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ABSTRACT

In the bounded-storage model for information-theoretically
secure encryption and key-agreement one can prove the se-
curity of a cipher based on the sole assumption that the
adversary’s storage capacity is bounded, say by s bits, even
if her computational power is unlimited. Assume that a
random t-bit string R is either publicly available (e.g. the
signal of a deep space radio source) or broadcast by one of
the legitimate parties. If s < ¢, the adversary can store only
partial information about R. The legitimate sender Alice
and receiver Bob, sharing a short secret key K initially, can
therefore potentially generate a very long n-bit one-time pad
X with n > |K| about which the adversary has essentially
no information, thus at first glance apparently contradicting
Shannon’s bound on the key size of a perfect cipher.

All previous results in the bounded-storage model were
partial or far from optimal, for one of the following reasons:
either the secret key K had in fact to be longer than the de-
rived one-time pad, or ¢ had to be extremely large (t > ns),
or the adversary was assumed to be able to store only actual
bits of R rather than arbitrary s bits of information about
R, or the adversary could obtain a non-negligible amount of
information about X.

In this paper we prove the first non-restricted security re-
sult in the bounded-storage model, exploiting the full poten-
tial of the model: K is short, X is very long (e.g. gigabytes),
t needs to be only moderately larger than s, and the secu-
rity proof is optimally strong. In fact, we prove that s/t
can be arbitrarily close to 1 and hence the storage bound is
essentially optimal.
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1. INTRODUCTION

In view of the growing dependence of the information
society on cryptography, security proofs for cryptographic
schemes are of great importance. Some of the major achieve-
ments of the past decade or two in research in cryptography
are precise security definitions for many types of crypto-
graphic schemes, as well as security proofs for a number of
proposed schemes, relative to these definitions and various
assumptions, including typically the assumption that a par-
ticular computational problem (e.g. factoring integers) is
intractable.

This paper is concerned with provably-secure key-ag-
reement schemes not based on an intractability assumption.
More precisely, we consider the secure expansion of a short
shared secret key into a very long shared secret key. Us-
ing the one-time pad encryption method, a key-agreement
scheme can directly be converted into an encryption scheme.
If the one-time pad (i.e. the key) is essentially uniformly dis-
tributed, then the one-time pad is essentially perfect. We
therefore concentrate on key agreement, i.e., on generating
the one-time pad.

1.1 Assumptions in Cryptography and Infor-
mation-Theoretic Security

The security of every cryptographic system depends on
certain assumptions. Usually, not all assumptions are stated
explicitly. For instance, two obvious such assumptions are
(1) that randomness exists, i.e., that one can generate ran-
dom keys, and (2) that such keys are independent of an
adversary’s view.!

Almost all cryptographic systems in practical use are
based on the two further assumptions that (3) the adver-
sary’s computational resources are bounded, and (4) that a
certain computational problem is hard, i.e., requires an in-
feasible amount of time to solve, given the assumed upper
bound on the adversary’s resources. Assumption (4) could
potentially be dropped if a complexity-theoretic lower bound
could be proved for the problem at hand, but such lower
bound proofs appear to be far beyond the reach of known
techniques in complexity theory. Moreover, if the underly-
ing model of computation is a classical computer (e.g. a
Turing machine), this is not fully satisfactory in view of the
new developments in quantum computing.

In contrast, information-theoretically secure systems rely
on neither of the assumptions (3) or (4), i.e., the adversary
is assumed to have unbounded computing power. However,

!This implies, for instance, that it is impossible to read
somebody’s mind, at least not in a cryptographic context.



the security of such a system may rely on an assumption
about the probabilistic behavior of nature, for instance of a
noisy channel [15] or a quantum measurement [4].

A main goal of research in cryptography is to reduce the
assumptions underlying a security proof.

1.2 Motivation of the Bounded-Storage Model

The two main parameters specifying the adversary Eve’s
resources are her computing power (e.g. specified in MIPS?)
and her storage capacity (e.g. specified in Terabytes).
Complexity-theoretic cryptography is based on an assumed
upper bound on Eve’s computing power (and possibly stor-
age capacity). The natural idea of the bounded-storage
model, proposed by in [14], is that one makes a sole (conser-
vative) assumption about Eve’s storage capacity (say 1000
Terabytes), but no assumption about her computing power.
Let s be the assumed bound on Eve’s storage capacity (in
bits).

Ciphers in the bounded-storage model make use of a very
large amount of auxiliary information, denoted R and called
public randomness or simply the randomizer. The random-
izer R could for instance be a random bit sequence broadcast
by a satellite or transmitted between the legitimate parties,
or the signal of a deep-space radio source. If R is a t-bit ran-
dom string, then ¢ > s is required to guarantee that Eve can-
not store R completely.® The restriction ¢ > s immediately
shows the inherent (but only) limitation of the bounded-
storage model: In order to be realistic, s and hence also the
size of R must be very large. Nevertheless, schemes based
on this model for which ¢ is not much larger than s may be
on the verge of being practical, even for very powerful ad-
versaries. The main challenge, which we solve in this paper,
is to devise a provably secure scheme with s close to t.

Let us comment briefly on the practicality of the bounded-
storage model, but in this paper we do not give a detailed
feasibility analysis for current technology. A recent article
in the New York Times (Feb. 20, 2001) and other media
reports suggested that such schemes may be used in prac-
tice. However, because of the inherent condition s < ¢, the
feasibility depends on possible advances in storage and in
communication technology (see [10] or [9], Section 1.3.1 for
an analysis of the current technology).

