoke FaultDetection to reach agreement on
whether or not at least one player is unhappy. If the output is “suc-
ceeded”, then the generated triples are outputted and the segment is
finished. Otherwise the following Fault-Localization step is executed.

3. FAULT LOCALIZATION: Localize E C P’ with |E| = 2 and at least one
player in E being corrupted:

3.0

3.1

3.2

3.3

Denote the player P, € P’ with the smallest index r as the ref-
eree.!®

Every P, € P’ sends all values he received and all random values
he chose during the computation of the actual segment (includ-
ing fault detection) to FP;.

Given the values received in Step 3.1, P, can reproduce every
message that should have been sent (by applying the respec-
tive protocol instructions of the sender), and compare it with the
value that the recipient claims to have received. Then P, broad-
casts (I,1,7,x,2'), where [ is the index of a message where P,
should have sent = to P;, but P; claims to have received z’ # «.
The accused players broadcast whether they agree with P,.. If
P, disagrees, set E = {P,, P;}, if P; disagrees, set E = {P,, P;},
otherwise set E = {P;, P; }.

4. PLAYER ELIMINATION: Set P/ «— P\ E,n' «—n' —2,# «— ¢ —1,and
repeat the segment.

Lemma 11 The protocol PreparationPhase robustly generates independent
random t-sharings of cpr + cr + cr secret triples (a, b, cx) with ay, by, in-
dependent uniform random values and ¢, = apby for k =1,...,cp +cr+cr.
The generated values are t-shared among the players in the actual player set P’
with n' players (up to t' of them corrupted) and it holds t < n’ — 2t'.

PreparationPhase communicates O((car + cr + cr)nk + n’k + t BA(k))
bits, which amounts to O ((ca + cr + cr)nk + n®k) bits overall.

16The communication can be balanced by selecting a player who has not yet been referee
in a previous segment.
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4.12.3 Computation Phase

The computation phase is almost identical to the (robust) computation
phase of the non-robust MPC protocol from Section 4.10.3. The only dif-
ference is that the circuit is evaluated by the players in the actual player
set P’ (instead of P). Thus all invoked sub-protocols are invoked for the
player set P/, with n’ players, up to t’ < n’/3 of them corrupted.

In the computation phase, the circuit is robustly evaluated, whereby
all intermediate values are ¢-shared among the players in P’.

Protocol ComputationPhase.
Evaluate the gates of the circuit as follows:

e INPUT GATE (USER U INPUTS s): Let [r]; denote the associated ran-
dom sharing. The protocol VShare(U, t, s, [r];) is invoked to let the
user U verifiably ¢-share his input s.

e ADDITION/LINEAR GATE: Every P; € P applies the linear function
on his respective shares.

¢ RANDOM GATE: Pick the sharing [r]; associated with the gate.

e MULTIPLICATION  GATE: Up to [7/2] multiplication
gates are processed in parallel by invoking the protocol
MultiplicationGate(t) (using the associated multiplication triples
(la1le, [ba]es [ea]e)s - - o, (lazyale, [bry2lt, [e/2)t))-

e OUTPUT GATE (OUTPUT [s] TO USER U): Invoke ReconsPriv(U, t, [s];).

Lemma 12 The protocol ComputationPhase robustly evaluates a circuit with
cr input, cg random, cpr multiplication, and co output gates, given cr+cr+car
pre-shared random multiplication triples, with communicating O ((cyn+cayn+
con + Dyn?)k + ¢y BA(k)) bits, where Dy denotes the multiplicative depth
of the circuit.

4.12.4 The Robust Actively Secure MPC Protocol

The actively secure (robust) MPC protocol tolerating up to ¢t < n/3 cor-
rupted players consists of two robust phases — the preparation phase
and the computation phase.

The preparation phase generates a bunch of ¢-shared multiplication
triples (a,b,c). Remember that preparation phase makes use of player
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elimination, thus the generated triples are shared among the players in
the actual player set P’ (with n’ players up to t’ of them corrupted), where
P CP.

At the end of the preparation phase all users are informed about the
actual player set P’.

Then the computation phase is started and the circuit is robustly eval-
uated by the players in the actual player set P’ using the pre-generated
t-shared triples.

Protocol Main.

1. PREPARATION PHASE: Set P/ = P,n’ = n,t’ = t and invoke
PreparationPhase.

2. PROPAGATE P': Every player in P’ sends to every user the set P’. The
user accepts the set he received at least ¢ + 1 times.

3. COMPUTATION PHASE: Invoke ComputationPhase for the player set
P’

Theorem 4 The MPC protocol Main evaluates a circuit with ¢ input, cg ran-
dom, cpr multiplication, and co output gates, with communicating O((cln +
crn + cyn + con + Dyn?)k + (cr + n) BA(n)) bits, which amounts to
O((ern?® + cgn+ cyn + con + Dyn®)k + n’k) bits, where Dy denotes the
multiplicative depth of the circuit. The protocol is perfectly secure against an
active adaptive adversary corrupting t < n/3 players.

The amortized communication complexity for giving input can be im-
proved from O(n?k) per input to O(n«). Details can be found in [BHO8].






Chapter 5

Active MPC with Setup

5.1 Introduction

In this chapter we present an unconditionally secure MPC protocol se-
cure against an active adversary corrupting up to t < n/2 of the players
communicating O(n?r) bits per multiplication.

The communication complexity of our protocol is to be compared
with the most efficient previously known protocol for the same model,
which requires broadcasting (n®) field elements per multiplication.

This substantial reduction in communication is mainly achieved by
applying a new technique called dispute control: During the course of
the protocol, the players keep track of disputes that arise among them,
and the ongoing computation is adjusted such that known disputes can-
not arise again. Dispute control is inspired by the player-elimination
framework. However, player elimination is not suited for models with
t>n/3.7

The work presented in this chapter was published in [BHO06].

17For example, for n = 2t+ 1 could the number of honest players after one elimination be
equal to the number of corrupted players before the elimination. Thus after the elimination
the remaining honest players would not have any joint information on any intermediate
shared value.
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5.2 Model

We consider a set P of n players, P = { P, ..., P,}, which are connected
with a complete network of secure synchronous channels.!® Further-
more, we assume the availability of broadcast channels. These can be
simulated when a trusted setup is available [PW92].

The adversary corrupts up to t players for any fixed ¢ with ¢ < n/2.
The adversary is computationally unbounded, active, adaptive and rush-
ing.

The security of our protocols is information-theoretic with a negligible
error probability of 2~ (%) for some security parameter k.

The function to be computed is specified as an arithmetic circuit over
a finite field F = GF(2"), with input, addition, multiplication, random,
and output gates. We denote the number of gates of each type by ¢y, ca,
¢, Cr, and co.

To every player P; € P, a unique non-zero element o; € F\ {0} is
assigned.

5.3 Dispute Control

In the active model, the adversary can provoke inconsistencies among
the honest players, who therefore regularly have to check their views
and, in case of inconsistencies, invoke some fault-recovery procedure.
These checks tend to be very expensive (they require invocations to a
Byzantine agreement primitive), and must be performed even when no
player deviates from the protocol.

The goal of dispute control is to reduce the frequency of faults by pub-
licly identifying (localizing) a pair of disputing players (at least one of
them corrupted) whenever a fault is observed and preventing this pair
from getting into dispute ever again. Hence, the number of faults that
can occur during the whole protocol is limited to ¢(¢ + 1).

The localized disputes are filed in a publicly known dispute set A C
P x P, a set of unordered pairs of players that are in dispute with each
other. A pair {P;, P;} € A means that there is a dispute between P;

18For the sake of simplicity, we assume that the set of users is identical to the set of play-
ers.
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and P;, hence either P; or P; (or both) are corrupted. Note that from
the point of view of P;, the players {P; | {P;, P;} € A} are corrupted,
and P; doesn’t care for them; in particular, he won’t send or receive any
private messages from them. As no honest player can be in dispute with
more than ¢ players, we automatically include the pairs { P;, P;} for every
P; € P once P; is involved in more than ¢ disputes. Furthermore, we
define the set X' to be the set of players who are undoubtedly detected
to be corrupted, i.e., those players who are in dispute with more than ¢
other players.

Once dispute control is in place, we can take advantage of the fact
that the number of faults during the protocol is limited and reduce the
number of expensive consistency checks: We divide the protocol into n?
segments, run each segment without any consistency checks and only at
the end of the segment check all operations of the segment in a single
verification step. If the verification fails, a new dispute is localized, and
the segment is repeated. At most ¢(¢ + 1) segments can fail, and the total
number of segment evaluations (including repetitions) is at most n? +
t(t + 1), hence the overhead for repeating failed segments is only a factor
of 2. Formally the evaluation of each segment proceeds as follows:

1. Private (dispute-aware) computation. The effective protocol is
computed very efficiently but non-robustly. This computation is
adjusted to prevent faults due to disputes that are already regis-
tered in the dispute set A. In particular, players in dispute do not
communicate with each other privately.

2. Fault detection. The players jointly find out whether or not a fault
has occurred. This step typically requires each player to broad-
cast one bit indicating whether or not he observed an inconsistency
within the current segment. If no fault is reported, then the compu-
tation of the segment is completed, and the next segment is evalu-
ated. If at least one fault is reported, we say that the segment has
failed, and the following step is performed.

3. Fault localization and dispute control. The players publicly iden-
tify a pair {P;, P;} of players, where at least one of them is cor-
rupted and has deviated from the protocol, and who are not yet
registered in A. Then we set A «— A U {P;, P;} and restart the cur-
rent segment.
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5.4 Three-Level Secret-Sharing

We use three different levels of secret-shadings, all based on Shamir’s
sharing [Sha79], ameliorated with dispute control. The weakest level,
called 1D-sharing, is a polynomial sharing scheme, where the players who
are in dispute with the dealer (implicitly) receive a fixed-0 share, called
Kudzu-share. In order to 1D-share a value s, the dealer Pp selects a ran-
dom degree-t polynomial f(x) with f(0) = s and f(a;) = 0 for every
{Pp,P;} € A, and sends the shares s; = f(«;) to every P, € P (the
Kudzu-shares are not really sent; instead, the receiver sets his share to
0). A protocol VSS1D for verifiably 1D-share a bunch of values will be
given in Section 5.6.2. Note that 1D-sharings are not robust; reconstruc-
tion requires that all players (except those with Kudzu-shares) cooperate.
However, they are detectable in the sense that it can be decided whether
or not the reconstruction was successful.

The middle level of secret sharing, called 2D-sharing, is a two-level
polynomial sharings scheme: The share s; of each player P; € P is 1D-
shared among the players (for dealer P;). More precisely, a value s is 2D-
shared when there exists degree-t polynomials f, fi,..., f, with f(0) = s
and, for i = 1,...,n, fi(0) = f(a;) and VP; € P : {P,,P;} €¢ A —
fi(aj) = 0. Every player P; € P holds a share s; = f(a;) of s, the poly-
nomial f;(z) for sharing s;, and a share-share s;; = f;(o;) of the share
s; of every player P; € P. We say that P; owns the 1D-sharing of s;,
which means in particular that players who are in dispute with P; hold
0 as share-share of s;. We will never have a dealer 2D-share a value; in-
stead, we will upgrade 1D-sharings (or rather sums of 1D-sharings) to
2D-sharings, using protocol UpgradelDto2D. Note that also 2D-sharings
are not robust.

The strongest level of secret sharing, called 2D*-sharing, is a 2D-
sharing, where in addition, the share-shares are secured with informa-
tion checking (see Section 5.6.5). More precisely, for each share-share s;;
(which is not a Kudzu-share, i.e., {P;, P;} ¢ A), the owner P; of the shar-
ing has provided authentication tags for every verifier P, € P who is nei-
ther in dispute with the owner P; nor the recipient P;, i.e., { Pv, P;} ¢ A
and {Py, P;} ¢ A. These authentication tags allow Py in the reconstruc-
tion to verify the correctness of the received share-shares; hence, 2D*-
sharings are robust. Actually, P; does not distribute authentication tags
for every single share-share s;;, but rather for huge collections of many

€] ©

share-shares s;;’,....s;;’, and Py can only verify the correctness of all

share-shares at once. Also 2D*-sharings are never distributed by a dealer;
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instead, we will upgrade collections of 2D-sharings to 2D*-sharings, us-
ing protocol Upgrade2Dto2D*.

5.5 Main Protocol — Overview

The main protocol proceeds in three phases (each making use of segmen-
tation and dispute control):

Preparation phase: The preparation phase wuses the circuit-
randomization technique of Beaver [Bea9la]: A number of
so-called multiplication triples (a,b,c) with ¢ = ab are generated
and shared among the players. These triples will then be used in
the computation phase for efficiently multiplying shared values.
Furthermore, a number of random values are generated and
shared, which will be used as outputs of random gates.

Input phase: In the input phase, every player with input shares his input
among the players.

Computation phase: In the computation phase, the circuit is evaluated
gate by gate (level by level), with help of the prepared multiplica-
tion triples and the random values. Given the sharings of the mul-
tiplication triples, the random values, and the inputs, the compu-
tation phase is fully deterministic. Indeed, the computation phase
can be seen as a sequence of reconstructions of known linear com-
binations of shared values.

Each phase uses dispute control. We initialize the dispute set A = {}
and enter the first segment of the preparation phase. Then we evaluate
segment by segment, and with each segment that fails and is to be re-
peated, the dispute set A grows. Once all segments of the preparation
phase have succeeded, the players move on to the first segment of the in-
put phase. Also in this phase, segments can fail and have to be repeated.
This allows corrupted players to change their inputs. However, as the ad-
versary obtains no information about whatsoever in the input phase, this
does not affect the independence of the inputs. Once all input segments
have succeeded, the players move on to the first segment of the compu-
tation phase. In this phase, the players (and hence also the adversary) do
obtain information about their outputs; however, the computation stage
is fully deterministic. Even when a segment fails (and is repeated) after
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the adversary has learned some output, he cannot influence the outputs
of the honest players anymore.

In the preparation phase and in the input phase, the private compu-
tation is highly parallelized. All proposed sub-protocols process many
inputs at once, producing many outputs. This helps reducing the costs
for the fault detection and localization, as for all parallel instances, only
one single fault-handling procedure is executed. Often, instead of veri-
fying single instances of some test data, we will verify a random linear
combination of many instances. Note that the protocols themselves do
not use broadcast, but fault handling does.

5.6 Sub-Protocols

All sub-protocols have a private (dispute aware) computation, a fault de-
tection and a fault localization. They can succeed or fail and the players
always agree (using broadcast in the fault detection) on what is the case.
In case of a failure the public output of the sub-protocol is a (new) pair of
players E = {P;, P;}¢ A such as either P; or P; (or both) are corrupted.
If some invoked sub-protocol fails with E = {P;, P;} then the invoking
sub-protocol fails with E = {P;, P;} and is aborted (this abort will be
handled in the main protocol).

5.6.1 Dispute-Control Broadcast

The protocol DC-Broadcast allows every sender Ps € P \ X to distribute
a vector of £ values s(1%) ... 5“9 among the players in P \ X, such that
it is guaranteed that all honest recipients receive the same vectors (or the
protocol fails).

This protocol is rather simple: Every sender directly transmits his vec-
tor to the players he is not in dispute with, and via another player to those
players he is in dispute with. Then the players pair-wisely compare their
vectors by using universal hash functions [CW79]. As universal hash
with key k& € F, we use the function Uy, : F* — T, (s ... s®)) —
s 4 sk ...+ sOE~1. The probability that two different vectors
map to the same hash value for a uniformly chosen key is at most ¢/|F|,
which is negligible in our setting with F = GF(2%).



5.6 Sub-Protocols 77

Protocol DC-Broadcast.

1. PRIVATE COMPUTATION: The following steps are executed in parallel
for every sender Pg € P\ A

1.1
1.2

Ps sends s(1:%) ... 569 to every P; with {Ps, P;} ¢ A.

For every P; with {Ps,P,} € A (but P, ¢ X), the small-
est player Py with {Ps, Py} ¢ A and {Py,P;} ¢ A forwards
s s9) to P19 We call Py the proxy of P;.

2. FAULT DETECTION: The following steps are executed in parallel for
every verifier Py € P\ A

2.1

2.2

2.3

Py selects a key ky €p F for a universal hash function Uj, and
sends it to every P; with {Py, P;} ¢ A.

Every P, with {Py,P;} ¢ A sends the values hs; =
Up, (s s(69) for every Pg to Py .

Py broadcasts a bit “accept” or “reject”, indicating whether for
every Ps € P\ X, the hash values hg ; of each P; with { Py, P;} ¢
A are equal.

