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Abstract An encryption scheme is non-malleable if the adversary can-
not transform a ciphertext into one of a related message under the given
public key. Although providing a very strong security property, some
application scenarios like the recently proposed key-substitution attacks
yet show the limitations of this notion. In such settings the adversary
may have the power to transform the ciphertext and the given pub-
lic key, possibly without knowing the corresponding secret key of her
own public key. In this paper we therefore introduce the notion of com-
pletely non-malleable cryptographic schemes withstanding such attacks.
We show that classical schemes like the well-known Cramer-Shoup DDH
encryption scheme become indeed insecure against this stronger kind of
attack, implying that the notion is a strict extension of chosen-ciphertext
security. We also prove that, unless one puts further restrictions on the
adversary’s success goals, completely non-malleable schemes are hard to
construct (as in the case of encryption) or even impossible (as in the case
of signatures). Identifying the appropriate restrictions we then show how
to modify well-known constructions like RSA-OAEP and Fiat-Shamir
signatures yielding practical solutions for the problem in the random
oracle model.

1 Introduction

According to the seminal paper by Dolev et al. [DDN00] an encryption scheme
is called non-malleable if giving a ciphertext to an adversary does not signifi-
cantly help this adversary to produce a ciphertext of a related message under
the same public key. Analogous requirements can be formulated for other cryp-
tographic primitives like signatures or commitments. While this definition of
non-malleability is already quite strong and suffices in most settings it yet leaves
open if there are cases where refined notions are needed and, if so, whether they
can be achieved at all.
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Motivation. A possible stronger definition of non-malleability, introduced here
as complete non-malleability, basically allows the adversary to transform the
public key as well. That is, in case of encryption the adversary may output a
ciphertext of a related message under an adversarial chosen public key. For this,
the adversary does not even need to know the matching secret key to the chosen
public key.

Our initial interest in completely non-malleable schemes stems from the
area of (regular) non-malleable commitments. Previous constructions of such
non-malleable commitments usually require a common reference string (e.g.,
[CIO98,FF00,CKOS01,FF02]), or are rather theoretical in terms of efficiency
[DDN00,Bar02]. Coming up with an efficient non-malleable commitment proto-
col in the plain model is still an open problem.

Early in cryptography it has been observed that efficient commitment schemes
can be derived from encryption schemes. To commit, the sender creates a key
pair and sends a ciphertext of the message together with the public key. To de-
commit, the sender transmits the message with the random bits used to create
the ciphertext, or simply sends the secret key (if appropriate). Now, if the en-
cryption scheme was completely non-malleable then the resulting commitment
scheme in this basic construction would be non-malleable in the ordinary sense.
And the derived commitment scheme would be non-interactive and would not
rely on public parameters either.

In addition to the application to commitment schemes, it turns out that, re-
cently, the problem of complete non-malleability also appeared in similar flavors
in related areas like signatures or hash functions:

— Blake-Wilson and Menezes [BWM99] show how to deploy unknown key-share
attacks to show weaknesses in the station-to-station key agreement protocol.
In their case, the adversary is given a signature s for message m under some
public verification key vk and her task is to find a different key pair (sk*, vk")
such that s is also a valid signature for m under vk™ (called key-substitution
attack). The problem of unknown-key attacks has later been addressed more
general in [MS04], showing that standard signature schemes like Schnorr
signatures are in fact secure against this kind of attack. Here we show that
the schemes are insecure with respect to the stronger security requirement
of complete non-malleability where the adversary does not need to know the
secret key. The schemes are therefore in principle subject to other attacks in
the key-agreement setting.

— Kaliski [Kal02] discusses attacks on hash-and-sign signature schemes in which
the adversary is allowed to replace the original hash function (description).
Given a signature s for the hash value HASH(m) of a message the adversary
tries to find a hash function HASH* and message m* such that HASH* (m*) =
HASH(m). In this case, s would also be a valid signature for HASH*(m™*).

— In strong unforgeability attacks on signature schemes the adversary is al-
lowed to query a signature oracle and is considered to be successful if she
later forges a signature for a new message, but also if she creates a new
signature for a previously signed message. This security notion is for ex-



ample important for blind signatures used as coins in e-cash systems: It
should be infeasible to create another coin from a given coin, even for the
same message. Such attacks can be easily cast in the framework of complete
non-malleability.

Our Results. In this work we discuss the issue of complete non-malleability
for public-key encryption and signatures. We first show that most of the well-
known encryption and signature schemes fall prey to complete non-malleability
attacks. Specifically, we propose attacks against the Cramer-Shoup DDH encryp-
tion scheme, RSA-OAEP and signatures of the Fiat-Shamir type like Schnorr
signatures. This shows that the security notion of complete non-malleability is
not covered by chosen-ciphertext security and by unforgeability against chosen-
message attacks, respectively.

Then we give a formal framework for complete non-malleability of public-key
encryption and signatures. There are two major differences to the basic definition
of non-malleability. First, the adversary’s goal in the definition of [DDNOO] for
encryption is to relate the original secret message m to a chosen message m*
via a relation R(m,m*). Here we extend the relation to include the given public
key pk. For message-only relations it remains for example unclear if it is easy to
modify a ciphertext of some message m into a ciphertext of the related message
m* = m+ e under the same public key, where e is for example an RSA-exponent
in the public key. We show that such attacks are feasible, at least for general
schemes. Namely, we present a scheme which is non-malleable for relations over
messages, but for which the adversary can easily produce a ciphertext c* of a
message m* under pk such that a specific relation R(pk, m, m*) is satisfied. We
stress that the adversary does not even take advantage of the possibility to select
her own public key for this attack.

Our separating example for relations R(m, m*) over messages shows that (reg-
ular) non-malleable commitments constructed by means of encryption schemes
in the common reference string model (as in [CKOS01]) may not provide ad-
equate security for the classical Internet auction example. In the auction case
the users’ bids are encrypted with a public key published in the reference string.
Now, an adversarial bidder may be able to transform such a sealed bid of an
honest user into one which is related via this public key, and may thus overbid
this user easily with a reasonably small amount (e.g., by m* = m + e).

The second, and more significant extension of the [DDNO0O0] framework for
encryption is that the adversary now has the power to tamper the public key.
Consequently, the relations now also range over the given public key pk, the
adversarial chosen public key pk™ and, for sake of generality, also over adver-
sary’s ciphertext. Similarly, for signatures we let the relation include the given
verification key vk, the adversarial key vk™, message m* and signature s*.