As a concrete example of what is proved in this paper
(Example 1), assume that the adversary’s storage capacity
is at most one Petabit, (i.e. s = 10'®), that Alice and Bob
share a 6000-bit secret key and that they (and Eve) have
access to a random source emitting 100 Gigabits (10! bits)
per second, which they access for about one day and a half,
i.e., t = 1.25-10'®. Then they can derive a key of length
10 Gigabits (i.e. n = 10'°) about which the adversary has
essentially no information. Alice and Bob need to read only
1.25 - 10'? bits from the random source.

1.3 From Book Ciphers to the Bounded-Stor-
age Model

One can view book ciphers, known from spy stories, as a

special case of such a randomized cipher. Assume that Alice

and Bob agree, not necessarily secretly, on a particular book

2Note that MIPS is not a precisely-defined unit. For a con-
crete security proof the computing power would have to be
specified precisely.

3More generally, R must have more than s bits of entropy,
but in this paper we do not consider non-uniform R.

of which they each have a copy. The book plays the role of
the randomizer. To use the book cipher, Alice and Bob agree
on a secret key consisting of a page number and a pointer
to a letter on that page. The text following that letter is
used as a one-time pad (modulo 26) to encrypt a (single)
message. It is clear that if Eve also has a copy of the book
and knows a sufficiently long ciphertext, she can decrypt
(theoretically) by an exhaustive key search, provided the
plaintext is redundant. It is obvious how a binary version
involving a long random string R instead of a book would
work: plaintext and key are binary sequences and encryption
is the bit-wise XOR operation.

In our context, however, because R is not a book but
rather an immensely long bit string with |R| = ¢, it is re-
alistic to assume that Eve does not know the entire value
of R but has stored s bits of information about R. If, for
example, s = t/2, it is clear that Eve could for the discussed
binary version of the book cipher obtain on average about
half of the information about the plaintext, which would
be completely insecure. This can be solved by adding (bit-
wise modulo 2) several, say m, sub-blocks of R beginning
at independent random locations within R, where the key
consists of the m starting points. This, in essence, is the
scheme proposed in [14], which we also use here and which
was also used in [2], but for a size of the one-time pad of
only n = 1 bits. The main difference between the schemes
is that in [14] each of the m sub-block is taken from a sepa-
rate non-overlapping block of R, with a cyclic continuation
if the sub-block reaches the end of the block, whereas in this
paper no cyclic extension is used and in [2] the non-blocked
scheme sketched above is used.

Massey and Ingemarsson proposed the so-called Rip van
Winkle cipher [13] which is also a variation on the theme of
book ciphers.

1.4 Definition of the Bounded-Storage Model

We now define the bounded-storage model for key-expan-
sion (and encryption) more formally. Alice and Bob share
a short secret initial key K, selected uniformly at random
from a key space K, and they wish to generate a much longer
n-bit derived key X = (Xa,...,X») (i.e. n > log, |R|). This
expansion at first glance apparently contradicts Shannon’s
and Maurer’s bounds on the key size of a perfect or close
to perfect cipher. Shannon [17] proved that if only one-way
communication on the insecure channel (from the sender to
the receiver) is allowed, the entropy of the secret key must
be at least as large as the entropy of the encrypted mes-
sage. It was proved in [15] that the bound holds also in the
more natural scenario when Alice and Bob can communicate
arbitrarily over an insecure channel.

In a first phase, a t-bit string R (chosen uniformly at
random) is available to all parties, i.e., the randomizer space
is R = {0,1}*. For instance, R is sent from Alice to Bob
or broadcast by a satellite. Alice and Bob apply a known
key-derivation function f : R x K — {0,1}" to compute
the derived key as X = f(R,K). Of course, the function
f must be efficiently computable and based on only a very
small portion of the bits of R such that Alice and Bob need
not read the entire string R.

Eve can store arbitrary s bits of information about R, i.e.,
she can apply an arbitrary storage function® h: R — U for
some U with the only restriction that |/| < 2°. The memory

4Without loss of generality we can consider only determin-



size during the evaluation of A need not be bounded. The
value stored by Eve is U = h(R). After storing U, Eve looses
the ability to access R. All she knows about Ris U. In order
to prove as strong a result as possible, we assume that Eve
can now even learn K, although in a practical system one
would of course keep K secret.

A key-derivation function (or cipher) f is secure in the
bounded-storage model if, with overwhelming probability,
Eve, knowing U and K, has essentially no information about
X. More precisely, one needs to prove that the conditional
probability distribution Px|y—., x—x is very close to the uni-
form distribution over the n-bit strings, with overwhelming
probability over values v and k. Hence X can be used as a
secure one-time pad. Obviously, this cannot hold for s > ¢,
but it should hold for as large a storage bound s as possible,
ideally s = vt for v close to 1. The ratio

v:=s/t
will be called the randomness efficiency of a scheme.