If every verifier Py € P\ X broadcasts “accept” in Step 2.3, then the
protocol succeeds and terminates.

3. FAULT LOCALIZATION: The following steps are executed for the
smallest P, € P\ & reporting a fault.

3.1

3.2

Py selects S, i, j such that Ps ¢ X, {Py, P;} ¢ A, and {Py, P;} ¢
A, and hgs; # hg,;, and broadcasts S, 1, j, hs i, hs j, and k = ky.
We denote the proxies of P; and P; by Py and Pj, respec-
tively (if no proxy exists, we set i’ = i, respectively j' = j).
The players Ps, P;, P;, Py, Py all compute and broadcast a hash
value with key k of their vector s(1%) ... 549 denoted as
hs,hi, hj, hir, hj, respectively. The protocol fails with E being
the first pair (Pv, F;), (P, Py), (P, Ps), (Ps,Pj), (P, P;), or
(Pj,Pv), where hsﬂ' 7é hi, h7 75 hi/, hi/ 7é hs, hS 7é hj/, hj/ 7é hj,
or h; # hg j, respectively.

Lemma 13 If DC-Broadcast succeeds, then with overwhelming probability,
for each sender Ps € P \ X, all honest players in P hold the same vector

s1S)

., 85 which is the vector of Ps if honest. If the protocol fails, a

1The existence of such a player P;s for Pg; ¢ X and P; ¢ X follows by a counting
argument.
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new dispute pair E is localized. The protocol communicates O(¢n? + n®) and
broadcasts O(n) field elements.

Proof: In order to prove that all honest players output the same vector
s(19) . s(&:9) when the protocol succeeds, consider two honest players
P; and P;. As both P; and P; are honest, {F;, P;} ¢ A holds, and P,
and P; have mutually exchanged universal hash values in Step 2. Hence,
with overwhelming probability, a difference in the vectors would have
been detected and the protocol would have failed. It follows immediately
from the protocol that when Pg is honest and the protocol succeeds, then
all honest players receive the vector directly from Ps. When the protocol
fails with dispute pair £, then one can verify by inspection that the two
players in E disagree on a value they have privately exchanged, hence
either of the players must be faulty. And as players in dispute do not
communicate with each other, the localized dispute pair is new. n

5.6.2 Verifiable Secret-Sharing

The protocol VSS1D allows every dealer Pp € P \ X to verifiably 1D-

share ¢ values s(:P) ... s(&:D) resulting in each player P; € P\ X holding

the shares sgl’D), co sEZ’D) for each dealer Pp. The correctness of these
sharings is verified by letting every player take on the role of a verifier Py,
and inspect a random linear combination of the sharings of each dealer
Pp. For privacy reasons, each such random linear combination is blinded
with a random 1D-sharing, i.e., every dealer Pp 1D-shares additional n
blinding values s(‘+1.P) . s(t+m.D),

Protocol VSS1D.

1. PRIVATE COMPUTATION: Every dealer Pp € P \ X selects n random
blindings s(“+1.P) ... s(*+7D) (one for each verifier). Then, Pp 1D-
shares s(1P) ... s(4mD) je, foreverym = 1,...,¢ +n, Pp picks a
random degree-t polynomial f(™?)(z) with f(™)(0) = s(™P) and

fmP)(a;) = 0 for every i with {Pp, P;} € A (the Kudzu-shares),

and sends the share 5™ = f(mD)(q;) to every player P; with

{Pp,P;} ¢ A; every player P, with {Pp,P,} € A sets his share
(m,D)
s =0.

i
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2. FAULT DETECTION: Every verifier Py € P\ X selects a random chal-
lenge vector (r(tY) ... #(tV)). Then, DC-Broadcast is invoked to let
every verifier Py € P \ X distribute his vector among the players
P, € P\ X. Then the following steps are executed for every verifier
Py € P\ X (we suppress the index V' and denote the challenge vector
(r® . rO)):

2.1 For every dealer Pp, the random linear combination f*)(z) of
his 1D-sharings is defined as f(*P)(z) = an;l (M) fmD) () 4
FEVD) (). Accordingly, for every dealer Pp, every player P;
with {P;, Pp} ¢ A and {P;, Py} ¢ A sends to Py his share sg*’D)
on fD)(z),ie., s0P) =S8 pm)glm D)y VD),

2.2 For each dealer Pp € P\ X, the verifier Py checks whether
the received shares sl(.*’D) define a correct 1D-sharing for Pp,
i.e., whether there exists a degree-t polynomial f*?)(x) with
FeD) () = 5P for every i with {Py, P;} ¢ Aand {Pp, P,} ¢
A, and f*P)(a;) = 0 for every i with {Pp, P;} € A (Kudzu).2
Py broadcasts a bit “accept” or “reject”, indicating whether or
not the the above checks succeed for all dealers.

If all verifiers Py € P \ X broadcast “accept” the protocol succeeded
and terminates.

3. FAULT LOCALIZATION: The following steps are executed for the
smallest Py reporting a fault in Step 2.2.

3.1 Py broadcasts the index D of Pp whose polynomial f(:P)(z)
does not define a correct 1D-sharing.

3.2 Every player P; with {P;, Pp} ¢ A and {P;, Py} ¢ A broadcasts

his share 5",

3.3 If the broadcasted shares define a 1D-sharing for dealer Pp, then
Py broadcasts the index i of a player P; with {P;, Py} ¢ A and

{P;,Pp} ¢ A who has broadcasted a different share sg*’D) in
Step 3.2 than he has privately sent to Py in Step 2.1, and the pro-
tocol fails with E = { Py, P;}. Otherwise, when the broadcasted
shares do not define a correct 1D-sharing for dealer Pp, then the
dealer broadcasts the index i of a player P; with {P;, Pp} ¢ A
(D)

i

who has broadcasted a wrong share s
with E = {Pp, P;}.

and the protocol fails

20Note that any linear combination of Kudzu-shares is Kudzu.



80 Active MPC with Setup

Lemma 14 If VSS1D succeeds, then with overwhelming probability, the values
sWP) . s6D) of each dealer Pp € P\ X are correctly 1D-shared. If the
protocol fails, then the localized pair E = {P;, P;} is new (ie., E ¢ A) and
either P; or P; (or both) are corrupted. The privacy of the inputs of the honest
players is guaranteed through the whole protocol (even if the protocol fails). The
protocol communicates O(¢n? + n3) and broadcasts O(n) field elements.

Proof: In order to prove the correctness, first consider a dealer Pp,
an honest verifier Py, the (by Pp supposedly correct 1D-shared) val-
ues s(P) .. s(tD) and the blinding value s(“*V:P). Assume that the
sharing of one of the values is not a correct 1D-sharing, i.e., the shares
of the honest players (including the Kudzu shares) lie on a polynomial
of degree higher than ¢. Then there are at most 2%~ (out of 2+
challenge vectors (r(V),... 7(?) € F’ such that the sharing of s*"P) =
S r(mg(mD) 4 (VD) s a correct 1D-sharing, i.e. the polynomial
defined by the shares of the honest players is of degree t. As the verifier
Py chooses his challenge vector uniformly at random and gets the cor-
rectly linearly combined shares from all honest players (an honest verifier
is in dispute with no honest player), the probability of him not detecting
the fault is at most 2#(‘~1) /2%¢ = 1/2%. Thus the probability that the pro-
tocol succeeds in case of at least one faulty sharing (from any dealer) is
negligible.

The privacy of the inputs of the honest players follows from the fact
that up to t shares give no information about the secret and from the fact
that the reconstructed linear combinations are blinded with a random
value chosen by the dealer himself (for every verifier a different one) and
are so (for every honest dealer) statistically independent from the dealers
secret.

If the protocol fails, then the localized dispute pair consists of two
players who have publicly disagreed on a value they have privately ex-
changed in some previous step (or a value computed from such values),
therefore it is obvious, that at least one of them is corrupted. As only
players who are not in dispute with each other communicate privately,
the localized dispute is a new one. ]

We present a protocol for reconstructing sums of correct 1D-sharings.
Consider a set Pp C P \ X of dealers and a set Pr C P \ X of recipients
and the actual dispute set A. Every dealer Pp € Pp has verifiably 1D-
shared (with the actual A) ¢ summands s, ... s(“P) with the poly-
nomials f(P)(z), ..., f®P)(x). We denote the share of s("P) for player
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P, € Pby ™", ie. s™P) = fmD)(q,;). Note that s\ = 0 when
{Pp, P;} € A (Kudzu). The values s(l), ceey s to be reconstructed are
defined as the sums of the above summands, i.e., s(™) = > PoePr s(mD)
Each s(™) is implicitly shared (as Shamir-sharing, not as 1D-sharing) with
the polynomial f(™)(z) = 3 poepp (m.D) (); we denote the (implicitly
defined) share of each player P; € P by s\™, i.e. s™ = f(™(q;).

Note that in case of a fault, this protocol does not guarantee the pri-
vacy of the summands.

Protocol ReconstructlD.

1. PRIVATE COMPUTATION: For every m = 1,...,¢, every player P; € P
computes his sum share s{™ = 37 PocPp s™P) and sends it to every
Pr € Pgr with {P,, Pr} ¢ A. Every Pr € Pg checks for each m =
1,...,¢ whether the received shares lie on a polynomial f(m)(x) of
degree t. If so, it follows that fm)(z) = M) (z), and Pg reconstructs
s(m) = fFm)(Q).

2. FAULT DETECTION: Every Pr € Ppr broadcasts “accept” or “re-
ject”, indicating whether he could reconstruct all values s(™) for
m = 1,...,¢1in Step 1. If all recipients broadcast “accept”, then the
protocol succeeds and terminates.

3. FAULT LOCALIZATION: The following steps are executed for the
smallest complaining recipient Pr € Pr.

3.1 Py broadcasts the index m of the polynomial f(™ (z) he could
not reconstruct.

3.2 Every player P; with {P;, Pr} ¢ A sends to Pr his summand
shares sfﬁ”’D) for every dealer Pp € Pp with {P;, Pp} ¢ A.

3.3 Pg verifies for every P; with {P;, Pr} ¢ A that the provided
summand shares add up to the previously provided sum share,

e, Y p,.(pPoya s(mP) = 5{m 21 1n case of a fault, Py broad-
casts the index ¢ of the bad player P;, and the protocol fails with

E = {P;, Pr}.
3.4 Pgr broadcasts the index D of a dealer Pp € Pp such that
the received shares sl(»m’D) do not define a correct 1D-sharing

for dealer Pp, i.e., there is no degree-t polynomial f(z) with

2INote that the Kudzu-shares 55*’D) with {P;, Pp} € A are 0 and do not contribute to
the sum.
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Flag) = s{™P) for every i with {P;, Pg} ¢ A and {P;, Pp} ¢ A,
and with f(a;) = 0 (Kudzu) for every i with {P;, Pr} ¢ A and
{Pi, PD} € A.

3.5 Every player P, with {P;, Pr} ¢ A and {P,, Pp} ¢ A broadcasts

(m,D)

3.6 If the broadcasted summand shares define a correct 1D-sharing
for dealer Pp, then Pr broadcasts the index i of a player P; who

has broadcasted a different value s in Step 3.5 than he has

privately sent to Pg in Step 3.2, and the protocol fails with F =
{P;, Pr}. Otherwise, when the broadcasted summand shares do
not define a correct 1D-sharing for Pp, then Pp broadcasts the
(m,D)

i

his summand share s

index i of a player P; who has broadcasted a wrong share s
and the protocol fails with £ = {P;, Pp}.

Lemma 15 If the values s"P), ... s(“P) of each Pp € Pp are correctly 1D-
shared (for the actual A), then the following holds: If Reconstruct1D succeeds,
then the privacy is guaranteed and every value reconstructed towards an honest
recipient lies on the degree t polynomial defined by the (at least ¢ + 1) shares
of the honest players. If the protocol fails then the localized pair E = {P;, P;}
is new and contains at least one corrupted player. The protocol communicates
O(¢n?) and broadcasts O(n) field elements.

Proof: As an honest verifier is not in dispute with any other honest
player, he will receive at least ¢ + 1 shares of the honest players, which
uniquely define a degree ¢t polynomial. If the shares received from the
corrupted players lie on this polynomial, he will reconstruct the right se-
cret, otherwise the interpolated polynomial will be of degree higher then
t and the protocol will fail. The rest follows (along the lines of proof of
Lemma 14) from inspection of the protocol. ]

5.6.3 Generating Random Challenges

The following protocol allows the players to generate a publicly known
(i-e., to the players in P\ X) challenge vector s(V), ..., s(), or the protocol
fails, if one of the sub-protocols fails, and outputs a new dispute pair
E = {P,P}:
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Protocol GenerateChallenges.

1. Every player P, € P \ X selects a random summand vector
s(LR) gk,

2. Invoke VSS1D to let every P, verifiably 1D-share his summand vector.

3. Invoke the protocol ReconstructlD (with Pp = Pr = P \ X) to re-
construct the sum sharings >~ p, . s, ... 3, s8R towards
every P; € Pg.

Lemma 16 If GenerateChallenges succeeds, then with overwhelming probabil-
ity, the generated values are uniformly distributed. If the protocol fails, then
the localized dispute pair E = {P;, P;} is new and contains at least one cor-
rupted player. The protocol communicates O(¢n* + n®) and broadcasts O(n)
field elements.

5.6.4 Upgrading 1D-Sharings to 2D-Sharings

We present a protocol for upgrading sums of 1D-sharings to 2D-sharings.
The given 1D-sharings must be for the actual A; the correctness of these
sharings is implicitly verified in the upgrade protocol and must not be
a priori guaranteed. The protocol outputs correct 2D-sharings or it fails
with a new dispute pair E.

Formally, we consider a set Pp C P \ X of dealers, where each dealer
Pp € Pp has (for the actual A) 1D-shared ¢ summands s(1?), ... (&P
with the polynomials f(P)(x),..., f*P)(2). We denote the share of

sm:D mD) e simP) = fmD)(q;) . Note
= 0 when {Pp, P;} € A (Kudzu). The values sV, ..., s(®
to be 2D-shared are defined as the sums of the above summands, i.e.,

stm = PoePr s(mP)_ Each of these values is implicitly shared (as

) for player P, € P by s
(m,D)

Shamir-sharing, not as 1D-sharing) with the polynomial fm(z) =
Y PpePp fmP)(z); we denote the (implicitly defined) share of each

player P, € Pby 5™ = fm)(a).

Protocol UpgradelDto2D.

1. PRIVATE COMPUTATION: The players first jointly generate a sharing
of an additional randomly chosen value s(“*1). Then, all ¢ + 1 shar-
ings are upgraded to 2D-sharings, and the correctness is verified with
destroying the privacy of this blinding value.
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1.1 Every dealer Pp € Pp picks a random summand s*+1:”) and

1D-shares it among the players with polynomial f(*1:2)(z), re-
sulting in every player P; holding a share s§£+1’D).
1.2 Foreverym =1,...,{+1, every player P; € P\ X computes his

share sgm) of st =3, _p  s(™P) (the value to be 2D-shared)

as ng) =Y PrePp sgm’D), and 1D-shares it with the polynomial

£ (), such that f{™(a;) = 0 for {P;, P;} € A (Kudzu).2> We
denote the share-shares f™(a;) as sf;n) The 1D-sharing of de-
tected players P; € X is the constant-0 sharing (all share-shares
are Kudzu).

2. FAULT DETECTION: In order to verify the correctness of the result-
ing sharings, the players jointly generate a random challenge vec-
tor (rM,...,r®) € F’ using the protocol GenerateChallenges. Then,
the correctness of the 2D-sharing of the random linear combination
an:1 r(m)s(m) 1 s(t+1) will be verified (in parallel) by every player
Py € P\ X. We denote the linearly combined polynomials by
flz) = S8 _ e () 4 pED(g) (first-level sharing), respec-
tively f;(z) = 320 _ v £ (2) 4 £ (1) (second-level sharings).
The following steps are performed in parallel for every verifier P, €
P\X:

2.1 Every P; with {Py,P;} ¢ A computes and sends to Py the
following linear combinations of his share-shares for every i =
]., N 14 with {Pl, Pj} ¢ A: Sij = an,:l T(m)Sz(;n) + S£§+1).

2.2 Py checks for each i = 1,...,n, whether the received share-
shares s;; define a valid 1D-sharing for dealer P;, i.e., there
exists a polynomial f;(z) with f;(e;) = s for every j with
{Py,P;} ¢ Aand {P,,P;} ¢ A, and fi(e;) = 0 (ie,, Kudzu)
for every j with {P;, P;} € A,?® and broadcasts a bit “accept” or
“reject”.