Concerning constructions of completely non-malleable schemes, the bad news
is that schemes for general relations are hard to derive or even impossible. We
show that there are relations where complete non-malleability cannot be proven
via black-box proofs for both encryption and signatures. Even worse, for more



complex relations we prove that completely non-malleable signature schemes do
not exist at all.

On the positive side, we can show that practical schemes like RSA-OAEP
and Fiat-Shamir signatures can be made completely non-malleable in the ran-
dom oracle model (while the basic versions do not achieve this goal, not even in
the random oracle model). Security holds for a broad class of relations which,
roughly, excludes only such relations for which we are able to show our uncondi-
tional impossibility results. Also, our solutions are essentially as efficient as the
original schemes, thus giving us complete non-malleability almost for free.

However, we remark that the completely non-malleable versions of the schemes
above are proven secure in the random oracle model only. A closer look re-
veals why this model provides a useful countermeasure: Random oracles are
by nature highly non-malleable constructs, because outputs of related inputs
are completely uncorrelated and because all users in the system use the same
hash function oracle as a common anchor. The advantage of giving security of
these schemes in terms of complete non-malleability, even in the random oracle
model, is that security now follows for a vast number of attacks, including key-
substitution and strong-unforgeability attacks. That is, any attacks where the
adversary’s goal can be cast through such relations, provably fail; extra security
proofs become obsolete. An interesting open question is whether there are secure
schemes in the plain model for interesting relations or not.

Organization. To provide some intuition about the power of complete non-
malleability attack we start with the attack on the Cramer-Shoup encryption
scheme (and other schemes) in Section 2. We define completely non-malleable
schemes formally in Section 3. We then given an informal overview over the
results in Section 4. In Section 5 we discuss the separation with respect to re-
lations over messages and those including the public key. Section 6 covers all
negative results and the concluding Section 7 presents the positive examples in
the random oracle model.

2 Attacks on Well-Known Schemes

We first provide some intuition and present attacks on schemes which are known
to be secure against ordinary attacks. We show that the Cramer-Shoup en-
cryption scheme, the RSA-OAEP encryption scheme and the Schnorr signature
scheme all suffer from weaknesses with respect to complete non-malleability. We
remark that all these schemes still satisfy their designated security goals like
chosen-ciphertext security or unforgeability. Our attacks merely show that they
do not withstand the stronger kind of attack.

For the examples in this section we do not give formal security definitions
of complete non-malleability. For the moment, it suffices to keep in mind that
the adversary’s goal is to modify a given public key and a cryptogram (e.g., a
ciphertext or a signature) into a related one.



2.1 Cramer-Shoup Encryption Scheme

The Cramer-Shoup encryption scheme [CS98] is semantically secure against
adaptive chosen-ciphertext attacks under the decisional Diffie-Hellman assump-
tion. It is thus also non-malleable (in the classical sense) with respect to such
attacks.

Key Generation: The public key is given by the description of a group G, of
prime order g for which the decisional Diffie-Hellman problem is believed to
be intractable, two random generators g1, g2 of this group as well as ¢, d and

h where
Ty T2 Y1 Y2 21 22

C=491 927 d=g{g5, h = gi'g5

for random values x1, 2, y1,¥2, 21, 22 < Zq. The public key also contains a
collision-intractable hash function H. The secret key is (z1, 2, Y1, Y2, 21, 22).

Encryption: To encrypt a message m € G, pick a random r « Z, and compute
up =gy, uz=g4, e=h"m, a=H(uy,use), v=cd*"
The ciphertext is given by (uq,us, e, v).

Decryption: To decrypt a ciphertext (uj,us,e,v) compute a = H(uq,us,e)
$1+(¥y1u9262+0492 21,22

and verify that v = u] . If so, then output m = e/ui'u3?.

The attack showing that the scheme fails to provide complete non-malleability
now proceeds as follows. Given a public key (G, g1, g2, H, ¢, d, h) and a ciphertext
(u1,us,e,v) first recompute o = H(uq,us,e). With overwhelming probability
a # 0 mod g and we can invert « in Z7; else, if a random ciphertext maps to 0
with noticeable probability, collisions for H could be found easily. Next compute

wi =2, wh=ul e =€ o =H(ulube"), vt=02/
and finally prepare the public key as
=/, d* =d, h* = h.
A simple calculation shows that
vt = p2aT/a = 2ra’/agraa /o _ ()2 (gey2ra’
Hence, the tuple (uj,u},e*,v*) is a valid ciphertext of m* = m? € G under
randomness r* = 2r mod ¢ and public key (G, g1, g2, H, c*, d*, h*).1

1 At first glance it seems that replacing h by h* = h® (or similar substitutions), and
leaving the other ciphertext components untouched, would work as well. But then
the adversary would encrypt a message m* = e/(h*)" = mh"*~®_ This, however,
would be a random message (over the choice of r) and would be thus unlikely to be
related to m in a reasonable way.



The attack shows that the encryption scheme cannot be used as a non-
malleable commitment scheme, as explained in the introduction. With this attack
the adversary would be able to open her commitment correctly with (m?,2r) af-
ter seeing the decommitment (m,r) of the original sender. Analogously, if the
adversary is given the original secret key (x1, 22,1, Y2, 21, 22) she can modify it
to (x1a* /o, xaa™ Jt, y1, Y2, 21, 22).-

We also point out that the attack does not depend on the primitives G, and
H, nor the generators g;, go. Even if this part of the public key was provided
by a trusted party as common parameters or if H was a random oracle, then
the attack would still work. Neither relies the attack on any decryption requests
passed to the original key holder.

2.2 RSA-OAEP

The RSA-OAEP encryption scheme has been proposed by Bellare and Rogaway
in [BR95]. The scheme is widely used in practice in the RSA-PKCS version
[RSAQ2]. It is known to be plaintext aware under the RSA assumption in the
random oracle model, and also chosen-ciphertext secure in the random oracle
model [FOPS01]. We assume that two random oracles G and H are available to
all parties:

Key Generation: Generate an RSA modulus N and an RSA exponent e.
The public key is given by (N,e) while the secret key is given by d =
e~ mod ¢(N).

Encryption: To encrypt a message m pick a random string r and compute
y=(m|0* e G(r)) || (r&H@m||0*®G(r)) € Zy.
Return ¢ = y°® mod N.