1.5 Previous Results for the Bounded-Storage
Model

The bounded-storage model was introduced by Maurer
in [14], but the proposed cipher was proved secure only under
the assumption that Eve stores s actual bits of R rather than
the result of an arbitrary function applied to R.> The s bits
of R can be accessed using an arbitrary adaptive strategy,
where the position of each new bit depends on the previously
seen bits. The scheme is secure for, say, s < 15/2.6

As discussed above, in the scheme of [14], R is divided
into m blocks of [ bits, i.e. ¢ =Im, and each bit of X is the
XOR of m bits, one from each block. The key K determines
which bits are XOR-ed. We refer to Section 3.1 for a precise
description of the scheme analyzed in this paper, which is
essentially the same as that of [14]. The main problem left
open in [14] was to show the security of this scheme in the
model where the adversary is allowed to compute an arbi-
trary function of the random string (as described in Section
1.4).

Cachin and Maurer [6] proposed a scheme in which Eve is
allowed to access arbitrary s bits of information about R, but
the probability that Eve can obtain a non-negligible amount
of information about X is non-negligible (e.g. 0.0001). An-
other scheme proposed there requires no secret key K but
is impractical.

A major step towards solving the open problem of [14] was
achieved by Aumann, Ding and Rabin [2, 1, 9, 10], using
a scheme very similar to that of [14]. The core technical
argument is a security proof for a scheme for generating
a single key bit (i.e. n = 1) and for vapr = 0.2. The
proof uses elegant techniques based on an application of the

istic strategies of Eve.

®This was justified by considering the following scenario.
The t-bit randomizer R is assumed to be permanently ac-
cessible to all parties, but it is too long to be read entirely.
A somewhat unrealistic but illustrative example could be
the surface of the moon whose irregularities are interpreted
as a huge array of random bits.

5In fact, the cipher is perfect with overwhelming probability,
i.e., with overwhelming probability Eve gets no information
whatsoever about X (while with negligible probability she
may learn something about X). This statement is slightly
stronger than the statement that Eve gets only a negligible
amount of information.

Cauchy-Schwartz inequality. Of course, in practice one is
interested in deriving a key of length n > 1. In order to
achieve this goal, one can use the single-bit scheme as a
building block. This can be done in two different, but in a
sense dual ways.

e Execute the single-bit derivation n times [2, 1, 9] with
the same key, but with independently chosen random-
izers. The drawback of this approach is that the se-
curity can be proven only if s < vapr - t/n, ie., the
randomness efficiency decreases inversely proportional
to n.

e Execute the single-bit derivation n times [1, 9, 10] with
the same randomizer, but independently chosen initial
keys. Here the security can be proved assuming that
s < vapr - t, but the drawback is that in order to de-
rive an n-bit key one needs an initial key much longer
than n. At first, this appears to be a very theoretical
result, but in fact it has practical significance, as (1)
the security of the derived key is in some sense higher
than the security of the initial key (because it is ev-
erlasting — see [1] for more on this) and (2) as shown
in [9, 10] one initial key can be reused in several inde-
pendent schemes (even if the adversary can adaptively
learn the derived keys).

The bounded-storage model was also studied in the context
of secure two-party computations (see [9, 8, 5]), message
authentication and non-malleable encryption [9, 10].

1.6 Contributions of this Paper

The main open question of [14, 2, 1] is whether key-
expansion with constant randomness efficiency v is possible.
‘We solve this problem which has both theoretical and pos-
sibly practical implications. The technical contributions of
the paper are divided into two parts. The first part (Sections
3 and 4) addresses parameter sizes that are closest to being
of practical interest. Theorem 1 and Corollary 1 state that
for reasonable parameter sizes, secure key-expansion is pos-
sible for v ~ 0.1. In the second part (Section 5) we prove,
as a purely theoretical result, that v can be arbitrarily close
to 1.

2. PROBABILITY-THEORETIC PRELIMI-
NARIES

Our main goal is to show that, from the adversary’s view-
point (i.e., given all her information) the derived key X is,
with overwhelming probability, distributed according to an
essentially uniform distribution. Closeness to uniformity is
measured without loss of generality in terms of statistical
distance.

DEFINITION 1. For a probability distribution p over an
alphabet U, the statistical distance of p from the uniform
distribution s

a0 =4 - g = 3

uweU ueU :p(u)Zﬁ

p(U)—ﬁ‘-

It is easy to see that if d(Px) is small, then X is close to
uniform in terms of other uniformity measures, for instance
the Shannon entropy (see e.g. [7]) is close to maximal. It
is also not difficult to see that if Alice and Bob use X as



a one-time pad, then the resulting encryption scheme is se-
mantically secure (a notion introduced in [12], see also [9],
Section 2.1). More precisely, for any two messages chosen
by Eve, her advantage in distinguishing between the encryp-
tions of the two messages is at most d(Px).

Consider a random variable X = (X1, ..., X)) distributed
according to a distribution Px over the n-bit strings. Define

p,,(Px) = max P(g(Xl,...,Xi_l)ZXi)—%. (1)

g:{0,1}¥=1={0,1}
In other words pi(Px) + 3 is the maximal probability of
guessing X; correctly when given Xi,..., X;_1. The follow-
ing lemma is proved in Appendix B.

LEMMA 1. d(Px) S Z?zl /j,l(Px)

Throughout the paper we will use capital letters to denote
random variables and small letters to denote values they can
take on.

