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Abstract. A minimal cutset of a tree directed from the leaves to the root is a minimal
set of vertices such that every path from a leaf to the root meets at least one of these
vertices. An order relation on the set of minmal cutsets can be defined: U < V' if and
only if every vertex of U is on the path from some vertex in V to the root. Motivat-
ed by the design of efficient cryptographic digital signature schemes, the problem of
constructing trees with a large number of pairwise incomparable minimal cutsets or,
equivalently, with a large antichain in the poset of minimal cutsets, is considered.
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1 Introduction

We consider trees directed from the leaves to the root where every vertex has
at most two predecessors. In this paper, a cutset of such a tree T is defined as
a set of vertices which contains at least one vertex of every path from a leaf
to the root. A cutset is minimal when it contains exactly one vertex of every
such path'. An order relation < on the set of minimal cutsets can be defined as
follows: we have U < V for two minimal cutsets U and V if and only if every
path from a vertex in V' contains a vertex of U or, equivalently, if and only if U
is a cutset of the subtree of 7 obtained by pruning all branches stemming from
a vertex in V.

This order relation defines a partially ordered set (poset) of minimal cutsets
called the associated poset of the tree. For reasons motivated by a cryptographic
application discussed in Section 2, we are interested in finding small trees with a
large associated poset and, more importantly, trees whose associated poset con-
tains a large antichain. More specifically, this paper investigates the problems
of finding, for a given number n of vertices, the tree with the largest associat-
ed poset and the tree with the largest antichain in the associated poset. The
maximal achievable size of such a poset is denoted by v(n) and the maximal
achievable size of such an antichain is denoted by p(n). Several results on these
two functions are proved.

! Note that when 7 is interpreted as the graph of the transitive reduction of a poset,
then our definition of a cutset corresponds to the standard definition of a cutset of
a poset. However, in order to avoid any confusion, note that the associated poset of
T defined in this paper is a completely different poset.



The outline of the paper is as follows. Section 2 provides the cryptographic
motivation for considering the described problems, Section 3 summarizes the
definitions, and in Section 4 the optimality results are derived. Numerical tables
for v(n) and p(n) are given in the Appendix.

2 Motivation

Digital signature schemes are one of the most fundamental cryptographic mech-
anisms. Such a scheme allows a user, who has previously generated a secret key
and the corresponding public key (which is made public), to generate a digital
signature for a message. While anybody (e.g. a judge) knowing the user’s public
key can verify signatures, forging a user’s signature, i.e., generating signatures
for messages not previously signed by this user but verifyable with his public key,
is computationally infeasible without knowledge of the secret key. Digital signa-
ture schemes are essential in many applications like document authentication in
EDI or for public-key certification used to establish the emerging international
public-key infrastructure.

One can distinguish between two types of digital signature schemes. The
first type of scheme was proposed by Lamport [4] and generalized in [5], [6], [3],
[8] and [1]. Once it is set up, it can only be used for signing a predetermined
number of messages? from a certain message space. The second type of schemes,
the first realization of which was the well-known RSA system [7], can be used
an unlimited number of times.

A motivations for investigating and possibly using the first type of schemes,
despite their limited number of uses, is the potentially higher efficiency compared
to conventional schemes like RSA [7]. Another motivation is that these schemes
can be based on an arbitrary cryptographic one-way function® (OWF), a very
general cryptographic primitive.

The general idea of a one-time signature scheme is that the secret key is used
as the input to a sequence of OWF evaluations which results in a sequence of
intermediate results and finally in the public key. The one-wayness of the func-
tions implies that it is infeasible to compute the secret key, or any intermediate
result of the computation, from the public key.

% In this paper we only consider schemes for signing a single message, but these results
can easily be generalized to obtain schemes that allow to sign a fixed number of
messages [1].

8 A one-way function f is a function that is easy to compute but computationally
infeasible to invert, for suitable definitions of “easy” and “infeasible”. It is not difficult
to define a function that appears to be one-way even to an expert in cryptography.
However, not even the existence of one-way functions, for a suitable definition, has
been proved. To be secure in the context of this paper, one-way functions with certain
very special properties should be avoided. For instance, a one-way function f(z,y)
of two arguments should satisfy f(z,y) = f(y,z) for  # y only with negligible
probability. Security proofs (based on the sole assumption that a function f is one-
way) are outside the scope of this paper, and hence so is the exact characterization
of the properties required for a one-way function. The conjecture that a proposed
function is one-way is virtually, but not exactly equivalent to the conjecture that it
leads to a secure signature scheme.