Decryption: To decrypt ¢ € Z% compute y = ¢?mod N and parse y as
(m||0F @ G(r)) || (r © H(m||0*¥ @ G(r))). Compute the hash value of the
left part under H and xor it to the right part to retrieve r. Then compute
the exclusive-or of the left part and G(r). If the least significant k bits are
all 0 then output m.

For the attack copy the public key but replace the exponent e by 3e. Later,
after seeing the ciphertext ¢, substitute ¢ by ¢ mod N. Clearly, this is a valid
encryption of the same message under a different public key.

We remark that, if one stipulates the RSA exponent to be of a special form
like e = 26 + 1 and has the verifier check this, then our attack fails of course.
However, such a check is currently not intended, neither in the RSA-OAEP
[BRI5] nor in RSA-PKCS [RSA02].



2.3 Schnorr Signatures

The attack presented here against the Schnorr signatures scheme [Sch91] works,
mutatis mutandis, also for other Fiat-Shamir like signature schemes. The original
Schnorr scheme for random oracle H goes as follows:

Key Generation: Let G, be again a group of prime order ¢g. Assume that the
discrete logarithm problem in this group is intractable, and let g be a gen-
erator of this group. The user holds a secret key x < Z, and the public key

x

is given by (G,4, 9, X) for X = ¢g~*.
Signing: To sign a message m the user picks r < Z,, computes R = g",
¢=H(R,m) and y = r + cx mod ¢g. The user outputs (c,y).

Verification: To verify a signature (¢, y) for message m the verifier checks that
c=H(X%Y,m).

For the attack we simply modify a given public key X to X* = X g*wl for some
' e Zy. Then, a given signature (c,y) for some message m under public key X
can be transformed into a valid signature (¢*,y*) = (¢,y + ¢’ mod q) for the
same message m under public key X*. If the original user later reveals his secret
key x then the adversary can claim z* = x + 2’ mod ¢ as her secret key.

3 Definitions

In this section we define completely non-malleable public-key encryption and
signature schemes. Our approach follows the line of Dolev at el. [DDN00] and
also investigates the non-malleability question of an encryption or signature
scheme merely with respect to itself. Achieving non-malleability between dif-
ferent schemes is in general impossible, even in the basic case.

3.1 Encryption

Discussion. An obvious problem with defining completely non-malleable en-
cryption schemes lies in the adversary’s possibility to choose her own public key
and the uniqueness of ciphertexts. With a fake, yet valid-looking public key the
adversary might be able to produce ciphertexts which can be decrypted am-
biguously. We consider this to be a characteristic of the encryption scheme, and
not an issue of complete non-malleability. Specifically, we allow the adversary to
produce such phony keys if the scheme supports it, i.e., if one cannot distinguish
good keys from fake ones. We note that, for the application to non-malleable
commitments as explained in the introduction, verifying the validity of keys is
for example necessary.



Relations. As mentioned in the introduction, regular non-malleability says that it
is hard to transform a given ciphertext of message m into one of a related message
m* under the same key. There, related messages are designated according to
an efficiently computable (probabilistic) algorithm R which basically takes the
messages m and m* as input.? But here we are interested in more general attacks
where, as in the examples of non-malleable commitments or key-substitution
attacks on signatures, finding a related public key pk™ or ciphertext ¢* to the
given key pk may be considered a success. Hence, we let the relations in general
also depend on pk and pk™, c*.

To capture both the original definition of relations over messages only and
the more general approach including public keys, we look at classes R of relations
and define complete non-malleability with respect to such classes. The class for
the basic definition then spans over relations R(pk, m, pk*, m*, ¢*) = Ro(m, m*) A
pk = pk*, for example.

Message Distributions. We assume that the distribution of the user’s message is
determined according to some efficiently computable probabilistic algorithm M
from some class M. The message distribution M may depend on the given public
key. Yet, we sometimes focus on distributions which are independent of the key,
i.e., we consider the class My ing of distributions M such that M(pk) = M(pk')
for any keys pk, pk’. In this case the distribution M may still depend on the
security parameter, though.

Dolev at al. [DDNOO] let the adversary and the simulator determine the mes-
sage distribution after seeing the public key and having queried the decryption
oracle in a preprocessing phase. This can be subsumed in our model by letting
these two algorithms output some parameter p before the ciphertext is created.
Unless stated differently all our results, positive and negative ones, remain valid
in the setting where the adversary and simulator select such values; yet, we
usually do not include them here for sake of simplicity.

Attack Model. In the first stage of the actual attack the adversary A is given
a public key pk and access to a decryption oracle DEC(sk, -), where (sk, pk) «—
KGEN(1%) have been produced by the key generator. The adversary also gets a
description of the relation R and the message distribution M. A message m is
sampled according to the distribution M(pk) € M and encrypted under pk to
ciphertext ¢ « ENC(pk, m;r). The adversary starts the attack on the ciphertext
¢, the decryption oracle and some information about the message m in form of the
value h « hist(m) of an efficiently computable probabilistic function hist. This
function can be formally regarded of part of the distribution M. The adversary
finally outputs a public key pk™, possibly for a different yet polynomially related
security parameter, and a ciphertext c*.

? The definition in [DDNOO] lets the relations include another string chosen by the
adversary, mainly to deal with the case of symmetric encryption schemes. All our
positive and negative results for public-key encryption and signatures remain valid
for this extension.



Let Tenc(A, M, R) be the probability that (pk,c) # (pk*,c*) and that there
exists some m*, r* such that ¢* = ENC(pk*, m*;r*) and R(pk, m, pk*, m*,c*) for
the relation R. We call this a related-ciphertext attack. Here, as usual for non-
malleability definitions, R may implicitly depend on the encryption scheme itself
and some security parameter. However, we do not demand that m # m*; it
suffices to produce a different key/ciphertext pair.

As explained in the introduction, the usage of the encryption scheme as a
commitment may result in different attacks and success goals, e.g., the adver-
sary may be obliged to actually open her ciphertext after seeing the opening
of the original ciphertext. Therefore, let mopen (A, M, R) denote the probability
that A after the first stage, on input a* and values m,r, also returns m*,r*
such that ¢* = ENC(pk*, m*;r*) and R(pk, m, pk*,m*,c*) = 1. This is called a
related-opening attack. Write mgk-open(A, M, R) for the probability that A for
input o* and the secret key sk returns sk* such that DEC(sk",c*) = m* and
R(pk, m, pk*,m*,c*) = 1 in a so-called related-key-opening attack. The three
cases are described informally in the middle column in Figure 1.