3. THE MAIN THEOREM
3.1 Description of the Cipher

We propose a scheme in which the randomizer R consists
of blocks R(1), ..., R(m) (for some m > 1 called the height of
the randomizer) of {+n—1 random bits each (for some ! > 1
called the width of the randomizer). Hencet = m(l+n—1)
and R € R = {0,1}". The initial key K = (K1,...,Kn) €
K ={1,...,1}™ selects one starting point within each block,
and the derived key X = (Xi,...,X,) is the component-
wise XOR of the m sub-blocks of length n beginning at these
starting points, i.e., X = f(R, K) where for every r € R and
k= (ki,-..,km) € K we set

f(’l", k) = (@I’;lr(l,k,),,eﬁllr(z,kl +n— 1)) (2)

(here 7(7,) denotes the jth bit in the ith row of r). (See
also Figure 1.) The random experiment consists of selecting
R € R and K € K independently and uniformly at random.
All probabilities considered in this paper are for events in
this random experiment.

width [
block of length I + n—1

W)
K2 E height

V4| m

-
sub-block of length n

Figure 1: Illustration of the scheme for deriving a
key X = (X1,...,Xn), to be used as a one-time pad,
from a short secret initial key (Ki,...,K,). The ran-
domizer is divided into m blocks R(1),...,R(m) of
length [+n—1. The derived key X is the component-
wise XOR of m sub-blocks length n, one selected
from each block, where K; is the starting point of
the ith sub-block within the ith block R(:).

3.2 Statement and Explanation of the Theo-
rem

In this section we present and explain the main theorem.
Consider fixed parameters [, m,n and s and remember that
t = m(l +n —1). In the following we consider an arbitrary
but fixed storage function h : R — U (with || = 2°). Recall
that

U = h(R)

is a random variable equal to the value stored in Eve’s mem-
ory. Let

Bluk) = d(Pxin(ry—u,x-k) (3)

= d(Pxju—u,k=k)

be the bias of the distribution of the derived key X, given
that U = w and K = k. Hence 8(U, K) is a random variable
whose value corresponds to the bias of Eve’s distribution of
the derived key X, given her entire information. (Remember
that we assume that she can learn K after she looses the
ability to access R.) The following theorem, the main result
of the paper, states that the expected value of the bias is
very small. The proof is given at the end of Section 3.3.

THEOREM 1. For l,m,n,s,R, K and U defined as above
and for any T € [0,1] and £ € [0,1],

EBUK) <n-(2°0+¢), (4)
where

§ = 2m+(1—§)m(m logg I4+n+1)—(logy e)-rz(l—g)lm/2 (5)

and

e:=1""/2. (6)

Expression (4) may be simplified if, as usual, we assume that
m,n < I. In which case § =~ e_TQ(l_‘g)l’"/z.

Recall Markov’s inequality (see e.g. [7], page 57) stating
that for every positive-valued random variable Z and any
a >0, P(Z > a) < E[Z]/a. This allows to convert the
statement of Theorem 1, namely that E [3(U, K)] is negli-
gible, into the statement that S(u,k) can exceed a certain
(very small) threshold only with negligible probability. The
implication of Theorem 1 is stated below, as an example, for
the concrete randomness efficiency v = 0.08.

COROLLARY 1. Ifl,m, and n are such that mlog,l < n
and 1 > 100, then, for s := 0.08t — 1.5m(n + 1) (where
t=m(+n-1))),

E[B(U,K)] < n2™™/?, (7

The assumption mlog,! < n reflects the fact that we are
interested in key ezpansion’, and the technical assumption
1 > 100 can be made without loss of generality. The condi-
tion s = 0.08t — q for g := 1.5mn + m means essentially that
Eve can store about 8% of the randomizer. Note that g is
roughly equal to the number of randomizer bits the honest
players need to access, and hence can be neglected. Observe
also that the right-hand side of (7) is negligible in m as long

"The length of the initial key (written as a binary string) is
[mlog,l].



as logy,n < cm (for any constant ¢ < 3), which is a very
weak assumption.®

PROOF OF COROLLARY 1. Set £ = 7 = 1/2 in Theo-
rem 1. It follows directly from (5) (and using the assumption
that mlog,! < n) that

log,d = (m+0.5m(mlog,l+n+1))—Im(log,(e)/16)
< (mn+1.5m) — 0.09im.

Thus s + log, § < —0.01lm — 0.42mn — 0.08m < —0.01lm
and hence Theorem 1 yields

E[B(U,K)] < n(2 "1™ 42772 /2).

For [ > 100 we have 27 %01 < 27™ < 27™/2/9 and the
corollary follows. [

ExXAMPLE 1. This ezample was discussed in Section 1.2.
Suppose s = 10*%, m = 125, n = 10'°,1 = 10** (and thus t =
1.25 - 10'® and the length of the initial key is approzimately
6000). Then E[B(U,K)] < 27%°.

3.3 Main Technical Lemma and the Proof of
the Main Theorem

Consider the following guessing game. For some j €
{1,...,n} Eve must guess X; when given Xi,...,X;_1 as
well as U and K. Our goal is to prove that Eve’s suc-
cess probability for any j is at most negligibly greater than
1/2. For a fixed storage function h : R — U, Eve’s strat-
egy in this guessing game is characterized completely by a
guessing function g; : U x K x {0,1} 71 — {0,1}, where
g;(U, K, X1,...,Xj-1) is Eve’s guess for X;.° For every j,
let

a;(u, k) == pj (Px|v=u,x=k)-

From definition (1) of y; it follows that «;(u, k) + 3 is equal
to

max (P (gj(U,K,Xl,...,Xj_l) = X; ‘ U:u,K:k)).
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Hence
IE?X(P(HJ(U,K’XI""’Xj_lz:Xj)) (8)
= §+E[aj(U:K)]'

We can now state the main technical lemma of the paper.
The proof is given in Section 4.