Fig.1. A toy example of a tree 7 and its associated poset (7*,<). The set
{{b,9,h},{d,e,h},{d, f,9}} is an antichain of maximal size 3, which is hence the width
w(7T ). Another such antichain is {{b, e, h}, {b, f,g},{d, e, f}}.

A signature for a given message consists of a subset of the intermediate results
of this computation, where the message to be signed determines which particular
subset is revealed as the corresponding signature. There exist two important
requirements on these signatures. First, every signature must be verifyable, i.e.,
the public key must be computable from it. Second, in order to prevent forgery
of signatures, the set of signatures (for the messages in the message space) must
be compatible in the sense that no signature can be computed from the signature
for a different message, without inverting a one-way function.

Let B be a suitable large set (e.g., the set of 64, 96 or 128-bit strings), a
subset of which is the range of the OWFs. In a reasonable implementation [1],
the input to each OWF evaluation consists of one or two elements of B, the
secret key consists of one or a list of elements of B, and the public key consists
of only one element of B.

The structure of the computation leading from the secret key components to
the public key can be represented as a directed acyclic graph G = (V, E) with
vertex set V and edge set E, where the vertices correspond to the secret key, the
intermediate results, and the public key, and where a directed edge (v;,v;) in E
indicates that v; is an input to the OWF computation resulting in v;. The value
corresponding to a vertex can only be computed when all inputs are known.

The graph G characterizing a one-time signature scheme is assumed to be
known publicly, as is the mapping from messages to subsets of vertices (signature
patterns). They can be used by all users. A user’s signature for a given message
consists of the values (for that user’s secret key) corresponding to the vertices in
the signature pattern for that message, when the computation according to G is
performed for that user’s secret key. A toy example of a signature scheme for a
message space of size 3 is shown in Figure 1.

From an implementation point of view, an attractive class of graphs are
trees with in-degree at most two [1]. In this paper we are interested primarily in
the design of efficient signature schemes based on such trees, i.e. we consider the
problem of maximizing the message space for a given number of vertices. While in
a practical application the message space should be quite large, (e.g. the range of
a cryptographically secure hash function, for instance the set of 128-bit strings),
numerical values for some of our optimality results can feasibly be obtained only
for small trees. However, large efficient schemes can be constructed from small



trees, and hence optimality results for small trees lead to more efficient practical
schemes.

3 Definitions and preliminaries

Throughout the paper, vertices and sets of vertices of a graph are denoted by
small and capital letters, respectively, and graphs, posets, as well as sets of sets
of vertices are denoted by calligraphic letters. The focus of this paper is on trees
and therefore most of the definitions are given for trees only, although they can
be generalized to arbitrary acyclic graphs. For the general definition and results
for general graphs that are not trees we refer to [1] and [2].

Let C,, denote the directed graph consisting of a single path connecting m
vertices, i.e., a chain of length m. For two trees 7; and 73 let [7173] denote the
tree consisting of a new root and 7; and 73 as subtrees. The tree obtained from
a tree T by introducing a new root and a single edge from the old to the new
root, is denoted by [T].

A poset is defined as a set with an antisymmetric, transitive and reflexive
order relation, denoted <. Two elements xz and y of a poset Z = (Z,<) are
comparable if and only if z <y or y < x and they are incomparable otherwise.
A subset U C Z is called a chain if every pair of elements of U is comparable,
and it is called an antichain if every pair of elements of U is incomparable. The
width of a poset Z, denoted w(Z), is the maximal cardinality of an antichain.

We now define a one-time signature scheme based on a tree. Let T be a tree
where T is the set of vertices, L C T is the set of leaves and p € T is the root.
The edges of the tree are directed from the leaves to the root. In the context
of signature schemes, L and p correspond to the secret key and the public key,
respectively. A cutset of T is a set of vertices which contains at least one vertex
of every path from a leaf to the root, and a cutset is minimal when it contains
exactly one vertex of every such path.

The set of minimal cutsets is denoted by 7*. An order relation < on T*
can be defined as described in the introduction. This order relation defines a
partially ordered set (poset) of minimal cutsets called the associated poset of the
tree and denoted by (7*, <). For the sake of simplicity, the width of this poset
will often be denoted by w(7*) instead of the more precise notation w((7*, <)).
Figure 1 shows an example of a tree and its associated poset.