A gets pk, ¢, oracle DEC(sk, -) and ... S gets pk [and possibly

oracle DEC(sk, -)] and. ..

wéil)c A outputs pk*, c* S outputs pk, ¢/, m’,r’

7r<()'p)en A outputs pk™, c*, then m*, r* after m,r S outputs pk,c’,m’,r’
wéllzopen A outputs pk™, ¢*, then sk* after sk S outputs pk',c’,m’,r’, sk

Figurel. Overview of Attack and Simulation Modes for Encryption

Sitmulation Model. To capture the idea of the user’s ciphertext not helping to
produce a ciphertext of a related message we define a simulator & which is
supposed to be as successful as the adversary but without seeing the ciphertext.
S gets as input a public key pk and descriptions of the relation and the message
distribution, but does not get access to a decryption oracle. Then, a message m
is sampled according to M(pk) and algorithm S receives h « hist(m) as input.

Depending on the adversary’s attack mode, the simulator’s task becomes
increasingly challenging such that a successful simulator for a security level au-
tomatically constitutes a simulator for a lower level. Precisely, the simulator is
supposed to output a key pk’7 a ciphertext ¢/, a message m’ and randomness r’
(if the adversary runs a related-ciphertext or a related-opening attack),® and a
key pk, a ciphertext ¢/, a message m/, a random string 7’ and a secret key sk’
(if the adversary runs a related-key-opening attack). Again, see Figure 1 for an
overview.

3 For some of our negative results we use a milder requirement and let the simulator
only output pk’,c’. This even strengthens these hardness results.



Concerning the auxiliary power of the simulator there are two possibilities.
One version is to give the simulator, like the adversary, additional access to the
decryption oracle. We call this an assisted simulator. This reflects the approach
that the simulator should have comparable power as the adversary. The other
possibility is to deny the simulator access to DEC. We call such simulators stand-
alone simulators. This approach follows the definition of [DDNO00).

Although the definition with assisted simulators appears to be more intu-

itive at first, it is not clear that giving the simulator access to DEC captures
the “right flavor” of complete non-malleability. The additional power may for
example allow to prove schemes to be secure which are completely malleable
in a natural sense. While this question has somewhat been settled for chosen-
ciphertext security, where this additional power is acceptable, our separation
of complete non-malleability from chosen-ciphertext security means that these
arguments cannot be transfered without precautions. Instead, a conservative ap-
proach for designing schemes is therefore to rely on stand-alone simulators, as it
suffices for our solutions in the random oracle model for example. We note that
our impossibility results hold for both cases, although in a slightly weaker sense
for assisted simulators.
Let both 7g,.(S, M, R) and g, (S, M, R) denote the probability that ¢’ =
ENC(pk,m/;7') and that R(pk,m,pk',m’, ) = 1 in the first and second simula-
tion experiment, respectively. Similarly, 7, (S, M, R) stands for the proba-
bility that ¢’ = ENC(pk ,m/;7"), m’ = DEC(sK, ') and R(pk, m, pk',m’,¢’) = 1 in
the third simulation experiment.

Definition 1. A public-key encryption scheme is completely non-malleable (for
stand-alone or assisted simulator) with respect to kind € {enc, open, sk-open},
distribution class M and relation class R, if for any adversary A there exists
a (stand-alone or assisted) simulator S such that for any distribution M € M
and any relation R € R the absolute difference |Tina(A, M, R) — 7},,.4(S, M, R)]|
is negligible.

In the sequel, when speaking of completely non-malleable encryption schemes
we refer to related-ciphertext attacks and menc(A, M, R), 7., .(S, M, R). The def-
initions for completely non-malleable encryption (and signatures in the next

section) can be extended in a straightforward way to the random oracle model.

3.2 Signatures

The attack scenario for completely non-malleable signature schemes resembles
the setting of adaptive chosen-message attacks known from regular signature
schemes.

Discussion. Defining the attack model for completely non-malleable signature
schemed as outlined above, it seems that the adversary can always generate a
new signature under a new public key, i.e., the adversary can naturally generate
a new key pair and sign some message with the self-generated secret key. As

10



explained, this attack can be confined as in the example of unknown-key attacks
[BWM99] where the adversary is supposed to find a matching key pair for a
given message and a given signature. Here we do not restrict the adversary’s goal
in such a way. First, we do not want to give up generality and exclude certain
application scenarios, e.g., signatures encrypted together with the message under
a malleable encryption scheme, where the message is not known but the signature
may still be transformable by permeating the malleable ciphertext. Second, if the
adversary can trivially output a signature, i.e., without relying on the original
signature, then this does not violate the idea of (complete) non-malleability and
we should therefore be able to prove this formally as well.

Attack and Simulation Model. At the outset of the complete non-malleability
attack the adversary A gets as input the description of the relation R and a ver-
ification key vk, generated together with the secret signing key sk by KGEN(1%).
The adversary is then allowed to query a signature oracle SIG(sk, -) about mes-
sages of her choice. For definitional reasons we let the signature oracle prepend
the verification key vk and the message m to each signature reply s for such a
query. The adversary finally outputs some verification key vk*, a message m*
and some signature s*. Define mgg(A, R) as the probability that s* is a valid
signature for m* under vk*, i.e., VF(vk", m*,s*) = 1, that (vk*, m*, s*) is differ-
ent from any previously given answer (vk, m, s) of the signature oracle, and that
R(vk, vk*, m*, s*) holds for relation R from the class R.

The simulator only gets vk and the relation as input and is supposed to output
atriple (vk',m/, s") without having oracle access to SIG(sk; -). Let 7, (S, R) be the
probability that s’ is a valid signature for m’ under vk’ and that R(vk, vk’, m’, s')
is satisfied. The attack and simulation model is outlined in Figure 2.

A gets vk, oracle SIG(sk,-) and ... S gets vk and ...

(r)

Tes | A outputs vk™,m”, s* S outputs vk',m’, s’

Figure2. Overview of Attack and Simulation Mode for Signatures

Similar to the encryption case one could also distinguish between stand-
alone simulators (as defined here) and assisted simulators (which additionally get
access to the signature oracle). In the latter case one would have to unorthodoxly
extend the model to allow the adversary to ask for a “challenge signature” which
the simulator is denied. We do not follow this approach here as our negative
results would hold for this case as well, and our constructions in the random
oracle already work for stand-alone simulators.