2.3. Py checks that the first-level sharing F1(0), ..., f(0) is a valid
Shamir-sharing of degree ¢ and broadcasts “accept” or “reject”.

If all verifiers Py broadcast “accept” in Steps 2.2 and 2.3, the protocol

succeeded and terminates.

22Note that the second-level polynomials fl(m) (z),..., 7(17”) (x) implicitly define a first-
level sharing fl(m) 0),..., fT(lm) (0) of some value. If all players followed the protocol the
values fl(m) 0),..., fT(lm) (0) define a correct Shamir-sharing of s(m),

2Observe that in this case f;(z) = f;(z).
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3. FAULT LOCALIZATION: The following steps are executed for the
smallest complaining verifier Py .

3.1 If the reported fault was in Step 2.2, i.e., Py observed that one of
the second-level sharings is not a correct 1D-sharing, the follow-
ing steps are executed:

3.1.1 Py broadcasts the index 7 of the invalid second-level shar-
ing.

3.1.2 Every P; with {P;, Py} ¢ A and {P;, P;} ¢ A broadcasts
Sig-

3.1.3 If the broadcasted shares define a correct 1D-sharing, then
there exists a player P; with {P;, Py} ¢ A who has broad-
casted a different value than he has privately sent to Py
in Step 2.1. Py broadcasts his index j, and the proto-
col fails with £ = {Py,P;}. If the broadcasted shares
do not define a correct 1D-sharing, the owner P; of this
second-level sharing broadcasts the index j of a player P;
(with {P;, P;} ¢ A) who has broadcasted a wrong share
sij # fi(;), and the protocol fails with E = {P;, P;}.

3.2 If the observed fault was in Step 2.3, i.e., Py could correctly inter-
polate each second-level sharing fi(z),..., fa(z), but the inter-
polated values £1(0),..., fn(0) do not define a valid (first-level)
Shamir-sharing of degree t,* then the following steps are exe-
cuted (in order to help an honest Py find the dealer whose orig-
inal first-level 1D-sharings are incorrect or to find out which P;

shared some incorrect sgm) inStep 1.).

3.2.1 For every dealer Pp, the random linear combination
D) (z) of his (original first-level) 1D-sharings is defined
as fD0) (g) = S0 _ () pmaD) () 4 pE+LD) (1) Accord-
ingly, for every dealer Pp, every player P, with {P;, Pp} ¢
A and {P;, Py} ¢ A sends to Py his share s on
fEP) (), ie., sg*’D) =3t r(m)sgm’D) + SEZH’D).

3.2.2 Py checks for every player P; with {Py, P} ¢ A that

> PP Pp}EA 5P = £,(0).25 If the check fails for some

24Note that f;(0) = £;(0) for every i, ie., f:(0) is the linear combination of the values

that P; did indeed 1D-share as his shares sgm) in Step 1, thus if F1(0), ..., fn(0) are not
t-consistent, it means that either one of the original 1D-sharings is incorrect or some player

shared incorrect values as his shares sgm) inStep 1.

Note that the Kudzu-shares sg*’D) with {P;, Pp} € A are 0 and do not contribute to
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P;, then Py broadcasts 4, and the protocol fails with £ =
{Py, P;}.

3.2.3 Py broadcasts the index D of Pp such that the received
shares sl(.*’D) (forevery i with {P;, Pp} ¢ Aand {F;, Py} ¢
A) do not define a correct 1D-sharing.

3.24 Every P, € Pwith {P,,Pv} ¢ A and {P;, Pp} ¢ A broad-

(+,D)

3.2.5 If the broadcasted shares define a correct 1D-sharing for
dealer Pp, then Py broadcasts the index i of the player
P, with {Py, P;} ¢ A who has broadcast a different share
sg*’D) than he has privately sent to Py in Step 3.2.1, and the

protocol fails with E = { Py, P;}. If the broadcasted shares

do not define a correct 1D-sharing for dealer Pp, then Pp

broadcasts the index i of a player P; with {Pp, P} ¢ A

(*.D)

i

casts his share s

who broadcasted a wrong share s
fails with E = {Pp, P;}.

, and the protocol

Lemma 17 If UpgradelDto2D succeeds, then with overwhelming probability,
the upgraded sharings are correct 2D-sharings. If the protocol fails, then the
localized pair E = {P;, P;} is new and contains at least one corrupted player.
The privacy of the shared values is guaranteed through the whole protocol (even
if it fails). The protocol communicates O(¢n?* + n3) and broadcasts O(n) field
elements.

Proof: Along the lines of the proof of Lemma 14. [

5.6.5 Information Checking with Dispute Control

An information-checking (IC) scheme allows a sender to deliver a message
to a recipient in such a way that the recipient can later forward the mes-
sage and prove its authenticity to a designated verifier. More precisely,
an IC-scheme for a sender Pg, recipient Pr, and verifier Py, consists of
two protocols:?®

the sum.
26Tn [RB89, CDD199], a different notation is used. They denote the sender as “dealer”,
the recipient as “intermediary”, and the verifier as “receiver”.
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IC-Distr: The sender Pg delivers the message m and some authentication
tag y to Pr and some checking tag z to Py.

IC-Reveal: The recipient Pr forwards m and y to Py, who uses z to verify
the authenticity of m, and either accepts or rejects m.

Our information-checking protocol is a variant of the information-
checking protocol of [CDD%99] with two modifications. First, our
IC-Distr protocol may fail in case of a fault; then, a dispute among two
of the three players is identified.”’ Second, our protocol supports au-

thenticating long messages m = (my,...,my) € F* without additional
costs.?® We only assume that / field elements (1, . . ., {; are fixed and pub-
licly known.

For authenticating m = (my,..., m¢), a random degree-¢ polynomial
f(z) with f(¢;) = m; fori = 1,...,¢is chosen, then the authentication

tag is y = f(0) and the verification tag is a random point z = (u,v)
with u # (; (Vi) and f(u) = v. One can easily verify that this approach
satisfies completeness, secrecy, and correctness (with error probability
£/(|F| — £ — 1)) as long as the tags are computed as indicated. In order
to ensure that the sender computes the tags correctly, we use a cut-and-
choose proof: The sender generates and distributes x independent tags,
and the verifier hands half of them to the recipient, who checks them.
The concrete protocols are given in the sequel:

Protocol IC-Distr.

1. PRIVATE COMPUTATION: The sender Ps, holding message m =
(ma,...,myg), selects uniformly at random x authentication tags
Y1y, Y Er FF, kelements uy,...,u, €g (F\{0,...,¢})", and com-
putes vy, ..., v, such that for each i € {1,...,x}, the ¢ + 2 points
0,9:), (C1,m1), ..., (Ce,me), (ui, v;) lie on a polynomial of degree ¢.

Pgs sends the message m and the authentication tags y, ..., y. to Pr
and the verification tags z1 = (u1,v1), ..., 2x = (Ux, V) to Py.
2. FAULT DETECTION:
2.1 Py partitions the index set {1,..., s} into two partitions I and T
of (almost) equal size, and sends I, I, and z; for every i € I to
Pg.

?’In our context, the IC-scheme will be used only by triples of players with no a priori
dispute among them, so the identified dispute will be a new one.
2The costs in the scheme of [CDD199] grow linearly with the size of the message.
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22 Prp checks whether for every ¢ € I, the points
0,9:), (C1,m1), ..., (e, me), 2; lie on a polynomial of degree
¢, and broadcasts either “accept” (and the protocol succeeded)
or “reject”.

3. FAULT LOCALIZATION: If Pr broadcasted “reject”, the protocol fails
and:

3.1 Pg selects i € I such that the verification tag z; received from Py
does not match with the message m and the authentication tag y;
received from Pg, and broadcasts 7 and z;.

3.2 Pg and Py broadcast z;.

3.3 If the z;-s broadcasted by Ps and Py differ, then E = {Ps, Py }.
Otherwise, if the z;-s broadcasted by Pr and Py differ, then E =
{Pgr, Py }. Otherwise, E = {Ps, Pr}.

Protocol IC-Reveal.

1. The recipient Pr sends the message m and the authentication tags y;
for i € I to the verifier Py .

2. The verifier with verification tags 21, ..., z¢ accepts m = (m1, ..., my)
if for any i € I, the points (0, y;), (¢1,m1), .. ., (¢, me), 2z; form a poly-
nomial of degree ¢; otherwise, he rejects m.

Lemma 18 If IC-Distr succeeds and Py, Pr are honest, then with overwhelm-
ing probability Py accepts the message m in 1C-Reveal (completeness). If
IC-Distr fails, then the localized pair E contains at least one corrupted player.
If Pg and Py are honest, then with overwhelming probability, Py rejects any
fake message m’ # m in |C-Reveal (correctness). If Ps and Pg are honest, then
Py obtains no information about m in |C-Distr (even if it fails) (privacy).

Proof: Completeness: If the cut-and-choose proof is successful, then the
probability that at least one of the remaining authentication tags is valid
isatleast 1—«/2". Correctness: The probability that an corrupted receiver
can produce at least one correct tag for a message m’ # m is equal to the
probability, that he can guess at least one verification point z;, which is
less than k /(2% — £ —1). Privacy follows from the fact that the verification
tag is statistically independent from the message. n
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5.6.6 Upgrading 2D-Sharings to 2D*-Sharings

The following protocol upgrades ¢ 2D-sharings to 2D*-sharings. We de-

note the 2D-shared values by s(m) (for m = 1,...,0), the shares of each

(m) (m) (m)
player P; € Pby s, ’, and P}s share-share of s;" by ;.

Protocol Upgrade2Dto2D*.

1. For every triple of players P;, P;, P, € P with no dispute among them
(ie, {P, P} ¢ A {P,,P.} ¢ A, {P;, Py} ¢ A), the protocol IC-Distr

s s(e)) with sender P;, re-

is invoked for the message m = (s;;’,...,s;;

ceiver P; and verifier P,. The message is not really sent, as P; already
holds it. Furthermore, these up to n? parallel invocations are merged
when it comes to fault-detection and fault-localization: Every player
P; broadcasts one single bit in the fault-detection, indicating whether
he observed a fault in one of the instances he acted as recipient. Then,
the smallest player P; that reported a fault, broadcasts ¢ and k, indi-
cating the instance 4, j, k in which he observed the fault, and fault-
localization is invoked only for this instance.

Lemma 19 If the 2D-sharings to be upgraded are correct (for the actual A) and
the protocol Upgrade2Dto2D* succeeds, then the upgraded 2D*-sharings are
with overwhelming probability correct. If the protocol fails, then the output pair
E is new and contains at least one corrupted player. The privacy of the shared
values is guaranteed through the whole protocol (even if it fails). The protocol
communicates O(n3r) and broadcasts O(n) field elements.

5.6.7 ABC-Protocol

The following protocol allows every player P, € P \ X to prove that for
everym = 1,...,/, the (for the actual A correctly) 1D-shared value c("*)

is the product of the (for the actual A correctly) 1D-shared values a,(cm)

and b,(cm). This ABC-protocol is inspired by the corresponding protocol
of [CDD*99].

The intuition of the ABC protocol is the following (where we denote
the factors as a and b and the product as c): The prover shares a ran-
dom @ and ¢ = ab, i.e., (@,b,¢) is a multiplication triple, and proves for
a random challenge r, that the shared triple (ra + @, b, 7c + ¢) is a correct
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multiplication triple. This is achieved by first reconstructing @ = ra + @,
and then verifying that z = @b — rc — € is a sharing of 0. For the sake of ef-
ficiency, we parallelize this ABC-proof for many triples and amortize the
verification. Instead of reconstructing the sharing of each @, we ask the
prover to send the (alleged) values a to every player; who then verify that
a random linear combination of these sharings reconstructs to the linear
combination of the alleged values. Analogously, instead of verifying each
z to be zero, the players reconstruct a random linear combination of these
values, which must be zero.

Protocol ABC.
1. Every player P, € P\ X selects for eachm = 1,...,¢ a random E,(Cm)

and computes 2™ =g\ p(™)

2. Invoke VSSID to let every P, € P \ X verifiably 1D-share E,(fm) and
k) form =1,... L.

3. Invoke GenerateChallenges to generate one random challenge 7.

4. Every P, € P\ X sendsa.™ = ra™ +a™ form =1,...,{to every
P; € Pwith {Py, P} ¢ A.

5. Invoke GenerateChallenges to generate ¢ challenges r L,

6. Invoke ReconstructlD with Pr = P \ & to publicly reconstruct a;, =
S rm (ra,gm) + E,gm)) fork=1,...,n%

7. Every P; € P\ X checks for every P, with {P;, P,} ¢ A whether
ay = anzl r(m)'d,gm), and broadcasts the index k of a player P for
whom the check failed, respectively L if all checks succeed. If at least

one player P; broadcasts k with {P;, P;} ¢ A, then the protocol fails
with E = {P;, P;.} for the smallest such P, (and the accused Py).

8. Invoke ReconstructlD with Pr = P \ X to reconstruct z¥) =
S (’d,im)b,im) — remk) — E(mvk)) for k = 1,...,n. Note that
Ei,(cm) is a constant known to all players P; with {P,, P} ¢ A
hence 2(® is a linear combination of 1D-shared values, as required
by Reconstruct1D. Note that when this reconstruction succeeds, then
every player Py € P\ X reconstructs the same vector (z(1), ... 2(").

2Note that the 1D-sharing @, belongs to dealer Py. Formally, Reconstruct1D requires
every value to be reconstructed to be the sum of one 1D-sharing of each dealer in Pp; hence,
we implicitly assume constant-0 1D-sharings for the other dealers, and set Pp = P\ X.

30Note that Py, is the owner of the 1D-sharing of 2(F); hence, the share of every player P;

with {P;, P, } € A is Kudzu, and he does not need to know the constant 'd,(cm).
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9. Every player Py € P\ X checks whether the reconstructed values
2(k) = 0 for every P, € P\ X. If this check fails, then Pj, is corrupted,
and the protocol fails with E = {P;, P} for all P, € P (i.e., Py is in
dispute with every player).

Lemma 20 Ifall triples (a\™,b\™, ™)) are correctly 1D-shared for the ac-
tual A, then the following holds with overwhelming probability: If ABC suc-
ceeds, then the checked triples (ak ™) b(m) ™k are correct multiplication
triples, i.e. c(™F) = a,im)b,im) for every m = 1,.. .4, and their privacy is pre-
served. If the protocol fails, then it localizes a new dispute pair E containing at
least one corrupted player (respectively localizes single player who is corrupted).
The protocol communicates O(¢n* + n?) and broadcasts O(n) field elements.

Proof: In order to prove correctness, assume that there is at least one
(incorrect) triple (ak ™) b(m) (m:k)) (of player Pj) such that (™)
(m)b(m). Then there is at most one (out of 2%) challenge r € F
such that (ral™ + a@™)p\™ — re(m#b) — gmk) — o If (ra™ +
@™ — pemk) _ @mk) £ 0 then there are at most 251 (out of
27%) challenge vectors (r™"),... 7)) € F’ such that the sum 2} =
S rm (( (m) 4 a,im)) ™) — pe(mik) E(m”“)) = 0. So provided

that the values a,im),b,(fm),c(m’k),afcm),é(m’k) for m = 1,...,¢ are cor-
rectly 1D-shared, the challenges are random, and in Step 4., player P;
sent the correct Ei,(C = m(m) +a _(m) form =1,...,0 toevery P, € P
with {Py, P;} ¢ A, the probablhty of the false triple not being detected
is at most 2/2%, which is negligible. As with overwhelming probability
the values ag ™) b(m) (m’k),a,im),é(m’k) form = 1,..., ¢ are correctly 1D-
shared and the challenges are random, it is now sufficient to show that
the probability of P, sending at least one false a( ™o m(m) +a (m) to
at least one honest verifier P; in Step 4 and not bemg detected (by P) in
Step 7 is negligible. This holds because for a false a](:n) there are at most
2#(t=1) (out of 2%%) challenge vectors for which the check in Step 7 does
not fail. n
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5.7 Preparation Phase

The goal of this phase is to generate ¢y random 2D*-shared multipli-
cation triples (a, b, c) (one for each multiplication gate) and ¢z random
2D*-shared values (one for each random gate). We wastefully generate
¢ + cr random multiplication triples and use only the first factor for the
random gates.