8This assumption is actually optimal up to a constant. More
precisely, for any z > 1 the scheme is insecure if n = 2™ and
the storage size s of Eve is equal to ¢t/z. In this case Eve
can simply store from each block R(i) a set of ({+n—1)/z
randomly chosen bits. Recall that for every j the jth bit of
the generated key is equal to

Xj = @, R(i, K; + j)

(cf. (2)). The chance that Eve stored all the bits R(1, K1 +
7)s-.., R(m, Ky + j) in her memory is 2~ ™. Therefore for
every j the probability that Eve can compute X; is z~ ™.
Thus the expected number of bits in (X3,...,X,) that Eve
can compute is equal ton - 2~™ = 1.

A reader familiar with the previous work in this field may
observe that for a fixed u a function gi(u,-) : K — {0,1}
can be viewed as an answer vector [2, 1].

LeEMMA 2. Forallj € {1,...,n}, for every guessing func-
tion gj : U x K x {0,1F™" — {0,1}, for every u € U,
T € [0,1], and & € [0,1], the fraction of randomizers r for
which

P(gj(u,K,X1,...,Xj_1) = X; ‘ R:r) >lie (9)
18 at most &, with § and € defined by (5) and (6), respectively.

COROLLARY 2. For every j € {1,...,n}, and 7,£ € [0,1]
we have E[a;(U, K)] < 2°6 + € (where € and § are defined
by (5) and (6), respectively).

ProOOF OF COROLLARY 2. Fix any g;. Let I' be the set
of all randomizers r for which there exists u € U such that
(9) holds. Clearly we have that

P (g;(U, K, X1, Xjo1) = X;) (10)
is equal to the sum of
P(g;(U K, X1,...,X;_1)=X;|Rel")-P(Rel) (11)
and
P(gj(UK,X1,...,X; 1)=X;|R¢T)-P(R¢T). (12)

From the union bound (over all u € i) applied to Lemma 2
we know that P (R € T') < |U|4. Thus (11) is at most 2°4.
From the definition of I" we have

P(gj(U,K,Xl,...,Xj,l) = X; ‘ Rgzr) <lie

Thus (12) is smaller than % + e. Therefore (10) is at most
2°6 + (3 +¢€). Applying (8) we get E[a;(U,K)] < 2°6 +
e. O

PROOF OF THEOREM 1. Lemma 1 implies that 3(u, k) <
Z?:l a;(u, k). From the linearity of the expected value we
get

EBU,K) <)Y Ela(UK),

j=1
which by Corollary 2 is at most n - (2°0 +¢€). [

4. PROOF OF THE MAIN TECHNICAL
LEMMA

To prove Lemma 2 we introduce some more notation. For
every randomizer r, initial key k and j € {1,...,n}, let
fj(r,k) denote the jth bit z; of the derived key f(r, k). Let
R: denote the set of all randomizers of height 7 and width
l (i.e., the set of binary ¢ x (I +n — 1)-matrices) and let K;
denote the set {1,...,1}*. For s € K; and a € {1,...,1} we
have k - a € K;4+1, where the symbol ’-’ denotes concatena-
tion.

It suffices to consider the case j = m because for our
scheme guessing X; when given X;,...,X;_; is as hard as
guessing X, when given X, ;t1,...,X, 1, which is not
easier than guessing X, when given Xi,...,X,_1.

Let us now fix an arbitrary guessing function g, : U x K x
{0,1}"~" — {0,1} and a value u € U. Define the function
¢: K xR — {-1,1} in the following way: for every k € K
and r € R set
C(k, ’I”) :={ 1 if gn(u’ k: fl (Ta k): RN fnfl(T: k)) = f’ﬂ(,r’ k)

—1 otherwise.



In other words the value of ¢(k, 7) is equal to 1 if the function
g guesses correctly the last bit of the generated key, for the
randomizer r and the initial key k¥ (and it is equal to —1
otherwise).

For every r € R and k € K; (where ¢ < m) define the
advantage (of the guessing function g) with respect to a ran-
domizer r and a key prefiz Kk as:

adve (r) = E|[c(K,r) | & is a prefix of K] (13)

iel=m Z c(k, ).

kek : Kk is a prefix of k

When |k| = 0 we will write adv (r) instead of adv, (r). For
every randomizer r we have

P (gn(u, K, X1,...,Xn_1) = Xn

R=r )
=1+1adv(r).
Therefore, to prove Lemma 2, we need to show that
P (adv (R) > 2¢) <34, (14)
,m}, define the random variable A; in

For every i € {1,...
the following way:

A= max_ |adve ((p, R(i +1),...,R(m)))|.*°

KEK;, pER;

Note that A; can be seen as defined in a random exper-
iment determined only by the lowest m — i blocks of the
randomizer. But it is of course also defined in the random
experiment of selecting the entire randomizer and the key at
random, which we are interested in. Clearly Ao = adv (R)
and A,, = 1. Our goal is to show that A; is always smaller
than A;41 (condition (15) below) and, moreover, that with
very high probability A; is smaller than 7A4;4, for all values
that Ait1,..., Am can take on (condition (16)).