Security Definition. The idea is now to say that for any adversary there is a
simulator such that the success probabilities differ only insignificantly. But with
this definition a signature scheme could be completely non-malleable and yet be
insecure in the sense of unforgeability, e.g., if it is easy to derive the secret key

11



from the verification key. Therefore, we also throw in the mild assumption that
the signature scheme must be unforgeable under key-only attacks, i.e., it must
be infeasible on input vk (but no signature oracle) to find some message together
with a valid signature under vk.

Definition 2. A signature scheme is completely non-malleable for relation class
R if it is existentially unforgeable under key-only attacks and if for any adversary
A there exists a simulator S such that for any relation R € R the absolute
difference |msig(A, R) — 7¢,,(S, R)| is negligible.

Implications. We briefly discuss some consequences of the definition, showing
that the definition is powerful to reflect the notions of strong unforgeability
(i.e., where the adversary is also considered victorious if she finds a new sig-
nature under the original verification key to a message previously signed by
the signature oracle) or key-substitution attacks (where the adversary tries to
find another key vk™ to a valid triple vk,m,s), both under adaptive chosen-
message attacks. For this, let Rgg_unf(vk, vk*, m*, s*) be the relation such that
Rstr-unt(Vk, vk",m*, s*) = 1 iff vk = vk™; let Ryey-sub be the relation such that
Rkey-sub (Vk, vk*, m*, s*) = 1 iff vF(vk, m*, s*) = 1. Note that a successful attack
also requires VF(vk", m*, s*) = 1 by definition.

Proposition 1. Let (KGEN,SIG, VF) be a signature scheme which is completely
non-malleable with respect to R 3 Rgtruns. Then the scheme is strongly unforge-
able under adaptive chosen-message attacks.

Proof. Assume towards contradiction that there is an adversary A that executes
a chosen-message attack and refutes the strong unforgeability requirement. On
input vk and oracle access SIG(sk, ) adversary A returns with noticeable proba-
bility a forgery (m*, s*) under key vk such that s1G(sk, -) has never answered m*
with s*. Then A in particular mounts a complete non-malleability attack for rela-
tion Rggrunf in R and thus succeeds with noticeable probability mgig (A, Rstrount)-
Because the scheme is completely non-malleable there is a simulator S that
outputs a valid signature tuple (vk’,m’,s’) where vk’ = vk with noticeable prob-
ability, too. But S is only given vk and does not get access to a signature oracle.
Hence, S forges with noticeable probability a signature in a key-only attack,
refuting the presumption about the security of the signature scheme against this
kind of attack. O

Proposition 2. Let (KGEN,SIG, VF) be a signature scheme which is completely
non-malleable with respect to R 3 Ryey-sup. Then the scheme is secure against
key-substitution attacks.

Proof. The proof is almost identical to the previous one. Only this time consider
the relation Ryey-sub. Again, if there was an adversary running a key-substitution
attack with noticeable success probability mgig(A, Riey-sub), then there would be
a simulator S returning (vk’,m’, s) such that VF(vk,m’,s') = 1 with noticeable
probability, too. But & would not have access to a signature oracle and would
therefore forge a signature s’ for message m’ under vk in a key-only attack. 0O
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3.3 Extensions to the Random Oracle Model

The definitions for completely non-malleable encryption and signature can be
extended to the random oracle model. In this case, a random function H is chosen
at the outset and all parties, including encryption and decryption algorithm, or
signer and verifier, adversary, simulator etc. have oracle access to this function.
Even the relation and the message distribution may contain oracle queries. We
note the simulator S must also succeed with respect to the given oracle H, i.e.,
the simulator does not have the possibility to choose oracle values. Such oracles
are called non-programmable [Nie02].

4 Summary of Results

In this section we summarize our (positive and negative) results. For better
comprehensibility the results are stated in an informal way. The formal results
and technical details can be found in Sections 5, 6 and 7.

Regular Non-Malleability and Relations over Messages Only. We show that ex-
tending the relations in the definition of [DDNO0O] for regular non-malleability,
i.e., where the adversary does not tamper the public key, to include the given
public key pk (in addition to the messages m, m*) can be fatal to security:

Theorem 1 (informal). There is an encryption scheme which is non-malleable
with respect to Rumsg = {R(m, m*)} but which is malleable with respect to some
relation Ryi(pk, m, m*).

Hardness of Constructions for General Relations. Here we discuss our negative
results for constructions of completely non-malleable schemes where, in contrast
to the previous case, the adversary is allowed to output another key pk*. We show
that there are relations for which completely non-malleable schemes are hard to
construct. Although we prove this result for a specific set of “bad” relations, we
note that the implication carries over to any class where such relations can be
“somehow embedded” in relations of the class.

Theorem 2 (informal). Public-key encryption schemes which are completely
non-malleable according to black-box stand-alone simulators and general rela-
tions, do not exist.

Note that the previous theorem assumes that the simulator is stand-alone.
For assisted simulators, which are granted access to DEC, we can show the same
result for relations which are efficiently computable relative to an oracle. We
note that the black-box simulator does not have access to this oracle directly,
but only through the relation. This corresponds to the case that the simulator
can efficiently compute the relation (via black-box access) but is denied the
description of the relation.

Theorem 3 (informal). Public-key encryption schemes which are completely
non-malleable according to black-box assisted simulators and general relations
(relative to an oracle), do not exist.
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The results about encryption easily transfers to signatures:

Proposition 3 (informal). Signature schemes which are completely non-malle-
able according to black-box simulations for general relations, do not exist.

Yet, for signatures we can show that completely non-malleable systems for
general relations are impossible at all, even when allowing non-black-box con-
structions or if the simulator depends on the relation.

Theorem 4 (informal). There do not exist completely non-malleable signature
schemes with respect to general relations.

Constructions in the Random Oracle Model. On the positive side, solutions in
the random oracle for completely non-malleable schemes exist. And while OAEP
encryption [BR95] and Fiat-Shamir signatures [FS86] provably do not have this
property, slight variations of these schemes work. The basic idea to simply in-
clude the public encryption or signature key, respectively, to each hash function
evaluation. We append the term “with public-key hashing” to such modified
schemes:

Proposition 4 (informal). RSA-OAEP with public-key hashing is completely
non-malleable with respect to stand-alone simulators and any relations, in the
random oracle model.

A similar result holds for Fiat-Shamir signatures:

Proposition 5 (informal). Fiat-Shamir signatures with public-key hashing are
completely non-malleable with respect to general relations (except for essentially
those relations, for which the unconditional impossibility results of Theorem /
holds), in the random oracle model.