The generation of the ¢y + cg multiplication triples is divided into n?
segments, each of length L = [(cas + cg)/n?]. The computation is non-
robust, and its correctness is verified at the end of the segment. In fact, the
segment will consist of several stages, each with a private computation
and fault-detection. As soon as a fault is reported in a fault-detection
procedure, the corresponding fault-localization is used to localize a new
dispute to be registered in A, and the whole segment has failed and is
repeated.

Protocol PreparationPhase.

Set A := {} and X = {}, and for each segment (of length L) do the
following steps. If any of the invoked sub-protocols fails, then include
the localized pair E = {P;, P;} in A, ie, A «— A U{P;, P;}, and repeat
the failed segment.

1. Generate 2L correct random 2D-sharings (a(V), b)) ..., (a8, b(1)):
1.1. Every player P, € P\ & 1D-shares L randomly selected pairs
(@R bR L (alBR) p(ER)) € F? among the players. We

denote the distributed shares of a(™" by a{™* ... a{™".

1.2. Invoke UpgradelDto2D with Pp = P \ X and ¢ = L
to wupgrade the implicitly defined sum sharings of
Spepy @, 3 cp, aBP) to 2D-sharings, resulting

.y

in L correctly 2D-shared random values a(!), ..., a(¥). The same
for b.

2. Multiply the L pairs (a®, b)), ..., (a'®) b)), resulting in L cor-
rectly 2D-shared products ¢V, ... c(F):

2.1. Every player P, € P\ X computes for every m = 1,..., L the
product ¢(™*) of his shares a\™ and b{™. Note that the product
cm) = q(m™p(m) can be computed as a weighted sum of these
values ¢(™*) (namely Lagrange interpolation); accordingly, we
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will compute a sharing of ¢("™) as weighted sum of sharings of
c(m’l), ... ,c(m’").

2.2. Invoke VSS1D to let every player P, € P\ X verifiably 1D-share
his values ¢(MF) .. ¢(BR),

2.3. Invoke the protocol ABC to have every player P, € P\ X prove
that for every m = 1,..., L, the value (M%) he shared in Step 2

is indeed the product of his shares a\™ and 5", which are im-
plicitly 1D-shared as part of the 2D-sharings of a(™) and b(™),
respectively.

2.4. Invoke the protocol UpgradelDto2D with Pp = P \ X
to upgrade the sharings of the weighted sums
> P.ePo NeeBR) S AkeR) to 2D-sharings,  where
\r denotes the Lagrange coefficients.!

3. Invoke Upgrade2Dto2D* to upgrade all 3L 2D-sharings to 2D*-
sharings.

Lemma 21 With overwhelming probability, the protocol PreparationPhase
generates car + cg correctly 2D*-shared random multiplication triples (a, b, c)
with ¢ = ab; the secrecy of the triples is preserved. The protocol communicates
O((cem + cr)n? + n®k) and broadcasts O(n?) field elements.

Proof: In order to show the correctness first consider one execu-
tion of the Steps 1.-3. for one segment of length L. (Note that
the dispute set A remains unchanged through Steps 1.-3.) If the
execution succeeds, then with overwhelming probability, the triples
(a®, 60, W) 1 (alB)bE), (L)) are correctly 2D*-shared (because of
Lemma 14, 17, and 19), and ¢ = ab holds because of Lemma 20 for each
triple (a, b, c). As there are n? segments and the adversary can provoke
less than n? executions to fail (in total), he has less then 2n? attempts to
introduce a segment with a false triple. Because n is at most polynomial
in k, the probability that a false triple is not detected is negligible.

Privacy follows from the privacy of the invoked sub-protocols. Some
of them do not guarantee privacy in case of a failure, but in such case all
generated values are discarded and completely new shared values will
be generated. =

31Note that the sharings of detected players Pp € X are not considered in the Lagrange
interpolation; however, as their shares are 0 (Kudzu), this omission does not falsify the
outcome.
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5.8 Input Phase

The goal of the input phase is to provide 2D*-sharings of ¢; inputs.

We set the upper bound on the number of input gates of a segment to
L = [£4] and limit each segment to contain only input gates of the same

player.

Protocol InputPhase.

For each segment, the following steps are executed to let the dealer
Pp € P\ X verifiably 2D*-share his L inputs s(*), ..., s(1).32 If any of
the invoked sub-protocols fails, include the localized pair £ = {F;, P;}
in A, ie, A — AU{P, P;}, and repeat the segment.

1. Pp (unverifiably) 1D-shares the input values s, ... s(%),

2. Invoke UpgradelDto2D with P = {Pp} to upgrade the 1D-sharings of
s ..., s to 2D-sharings.

3. Invoke Upgrade2Dto2D* to upgrade the 2D-sharings of s, ..., (%)
to 2D*-sharings.

Lemma 22 With overwhelming probability, the protocol InputPhase computes
correct 2D*-sharings of cy inputs, where the privacy of the inputs of the honest
players is preserved. The protocol communicates O(cyn? + n°r) and broadcasts
O(n?) field elements.

Proof: In one execution of Steps 1.-3., the probability of success in spite
of a false sharing is negligible. As there are at most n? + n segments and
less than n? repetitions, the adversary has at most 2n? + n independent
attempts to introduce a segment with a false sharing, hence his success
probability is negligible. The privacy is guaranteed even in case of failure
(and repetition) of some segment. n

321f the dealer Pp is detected, i.e., Pp € X, then the players take the all-zero sharing of
0, i.e., every share is 0 and every share-share is 0 (Kudzu). Note that no authentication tags
are needed because all share-shares are Kudzu.
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5.9 Computation Phase

The computation of the circuit proceeds gate-by-gate. First, to every ran-
dom and every multiplication gate, a prepared 2D*-shared random triple
is assigned.

Given the 2D*-sharings of the multiplication triples and of the inputs,
all values to be computed (and to be opened) in the computation stage are
completely determined. We therefore call the values shared in the prepa-
ration phase and in the input phase the base values of the computation.
All base values are robustly shared with 2D*-sharings.

It turns out that the value of each gate can be computed as linear com-
bination of such base values. This is trivial as long as the circuit only con-
sists of addition and random gates. For a multiplication gate, the play-
ers publicly reconstruct two sharings (both linear combinations of base
values), such that the value of the multiplication gate is a linear com-
bination of base values, where the coefficients of the linear combination
depend on the two reconstructed values [Bea91a]. Hence, the whole com-
putation phase consists only of a sequence of reconstructions of publicly
known linear combinations of base sharings. More precisely, the gates
are evaluated as follows:

Input Gate: Assign the corresponding 2D*-sharing of the input to the
gate.

Random Gate: Assign the 2D*-sharing of a of the assigned multiplica-
tion triple (a, b, ¢) to the gate.

Addition Gate: To both summands, a linear combination of base shar-
ings was assigned. Assign to the gate the sum of these two lin-
ear combinations (which is again a linear combination of base shar-
ings).

Multiplication Gate: To both factors, a linear combination of base shar-
ings was assigned. We denote the corresponding values by = and y,
and denote the assigned multiplication triple by (a, b, ¢). The play-
ers reconstruct d, = = — a and dy = y — b towards every player
in P (both d, and d, are represented as known linear combina-
tion of base sharings), and assign to the gate the linear combination
dzdy + dyb+ dya + c (i.e., a linear combination of the 2D*-sharings
of a, b, and ¢, all three of them base sharings).
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Output Gate: The players reconstruct the assigned linear combination of
base sharings towards the designated output player.

Now, we are left with the problem of opening known linear combi-
nations of base values towards designated players. For every multiplica-
tion gate, we need 2n reconstructions (one towards every player), and for
every output gate, we need 1 reconstruction. Hence, in total we need to
reconstruct 2ncys + co linear combinations of 2D*-sharings. This job is, as
usual, divided into n? segments, each with at most L = [(2ncy +co)/n?]
reconstructions. Each reconstruction is processed non-robustly, and at
the end of the segment, the players verify that no fault has occurred. In
the non-robust reconstruction the receiver either obtains the right value,
or he observes a fault, stops the further processing of this segment and
only joins again in the fault handling procedure.

Protocol ComputationPhase.

For each segment with L reconstructions, the following steps are exe-
cuted. If in a segment a fault is detected in Step 2., then Step 3 is ex-
ecuted to localize a new dispute pair E, which is included in A, ie.,
A — A U{E}, and the failed segment is repeated.

1. PRIVATE COMPUTATION: Execute the following for each output op-
eration.®® Denote the designated output player with Py, the pub-
licly known linear combination for the output operation with £,
and the 2D*-shared base values used in the linear combination with

s s . Furthermore, we denote the share and shares-shares of
P, by 5™ 5™ . 5™ respectively, and the polynomial used for

the second-level sharing of s{™ by f{"™ (z).

1.1 Every P, with {P;, P,} ¢ A sends his linearly combined share
8; = L(sgl), s§2), ...) to P, who receives a message in F U {e}.3*

1.2 If P, received all shares s; he was supposed to get (i.e., there was
no empty message ¢), and the received shares lie on a polyno-
mial f(z) of degree t, he computes the output value as s = f(0);
otherwise P, observes a fault and aborts the segment, i.e., for the
rest of the segment, P only sends empty messages.

33 All output operations at the same level in the circuit can be executed in parallel.
341t is legal for an honest player P; to send the empty message ¢ to P, namely when P;
has observed a fault in an earlier gate. Hence, P, must accept the empty message as valid.
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2. FAULT DETECTION: Every player P, € P \ X broadcasts the index g;
of the first failed reconstruction operation, respectively L if he suc-
cessfully completed the segment. If all players broadcast L, then the
evaluation of the current segment succeeded

3. FAULT LOCALIZATION: Execute the following steps for the player P,
with the smallest g, for the failed reconstruction operation with index

qk:
3.1

3.2

3.3

34

3.5

Every player P, with {P;,P,} ¢ A sends the polynomial
filx) = L',(fi(l)(x)7 fi(z) (x),...) and all share-shares s;;(z) =
L(s% (@), 57 (2),...) to Py

If for some P; with { P, P;} ¢ A, P, did not receive s; in Step 1.1,
or the provided polynomial f;(z) is inconsistent with s; (i.e.,
fi(0) # s;), then Py broadcasts i, and the fault localization ter-
minates with E = { P, P;}.

Py, identifies two players P;, P; with {Py, P;} ¢ Aand {Py, P;} ¢
A, such that f; () # s,;,%° and broadcasts (4, j, 55, fi(;))-

Both P; and P; broadcast a bit indicating whether or not they
agree with the values broadcasted by P;. If P; (respectively P;)
disagrees, the faultlocalization terminates with £ = { Py, P;} (re-
spectively E = { Py, P;}).

As both P; and P; agree with s;; respectively f;(c;) as broad-
casted by Py, and as fi(o;) # si;, either P; or P; delivered a
wrong value to Pj. P; can use the information checking scheme
to prove to Py the correctness of s;;. However, there are no au-
thentication tags for s;; itself, but s;; is computed as a publicly
known linear combination L of base sharings, for which authen-
tication tags exist (one authentication tag for all share-shares z;;
of each segment), respectively which are Kudzu and hence pub-
licly known. Hence, P; executes the protocol IC-Reveal for re-
vealing the provably correct share-shares xz;; of every base shar-
ing x, and if P, accepts all invocations and the linear combi-
nation on the share-shares yields s;;, then P broadcasts i and
E = {Py, P;}, otherwise, P, broadcasts j and E = { Py, P;}.

Lemma 23 If all base values are correctly 2D*-shared and all multiplication
triples are correct and random, then with overwhelming probability, the circuit

%5The existence of such a pair (P;, P;) is guaranteed due to the correctness of the base
2D*-sharings.
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evaluation as described above is correct, robust and private. The protocol com-
municates O((cyn® + cpn® + crn® + con +n*)k) and broadcasts O (n?) field
elements.

Proof: Once the base values are correctly 2D*-shared, the computation
phase is purely deterministic. An honest player will never reconstruct
a wrong secret: He receives shares from all players he is not in dispute
with (otherwise he does not reconstruct at all), hence there are at least
t + 1 correct shares from the honest players which prevent him from re-
constructing a wrong value. Hence, the adversary cannot falsify the out-
puts of honest players, he can only prevent them from reconstructing. In
this case, a fault is detected, a new dispute is localized and included in
A, and the segment is repeat till eventually all honest players reconstruct
all their outputs.

In order to argue about the privacy of the protocol, we observe that
share-shares z;; are revealed only when P; and P; disagree on some value
sij, hence either P; or P; is corrupted. By revealing these values, the
adversary obtains no additional information. L]

5.10 Main Protocol

The MPC protocol consists of the three described phases:

Protocol MPC.

1. Invoke PreparationPhase to prepare cys + cr random 2D*-shared mul-
tiplication triples.

2. Invoke InputPhase to provide 2D*-sharings of the ¢y inputs.

3. Invoke ComputationPhase to compute and reconstruct the outputs to-
wards the specified players.

Theorem 5 A set of n players communicating over a secure synchronous net-
work, can evaluate an agreed function of their inputs securely against an un-
bounded active adaptive adversary corrupting up to t < n/2 of the players with
communicating O(cn®+cyn? +cgn® + con+n°k) field elements and broad-
casting O(n?) field elements, where cy, car, cr, co denote the number of input
gates, multiplication gates, random gates, and output gates, respectively.
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Note that for large enough circuits, the costs for simulating the
O(n?) broadcast invocations are dominated by the normal communi-
cation costs, such that the overall communication complexity is (up to
a constant factor) the same as the one of passively secure MPC proto-
cols [BGWS8].

However, for very small circuits, the O(n?®) broadcasts are dominating
the overall costs. Note that even in this case, our protocol is substantially
more efficient than the most efficient previously known protocol for the
same model [CDD"99], which broadcasts Q(n°) field elements per multi-
plication.






Chapter 6

Byzantine Agreement with
Faulty Minority

6.1 Introduction

Byzantine Agreement (BA) among n players allows the players to agree
on a value, even when up to ¢ of the players are faulty.

In the broadcast variant of BA, one dedicated player holds a value,
and all players shall learn this value. In the consensus variant of BA,
every player holds (presumably the same) value, and the players shall
agree on this value.

BA is an important primitive widely used in distributed protocols,
hence its efficiency is of particular importance.

BA from scratch, i.e., without a trusted setup, is possible only for ¢ <
n/3. In this setting, the known BA protocols are highly efficient (O(n?)
bits of communication) and provide information-theoretic security.

When a trusted setup is available, then BA is possible for ¢t < n/2 (con-
sensus), respectively for ¢ < n (broadcast). In this setting, only computa-
tionally secure BA protocols are reasonably efficient (O(n?r) bits). When
information-theoretic security is required, the most efficient known BA
protocols require O(n'x) bits of communication per BA, where r de-
notes a security parameter. The main reason for this huge communication
is that in the information-theoretic world, parts of the setup are consumed
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with every invocation to BA, and hence the setup must be refreshed. This
refresh operation is highly complex and communication-intensive.

In this chapter we present BA protocols (both broadcast and con-
sensus) with information-theoretic security for t < n/2, communicating
O(n’k) bits per BA.

Our BA protocols are based on the broadcast protocol of [DS83], ame-
liorated with information-theoretically secure signatures [SHZI02].

6.2 Model

We consider a set of n players P = {P,..., P,}, communicating over
pairwise secure synchronous channels. Our protocols work in a finite
field F = GF(2%) where « is a security parameter (we allow a negligible
error probability of O(27")). To every player P; € P, a unique non-zero
element a; € F\ {0} is assigned.

The faultiness of players is modeled by a central computationally-
unlimited adversary who adaptively actively corrupts up to t < n/2 of
the players.

We assume that there is a trusted setup, i.e., in an initialization phase,
a fixed probabilistic function Init : 1* — (stateq,...,state,) is run, and
every player P; € P secretly receives state; as his initial state.

6.3 Information-Theoretically Secure Signa-
tures

A classical (cryptographic) signature scheme consists of three algorithms:
KeyGen, Sign, and Verify. KeyGen generates two keys, a signing key for
the signer and a public verification key; Sign computes a signature for a
given message and a given signing key; and Verify checks whether a sig-
nature matches a message for a given verification key. A secure signa-
ture scheme must satisfy that every signature created by Sign is accepted
by Verify (with the corresponding signing/verification keys, complete-
ness), and without the signing key it is infeasible to compute a signature
which is accepted by Verify (unforgeability). Classical signature schemes
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provide cryptographic security only, i.e., an unbounded forger can al-
ways find an accepting signature for any given message, with exhaustive
search, using Verify as test predicate.