LEMMA 3. For every T € [0,1] and every i the sequence
Ao, ..., Am satisfies the following conditions

Ai < Aip (15)
and for e'uery11 Qig1y .-y Am
P (Ai > 7Aig1| Aig1 = Qit1y. ooy Am = am ) < (16)
where

_1.2
o= lm2n+le Ir /2.

Before going to the proof let us present the implications
of the lemma. It implies that with very high probability
the value of Ap is very small. More precisely, we have the
following lemma.

LEMMA 4. If (for some m,7 € [0,1]) a sequence of
positive-valued real random wvariables Ao, ..., Am € [0,00)

10T he expression (p, R(i+1), ..., R(m)) denotes the random-
izer r' € R, with r"(j) := p(j) for j < and v’ (j) := R(j)
for j > 4. We will also write (p, R(i+1),p’) (for p € R; and
p' € Rm—i—1) to denote the randomizer in R defined in a
similar way.

"Eormally, we should say: “for every aiii,...,am such
that P (Ai+1 = @i+1,...,Am = am) > 07 (because other-
wise (16) is not defined). For simplicity (here and in the
sequel) we will not explicitly state conditions of this type.

(with A, = 1) satisfies conditions (15), (16), then for every
& €[0,1] we have

P (Ao > Tﬁm) < gmpi-em

ProOF. Fix arbitrary values m,7 and £. For every ¢ €
{0,...,m — 1} set

*7 1 0 otherwise.

Clearly (because of (15)) we have that
Ap < 7Bt HBm
Therefore it suffices to show that
P (31 4o+ Bn < gm) < gmp(i=m (17)
From (16) we have that for every ¢ and for all bjy1,...,bp
P(Bizo‘ Bit1 = bist,. .., Bm = bm ) <

Therefore, for all by,...,bm € {0,1},

P(Bi=bi,...,Bp =by) < nllebi=0
g brttbn) (1)
Set
B :={(b1,...,bn) € {0,1}m tbi+ 4+ by <Em}.
Thus

P(Bo+ -+ Bm <§m)

= > P(Bi=bi,...,By =bn)
(b1,-.-,bm)EB

< pmoem (19)
(b1,...,bm)EB

< gmp=om (20)

(where (19) follows from (18) and (20) follows from the
trivial fact that |[B| < 2™). Therefore (17) and and hence
Lemma 4 is proved. [

We are now ready for the main technical argument.

PROOF OF LEMMA 3. Fix some i € {0,...,m — 1} and
an arbitrary p’ = (pj42,-..,0m) € Rm—i—1. Consider the
event that (R(i+2),..., R(m)) = p’. Observe that the value
(@it1,---,am) of (Aiy1,...,An) is determined by the fixed
value p’ of (R(i + 2),...,R(m)). More precisely for every
v€{i+1,...,m} we have

ay = max |adv,—€ ((ﬁ, pi,+1, .

REKqy, PERY
Therefore to prove (16) we have to show that

. j N > rai41 ) <
P ( omax, ladve (0. R+ 1. 0)| > s ) <, (22)
and to prove (15) we have to show that

neg,afeﬁ,- |a‘dv'f» ((p: R(l + 1): pl))| < @41 (23)



(for all values of R(z + 1)). Let us for a moment fix some
particular values of k € K; and p € R;. Then from the
definition (13) of the advantage we have

advi ((p, R(i +1),0))

1
= % > adve; ((p, R(i+1),p)

Jj=1

l
1
= 125 (24)
i=1

where (to simplify the notation) for every j € {1,...,1} we
set

S;:=adve; (o, R(i+1),p)).
From the definition of a;+1 (cf. (21)) it follows easily that
1Si| < aita (25)
for every j. Therefore (by (24))
ladvs ((p, R(i +1),0))| < ait1

and, since the choice of k and p was arbitrary, (23) (and
hence (15)) is proved. For the proof of (22) we will make use
of the theory of martingales (see Definition 2 in Appendix A

).

LEMMA 5. Si,...,S5 is a martingale difference sequence.

PROOF. First, observe that for every j the bit R(i+1,j+
n—1) is independent of (Si,...,S;j_1). Let ¢ be a mapping
that flips bit j + n — 1 in an I-bit sequence (q1,...,q) €
{0,1}, i.e.,

o((qr,- -5 a) = (@1, Gj4n—2,Gdn—1, Qjtns - - - Q1)
It is easy to see that for every k with prefix - j we have

C(k, (pa R(l + 1)1 pl) = _C(ka (p) SD(R(l + 1))) pl)

(in other words for the key k the function g guesses correctly
for (p, R(i + 1), p') if and only if it guesses incorrectly for
(p;p(R(i+1)),p')) and hence

adve.j ((p, R(i +1),0')) = —adve; ((p, p(R(i + 1)), ) -
Therefore
Ps;isy..5;_1 = P_s;181--5;_4 (26)

which implies that for all values of (s1,...,s;-1) we have
E[S; | S1=s1,...,8j-1=sj-1]=0. O

Let us return to the proof of Lemma 3. From Lemma 8 (see
Appendix A) and from the fact (25) that |S;| < ai+1 we get

|

Therefore by (24) we have

l

25

Jj=1

> TlaH_l) < 2e717/2, (7)

p (|advm ((p, R(i + 1),p'))| > Taiy1) < 2¢ 1712, (28)