In our context, each vertex of the tree represents the evaluation of a crypto-
graphic one-way function. Hence the value corresponding to a vertex (or simply
the vertex) is computable if and only if all predecessors of this vertex are known.
This naturally (and recursively) defines the set of vertices that are computable
from a given set of vertices. Note that the root (i.e. the public key) is (effi-
ciently) computable from every cutset. For two minimal cutsets U and V', U is
computable from V if and only if U < V, but V is not feasibly computable from
U unless U = V. The term computable and the symbol < are in the sequel used
as synonyms.

Two minimal cutsets are compatible if and only if they are incomparable in the
poset, i.e., if neither is computable from the other. For instance, in the example
of Figure 1, the minimal cutset {b,c} is computable from {b, e, f} because the



value of vertex c¢ can be obtained from the values of vertices e and f. On the other
hand, {b,e, f} and {c,d} are compatible. A set of minimal cutsets is compatible
when they are pairwise compatible, i.e., if and only if it is an antichain in the
associated poset of the tree. When a mapping from the message space to such an
antichain is defined, the antichain can be used as a one-time signature scheme.

For a poset Z = (Z,<), a function r : Z — N is called a representation
function of Z if for all distinct z,y € Z, x < y implies r(z) < r(y). Therefore
r(z) = r(y) implies that z and y are incomparable and hence for any represen-
tation function r of the associated poset (G*, <) of a given DAG G and for any
integer k, the set

{Ueg :r(U)=k}

is an antichain. A useful representation function for the associated poset of a
tree can be defined as follows: For U € T* for a given tree T, let ¢7(U) be the
number of vertices in T" computable from U but not contained in U. It is easy
to see that the function ¢ is a representation function for the associated poset
of 7. This result was proved in [2] for the case of general graphs for which it
is less trivial. For the example of Figure 1, this representation function takes on
the same value for cutsets depicted at the same level in the poset, ranging from
0 for {a} to 5 for {d, g, h}.

4 Finding optimal trees

4.1 The associated poset of a tree
Theorem 4.1 The associated poset of a tree can be computed recursively by

(GRS
and (M), <)

Cn
(" x T3") U{=}, <1),
where x is the root of [TiTz], the order relation <t is defined by {x} < U for

all U € [TiT2]* and by (U, V) <7 (U', V') if and only if both U < U’ in (T;*, <)
and V< V' in (T, <).

o~
o~

The proof is omitted because of space limitations.

4.2 Optimality criteria

The important parameters of a one-time signature scheme A for a tree T are
the number |T'| of vertices (which is equal to the number of function evaluations
required for computing the public key from the secret key?, the number |.A| of
signatures (which is an upper bound on the size of the message space), and the
maximal size of signatures, maxye 4 |U].

* Here we have assumed, as would be the case in a reasonable implementation [1]),
that a secret key consisting of the values at the leaves is generated from a single
secret key by applying, for each leaf, an OWF to the secret key concatenated with a
leaf index.



This motivates the following two problems. First, for a given tree 7 to find
an antichain of maximal size in the associated poset. Second, for a given size of
the message space (i.e., antichain) to find a tree with the minimal number of
vertices allowing the construction of a one-time signature scheme. For reasons
explained below we are also interested in the size of the associated poset.

Definition 4.2 For a given number n of vertices, let v(n) and p(n) be the maz-
imal achievable size of the associated poset, and the mazimal achievable size of
an antichain of the associated poset, respectively, of a tree with n vertices with
in-degree at most two.

A simple relation between v(n) and u(n) is

V) 2 ) > . (1)
The left inequality follows directly from the definition and the right inequality
follows from the fact that the above defined representation function ¢ for a
tree T takes on at most n different values. It follows from (1) that when one is
interested only in the asymptotic behavior of u(n) it suffices to investigate the
asymptotic behavior of v(n).

Let the function p : Z2 — Z be defined recursively by p(0,m) := m and
p(n +1,m) := p(n,m)? + 1, and let v be the constant

_ .. logy p(n,3)
Then we have
1 1

i o8v(m) _ . logpu(n)

n—o0 n n—00 n
A weaker version of this result, where lim is replaced by lim sup, follows from
Theorem 8 of [2]. The above stronger result can be proven by refining the argu-
ments of the proof.

4.3 The maximal size of a poset for trees with n vertices

The function v(n) can be computed recursively as defined by the following the-
orem which also characterizes the trees with n vertices and associated poset of
maximal size. The values of v(n) and u(n) for small n are summarized in the
Appendix.