As an information-theoretically secure signature scheme must be se-
cure even with respect to a computationally unbounded adversary, ev-
ery verifier must have a different verification key (and these verification
keys must be kept private). Hence there exist signatures that are valid for
one verifier while being invalid for another verifier. However, such sig-
natures should be (almost) impossible to find. Therefore, an additional
property called transferability is required: It is impossible (except with a
negligible probability) for a faulty signer to produce a signature which
is valid for some honest verifier without being valid for some other hon-
est verifier. We say that a signature scheme is information-theoretically
secure if it is complete, unforgeable and transferable.

In [SHZI02], a so called (v, v¢’)-secure signature scheme is presented,
which allows the signer to sign a message m € F such that any of the
players in P can verify the validity of the signature. As long as the signer
signs at most 1) messages and each verifier verifies at most ¢’ signatures
the success probability of attacks is less then 1/|F| = 27*.

Our BA protocols use a one-time signature scheme (i.e., one setup
allows only for one single signature), where every verifier may verify up
to ¢t 4 2 signatures (of the same signer). In the context of [SHZI02], this
means that we set ¢y = 1 and ¢’ = ¢ + 2. By simplifying the notation (and
by assuming that 2¢ + 1 < n), we obtain the following scheme:

KeyGen: Key generation takes as input the string 1%, and outputs
the signing key sk to the signer Ps and the n verification keys

vki, ..., vk, to the respective verifiers P, . .., P,. The signing key is
a random vector sk = (o, ..., Pni1,q0s-- - Gni1) € F2+2) defin-
ing the polynomial
n+1 n+1
FaVi, oo Vi, M) = [ po+ ) piVi | + M a0+ Y q;V;
Jj=1 Jj=1
n+1
= po+ Mg+ Z(Pj + Mg;) Vj.
j=1

The verification key vk; of each player P; € P is the vector vk; =
(Vi1s- -3 Vint1, Ti, Yi), where the values v; 1,...,v; 41 are chosen
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uniformly at random from F, and the ;- and y;-values characterize
the polynomial Fi, when applied to v; 1, ..., Vint1, i€, ;i = po +

n+1 n+1
> j—1 pjvigand y; = qo + D50 qjvi;

Sign: The signature o of a message m € F is a vector o = (0y,...,0n41),
characterizing the polynomial Fy when applied tom, i.e., o; = p; +
mg; forj=0,...,n+ 1

Verify: Given a message m, a signature o = (0o, ..., on+1), and the verifi-
cation key vk; = (v.1,...,Vin+1, i, yi) of player P;, the verification
algorithm checks whether

n+1

?
T; +my; = oo + E OV 5 ( = Fy(via,... 7vi,n+17m)) .
j=1

The protocol has the following sizes: Signing key: (2n + 4)x bits;
verification key: (n + 3)x bits; signature: (n + 2)x bits. The total infor-
mation distributed for one signature scheme (called sig-setup) consists of
(n? + 5n + 8)k bits.

Note that a sig-setup for the player set P is trivially also a valid sig-
setup for every player subset P’ C P. We will need this observation later.

6.4 Protocol Overview

Basically, the new broadcast protocol is the protocol of [DS83], amelio-
rated with information-theoretically secure signatures [SHZI02]. Simi-
larly to [PW96], we start with a compact (constant-size) setup, which al-
lows only for few broadcasts, and use some of these broadcasts for broad-
casting the payload, and some of them to refresh the remaining setup,
resulting in a fresh, full-fledged setup.

We use the player-elimination framework [HMP00] to substantially
speed-up the refresh protocol: The generation of the new setup is per-
formed non-robustly, i.e., it may produce a faulty setup when an adver-
sary is present, this will however be detected by at least one honest player
(who gets unhappy). At the end of the refresh protocol, the players jointly
decide (using one BA-operation) whether the refresh has succeeded or
not; if yes, they are happy to have generated a new setup. If it failed,
they run a fault-handling procedure, which yields a set E of two players,
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(at least) one of them faulty. As originally the set P contains an honest
majority, also the set P \ E contains an honest majority. So the player set
is reduced to P’ «— P \ E (with at most ¢’ < t — 1 faulty players).

We are still missing the fresh setup; however, as with each fault-
handling, one faulty player is eliminated from the actual player set, faults
can occur only ¢ times. For these t cases, we have a stock of ¢ prepared
setups, and with each fault, we take one out of this stock. This way it
is ensured that at any point in the protocol, we have ¢’ prepared setups
on stock, where ¢’ is the maximum number of faulty players in P’. More
precisely, the protocol runs as follows:

Initial Setup: The initial setup consists of 2 + 5t BA-setups®®one for the
first BA operation, one for the first invocation of the refresh proto-
col, and ¢ extra setups for the stock, each consisting of 2 BA-setups
for replacing the failed refresh and 3 BA-setups for localizing the
set 2 C P in the fault-handling procedure. The actual player set is
set to P’ = P and the maximum number of faulty players in P’ to
t'=1t.

Broadcast/Consensus: To perform a BA operation, the protocol
Broadcast, resp. Consensus is invoked with the payload. In parallel,
Refresh is invoked to refresh the reduced setup. If successful, Refresh
produces two BA-setups using only one single BA operation. If
Refresh fails, 5 BA-setups are taken from the stock, an elimination
set E C P’ is localized (using 3 BA’s) and eliminated (P’ — P’ \ E,
t' — t' — 1), and the two remaining BA-setups are kept as new state
— for the next Broadcast/Consensus operation.

6.5 Broadcast and Consensus

We present the protocols for the actual broadcast and consensus opera-
tion.

Note that the Refresh protocol outputs a correct BA setup for P’ only
(rather than P). However, as P\ P’ might contain honest players we need
to achieve BA in P. We first present the BA protocols for P’, then show
how to realize BA in P using these protocols.

36BA-setup denotes the set of sig-setups used for one BA operation. As will become clear
later, one BA-setup is equivalent to 2n sig-setups.
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As [SHZI02] signatures can cope only with message in the field I, also
our BA protocols are limited to messages m € F. An extension to longer
messages is sketched in Section 6.7.

We first present a broadcast protocol that allows a sender Pg € P’ to
consistently distribute a message m € F to the players in P’.% The pro-
tocol is essentially the protocol of [DS83], with a simplified description
of [Fit03]. In addition, the protocol is modified such that in one protocol
run every player verifies at most 1)’ = ¢ + 2 signatures of each signer (as
required by our signature scheme).

Every player maintains a set .4 of accepted messages, a set N of newly
accepted messages, and (one or several) sets ¥,,, of received signatures
for a message m.

Protocol Broadcast’.

0. Sender Pg: Send m and the corresponding signature og to all P; €
P’

1. VP, € P’: If P, received from the sender a message m together
with a valid signature og set A = N = {m} and ¥,, = {os}.
Otherwise set A = N = {}.

k. In each Step k = 2,...,t' + 1, execute the following sub-steps for
every player P; € P/ \ {Ps}:

k.1 For every message m € N, compute the signature o; on m,
and send (m, ¥,, U {0;}) to all players in P’. Set N = {}.

k.2 In turn, for every message (m, X,,) received in Sub-step k.1
do:

o If m € A, orif |A] > 2, ignore the message,

e else if ¥, contains valid signatures from at least & dif-
ferent players in P’, including Ps, include m in A and in

o else ignore the received message (m, ¥,,) and all further
messages from the player who has sent it.

t'+2. VP;: if |A| = 1, then accept m € A as the broadcasted value. Oth-
erwise, the sender is faulty, and accept m =L (or any fixed pre-
agreed value from F) as the broadcasted value.

37Note that Broadcast’ will not be used, it is presented only for the sake of clarity of the
protocol Consensus’.
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One can easily verify that the protocol Broadcast’ is as secure as the
used signature scheme [DS83, Fit03] and that every player verifies at most
t+2 signatures from the same signer. Furthermore, every signer P; issues
up to two signatures; however, the second one is for the sole goal of prov-
ing to other players that the sender Py is faulty, and the secrecy of P;’s
signing key is not required anymore. Hence, it is sufficient to use a one-
time signature scheme, whose unforgeability property is broken once the
signer issues two signatures.

To construct a consensus protocol in P’, we use a trick of [Fit04]: Ev-
ery player needs two sig-setups, a primary scheme for the same purpose
as in the above protocol, and an alternative scheme for identifying the
message (if there is any) originally held by all honest players. During the
protocol execution, every player F; additionally maintains (one or sev-
eral) sets X}, containing alternative signatures o’ (issued by P;) for m,
where X/, with |X/ | > n’ — ¢/ now “replaces” the sender’s signature in
the above broadcast protocol. Now we present the consensus protocol
for P’, each P; holding a message m; € F:

Protocol Consensus’.

0. VP; € P’: Send m; and the corresponding (alternative) signature
o} to all players in P’.

1. VP, € P’: If there exists a message m received (together with a
valid signature) from at least n’ —¢’ different players, let X/, denote
the set of all these signatures, and set A = N = {m} and ,, = {}.
If no such message exists, set 4 = N = {}.

k. In each Step k = 2,...,t' + 2, execute the following sub-steps for
every player P, € P":
k.1 For every message m € N, compute the signature o; on m,
and send (m, X!, %, U{o;}) to all players in P’. Set N = {}.
k.2 In turn, for every message (m,X),,%,,) received in Sub-
step k.1 do:

o If m € A, orif |A] > 2, ignore the message,

e else if ¥,, contains valid signatures in the primary
scheme from at least £ — 1 different players in P’, and
¥, contains valid signatures in the alternative scheme
from at least n’ — ¢’ different players in P’, then include
min Aand in N,

o else ignore the received message (m, X/,, ¥,,) and all fur-
ther messages from the player who has sent it.
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t'+3. VP;: if |[A] =1, accept m € A as the agreed value, otherwise (there
was no pre-agreement) accept m =_1.

The security of the protocol Consensus’ follows immediately from the
security of the protocol Broadcast’, and the fact that every player issues
at most one signature in the alternative scheme, and each such signature
is verified at most t 4+ 1 times. The communication complexity of BA in
P’ is at most 4n3|a| + 3n’k + n?|o| = (8n* + 2613 + In?)k.

Broadcast and consensus in P can be constructed from consensus in
P

Protocol Broadcast.

1. The sender Ps € P sends the message m to every player P; € P'.

2. Invoke Consensus’ to reach agreement on m among P’.

3. Every player P; € P’ sends the agreed message m to every player
Pj cP.

4. Every player P; € P accepts the message m which was received most
often.

Protocol Consensus.

1. Invoke Consensus’ to reach agreement on m among P’.

2. Every player P; € P’ sends the agreed message m to every player
Pj ep.

3. Every player P; € P accepts the message m which was received most
often.

The security of these protocols follows from the security of Consensus’

and from ¢’ < n’/2 and ¢t < n/2. The communication complexity of BA in
P is at most (8n* + 2613 + 11n2)k.

6.6 Refreshing the Setup

6.6.1 Overview

To “refresh” the setup means to compute a new setup which allows for
two BA operations, while this computation consumes only one BA-setup.
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The protocol Refresh generates the new setup with a special-purpose
MPC among the players in P’.

This computation is performed non-robustly: The adversary can cause
the generated setup to be incorrect, however this will be noticed by at
least one honest player. More precisely: Every player has an internal
state (the happy-bit), which is set to happy at the beginning of the com-
putation. If a player detects a fault, he gets unhappy (sets his happy-bit
to “unhappy”). We say that the protocol succeeded if all players remained
happy, otherwise, the protocol failed. For the computation the following
holds: If all players follow the protocol, then it succeeds (completeness)
and if the protocol succeeds then it achieves its intended goal (correct-
ness).

We do not require agreement on the fact whether or not a sub-protocol
has failed. Only at the very end of Refresh, the players agree on whether
or not a player has detected a failure during the computation (using con-
sensus, thereby consuming one BA-setup). The computation takes only
random values as input, so in case of failure, privacy is of no interest.

We provide a fault-handling sub-protocol, to be invoked when Refresh
fails, which localizes a set E C P’ of two players, where (at least) one of
them is faulty. This allows to reduce the actual player set, thereby reduc-
ing the maximum number of faulty players, thereby limiting the number
of times Refresh can fail. In this fault-handling sub-protocol, every play-
ers sends to some designated player all messages he has received during
the course of the protocol, as well as all random elements he sampled
(which define the sent messages). Given this information, the designated
player can help to compute the set E to eliminate.

In the sequel, we present the used sub-protocols (all of them non-
robust), and finally the protocols Refresh and FaultHandling. The proto-
col Refresh invokes once the protocol Consensus’, hence it consumes one
valid BA-setup. The protocol FaultHandling invokes 3 times the protocol
Broadcast; it requires enough BA-setups for that. However, the protocol
FaultHandling is invoked only ¢ times in total, so the required BA-setups
can be prepared at beforehand.

6.6.2 Secret Sharing

We define a correct d-sharing of a value as in Definition 2, i.e. we say
that a value s is correctly d-shared among the players P’ if there exists a
degree-d polynomial p(-) with p(0) = s, and every (honest) player P; € P’
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holds a share s; = p(«;), where «; is the unique evaluation point assigned
to P;. We denote the collection of shares as [a]q.

As usual, by saying that the players in P compute (locally)

(15D s y ™) = £ Va2 o)

(for any function f : F™ — F™) we mean that every player P; applies
this function to his shares, i.e. computes

"™y = ™),

Remember that by applying any linear or affine function to correct d-
sharings we get a correct d-sharing of the output. However, by multiply-
ing two correct d-sharings we get a correct 2d-sharing of the product, i.e.
[a]a[b]a = [ab]aq.

As all sharings used in this chapter are t’-sharings or (temporarily)
2t'-sharings, we denote the ¢'-sharing [a], as [a] and the 2t'-sharing [a]2y
as [[a]].

In order to let a dealer Pp € P’ verifiably share a value a, we em-
ploy the following (non-robust) protocol (based on the VSS protocol
of [BGW88])

Protocol Share.

1. DISTRIBUTION: Pp selects the coefficients ¢ 1,c10,...,cv v at ran-
dom, and sets f(z,y) = a + c10z + co1y +cr1xy + ... + ct/7t/a:tlyt/.
Then, to every P, € P’, Pp computes and sends the polynomials
fix(y) = fai,y) and fii(z) = f(7, ;).

2. CHECKING: For every pair P;, P; € P/, P; sends f; .(a;) to P;, who
compares the received value with f, j(c;). P; gets unhappy if some
difference is non-zero.

3. OUTPUT: Every P; outputs as his share a; = f; .(0).

Lemma 24 The protocol Share has the following properties: (Completeness) If
all players in P’ correctly follow the protocol, then the protocol succeeds. (Cor-
rectness) If the protocol succeeds, then the outputs (aq, . .., an/) define a correct
sharing of some value a', and for an honest dealer with input a it holds that
a = a'. (Privacy) If the dealer is honest no subset of t' players obtains any
information on his secret a.

The protocol communicates at most (2n* — 2n)r bits and requires at most
(Yan? + Yon — ¥)k random bits.
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The following protocol lets the players in P’ reconstruct a correctly
shared value a towards a designated player Pr € P":

Protocol Recons.

1. Every player P; € P’ sends his share a; to the recipient Px.

2. Pg verifies whether ay, ..., a, lie on a degree-t’ polynomial p(-) and
outputs ¢ = p(0) if yes. Otherwise, Pr gets unhappy and outputs
a=0.

Lemma 25 The protocol Recons has the following properties: (Completeness) If
all players in P’ correctly follow the protocol, then the protocol succeeds. (Cor-
rectness) If the protocol succeeds, then Pr outputs the correct secret a. (Privacy)
If the recipient is honest the adversary obtains no information on a.

The protocol communicates at most (n — 1)k bits and requires no random-
ness.

6.6.3 Generating Random Values

In the following, we present two (trivial) protocols for generating random
values. The first one, GenerateRandom generates a correct sharing [r] of
a secret random value r €r F (or fails with at least one honest player
being unhappy). The second one, GenerateRandomChallenge generates a
random challenge ¢ € F known to all players in P’ (or fails with at least
one honest player being unhappy).

The protocol GenerateRandom non-robustly generates a secret random
sharing by letting ¢’ 4 1 players in P’ verifiably share a random contribu-
tion and outputting the sum of this sharings.

Protocol GenerateRandom.

1. SHARE: VP, € {Pi,...,Pyy1}: select a random value ¢ cp F
and invoke Share to share c¢(?) among 7/, resulting in ¢’ + 1 sharings
[cM], ..., [e®+D)].