Note that (28) holds for any k € K; and p € R;, as our
choice of these values was arbitrary. To finalize the proof
we will show that (28) implies (22). For a better readability

define, for every k € K; and p € R;, D(k,p) as the event
that |adv. ((p, R(i + 1), p"))| > Tait+1. Let

D:={D(k,p): (k p) € Ki x Ri} (29)

be the set of all such events. Also, set v := 2¢="*/2. Thus
(28) can be rewritten as

Vpep P (D) <. (30)
Clearly (since 7 < m), to prove (22) it suffices to show that

P ( U D) <1127, (31)

DeD

In order to prove (31) we will apply the union bound. More
precisely, we will use the following simple fact (that holds
for any D and +y such that (30) is satisfied):

P ( U D) < |D| 7. (32)

DeD

‘What remains is to give a strong enough bound on the car-
dinality of D. It is easy to see that a naive approach (i.e.
just looking at the definition (29) of D) will not work since
IKi x Ri| = n*20F7 1 s too large. Therefore we will use
a somewhat more subtle argument. Let f; denote the key-
derivation function for the randomizers of height m = i. For
given po, p1 € R; such that

fi(K‘ﬂ po) = fi(n7p1)7

due to the definitions (2) of f and (13) of advantage, for
every p"’ € Rm—; we have

advk ((po, p")) = adve ((p1,0")) ,

and thus it is not difficult to see that the events D(k, po) and
D(k, p1) are equal. In other words, for every a € {0,1}" the
set Dy, 1= {D(k,p) : f'(k,p) = a} consists of at most one
event. Since |[K;| = I* and D is the union of all the sets
De,a, the set D contains at most °2" distinct events. In
other words, |D| < I°2”. Combining this with (32) we get
(31). This completes the proof [

PROOF OF LEMMA 2. Since adv (R) = Ao, Lemmas 3
and 4 together imply

P (adv (R) > Tsm) < gmH-§)m(mlog z+n+1)e—T2(1—§)lm/27

which implies (14) by changing the base in the right term
from e to 2. O

5. ASYMPTOTICALLY OPTIMAL RAND-
OMNESS EFFICIENCY

Recall that Corollary 1 states that (roughly speaking) Al-
ice and Bob can securely derive a key with randomness ef-
ficiency v = 8%. A natural question to ask is for which
maximal value of v secure key-expansion is possible. In this
section we prove that v can be arbitrarily close to 1. We
will again use the scheme defined in Section 3.1. For a given
randomizer height m and width [, a length n of a derived key
and a constant v € [0,1], let M(m,l,n,v) be the expected
bias of Eve’s distribution of the derived key X (given her en-
tire information), assuming that she applies the best (from



her point of view) strategy. More precisely, let M (m, [, n,v)
be equal to

max E B (U, K)],
h:{0,1}t—{0,1}Lvt]

where t = m(l + n — 1) and (cf. 3)
Bn(u, k) :=d (PX|h(R)=u,K=Ic) .

To be more formal we need to be careful about how fast the
parameters [, m and n grow with respect to each other. Let
! and n be functions of m. First, we will assume that [ is
at least polynomial and at most exponential in m. Namely
1 := X(m), where ) is some fixed function such that for every
m

A(m) > m? (33)
and
A(m) <2™. (34)

(The choice of the bounds (33) and (34) is rather arbitrary.)
Second, we have to assume that the derived key is longer
than the initial key. Therefore we fix an arbitrary constant
¢ > 1 and assume that n := cmlog, !, which by (34) is at
most ¢cm?. The main theorem of this section is as follows.

THEOREM 2. For every v € [0,1),¢ > 1 and A as above,
the value

M(m7 )‘(m)1 cm 10g2()‘(m))7 V)
decreases exponentially in m.

This result is primarily of theoretical interest since for v
close to 1 the parameter m must be quite large.

Let us first look at what we have proven so far (Theorem
1). It is not difficult to see that for all £ and 7 the value
8§ (defined by (5)) is at least e '™/2. Therefore for s >
Im(log, €)/2 the right hand side of (4) is at least n. Thus
Theorem 1 gives no non-trivial bound on E [B(U, K)] if v
exceeds 22 (log, e)/2 = (log, €)/2 ~ 0.72.

Therefore we need to modify the main technical part. The
factor (log, e)/2 comes from Lemma 8 used in the proof of
Lemma 3 (more precisely, it is used to obtain (27)). We
will now prove an alternative inequality (Lemma 6). First,
recall that (in the proof of Lemma 5) we in fact proved some-
thing stronger than the statement of the lemma. Namely we
proved property (26).

LEMMA 6. Let Si,...,5: be a sequence of random vari-

ables such that for every j we have |S;| < a (for some
a>0)and Ps;isy,..s;_1 = P-s;|s,,....5;_,- Then, for every

T €[0.5,1),
d

where H(1) := —7logy, 7 — (1 — 7)log,(1 — 7) is the binary
entropy function.

25

j=1

> Tla) < QHH) =+ (35)

This lemma is incomparable with Lemma 8. On one hand
it is weaker since it applies only when (26) is satisfied and
for 7 > 1/2 (also, for 7 not much greater than 1/2 it gives
a worse bound). However, for our purposes (7 close to 1) it
is stronger than Lemma 8.