In both cases the proofs rely on the original results [BR95,FOPS01,PS00]
about the security against regular chosen-ciphertext attacks and chosen-message
attacks.

5 Regular Non-Malleability and Relations Over Messages
Only

In this section we present an encryption scheme which is malleable in an intuitive
sense, but which allows a non-malleability proof if the relations Rmsg (pk, m, m*) =
R(m,m*) in the class Rusg are only based on the messages and not on the given
public key. The example here follows a related construction in [DDNO00] to sep-
arate semantic security and non-malleability in the case of chosen-ciphertext
preprocessing attacks where the adversary can only access the decryption oracle
before receiving the challenge ciphertext. Indeed, our scheme is only secure with
respect to such attacks.

Although our counterexample holds for preprocessing attacks we can still
show that even in the setting where decryption queries are allowed after receiving
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the challenge, the problem remains hard. That is, in Section 6.5 we briefly discuss
that our impossibility result about black-box construction of completely non-
malleable schemes (Section 6) carries over to regular non-malleable schemes and
to relations R(pk, m,m*), i.e., if the adversary is not allowed to maul the public
key but if the relations depend on the given public key. Again, if the relation
solely depend on the messages then we know black-box constructions to achieve
basic non-malleability in this scenario.

To prove our separation result we start with the non-malleable encryption
scheme of Dolev et al. [DDNO00]. Most of the details of the encryption scheme
are irrelevant to our discussion here. We merely remark that this scheme has
a special simulator Sy which extracts the message mg of the adversary Ay by
running Ag on a prepared public key pkj (different from the given public key
pky) and a fake ciphertext cf, of a random message. With the chosen key pkj the
simulator is able to decrypt ciphertexts ¢ different from cf, although the latter
may fail with some negligible probability.

Modify the given encryption scheme as follows. We presume that only mes-
sages of n bits are encrypted. The key generation algorithm now also appends a
random string r < {0,1}™ to the original keys pk, sko and outputs pk = pkg||r
and sk = sko||r. To encrypt a message m € {0,1}" pick a random bit b and
encrypt mg = m if b = 0 and mg = m @& r if b = 1 under the original scheme
and public key pk,. Given the ciphertext ¢y append the bit b in clear and return
¢ = cg||b. To decrypt a ciphertext ¢ = ¢o||b decrypt ¢g under the original scheme
with sky to get mg and return m =mg if b=0and m=modrif b= 1.

For the following, we call a scheme strongly malleable with respect to R in a
key-only attack if there is a probabilistic polynomial-time adversary A such that
A on input any public key pk and any ciphertext ¢ of some message m always
outputs a ciphertext ¢* of a message m* such that R(pk, m,m*) is satisfied. The
specific relation for which we prove strong non-malleability is Rpk (pk, m, m*) =1
if m* =m @ r and pk = pky||r for some pk, and r € {0,1}".

We allow arbitrary message distributions as long as they are independent of
the given public key (as explained in Section 3.1). Recall that such distributions
are denoted by M indg.

Theorem 5. Assume trapdoor permutations exist. Then there is an encryption
scheme which is non-malleable with respect to Rymsg and Mpping in chosen-
ciphertext preprocessing attacks, but which is strongly malleable with respect to
Rpk and Mopp_ing in key-only attacks.

Proof. If trapdoor permutations exist then the constructed encryption scheme
above exist. We first show non-malleability with respect to relations over mes-
sages.

For any adversary A consider the following simulator S which uses the simula-
tor Sp of the original scheme as a subroutine. S gets as input a key pk = pky||r.
It runs Sy to prepare a key pky, and starts a simulation of the adversary on
pk' = pkj||r. Any decryption query ¢ = co||b in the preprocessing phase in an-
swered by chopping of the bit b and handing ¢y to Sy. This simulator returns a
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message mg and we forward m = mg for b =0 and m = mg @ r if b = 1 to the
adversary. We neglect the small error involved in this decryption runs.

Then, for distribution M € Mk ina @ message m is sampled and hist(m) is
forwarded to simulator who hands this information to the adversary. S also runs
Sp to get a ciphertext ¢, of some random message. S picks a bit b’ and hands
¢ = ¢p]|t to the adversary. Except with negligible probability this challenge
ciphertext ¢’ is different from each of the previous decryption queries.

The adversary finally outputs ¢* = ¢§||b*. If ¢ = ¢}, (and therefore b* # b')
then the simulator simply returns a random message m’ € {0, 1}™. If ¢§ # ¢{, then
the simulator invokes Sy to get the message mg. This fails only with negligible
probability. The simulator then outputs m’ = mg if b* = 0 and m’ = mg @ r if
b* =1.

Under the condition that ¢ = ¢, i.e., the adversary has flipped the appended
bit to encrypt message m* = m @ r, the simulator S outputs a random message
m’. In this case, Prob,, [R(m,m’)] = Prob, [R(m,m @ r)]. On the other hand,
given that c¢f # ¢ the derived message m’ equals the adversary’s message m*
encrypted in ¢*, and thus Prob[R(m, m’)] = Prob[R(m, m*)]. In both cases the
simulator therefore outputs a related message with almost the same probability
that the adversary succeeds. The scheme is therefore non-malleable with respect
to relations over messages.

Why is this scheme strongly malleable for relations spanning over the public
key? Clearly, an adversary A that gets a public key pk = pky||r and a ciphertext
¢ = ¢p||b of an unknown message m can output the ciphertext ¢* = ¢o||b® 1 of
the message m* = m @ r. This message is related to the original message in a
non-trivial way via the given public key, of course. Hence, the scheme is strongly
malleable with respect to relation Rpy. a

6 Hardness of Constructions for General Relations

In this section we discuss the hardness of constructions of completely non-
malleable schemes for general relation classes. For encryption schemes we show
that for certain relations over pk, pk*™ no solutions relying on black-box simula-
tors can exist. This argument can be easily transfered to similar relations over
pk,m* as well as to signatures. For signatures we can even prove unconditionally
that completely non-malleable schemes do not exist, although this result relies
on more complex relations which are more likely to be excluded by restricted
classes R.

We start by defining black-box simulation. While this formalization is neces-
sary to state the impossibility results precisely, the definition follows the usual
setting and the reader may initially skip this part.