2. COMPUTE AND OUTPUT: The players compute (locally) and output
the sharing [c] = Z‘;:Jrll [C(i)].
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Lemma 26 The protocol GenerateRandom has the following properties: (Com-
pleteness) If all players in P’ correctly follow the protocol, then the protocol
succeeds. (Correctness) If the protocol succeeds, then it generates a correct shar-
ing [r] of a uniformly random value r € F. (Privacy) Any subset of at most t’
players has no joint information about r.

The protocol communicates at most (n® — n)r bits and requires at most
(Ysn3 + %gn? + Ygn — %)k random bits.

Proof:[sketch] Completeness and complexity follow from inspecting the
protocol. We now focus on the case when the protocol succeeds. There
is at least one honest player P, in {Pi, ..., P11}, who chooses his value
") uniformly at random. As in Step 1 the adversary does not obtain
any information about ¢*) (privacy of Share), and as the values c(*) of
every player P; € P’ are fixed after Step 1 (Correctness of Share), c") is
statistically independent of all other values ¢ (j # i). Hence, the sum
¢® ...+ c¥'+D is uniformly distributed and unknown to the adversary.
[

The following protocol GenerateRandomChallenge non-robustly generates
a random challenge known to all players in P’ by generating a random
sharing and reconstructing it towards every player in P’.

Protocol GenerateRandomChallenge.

1. GENERATE RANDOM SHARING [c]: Invoke GenerateRandom, to gener-
ate a sharing [c] of a secret random value c.

3. RECONSTRUCT AND OUTPUT ¢: VP, € P’ invoke Recons to recon-
struct [c¢| towards player P;.

Lemma 27 The protocol GenerateRandomChallenge has the following proper-
ties: (Completeness) If all players in P’ correctly follow the protocol, then the
protocol succeeds. (Correctness) If the protocol succeeds, then it generates a uni-
formly random value ¢ € g F, known to all players P; € P'.

The protocol communicates at most (n® 4+ n* — 2n)r bits and requires at
most (Ysn? + %n? + Y%n — %)k random bits.

Proof: Follows immediately from the security of GenerateRandom and
Recons. L
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6.6.4 Generating one Sig-setup

Recall that a sig-setup for a designated signer Pg consists of the signing
key (po,---sPn+1,90; - - -, Gn’+1), Which should be random and known
only to the signer Pg, and one verification key (v;1,...,0in+1, %, i)
for each player P; € P’, where the values v; 1, ..., v; n+1 should be ran-
dom and known only to P;,® and the values z; and y; are computed as
xr; = po + Z;l:gl pjv;; and y; = go + Z;L,;ll q;vi,5, respectively. Table 6.1
summarizes the steps needed to compute these values.

|Player|| Inputs (rand.) || Intermediate (shared) || Outputs |
Ps pPo |* | Pn'4+1
q || 9n’+1
pivL |- P/ 41V 41 || T1 = Po + D5 PEV1k
Proffvia | | v UALS REHIAS k
quoin |- A/ 4101041 || Y1 =q0 + D25 V1K
P P1Ups a | Pn/41Vn! n/ 41 ||Tn’ = PO +Zk PrUn’ k
n’ Un/ 1| " |Un/ ,n'+1
qQ1Ups 1 |" 0 dn’+1Vn’ n/+1 || Yn’ = Q0 +Zk qkVn’ k

Table 6.1: Preparing one sig-setup

In our protocol, first every player P; chooses and secret-shares his
verification key (v; 1, . .., Vi n4+1). Then, the players jointly generate three
random vectors (po, .-, Pn/+1), (qos---5qn+1), and (rg,...,7n41). The
first two of these vectors will serve as signing key, and the third will
serve as blinding in the verification of the computation. Then, for each
of these three vectors, the values z1,...,z,/, respectively yi,...,y, or
21, ..., 2y, are computed. This computation is not detectable: It might be
that one of the z;, y; or z; values is wrong, and still no honest player has
detected a failure (however, when all players correctly follow the pro-
tocol, then all values will be correct). The correctness of these values is
verified in an additional verification step: Two random challenges p and
© are generated, and the linearly combined (and blinded) signing vec-
tor (ppo + ©go + 7o, - - -, PPR/+1 + PAni+1 + Thr41) is computed, and (dis-
tributively) compared with the linearly combined verification keys. If all

%The randomness of v;.1, . . ., v; n/ 11 i needed for the sole reason of protecting the ver-
ifier P;, hence it must be guaranteed for honest verifiers only.
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checks are successful, then (with overwhelming probability) all keys are
correctly computed.

Protocol GenerateSignatureSetup.

1.

GENERATE v; ,-VALUES: Every player P; € P’ selects n’ 4+ 1 random
values v; 1, ..., v; n 41 and invokes Share to share them.

. GENERATE py-VALUES: GenerateRandom is invoked n’ + 1 times to

obtain random sharings [po], . . ., [Pn/+1].

. COMPUTE z;-VALUES: For every i = 1,...,n’ the sharing [z;] of z; =

po + Z?:{l p;v;, ; is computed as as follows:

3.1 COMPUTE [[z;]]: The players in P’ (locally) compute the 2t'-
sharing [[a:]] of ; as [[2:]] = [po] + X35 [pa] [vi k]

3.2 REDUCE DEGREE |[[z;]] — [z;] : Every player P; € P’ shares
his 2t’-share z; ; of x; acting as a dealer in Share, resulting in t'-

sharings [z; 1], ..., [Z:n]. The players compute (locally) the shar-
ing [z;] of z; as [x;] = Z?,:l Ajlxi j], where A; denotes the j-th
Lagrange coefficient, i.e. \; = Hf;“ 4wk
. GENERATE ¢ /y;-VALUES: Generate (qo, ..., ¢ +1) and (y1,. .., Yn’)
along the lines of Steps 2-3.
. GENERATE ry/z;-VALUES: Generate (rg,...,7n+1) and (21,...,2n/)

along the lines of Steps 2-3.

. CHECK CORRECTNESS OF THE COMPUTED xi/yi—VALUES:

6.1 Invoke GenerateRandomChallenge twice to generate random chal-
lenges p and .

6.2 For k = 1,...,n' + 1, compute and reconstruct towards every
player [si] = plpk] + ¢lar] + [rx]-

6.3 Fori=1,...,n/, compute [w;] = s¢ + ZZ:T sk[vik]-

6.4 Fori=1,...,n/, compute [w;] = p[z;] + ¢lyi] + [2]-

6.5 Fori =1,...,n/, reconstruct to every player [d;] = [w;] — [W,].

6.6 Every P; checks whether d; L 0fori = 1,...,n/, and gets un-
happy in case of any non-zero value.

7. ANNOUNCE z;/y;-VALUES: For every P, € P’, invoke Recons to recon-

struct [z;] and [y;] towards P;.

Lemma 28 The protocol GenerateSignatureSetup has the following properties:
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(Completeness) If all players in P’ correctly follow the protocol, then the pro-
tocol succeeds. (Correctness) If the protocol succeeds, then (with overwhelming
probability) it generates a correct signature setup. (Privacy) If the protocol suc-
ceeds, then no subset of t' players obtains any information they are not allowed
to obtain.

The protocol communicates at most (11n* + n3 — 2n? — 10n)k bits and
requires at most (2n* + 4n3 + 2n? + 3)k random bits.

Proof:[sketch] (Completeness) We consider the case that all players fol-
low the protocol, hence no sub-protocol fails. Observe that for every
i=1,...,n, the points (a1, %;1),. .., (an, T; n ) lie on a degree-2t’ poly-
nomial f;(-) with f;(0) = po + ZZ:T pivi k- This polynomial is well de-
fined because n’ > 2t/, hence we can interpolate f;(0) with Lagrange’s
formula.® This interpolation is done distributively, i.e., every player
P; shares his z; ;, then these sharings are combined using Lagrange’s

formula, resulting in a sharing of z; = po + Z::ll Pri k. Similarly,
yi = qo+ Sp " qrvig and 2 = ro + St rpvig. Clearly, for any p

and ¢, (ppo + ¢qo + o) + Ezztl(/)pk + oqi + TR)vik = pxi + QY + Zi,
hence d; = 0, and no player detects a failure in Step 6.6.

(Correctness) We have to show that when the protocol succeeds, then
fori=1,...,n holds x; = pg + ZZ':Jrll prv;k and y; = po + ZZ:’Lll QUi k-
Observe that after Step 5, the values v; i, pk, gk, 7'k, T4, Yi, 2; are fixed (they

all are t’-shared). When z; and y; do not satisfy the required equation
above, then only with negligible probability, for random p and ¢ they

satisfy the equation (ppo + ¢qo +70) + S5t (0pk + @i + 1) vik = pas +
PYi + Zi.

(Privacy) We have to show that when the protocol succeeds, every
player learns only his respective key (plus some random data he could
have generated himself with the same probability distribution). First
observe that in Steps 1-5, the only communication which takes place is
by invocation of Share, which leaks no information to the adversary. In
Step 6, the values s1,...,5,41 and dy, ..., d, are reconstructed. Every
value s, is blinded with a random 7, (unknown to the adversary), so is
uniformly random from the viewpoint of the adversary. The values d;
are either 0 (and hence the adversary can easily simulate them), or the
protocol fails (and all computed values are discarded).

%Note that f;(0) is arbitrary when a single player is incorrect — something we do not
care for when arguing about completeness.
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The indicated complexities can be verified by inspecting the protocol.
]

6.6.5 Fault Detection

The following protocol FaultDetection enables the players in P’ to agree
on whether or not all players are happy.

Protocol FaultDetection.

1. DISTRIBUTE HAPPY-BITS: Every P; € P’ sends his happy-bit to every
P; € P, who gets unhappy if at least one P; claims to be unhappy.

2. FIND AGREEMENT: The players in P’ run Consensus’ with P;’s input
being his happy-bit.

3. OUTPUT: If the consensus of the previous step outputs “happy”, out-
put “succeeded” otherwise output “failed”.

Note that if at least one honest player inputs “unhappy”, then
FaultDetection outputs failed (regardless of the behavior of the adver-
sary). If all honest players input “happy” and all players follow the
protocol then FaultDetection outputs “succeeded”. However if all hon-
est players input “happy” the adversary can still cause the output to be
“failed”.

6.6.6 The Refresh Protocol

In order to refresh a BA-setup, we need to generate two BA-setups, con-
suming only one BA-setup. Remember that one BA-setup consists of 2n’
sig-setups (2 for every potential signer); hence, Refresh needs to generate
4n’ sig-setups.

Protocol Refresh.

0. Every P; € P’ sets his happy-bit to happy.

1. Invoke GenerateSignatureSetup 4n’ times in parallel to generate 4 sig-
setups for each signer Ps € P’.

2. Invoke FaultDetection to agree on whether or not some player has de-
tected a fault.
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3. Every P; € P’ sends the output of FaultDetection to every P; € (P\P’),
who outputs the message received most often.

It is easy to see that Refresh fails (every honest player outputs
fail) when any GenerateSignatureSetup failed for an honest player.
On the other hand, when all players follow the protocol (inclusive
FaultDetection), then Refresh succeeds. Refresh communicates O(n®)x bits.

6.6.7 Fault Handling

The following fault-handling procedure is invoked only when Refresh has
failed. The goal of FaultHandling is to localize a set E € P’ of two players,
such that (at least) one of them is faulty.

FaultHandling exploits the fact that there is no need to maintain the
secrecy of the failed Refresh protocol. Basically, in FaultHandling the whole
transcript of Refresh is revealed and there will be a message from some
player P; to some player P;, where P; claims to have sent some other
message than P; claims to have received — hence either P; or F; is lying,
and we can set E = {P;, P;}. Unfortunately, it would be too expensive
to publicly reveal the whole transcript; instead, the transcript is revealed
towards a selected player (e.g. P; € P’ with the smallest index k), who
searches for the fault and announces it.

We stress that the considered transcript not only contains the mes-
sages of all invocations of the protocol GenerateSignatureSetup, but also
the messages of the protocol Refresh. This is important because it might
be that no fault occurred in GenerateSignatureSetup, but still some (cor-
rupted) player P; claimed to be unhappy in FaultDetection.

Protocol FaultHandling.

1. Every P, € P’ sends to P, all random values chosen during the course
of the protocol Refresh (including all sub-protocols), as well as all val-
ues received during the course of Refresh.

2. P, computes for every P; the messages P; should have sent (when
being correct) during the course of Refresh; this can be done based on
the random values and the received messages of P;.

3. P searches for a message from some player P; € P’ to some other
player P; € P’, where P; should have sent a message z; (according
to his claimed randomness), but P; claims to have received z;, where
x; # x;. Denote the index of this message by ¢.
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4. Py invokes Broadcast to announce (3, j, £, x;, ;).

5. P, invokes Broadcast to announce whether he indeed sent z; in the /-th
message.

6. P; invokes Broadcast to announce whether he indeed received z; in
the /-th message.

7. If Both P; and P; confirm to have sent z;, respectively to have received
zj, then E = {P;, P;}. If P; does not confirm to have sent z;, then E =
{Py, P;}. If P; does not confirm to have received z;, then E = { P, P; }.

FaultHandling requires 3 BA invocations and communicates O(n’k)
bits.

6.7 Long Messages

The proposed BA protocols only capture messages m € F, i.e., k-bit mes-
sages. In order to reach BA on longer messages, one could invoke the
according BA protocol several times (once for every « bit block). How-
ever, this would blow up the communication complexity unnecessarily
high: BA of a ¢« bit message would require a communication complexity
of O(¢n’k) bits (as opposed to O(¢kn? +n'"x) in [PWI6]). In this section,
we sketch a construction that allows BA of a /x bit message at costs of
O(¢kn? + n®k) bits.

In order to achieve the stated complexity, we need to replace the pro-
tocol Consensus” by Consensusiong’. The basic idea of Consensusiong” is
straight forward: Every player P; € P’ sends his message m; to every
other player. Then, the players use Consensus’ to reach agreement on a
universal hash value. If agreement is achieved, all players output the
message with the agreed hash value, otherwise they output L. The key
for the universal hash function is assumed to be pre-shared among the
players as part of the BA-setup, and only reconstructed when needed.
We also explain how this sharing is prepared in the Refresh protocol.

6.7.1 Protocol Consensus,,”

In the following, we present the protocol Consensusiong among the players
in P’, reaching agreement on a ¢« bit message m. The protocol makes use
of universal hashing [CW79]. As universal hash with key k € F, we use
the function Uy : F* — F, (m™, ..., m®) —» m® 4m@ k4. 4mOk-1,
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The probability that two different messages map to the same hash value
for a uniformly chosen key is at most ¢/|F|, which is negligible in our
setting with F = GF(2").

Protocol Consensusion,’.

1. Every P; € P’ sends his message m; to every player P; € P'.

2. The players reconstruct the random hash key & € F, which is part of
the BA setup.

3. Every P; € P’ computes (for his original message m;) the universal
hash Uy, (m;).%

4. The players in P’ invoke Consensus’ to reach agreement on the hash
value h.

5. If the above consensus fails (i.e., h =), then every P, € P’ outputs L.
If it succeeds, then every P; € P’ outputs that m; received in Step 1
with Ux(m;) = h.

One can easily see that the above protocol reaches consensus on m,
and that it communicates O(¢xn?) plus one invocations of Consensus’, i.e.,
communicates O(¢xn? + nk) overall.

6.7.2 Generating the Hash Key

The protocol Consensusion,” needs a random hash key to be known to all
players in P’. We cannot afford to generate this hash key on-line (this
would require several invocations of broadcast). Instead, we assume a
robust sharing of a random field element to be part of every BA-setup.
This sharing is then reconstructed when needed.

As robust sharing, we use the scheme of [CDD"99]. Essentially, this
is a two-dimensional Shamir sharing, ameliorated with so called au-
thentication tags. The sharing is constructed non-robustly; in the Share
protocol, the players pair-wisely check the consistency of the received
shares, and fail in presence of faults. The sharing of the hash key is
generated as sum of a sharing of each player in P’. Such a sharing can
be computed with communicating O(n*x) bits (and without involving
broadcast). When the hash key is needed, then the sharing of the actual
BA setup is reconstructed towards every player in P’. This is achieved

“0In order to do so, the message m; is split into blocks mgl), . ,mgz).
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by having every player sending his shares (including the authentication
tags) to every other player; this involves a communication of O(n?r) bits.



Chapter 7

Asynchronous MPC

7.1 Introduction

Up to now, we have considered computations in synchronous networks
only. In this chapter we concentrate on asynchronous communication
which models real-world networks (like the Internet) much better than
synchronous communication.