PROOF OF LEMMA 6. For every j set T; := |S;| and
g2 1 i8>0
771 =1 otherwise.

Clearly S; =T} - U;. Therefore, for every 7,

1
Z S; > 1la
j=1

implies that |[{j : U; = 1}| > 7l. It is not difficult to see
that Uy, ..., U; are distributed independently and uniformly.
Therefore the size of the set {j : U; = 1} is distributed ac-
cording to the binomial distribution. Putting things to-
gether we get

l
P (Z S; > Tla)
j=1

IA

P({j:U; =1} 27I)

(1—7)1 !
< 27! )

< QlH(-T)-1)

The last step follows from the inequality

L LH (w)
> (J) <2 (36)

j=0

which holds for all w € (0,0.5] (in our case w = 1 — 7).
(For the proof of (36) see e.g. [18] Theorem 1.4.5, page 21.)
Clearly by symmetry we also get

l
P (Z S; < —Tla) < UHU=T)—1)
j=1

Thus (35) follows. O

If we now use Lemma 6 instead of Lemma 8 (in the proof of
Lemma 3), then instead of (27) we get (35). This yields the
following lemma that may be viewed as an alternative (and
incomparable) version of Theorem 1.

LEMMA 7. For I,m,n,s,R,K and U as in Theorem 1,
for any 7,¢ € [0,1] we have E[B(U,K)] < n - (2% +¢),
where € is defined by (6), and & by

§ 1 gmH(1-E)m(mlogy l+n1)+m(H (r)-1)(1-€)

We can now use Lemma 7 to prove Theorem 2.

PROOF OF THEOREM 2. Fix some v. From Lemma 7 we
get that for every 7 and &,

M(m, A(m),cmlog,(A(m)),v)

< cm2 (2um()\(m)+cm2—1)61 + 6)

< cm? (20m3+”’“(m)6’ + e) , (37)
where
5§ < gmt=m(m®+em®+1)+mA(m)(H (r)=1)(1-€)
< 26'm3+m>\(m)(H('r)—1)(1—5)_ (38)

(for some constant ¢') and e = 7¢™/2. It is easy to check
that

lim H(7) = 0.

T—1



Therefore there must exist 7,€ € (0,1) such that (H(r) —
1)(1—¢) < —1(v+1). Fix such 7 and ¢. Hence (from (38))

6/ < 2c'm37m)\(m)(u+1)/2
Thus (37) is at most
em? (2‘f (m) 4 e) , (39)

where f(m) = A(m)m(1 —v)/2 — (c + ¢')m>. From the as-
sumptions that v < 1 and (33) we get that f(m) = Q(m?).
Therefore for sufficiently large m the value of 2770™) ig
smaller than 76™ /2 and thus (39) is at most

em? - (2-75™)2) < em?75™,

which decreases exponentially in m. [
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APPENDIX
A. MARTINGALES

In this section we sketch the basic ideas behind the theory
of martingales that we use in the proof of Lemma 5. We refer
to [11] and [16] for more on this subject.

DErFINITION 2. A martingale difference sequence is a se-
quence of real-valued random wvariables Si,...,S; such that
for every j and every si,...,sj—1 we have

E[Sj | S1 =S1,...,Sj71 =Sj71] =0.
The following lemma follows directly from Azuma’s inequal-

ity (see e.g. Theorem 4.16 in [16], page 92, or [3] for the
original result).

LEMMA 8. Let Si,...,S5; be a martingale difference se-
quence such that |S;| < a for 1 <4 < 1. Then, for every

T€ER,
P(

(To derive Lemma 8 from Theorem 4.16 in [16] set A := 7la
and Xo := 0, and for every i =1,...,1, let X; := 37", S;
and ¢; := a.)

1

>Si

Jj=1

> Tla) < 2e~177/2,

B. PROOF OF LEMMA'1

In the proof we will use the following simple fact that

holds for every sequence of random variables X, ..., Xj.
pi(Px) =% > |Pxy,x;(x,0) — Px,,_x;(x,1)].
x€{0,1}i—1

‘We show inductively (over j) that

d(Px,..x;) < ZW(PX)7

i=1



for every j € {1,...,n}. Case j = 1 is trivial. As-
sume that the hypothesis holds for some j — 1. To
avoid too many subscripts let @ be the probability dis-
tribution Px,..x;. Clearly we have that d(PXI"'Xj_l) =

i 2 oxe{0,1}i-1 |Q(x,0) +Q(x,1) — 279+ | Therefore
J
> wi(Px) > d(Pxy,..x;_,) + p;(Px) (40)

i=1

=1 Y |ex0+en -2

x€{0,1}i—1
+% Z |Q(X, 0) —Q(X,1)|
x€{0,1}i—1
=1 Y (Jex0+xn 27"
xG{O,l}j—l

+1Q(x,0) - Q(x, 1)])
3 max <‘Q(x, 0) — 27|, ]Q(x,1) - 21") (41)

x€{0,1}i-1
LY (Jeso -2+ -2|) @2
x€{0,1}7—1
= d(Q) = d(ley---sz)
where (40) follows from the induction hypothesis, (41) fol-
lows from the fact that max (|a|, [b]) = 3 (la +b| + |a — b)),

for every a,b € R, and (42) follows from max(a,b) >
fa+d). O
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