Theorem 4.3 Forn < 5 the chain C,, of length n is an optimal tree in the sense
that v(n) = |C| = n. For n > 5 all optimal trees are of the form [T1Ts], where
Ty and T are optimal trees. Hence no optimal tree can contain an edge from
a verter with in-degree 2 to a vertexr with in-degree 1. Moreover, for n > 5, we
have

v(n) =1+ 151111;:2(_2{1/(@')1/(11 —i—1)}.
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Fig. 2. This figure shows, from left to right, the graph Cs, its associated poset (C3, <),
the graph [C2C2] and its associated poset ([C2C2]", <).

Proof. By inspection of all trees with at most 6 vertices of in-degree at most two,
it can be shown that C,, for n < 5 and [C2C3] for n = 6 are optimal. It follows
from |[T1T2]*| = 1+|T7*|-|75*| that a tree of the form [7; 72] is only optimal when
T:1 and 7> are optimal. It remains to prove that a tree with n > 5 vertices whose
root has only one predecessor cannot be optimal. Such a tree has only one more
minimal cutset than the tree resulting when the root is removed and hence has
at most p(n) + 1 minimal cutsets. This also implies that u(n +1) > p(n) +1
which is used below. On the other hand, if [7; 73] is an optimal tree with n > 6
vertices and |71| < |72|, which implies |72| > 1, then the tree [7{72], where T/
results from 7; by adding a new root with an edge from the root of 77 to it, has
at least [Ti72])* > |T;" + 1| - |T5F| + 1 > v(n) + 2. This completes the proof. O

4.4 Optimal trees

In contrast to v(n), we do not know whether the function u(n) can be comput-
ed recursively. Nevertheless finding a tree with n vertices and u(n) compatible
minimal cutsets can be sped up considerably compared to an exhaustive search
over all trees. Throughout this section, the term subtree is used only for subtrees
whose leafs are also leafs in the tree. We will prove results of the following form:
for any tree 7 containing a subtree 7T, replacing 7; by a different subtree 7T
with the same number of vertices results in a tree 7" satisfying

w(T") > w(T").

Hence no tree containing a subtree of the form 77 must be examined.

Ezample: Let T be any tree having Cs as a subtree and let 7’ be the tree
resulting from 7 by replacing Cs by [C2C2] (see Figure 2). Then w(7"*) > w(T™*)
because for any antichain A in (7*, <) there exists an antichain A’ of minimal
cutsets for 7' with at least the same cardinality as A. Let A" = {¢(U) : U € A},
where 9(U) is defined by

Uu{a}\{p}ifpelU
MR
Uib,e ryifre
YW= Ul{e.db\{s}ifseU
Uu{d,e}\{t}ifteU
UifUn{p,qr,st}=0



The fact that ¢(U) is a minimal cutset for all U € A and that A’ is an antichain
in (7', <) follows from Theorem 4.6 proved below.

In the previous simple example, an explicit mapping from A to minimal
cutsets in 77 could be constructed which leads to an antichain of equal cardinality
in (7", <). The following lemmas and theorems are more general in that more
than one minimal cutset in A’ is constructed from a single minimal cutset in A.
For instance, assume in the above example that in 4 there are more minimal
cutsets containing r than minimal cutsets containing s. Then an antichain A"
that is larger than A is obtained from A by using all ¢)(U) with U € Aand s ¢ U
as well as all UU {¢,d} \ {r} with U € A and r € U. Thus two minimal cutsets
of A" correspond to every minimal cutset of A containing r, and no minimal
cutset of A" corresponds to a minimal cutset of A containing s.

Lemmal. Let T be a tree containing o subtree [C1T1] and let T' be the tree
resulting from T by replacing [C1T1] by [T1]. Then the associated posets of T and
T are isomorphic.

Proof. Let v be the vertex of C;. Theorem 4.1 implies that ¢ : 7* — 7'" defined
by ¢(U) = U \ {v} is an isomorphism.

Lemma 2. Let T be a tree containing a subtree [[T172]] and let T' be the tree
resulting from T by replacing [[T172]] by [Ti[T2]]. Then the poset (T*, <) is iso-
morphic to a subposet of (T'*,<).

Proof. Let the vertices of [[7T17T2]] and [T1[72]] be as shown in the following figure.

X 4
y w

p p

T1 T2 T1 T2

and let ¢ Ty* — T be defined by ¢({z}) = {2}, 6({y}) = {w} Up, and 4(U) =
U otherwise. For all U,V € T;* we have U < V if and only if ¢(U) < ¢(V). It
follows that (7%, <) is a subposet of (75, <). The lemma is now a consequence
of Theorem 4.1.