Remember that in asynchronous networks, messages are delayed ar-
bitrarily (as a worst-case assumption, the adversary is given the power to
schedule the delivery of messages). Thus when a player does not receive
an expected message, he cannot decide whether the sender is corrupted
(and did not send the message at all) or the message is just delayed in
the network. This makes protocols for asynchronous networks much
more involved than their synchronous counterparts. It also implies that
in asynchronous settings it is impossible to consider the inputs of all un-
corrupted players. The inputs of up to ¢ (potentially honest) players have
to be ignored, because waiting for them could turn out to be endless.

For a good introduction to asynchronous protocols, see [Can95]. Due
to its complexity, asynchronous MPC has attracted much less research
than synchronous MPC. The most important results on asynchronous
MPC are [BCG93, BKR94, SR00, PSR02, HNP05, HNPO0S].

In this chapter we present an MPC protocol providing perfect secu-
rity against an active adaptive adversary corrupting up to ¢ < n/4 of the
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players (which is optimal) and communicating O(n®k) bits per multipli-
cation. Furthermore, we extend the protocol for a hybrid communication
model (with the same security properties and the same communication
complexity), allowing all players to give input if the very first communi-
cation round is synchronous, and taking at least n — ¢ inputs in a fully
asynchronous setting. More precisely, the extended protocol takes the in-
puts of at least n — ¢ players, and additionally, always takes the inputs of
players whose first-round messages are delivered within some a-priory
fixed time.

The results presented in this chapter were published in [BHO7].

7.2 Model

We consider a set P of n players, P = {Pi,...,P,}, connected with a
complete network of secure (private and authentic) asynchronous chan-
nels. The function to be computed is specified as an arithmetic circuit
over a finite field F (with |F| > n), with input, addition, multiplication,
random, and output gates. We denote the number of gates of each type
by ¢, ca, e, cr, and co, respectively.

The faultiness of players is modeled in terms of a central adversary
corrupting players. The adversary can corrupt up to t players for any
fixed t with ¢ < n/4, and make them deviate from the protocol in any
desired manner. The adversary is computationally unbounded, active,
and adaptive. Furthermore, the adversary can schedule the delivery of
the messages in the network, i.e., she can delay any message arbitrarily.
In particular, the order of the messages does not have to be preserved.
However, every sent message will eventually be delivered.

The security of our protocols is perfect, i.e., information-theoretic
without any error probability.

7.3 Preliminaries

7.3.1 Design of Asynchronous MPC Protocols

Asynchronous protocols are executed in steps. Each step begins by the
scheduler choosing one message (out of the queue) to be delivered to its
designated recipient. The recipient is activated by receiving the message,
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he performs some (internal) computation and possibly sends messages
on his outgoing channel (and waits for the next message).

The action to be taken by the recipient is defined by the relevant sub-
protocol*! consisting of a number of instructions what is to be done upon
receiving a specified message. If the received message refers to a sub-
protocol which is not yet “in execution”, then the player keeps the mes-
sage until the relevant sub-protocol is invoked.

7.3.2 Partial Termination

Many “asymmetric” tasks with a designated dealer (broadcast, secret-
sharing) cannot be implemented with guaranteed termination in an asyn-
chronous world; the players cannot distinguish whether the dealer is cor-
rupted and does not start the protocol, or the dealer is correct but his mes-
sages are delayed in the network. Hence, these protocol are required to
terminate only if the dealer is correct. However, we require that if such a
sub-protocol terminated for one (correct) player, then it must eventually
terminate for all correct players.

The issue with partial termination is typically attacked by invoking n
instances of the protocol with partial termination in parallel, every player
acting as dealer in one instance. Then, every player can wait until n—t¢ in-
stances have terminated (from his point of view). In order to reach agree-
ment on the set of terminated instances, a specialized sub-protocol is in-
voked, called agreement on a core-set. A player can only be contained in
the core-set if his protocol instance has terminated for at least one honest
player, and hence will eventually terminate for all honest players. The
core-set contains at least n — ¢ players.

7.3.3 Input Provision

Providing input is an inherently asymmetric task, and it is not possible
to distinguish between a corrupted input player who does not send any
message and a correct input player whose messages are delayed in the
network. For this reason, in a fully asynchronous world it is not possible
to take the inputs of all players; up to t (possible correct) players cannot
be waited for, as this waiting could turn out to be endless. Hence, the
protocol waits only till n—t of the players have achieved to provide input,
and then goes on with the computation.

41We assume that for each message it is clear which sub-protocol it belongs to.
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7.3.4 Byzantine Agreement

We need three flavors of Byzantine agreement, namely broadcast, con-
sensus, and core-set agreement.

The broadcast (BC) primitive allows a sender to distribute a message
among the players such that all players get the same message (even when
the sender is corrupted), and the message they get is the sender’s mes-
sage if he is honest. As explained above, broadcast cannot be realized
with complete termination; instead, termination of all (correct) players is
required only when the sender is correct; however, as soon as at least one
correct player terminates, all players must eventually terminate. Such a
broadcast primitive can be realized rather easily [Bra84]. The required
communication for broadcasting an ¢-bit message is O(n?(), where the
hidden constant is small.

Consensus enables a set of players to agree on a value. If all honest
players start the consensus protocol with the same input value v then
all honest players will eventually terminate the protocol with the same
value v as output. If they start with different input values, then they will
eventually reach agreement on some value. All known i.t.-secure asyn-
chronous consensus protocols start by having every player broadcast his
input value, which results in communication complexity Q(n3¢), where ¢
denotes the length of the inputs.

Agreement on a core set (ACS) is a primitive introduced in [BCG93]
(a more efficient ACS protocol can be found in [BKR94]). We use it to
determine a set of at least n — ¢ players that correctly shared their values.
More concretely, every player starts the ACS protocol with an accumu-
lative set of players who from his point of view correctly shared one or
more values (the share sub-protocol in which they acted as dealers termi-
nated properly). The output of the protocol is a set of at least n—t players,
who indeed correctly shared their values, which means that every honest
player will eventually get a share of every sharing dealt by a dealer from
the core set. The communication costs of an ACS protocol are essentially
the costs of n invocations of bit-consensus, i.e. Q(n?) bits.

7.4 Protocol Overview

Our asynchronous MPC protocol is very simple.
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All protocols and sub-protocol are robust (we don’t use player elimi-
nation or dispute control).

As sharing, we use the standard Shamir sharing, to share and recon-
struct values we use the AVSS scheme from [BCG93] (extended to share
many values in parallel). The share protocol produces correct t-sharings,
whereas the reconstruct protocol reconstructs sharings up to degree 2t.%?

Due to the linearity of Shamir sharing, all linear and affine functions
of shared values can be computed locally, without communication.

Random sharings are computed using super-invertible matrices: Ev-
ery player verifiably shares his contribution(s), then a core set agreement
is run, to agree on a set of at least n — ¢ players who correctly shared
their values. The random sharings are then defined by applying a super-
invertible matrix to these (correctly shared) contributions.

To multiply two shared values, we use a variation of a protocol
from [DNO7] (described in the Chapters 3 and 4), based on a double-
sharing of a random value. As we cannot 2t-share values directly with
our share protocol (2¢t > n/4), we generate a (t, 2t)-sharing from 3¢ + 1
random ¢-sharings.

The main protocol proceeds in three phases: the preparation phase,
the input phase, and the computation phase. Every honest player will
eventually complete every phase.

In the preparation phase many sharings of random values will be gen-
erated in parallel (using only one ACS). For every multiplication gate,
3t + 1 random sharing will be generated. For every random gate, one
random sharing will be generated.

In the input phase the players share their inputs and agree on a core
set of correctly shared inputs. (Every honest player will eventually get a
share of every input from the core set.)

In the computation phase, the actual circuit will be computed gate
by gate, based on the core-set inputs. Due to the linearity of the used
secret-sharing, the linear gates can be computed locally — without com-
munication. Each multiplication gate will be evaluated with the help of
3t + 1 prepared random sharings. First a random double-sharing will be
generated (from the 3t + 1 sharings), which will then be used to multiply
the two factors. The output gates are evaluated with a robust reconstruct
protocol.

#2The reconstruct protocol works for degree d < n/2 whereas the share protocol requires
d<n/4
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7.5 Secret Sharing

7.5.1 Definitions and Notations

We define a correct d-sharing of a value according to Definition 4: We say
that a value s is d-shared if every correct player P; is holding a share s;
of s, such that there exists a degree-d polynomial p(x) with p(0) = s and
pla;) = s; for alli = 1,...,n. We call the vector (s1,...,s,) of shares a
d-sharing of s. A (possibly incomplete) set of shares is called d-consistent
if these shares lie on a degree d polynomial.

Most of our sharings will be ¢-sharings (where ¢ denotes the maxi-
mum number of corrupted players). We denote a ¢-sharing of s by [s]. In
the multiplication sub-protocol, we will also use 2¢-sharings, which will
be denoted by [[s]].

7.5.2 Share; and Recons— The Vanilla Protocols

In the following, we recap the asynchronous verifiable secret-sharing
scheme of [BCGY93], consisting of the protocols Share; and Recons.*?
Share; allows a dealer Pp to verifiably ¢-share a secret value s € [F. Recons
allows the players to reconstruct a d-sharing (for d < 2t) towards a re-
ceiver Pr. We stress that the protocol Share; does not necessarily termi-
nate when the dealer Pp is corrupted. However, when it terminates for
some correct player, then it eventually terminates for all players. The
protocol Recons always terminates.

The intuition behind the protocol Share; is the following: In order to
share a secret s, the dealer chooses a random two-dimensional polyno-
mial f(-,-) with f(0,0) = s, and sends to every player P; the polynomials
9i(-) = f(as,-) and h;(-) = f(-, ;). Then the players pairwise check the
consistency of the received polynomials, and publicly confirm successful
checks. Once n — t players are mutually consistent, every other player
P; uses the checking points received from these players to determine his
polynomial ¢;(-), and computes his share s; = ¢;(0).

Protocol Share; (Dealer Pp, secret s € TF).

“We denote their sharing protocol by Share;, as it allows to share only one single value.
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e DISTRIBUTION — CODE FOR DEALER Pp: Choose a random two-
dimensional degree-t polynomial f(-,-) with f(0,0) = s, and send
to each player P; the two degree-t polynomials ¢;(-) = f(a,-) and
hz() = f(7al)

e CONSISTENCY CHECKS — CODE FOR PLAYER P;:

1. Wait for g;(-) and h;(-) from Pp.

2. To each player P; send the share-share s;; = h; (o).

3. Upon receiving s;; from P; check whether s;; = g¢;(c;). If so
broadcast (ok, 4, 7).

e OUTPUT-COMPUTING — CODE FOR PLAYER P;:

1. Wait until there is an (n — t)-clique in the graph implicitly defined
by the broadcasted confirmations.**

2. Upon receiving at least 2¢ + 1 t-consistent share-shares s;; (for j €
{1,...,n}) from the players in the clique, find the interpolation
polynomial g;(-) and (re)compute your share s; = g;(0).*°

3. Output the share s;.

Lemma 29 For every coalition of up to t bad players and every scheduler, the
protocol Share; achieves the following properties:

o Termination: If the dealer is correct, then every correct player will even-
tually complete Sharey. If some correct player has completed Sharey, then
all the correct players will eventually complete Share;.

o Correctness: Once a correct player has completed Sharey, there exists a
unique value r which is correctly t-shared among the players where r = s
if the dealer is correct.

o Privacy: If the dealer is correct, then the adversary obtains no information
about the shared secret.

The communication complexity of Share; is O(n’k + n2BC(k)).

The intuition behind the protocol Recons is the following: Every
player P; sends his share s; to Pr. The receiver waits until receiving at

#The graph has n nodes representing the n players and there is an edge between i and j
if and only if both (ok, ¢, j) and (ok, j, %) were broadcasted.
451f the dealer is correct or if P; is a member of the clique, then g;(-) = g:(-)
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least d4-t + 1 d-consistent shares and outputs the value of their interpola-
tion polynomial at 0. Note that corrupted players can send false shares to
P, but at the latest when Pr has received the shares of all honest play-
ers, he has at least n — ¢t > d + t 4+ 1 d-consistent shares (for ¢ < n/4 and
d < 2t).

Protocol Recons (Receiver Pr, degree d, d-sharing of s).

e CODE FOR PLAYER P;: Send s; to Pg.

o CODE FOR RECEIVER Pr: Upon receiving at least d 4t + 1 d-consistent
shares s; (and up to t inconsistent shares), interpolate the polynomial
p(-) and output s = p(0).

Lemma 30 For any d-shared value s, where d + 2t < n, for every coalition
of up to t bad players, and for every scheduler, the protocol Recons achieves the
following properties:

o Termination: Every correct player will eventually complete Recons.
o Correctness: Pr will output s.

o Privacy: When Pg is honest, then the adversary obtains no information
about the shared secret.

The communication complexity of the protocol Recons is O(nk).

Note that for ¢ < n/4, Recons can be used to reconstruct t-sharings
as well as 2t-sharings. However, the protocol Share; can only generate
t-sharings.

Proofs of security as well as details on solving the clique-problem in
Share; (respectively, reducing it to a computationally simpler problem)
and on finding (and interpolating) d 4+ ¢ + 1 d-consistent shares in Recons,
can be found in [BCG93].

7.5.3 Share*: Sharing Many Values at Once

The following protocol Share* extends the protocol Share; in two ways:
First, it allows the dealer to share a vector (sV),...,s(¥)) of ¢ secrets at
once, substantially more efficiently than ¢ independent invocations of
Share;. Secondly, Share* allows to share “empty” secrets, formally de-
noted as s(¥) = |, resulting in all shares of s(*) being | as well. This will
be used when a dealer should share an unknown value.
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Protocol Share* (Dealer Pp, secrets (sV), ..., s) ¢ (FU {L})9).

e DISTRIBUTION — CODE FOR DEALER Pp: For every s #£1,
choose a random two-dimensional degree-t polynomial f®*)(. ")
with f#(0,0) = s®. Send to every P the polynomials
(6 nP ), g R (), where ¢M() = f®)(a;,-) and
R () = fB(,a) if s € Fand g = " =L if s®) = 1.

e CONSISTENCY CHECKS — CODE FOR PLAYER P;:

1. Wait for (¢! (-), /{7 (), .., g (), h{? () from Pp.

2. To each P; send (sﬁ),...,s%)), where sglf) = 1P (a),

resp. sgf) =1if hgk) =1.
3. Upon receiving (s'V, . . s(ef)) from P;, broadcast (ok, i, 5) if for all

ij o Si
k=1,...,¢itholds that sgf) = g¥ (a;), resp. sgf) —1=g®.

)
e OUTPUT-COMPUTING — CODE FOR PLAYER P;:

1. Wait until there is a (n — t)-clique in the graph defined by the
broadcasted confirmations.

2. For k = 1,...,{, upon receiving at least 2¢ + 1 ¢-consistent share-
shares sgf) (for 7 € {1,...,n}) from the players in the clique, find
the interpolation polynomial 'g“z(k)() and (re)compute the share

sgk) = ’g“§’“>(0). Upon receiving 2t 4 1 values sl(.f) =1 (for j €
{1,...,n}), set s\¥ =1

3. Output the shares (s'", ..., 81(4))_

Lemma 31 The protocol Share* allows Pp to share ¢ secrets from F U {L}
at once, with the same security properties as guaranteed in Lemma 29. The
communication complexity of Share* is O(fn*k + n?BC(k)).

7.6 Preparation Phase

The goal of the preparation phase is to generate ¢t-sharings of ¢ uniformly
random values ™V, ..., r®, unknown to the adversary, where ¢ will be
CM(?)t + ].) + CR.

The idea of the protocol PreparationPhase is the following: First, ev-
ery player acts as dealer in Share* to share a vector of ¢ = [{/(n — 2t)]
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random values. Then the players agree on a core set of n — ¢ correct deal-
ers (such that their Share* protocol was completed by at least one honest
player). This results in n — ¢ vectors of ¢’ correct ¢t-sharings, but up to ¢ of
these vectors may be known to the adversary. Then, these n — ¢ correct
vectors are compressed to n — 2t correct random vectors, unknown to the
adversary, by using a (n — 2t)-by-(n — t) super-invertible matrix (applied
component-wise). This computation is linear, hence the players can com-
pute their shares of the compressed sharings locally from their shares of
the original sharings.