6.1 Black-Box Simulations

The basic idea of black-box simulations for interacting machines [GMR89)] is
that simulator can only exploit the adversary’s program and the relation’s pro-
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gram via the input/output behavior (but the simulator can for example rewind
executions)

Machine Model. We assume that the simulator S is an interactive Turing ma-
chine [GMR89] connected by individual communications tapes to ¢ other in-
teractive Turing machines A; ;, i,j = 1,2,..., ¢, for some polynomial ¢ = ¢(k)
in the security parameter. At the outset the random tape of S is filled up with
randomness o. Also, ¢ random strings «; are chosen and «; is written on all ¢

tapes of machines A;1,...,A;q, i.e., all machines with index ¢ are initialized
with the same random string, yet for different indices ¢ the random tapes are
independent.

Some input I is written to the input tape of S which is then woken up.
Repeat the following steps until the simulator enters a halting state and writes
some output O on its output tape. S first performs some internal computation.
Then it writes a message on the communication tape of some machine A; j,
unless it is the first time S communicates with machine A; ;; in this case S must
write some input I; ; on the input tape of A;; and a special symbol on the
communication tape to start machine A; ;. In both cases, S goes idle and the
corresponding machine A; ; wakes up.

Once activated, A; ; internally computes the next message to be written on
the shared communication tape with & and returns to an idle state again after
having written the message. If A; ; halts instead and writes something on the
output tape, then this message is written on the communication tape with a
special symbol signalizing S that A; ; has stopped. S eventually wakes up again
and continues the computation.

Our impossibility result also relies on black-box relations, i.e., instead of get-
ting a description of the relation as input, we assume that another interactive
machine R is connected to S via a communication tape. This machine is ini-
tialized with a random tape p at the beginning of the execution and then the
simulator can interact with this machine as with A4; ; through the communication
tape.

We remark that the running time of S is the sum of all steps of all machines,
i.e., we charge the simulator also for the steps of machines A;; and R. Un-
less stated differently, S is polynomially bounded. We further note that we can
extend the setting to non-uniform algorithms such that each machine gets an

auxiliary input on a special tape (where A, 1,...,A; ; all get the same auxiliary
information).
Having access to ¢ identical copies A;1,...,A4;q allows the simulator to

mount reset attacks, despite the fact that interactive Turing machines keep state.
The simulator can somewhat reset the machine if it re-runs an execution with
some copy A; ; by giving the same input and answers to another copy of A, j
up to a certain point.

Black-Box Simulations. Consider an encryption or signature scheme and an

adversary A with oracle access to a decryption or signature oracle. We say that
S runs a black-box simulation of A and R on input I if S gets I as input, if R
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efficiently computes the function R for data written on the communication tape
(where the result is also written on the communication type), and if all machines
A; j run A’s polynomial-time program with the only exception that each of A’s
oracle query is written on the communication tape instead, and that each answer
of the oracle is read from this communication tape instead. We write S*R(1)
for both the actual process and the output O of S in such an execution.

We say that an encryption scheme is completely non-malleable according to
black-box simulations for distribution class M and relation class R if there is
a probabilistic polynomial-time interactive Turing machine S such that the fol-
lowing holds. For any adversary A mounting a related-ciphertext attack, any
distribution M € M, any relation R € R, the probability that S“R(pk) outputs
(pK,c',m',7") such that ¢’ = ENC(pK,m’;r’) and that R(pk, m,pk',m’,¢) = 1,
is negligibly close to menc (A, M, R). Here the probability is taken over the choice
of sk, pk (generated by KGEN), m and the random tapes o, a1, ..., g, p.

Analogously, we call a signature scheme completely non-malleable according
to black-box simulations for relation class R if there is a probabilistic polynomial-
time interactive Turing machine S such that the following holds. For any adver-
sary A and any relation R € R, the probability that SR (vk) outputs (vk', s’, m’)
such that vr(vk,s’,m’) = 1 and R(vk, vk, s’,m’) = 1, is negligibly close to
Wsig('A7 R)

For encryption the model allows furthermore to distinguish between stand-
alone and assisted simulators; in the latter case the simulator is also given access
to the decryption oracle.

6.2 Encryption and Stand-Alone Simulators

For our negative result we switch to the non-uniform machine model, i.e., we
assume that the adversary A, the simulator S and the relation R are all given by
a family of polynomial-size circuits. For the adversary the auxiliary information
consists of a sequence key of keys key € {0, 1}* of a pseudorandom function PRF.
The pseudorandom function PRF takes a key key € {0,1}* and any public key
pk generated by KGEN(1%) as input. Varying over all such key sequences gives us
an infinite set of adversaries. We also index the relations by such key sequences.
The pseudorandom function PRF takes a key key € {0, 1}* and any public key
pk generated by KGEN(1¥) as input. Since the function is pseudorandom for any
polynomial-size family of circuits the following holds. The circuit for parameter
k is given oracle access to a function PRF(key, -) for a random key key « {0, 1}*
and is allowed to adaptively query this oracle for values of its choice. Then the
circuit outputs a value pk not among those queries, and is either given a random
string as reply or the value PRF(key, pk). The circuit may continue to query the
oracle about different inputs and finally outputs a guess bit. The advantage is the
absolute difference between the probabilities that the circuit outputs 1 in either
case. This advantage is known to be negligible for pseudorandom functions.
Now we define the adversary and the relation in detail. The message dis-
tribution is arbitrary and we assume that hist returns the empty output. On
input pk, possibly different from the simulator’s input pk, and oracle access to
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DEC(sk, -) the adversary Age, for security parameter k and key key € {0,1}*
works as follows:

— Apey computes (Myest, Ttest, w) = PRF(key, pk) and encrypts the first part to
Crest = ENC(Dk, Miest; Trest) and passes ciest to the decryption oracle.

— If the oracle’s answers is different from myees then Agey halts with output L.

— Else Agey computes (sk*, pk*) = KGEN(1*, w), i.e., the key generator’s output
for (pseudo)randomness w.

— Apey computes ¢* « ENC(pk*, 0F) and outputs (pk*, c*).

The relation Rge, for input (pk, m, pk*, ¢*, m*) returns 1 if and only if the pseu-
dorandom function PRF(key, pk) returns (Miest, Test, w) such that KGEN(1¥, w)
yields the public key pk* (and an arbitrary secret key). In particular, Rge, only
depends on the keys pk, pk*. One can easily modify the construction to get re-
lations depending on pk and m* only (as done for instance for the result in
Section 6.5).