Theorem 4.4 Let T and T' be trees such that T' can be obtained from T by
replacing o subtree T by the subtree To. Let W be the set of vertices of T that
are not part of Ty (or, equivalently, the vertices of T' that are not part of Ts).
Let f : M — T{* for M C T* be a function which for all U,V € T," satisfies
U<V = f(U) < f(V). For every antichain A in (T*,<),

A ={XUU:UeMand X CW and XU f(U) € A}

is an antichain in (T'", <).



Proof. First we note that all sets in A’ are minimal cutsets. This follows imme-
diately from that fact that the public key of 73 is computable from a minimal
cutset in A’ if and only if the public key of 7; is computable from the corre-
sponding minimal cutset in A.

Now assume that there exist two minimal cutsets X UU and Y UV in A’
with U,V € T and X,Y C W satisfying X UU < YUV in (T7,<). It
follows that U < V in (73*,<) and f(U) < f(V) in (T;*, <). This implies that
XUfU)L<YUFf(V)in T. Because A is an antichain this inequality can only
satisfied when X U f(U) =Y U f(V). It follows from U <V and the definition
of f that f(U)=f(V)onlyif U =V.Hence XUU =Y UV.

Corollary 4.5 For the notation and variables defined in Theorem 4.4,
A" =AU{XeAd: X CW}
is an antichain in (T'",<).

Proof. In order to show that A” is an antichain we need to show only that any
two minimal cutsets X C W and YUU with Y C W and U € 75" are compatible.
Y U U is not computable from X, since no vertex of U is computable from X.
On the other hand, Y UU < X in (7", <) implies Y U f(U) < X in (T*,<),
which contradicts the fact that 4 is an antichain.

A particular construction for applying Theorem 4.4 is provided by the fol-
lowing theorem. It is based on flows in the associated poset of a subtree to be
replaced.

Theorem 4.6 Let 717> be trees and let r1,ry be representation functions for
(T4, <) and (T3, <), respectively. For U € T1*, let g(U) be defined by

9(U) :== {X € Ty : 11 (U) = r2(X)}].

If there exists a flow on T* of value 1 from the top to the bottom such that the
flow through each U € T;* is a least 1/g(U), then replacing any subtree Ty by T2
will result in a tree whose associated poset has greater or equal width.

Proof. Let T and 7' be trees such that 7' can be obtained from 7 by replacing
a subtree 7; by 72 and let A be an antichain in (7*,<). We will show that
w(T"™) > | A|- Let W be the set of vertices contained in 7 but not contained
in 7; and let B={U € A: U C W} be the set of minimal cutsets that have
no vertex in common with 7;. For U € 7;* define the cardinality of the set of
minimal cutsets in A that contain U by h(U) := [{X € A: U C X}|.

Assume that £ = {Uy,...,U,} is a chain in 7;*. Let R := {r;(U) : U € K}
and Mg :={X € 7" : r2(X) € R}. Now define fx : Mx = K by fi(X)=U
if ro(X) = r1(U). Note that U; # U; implies r1(U;) # r1(U;). This fact and
the definitions above guarantee that fx is well-defined. For all X,Y € 7;° where
X <Y wehavery(X) < ro2(Y) and fi(X) < fi(Y) in (77%, <). Thus fx satisfies
the conditions of Corollary 4.5. Now define A by

A =BU{XUU: X CW and U € Mg and X U fx(U) € A}
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Fig. 3. A flow of value 1 on [C2C4]*

It follows from Theorem 4.4 that Aj- is an antichain in 7"". The cardinality of
i can be computed by |Ak| = |B| + > ycx MU)g(U) Therefore, for any chain
Kin T, w(T") > |Bl+ X pex O)9(D).

Now we note that the flow on 7;* can be represented as a sum of flows on
chains Ky,...,Ky, of values a1,...,an which sum to one: 37", a; = 1. The
condition that the flow on each minimal cutset U € T;* is at least 1/g(U) is
equivalent to the condition ), ;s @; > 1/g(U). Thus we have

w(T") = Zaiw(Tl*) > Zai <|B| + > h(U)g(U))

Uvek;

=B+ > ai y MU)gU)=[Bl+ Y hU)U) > e

=1 vek; UE'TI* =UEK;
1
> [Bl+ Y MU)g(U)—= =4 O
Vet 9(U)

Ezample: Let T and T’ be trees such that 7’ can be obtained from 7 by
replacing a subtree 73 = [C2C4] by the subtree T2 = [C5C3]. We will prove
w(T"") > w(T*) by applying Theorem 4.6. For the choice r; = ¢, and r2 = cr;
the required flow 1/¢g(U) through the vertices U of 7;* is shown in the table on
the left side of Figure 3.