Protocol PreparationPhase (¢).
Code for player P;:

e SECRET SHARING
e Act as a dealer in Share* to share a vector of ¢/ = [{/(n — 2t)]
random values (s, ... s(:)).
e Forevery j =1,...,n, take part in Share* with dealer P;, resulting
GGy,

cey 9

in the shares (s
e AGREEMENT ON A CORE SET
1. Create an accumulative set C; = 0.
2. Upon completing Share* with dealer P;, include P; in C;.
3. Take part in ACS with the accumulative set C; as input.
e COMPUTE OUTPUT (LOCAL COMPUTATION)
1. Wait until ACS completes with output C. For simple notation, as-
sume that {Py,..., P,—+} C C.
2. For every k € {1,...,0'}, the (n — 2t) t-shared random values,
unknown to the adversary, are defined as (r(1%), ... r(n=2t8)) =

M (sR) . s(m=tk)) where M denotes a (n—2t)-by-(n—t) super-
(1,k) T_(n—Qt,k)

invertible matrix. Compute your shares (r C Ty ) ac-

cordingly. Denote the first ¢ resulting shariﬁgs as [r(i)], o [r9]
(it holds that ¢'(n — 2t) > ¢).

Lemma 32 PreparationPhase (eventually) terminates for every honest player.
It outputs independent random sharings of ¢ secret, independent, uniformly ran-
domvalues r™V), . .., (), PreparationPhase communicates O({n’k+n>BC(k))
bits and requires one invocation of ACS.
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7.7 Input Phase

In the InputPhase protocol every player P; acts as a dealer in one Share*
protocol in order to share his input s;.%* However the asynchronity of the
network does not allow the players to wait for more than n — ¢ Share*-
protocols to be completed. In order to agree on a set of players whose
inputs will be taken into to computation one ACS protocol is run.

Protocol InputPhase (every P, has input s;).
Code for player P;:

e SECRET SHARING
e Share your secret input s; with Share*.
e For every j = 1,...,n take part in Share* with dealer P;.
e AGREEMENT ON A CORE SET
1. Create a accumulative set C; = (.
2. Upon completing Share* with dealer P;, include P; in C;.
3. Take part in ACS with your accumulative set C; as your input.
4

. Output the agreed core set C' and your outputs of the Share* pro-
tocols with dealers from C'.

Lemma 33 The InputPhase protocol will (eventually) terminate for every hon-
est player. It enables the players to agree on a core set of at least n—t players who
correctly shared their inputs — every honest player will (eventually) complete the
Share* protocol of every dealer from the core set (and get the correct shares of his
shared input values). InputPhase communicates O(cin?k + n*BC(k)) bits and
requires one invocation of ACS.

7.8 Computation Phase

In the computation phase, the circuit is evaluated gate by gate, whereby
all inputs and intermediate values are shared among the players. As soon
as a player holds his shares of the input values of a gate, he joins the
computation of this gate.

465, can be one value or an arbitrary long vector of values from
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Due to the linearity of the secret-sharing scheme, linear gates can be
computed locally simply by applying the linear function to the shares,
i.e. for any linear function f(-,), a sharing [c] = [f(a,b)] is computed by
letting every player P; compute ¢; = f(a;, b;). With every random gate,
one random sharing (from the preparation phase) is associated, which is
directly used as outcome of the random gate. With every multiplication
gate, 3t + 1 random sharings (from the preparation phase) are associated,
which are used to compute a sharing of the product as described in the
protocol Multiplication.

Protocol ComputationPhase (¢ = (3t + 1)cas + cr random sharings
[7"(1)], A [7"(5)]).

For every gate in the circuit — Code for player P;:

1. Wait until you have shares of each of the inputs
2. Depending on the type of the gate, proceed as follows:

e Linear gate [c] = f([a],[}],...): compute your share ¢; as ¢; =
f(ai, bi, . )

e Multiplication gate [c] = [a][b]: participate in protocol
Multiplication([a], [], [r(9], ..., [r®9]), where [r©],...,[rBY] de-

note the 3t 4 1 associated random sharings.

e Random gate [r]: set your share r; = rl(k), where [r(*)] denotes the
associated random sharing.

e Output gate [a] — Pg: participate in Recons(Pr,d = t,[a]).

In order to compute multiplication gates, we use the approach of
of [DNO7]: First, the players jointly generate a secret random value s,
which is both ¢-shared (by [s]) and 2¢-shared (by [[s]]). These sharings
can easily be generated based on the 3t 4 1 t-sharings associated with the
multiplication gate. Then, every player locally multiplies his shares of
a and b, resulting in a 2¢-sharing of the product ¢ = ab, i.e., [[c]]. Then,
the players compute and reconstruct [[c — s]], resulting in every player
knowing 6 = ¢ — s and (locally) compute [c] = § + [s], the correct product
[ad].

Protocol Multiplication ([a], [b], [(D], ..., [r(3V]).

Code for player F;:
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1. PREPARE [s]: The degree-t polynomial p(-) to share s is defined by
the shared coefficients r(®), (1) ... +(*)_ For every P}, a sharing of his
share s; = p(«;) is defined as [s;] = [r(V] + rM]a; + ... + [r(t)]ag..
Participate in Recons(P;,d = t,[s;]) to let P; learn his degree-t share
sj, resulting in [s].

2. PREPARE [[s]]: The degree-2¢ polynomial p'(-) to share s is defined
by the shared coefficients (O, r(+1 . rG8) For every P;, a shar-
ing of his share s} = p/(a;) is defined as [s}] = [r(O] + [r(*V]a; +

..+ [r®Y]a?!. Participate in Recons(P;,d = t, [s}]) to let P; learn his
degree-2t share s, resulting in [[s]].

3. COMPUTE AND OUTPUT [ab]:

1. Compute your degree-2t share of ¢ = ab as ¢; = a;b;, resulting in
[[c]] = [a] [0].

2. For every j = 1,...,n, participate in Recons (P;, d = 2t, ([[]] —
[[s]])), resulting in every P; knowing § = ¢ — s.

3. Compute and output your share ¢; of c = § +sasc¢; = J + s,
resulting in [¢] = [ab].

Lemma 34 The protocol Multiplication (eventually) terminates for every
honest player.  Given correct sharings [a],[b], [r?],...,[r®"* D] as in-
put, it outputs a correct sharing [ab]. The privacy is maintained when
([r®1,..., [r®**D]) are sharings of random values unknown to the adversary.
Multiplication communicates O(n?*k) bits.

Lemma 35 The protocol ComputationPhase (eventually) terminates for every
honest player. Given that the ¢ = (3t +1)cas + cg sharings [rM], ... [r)] are
correct t-sharings of random values unknown to the adversary, it computes the
outputs of the circuit correctly and privately, while communicating O(n*cark+
ncok) bits (where car, cr, and co denote the number of multiplication, random,
and output gates in the circuit, respectively).

7.9 The Asynchronous MPC Protocol

The following protocol allows the players to evaluate an agreed arith-
metic circuit C over a finite field F: Denote the number of input, multi-
plication, random, and output gates as ¢y, car, cr, and co, respectively.
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Protocol AsyncMPC (C, ¢1, ¢, Cr, cO)-

1. Invoke PreparationPhase to generate ¢ = c¢ps (3t + 1) 4 c¢g random shar-
ings.
2. Invoke InputPhase to let the players share their inputs.

3. Invoke ComputationPhase to evaluate the circuit (consisting of linear,
multiplication, random, and output gates).

Theorem 6 For every coalition of up tot < n/4 corrupted players and for every
scheduler, the protocol AsyncMPC securely computes the circuit C. AsyncMPC
communicates O ((cyn? + cpmn® + cgn® + neo )k +nPBC(k)) bits and requires
2 invocations of ACS,¥ (which requires O(n?BC(k))).

710 The Hybrid Model

7.10.1 Motivation

A big disadvantage of asynchronous networks is the fact that the in-
puts of up to ¢ honest players cannot be considered in the computa-
tion. This restriction disqualifies fully asynchronous models for many
real-world applications. Unfortunately, this drawback is intrinsic to the
asynchronous model, no (what so ever clever) protocol can circumvent it.
The only escape is to move to less general communication models, where
at least some restriction on the scheduling of messages is given.

In [HNPO5], an asynchronous (cryptographically secure) MPC proto-
col was presented in which all players can provide their inputs, given that
one single round of communication is synchronous. However, this proto-
col has two serious drawbacks: First, the communication round which is
required to be synchronous is round number 7 (we say that a message be-
longs to round k if it depends on a message received in round & — 1). This
essentially means that the first 7 rounds must be synchronous, because if
not, then the synchronous round can never be started (the players would
have to wait until all messages of round 6 are delivered — an endless
wait in an asynchronous network).

47The protocol can easily be modified to use only a single invocation to ACS, by invoking
PreparationPhase and InputPhase in parallel, and invoking ACS only once to find those
dealers who have both correctly shared their input(s) as well as correctly shared enough
random values.
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The second drawback of this protocol is that one must a priori fix the
mode in which the protocol is to be executed, namely either in the hybrid
mode (with the risk that the protocol fails when some message in the first
7 rounds is not delivered synchronously), or in the fully asynchronous
mode (with the risk that up to ¢ honest players cannot provide their input,
even when the network is synchronous).

7.10.2 Our Hybrid Model

We follow the approach of [HNP05], but strengthen it in both mentioned
directions: First, we require only the very first round to be synchronous,
and second, we guarantee that even if some messages in the first round
are not delivered synchronously, still at least n — ¢ inputs are provided —
so to speak the best of both worlds. A bit more precisely, we provide a
fully asynchronous input protocol with the following properties:

o For every scheduler, the inputs of at least n — ¢ players are taken.

o If all messages sent by P; at the very beginning of the computation are
delivered within an a priory fixed time, then P;’s inputs are taken.

This means in particular that if the first round is fully synchronous,
then the inputs of all honest players are taken, and if the network is fully
asynchronous, then at least n — ¢ inputs are taken.

7.10.3 Preparelnputs and Restorelnput

We briefly describe the idea of the new input protocol (assuming, for
the sake of simple notation, that every player gives exactly one input):
In the first (supposedly synchronous) round, every player computes a
degree-t Shamir-sharing of his input and sends one share to each player.
Then, the players invoke the fully asynchronous input protocol, where
the input of each player is a vector consisting of his real input, and his
shares of the inputs of the other players. As result of the asynchronous
input protocol, a core set C' of at least n — ¢ players is found, whose input
vectors are (eventually) ¢-shared among the players. For every player
P; € C, the input is directly taken from his input vector. For every player
P; ¢ C, the input is computed as follows: There are n — t shares of his
input, each t-shared as a component of the input vector of some player
P; € C. Up to t of these players might be corrupted and have input
a wrong share. Therefore, these ¢-shared shares are error-corrected and
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used as P;’s input. For error correction, ¢t + 1 random ¢-sharings are used.
These will be generated (additionally) in the preparation phase. Then,
right before the computation phase, sharings of the missing inputs are
computed.

In the following, we present a (trivial) sub-protocol Preparelnputs,
which prepares the inputs of all players (to be invoked in the first, sup-
posedly synchronous round), and a protocol Restorelnput, which restores
the sharing of an input s(*) of a player not in the core set, if possible (to be
invoked right before the computation phase). The protocol Restorelnput
needs t + 1 t-sharings of random values, which must be generated in the
preparation phase.

Protocol Preparelnputs (every P; holding input s(*)).
Code for player P;:

1. Choose random degree-t polynomial p(-) with p(0) = s(?) and send to
every P; his share sgl) = p(a;).
2. Collect shares sgj ) (from P;) till the first round is over. Then compose
) (n) (9
NP INE)

your new input 50 = (s 7/ =L if no share

50

), where s
was received from P; within the first round.

Protocol Restorelnput (Core Set C, Input Sharings [3“)] of P, ¢ C,

[rO], ..., [r®], P ¢ O).

Code for player P;:

1. Define the blinding polynomial b(z) = 7(®) + Mz + ... +r® 2!, and
for every P;, define [b;] = [b(ey)] = [r©] + [rM]a; + ... + [rP]al.
Invoke Recons to reconstruct b; towards P;, for every P;.

2. For every P; € C, denote by [sgk)] the sharing of P;’s share of Py’s
input s*). Note that s§k) is a part of the input vector 5. If [s§k)] #1,
then compute [d;] = [sg-k)] + [b;], and invoke Recons to reconstruct d;
towards every player.

3. If there exists a degree-t polynomial p(-) such that at least 2¢t + 1 of
the reconstructed values d; lie on it, define d; = p(«a;), and compute
your share s\*) of P,’s input s*) as d/ — b;. The sharing of input [s(*)]
was successfully restored. If no such polynomial p(-) exists, then [s(*)]
cannot be restored.
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Lemma 36 The protocol Preparelnputs and Restorelnput terminate for all play-
ers. When all messages of a player Py, in Step 1 of Preparelnputs are syn-
chronously delivered, then a sharing of his input s*) can be successfully restored
in Restorelnput, by any core set C with C' > n —t (with up to t cheaters). When
an input sharing [s*)] of an honest player Py, is restored in Restorelnput, then
the shared value is the correct input of Py. Furthermore, both Preparelnputs and
Restorelnput preserve the privacy of inputs of honest players.

Proof:[sketch] Termination and privacy are easy to verify. We focus on
correctness. First assume that P is honest, and all his messages in
Round 1 of Preparelnputs were synchronously delivered. Then every hon-
est player P; embeds the share sl(»k) in his input vector. There will be at
least n — ¢ players in the core set, so at least n — 2¢ honest players P;. This
means that there are at least n — 2t ¢-consistent shares s§k), and hence, at
least n — 2t consistent shares d;. For ¢t < n/4, we haven — 2t > 2t + 1,
and the result is a sharing of d — b = (s*) +b) — b = s(*). Then assume
that Py, is honest, but not all his messages in Round 1 have been delivered
synchronously. However, if there are 2¢ + 1 points on the polynomial p(-),
at least ¢t + 1 of these points are from honest players, and hence the right

input is restored.

7.10.4 The Hybrid MPC Protocol

The new main protocol for the hybrid model is as follows:

Protocol HybridMPC (C, ¢y, ¢, cr, cO)-

1. Invoke Preparelnputs to let every P; with input s(*) share s() among
all players.

2. Invoke PreparationPhase to generate ¢ = cp (3t + 1) + cp + cr(t + 1)
random sharings.

3. Invoke InputPhase (with P;’s input being the vector 5(V)) to let the play-
ers share their input vectors.

4. Invoke Restorelnput to restore the inputs of every P, not in the core
set.

5. Invoke ComputationPhase to evaluate the circuit (consisting of linear,
multiplication, random, and output gates).



138 Asynchronous MPC

Theorem 7 For every coalition of up tot < n/4 corrupted players and for every
scheduler, the protocol HybridMPC securely computes the circuit C, taking the
inputs of all players (when the first round is synchronous), or taking the inputs of
at least n—t players (independently of any scheduling assumptions). AsyncMPC
communicates O ((cyn® + cpn® + cpn® + neo )k + n3BC(k)) bits and requires
2 invocations of ACS (can be reduced to 1).



Chapter 8

Concluding Remarks

We have presented efficient MPC protocols for four different settings
(each of them with optimal security parameters):

e We have shown that in the synchronous model perfectly secure
MPC tolerating ¢t < n/3 corrupted players is possible with the same
communication complexity as passive, cryptographically and sta-
tistically secure MPC (with optimal thresholds).

e We have proposed a synchronous protocol statistically secure
against an adversary corrupting a minority of the players, with
communication complexity O(n?k) bits per multiplication. This
protocol improves the complexity of the previous most efficient
protocol for this setting which requires broadcasting O(n®k) bits
per multiplication (and each of this broadcasts has to be simulated
by an expensive broadcast protocol).

e Our synchronous Byzantine-agreement protocol with statistical se-
curity for t < n/2 communicates O(n’k) bits and thereby improves
the previous most efficient BA protocol for this model by a factor of
three.

e We have shown that in the asynchronous model, perfectly secure
MPC for t < n/4 is possible communicating O(n?k) bits per multi-
plication. At the time of the publication, this was the complexity of
the most efficient perfectly-secure protocol for the more restrictive
synchronous setting.



140 Concluding Remarks

We have introduced two new techniques which we believe to be of
independent interest:

e Dispute control enables to limit the number of faults provoked by
an active adversary by localizing a pair of players, one of them cor-
rupted, every time a fault is detected and preventing this pair from
disturbing the computation ever again.

o Hyper-invertible matrices enable to deterministically and very effi-
ciently check the correctness of a bunch of sharings and extract a set
of correct secret random sharings, given that a subset of the original
sharings originate from honest players, and thus are correct, secret
and random. Up to now, this was only possible with probabilistic
correctness checks, resulting in protocols with unperfect security.
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