By using similar arguments many pairs of trees (71, 72) can be found such
that replacing a subtree 7; by 73 in any tree 7 will result in a new tree 7' whose
poset has equal or greater width. The following table lists a few such pairs.

|size|7—1 |7—2 |
5 |Cs CoCo
7 {[C2C4] C3C3
9 [[C2]C2C3]]|[C3[C2C2
10 |[C4[C2C2]]|[C3[C2C3
11 {[C2][C3C4]]|[C3]C3C3
[C4[C2C3]][[C3[CCs]]

In all cases, r7; can be used as the representation function. The corresponding
flows for the trees of size 9 and 10 in this table are shown in Figure 4.4.



unit of flow = 1/12 unit of flow = 1/60

Fig. 4. Left: The tree 71 = [C2[C2C3]] and its associated poset with a flow defined by
Theorem 4.6 for proving that 71 can be replaced by T2 = [C3[C2C2]]. Right: The tree
T1 = [C4][C2C2]] and its associated poset with a flow defined by Theorem 4.6 for proving
that 71 can be replaced by 72 = [C3[C2C3]].

Some replacement rules cannot be proved by the flow argument of Theo-
rem 4.6, and one must resort to the more general Theorem 4.4. Two further
transformations are listed below.

|size|7] |T2 |
11 {[[C2C-][CaCo]] [C3[CaCa]]
[C2[C2[CaCa]]]|[C3[C3C3]]

As a consequence of the above theorems, the search for a tree 7 with a given
number n of vertices that is optimal in the sense that w(7*) = u(n), can be
reduced dramatically by considering only trees whose subtrees belong to a small
set of possible subtrees. In particular we have

Corollary 4.7 For every n there exists a tree T with n vertices and w(T™*) =
w(n) such that every subtree of size m < 11 is contained in the following list:

|size|subtrees| |size|subtrees |

2 |Cs 7 ||CsCs

3 Cg 8 C3C4 y C2 6262

4 |C4 9 |[CsC4], [C3]C2Ca

5 |[C2Ca] |10 |[Ca]C2Cal], [C2[C5Ca]]
6 |[C2Cs 11 |[C3[C3C3

Proof. This table consists of all trees with at most 11 vertices that contain
no subtree appearing as 7; in the previous tables and no subtree of the form
excluded by Lemmas 1 and 2. It remains to prove that an arbitrary sequential
application of these replacement rules cannot be a cyclic process. This follows
from the fact that, as can easily be verified, every replacement increases the
cardinality of the poset except when Cj is replaced by [C2C2]. However, this latter
replacement cannot lead to a cycle because the number of leaves is increased in
this case.



5 Concluding Remarks

One can design highly efficient one-way functions if they are not required to
have additional properties (like for instance a trapdoor). Therefore the proposed
signature schemes are potentially more efficient than classical signature schemes
like the RSA system. Furthermore, in contrast to specific assumptions like the
difficulty of factoring large integers, they allow to base a system’s security on very
general cryptographic assumptions. Because the number of messages that can
be signed is fixed when a public key is generated, these schemes have potential
applications primarily in scenarios where only few messages need to be signed.
However, this problem can be relaxed by signing a new public key as the last
message in the life-time of a public key.

6 Appendix: Table of p(n) and v(n)

nllpn)|v(@)||||n|pln) v(@)]|{ » [|pn)|v@)] | »||pn)|v(n)
1 [ 1 o] 4 | 17 (\[[t7]] 29 [171 ||[[25]] 246 [1718
2l 1| 2 ||ll1o] 5 | 22 |||[18]| 39 | 222 |/26|| 326 |2228
3l 1| 3 ||||11)] 7 | 31 ||[||19]| 53 | 311 |||[27|| 448 |3132
all 1 | 4 |||l2|| 8 | 41 ||||20]| 67 | 411 ||||28|| 576 |4142
5! 2 | 5 ||||13]] 11 | 53 ||||21] 85 | 534 ||||29]| 732 |5372
6|l 2 | 7 |ll14] 14 | 71 ||||22]| 114 | 711 |||30|| 977 | 7172
71l 3 | 10 |||[15]] 19 | 101 ||||23]| 156 {1011

8|l 3 | 13 |||16] 23 | 1311||24]| 195 |1314
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