For the proof we also require that the scheme is semantically secure (against
key-only attacks) with respect to the uniform distribution Myuir on messages of
superlogarithmic length, and for the equality relation Ruysg-cq(pk, m, pk*, m*, c*) =
1 iff m = m*. Complete non-malleability for this distribution and this relation
already implies semantic security against key-only attacks.

Theorem 6. Encryption schemes which are completely non-malleable accord-
ing to black-box stand-alone simulators for M 3 Mypnir and R O {Ryeylkey} U
{Rimsg-eq} do not exist.

The theorem even holds if the simulator is only supposed to output pk’,c
(but not m/,r’ as required by Definition 1). The intuition of the construction
is that the black-box simulator is not able to answer the test ciphertext for the
given public key pk, but only on self-chosen keys pk different than pk. Thus, the
simulator never gets to see the adversary’s key pk* for pk, and predicting this
key otherwise is infeasible because of the pseudorandomness of PRF.

Proof. Assume that there exists a completely non-malleable encryption scheme
which is provably secure via a (non-uniform) black-box simulator S. The exis-
tence of a secure encryption scheme implies that there are pseudorandom func-
tions [IL89,HILL99,GGMS86] and therefore adversaries Apge, and relations Ry,
as described above exist. Note that any adversary Age, outputs a related input
with probability 1 in such an attack for relation Rjey for the same key sequence.

By assumption the black-box simulator approximates the success probability
of any adversary well. Here we look at the behavior of this simulator when run
on the adversary Ay, and the relation Ry, for the same key sequence key, but
this time each key key in the sequence is chosen at random. Then the simulator
must also succeed with respect to such an adversary and relation, specified by
the sequence of random keys.

We first claim that the probability that there is some execution \4; ; for input
pk for which the black-box simulator is able to return myes; to the adversary, is
negligible. Presume for sake of contradiction that this probability is noticeable.
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We show that we can then use the simulator to distinguish the value of the
pseudorandom function with noticeable advantage from a random value. The
description below can be easily turned into a corresponding circuit.

We are given oracle access to a pseudorandom function PRF(key,-) for a
random secret key key. We first generate a random key pair (sk, pk) < KGEN(1%)
and pass pk as the challenge to the function oracle. We receive either a truly
random values (Myest,0,70) or the pseudorandom values (Miest,0,70); in both
cases wy is considered to be pseudorandom.*

Next, we pass pk to the simulator and use the pseudorandom function oracle
to run an emulation of the black-box simulator by supplying all actions of the
(copies of the) adversary Agey and Rgey. To do so we perfectly imitate the be-
havior of the adversary and the relation for random tapes o, ..., aq, p except
for two points: First, if in some execution the machine is supposed to evaluate
PRF(key, ) for some pk # pk then we simply query the given pseudorandom
function oracle instead. Second, if a machine is supposed to evaluate the func-
tion at pk = pk then we use the given values (myest.0, 70, wo) instead of querying
PRF(key, -) about pk. We continue the simulation until the simulator eventually
stops and returns pk, ¢’ (and possibly m/’, 7).

If the probability that the simulator answers a decryption query cest correctly
for an execution involving pk drops significantly when the values (myest,0,70) are
truly random, then it is easy to derive a distinguisher for the pseudorandom
function. Namely, return 1 if and only if the simulator returns such a valid
decryption. For pseudorandom values (myest,0,70) this would happen with no-
ticeable probability by assumption, whereas for random (mest,0,70) this would
then occur with negligible probability only.

In conclusion, if the probability that the simulator decrypts correctly ciest
for pseudorandom values is noticeable, then it must also be noticeable if we
use random values. This, however, would contradict the semantic security for
distribution Mypnir and relation Rpggeq. Specifically, given a public key pk and
ciphertext ¢ of a random message, run the emulation above for pk and guess the
execution (7, j) for which the simulator first returns such a valid decryption. In
this execution return ciest = ¢ on the first initialization of A; ;. Stop and return
the simulator’s decrypted message for this execution if, at some point, S returns
a message in this execution. Return a random message otherwise. Apparently,
the probability of satisfying the relation Rieg.cq it this case would be noticeably
larger than if one is not given the ciphertext ¢ at all (in which case equality
holds with negligible probability only for the unknown random message with
superlogarithmic length). This refutes semantic security of the scheme.

From now on we can condition on the event that the simulator never returns
a valid decryption for a run on pk. Under this condition the probability (over
the choice of the pseudorandom function key) that the simulator at some point
runs (either at the end or during the execution) the relation algorithm on some

4 Usually, the output is either completely random or pseudorandom. It is not hard to

see that for pseudorandom functions it is also hard to distinguish outputs which are
partially random from entirely pseudorandom outputs.
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pk' such that KGEN(1*,wg) = pk/, is negligible. If this probability was noticeable
then it would remain noticeable if the value pseudorandom function PRF(key, -)
would return (muest 0,70, wo) for a truly random wy instead. Else, following the
argument above, it would be easy to derive a distinguisher for the pseudorandom
function.

So suppose that the probability (now over the random choice of wg) that the
simulator runs the relation algorithm on some pk’ such that KGEN(1*, wg) = pk is
noticeable. Recall that this probability is under the condition that the simulator
never answers the adversary’s decryption request correctly, and therefore the
simulator never gets any information about wg. Hence, it suffices to show that
for each pk’ the probability that KGEN(1¥, wy) returns this public key is negligible,
where the probability is over the secret choice of wy.

If the probability for KGEN(1¥, wp) returning a given public key was noticeable
then we can easily break the semantic security of the scheme. Namely, if this
was the case then for a given challenge pair pk, ¢’ we pick wg at random and run
KGEN(1%, wp). By assumption this yields some output (sk, pk) such that pk' = pk
with noticeable probability, and we are therefore able to recover the secret key
to the given key pk’ with noticeable probability. This, of course, contradicts the
semantic security of the scheme.

Overall, the black-box simulator’s success probability is negligible, whereas
the adversary always succeeds. Hence, the encryption scheme cannot be com-
pletely non-malleable. d

6.3 Encryption and Assisted Simulators

In this section we show that black-box simulations remain infeasible for relations
which are efficiently computable relative to an oracle O, even if the simulator gets
oracle access to the decryption oracle. Concerning the relations, the relativized
result is slightly weaker than the result for stand-alone simulators (albeit the
simulator now has more power). We remark that the simulator can still efficiently
compute the relation via black-box access. Yet, since we consider the oracle to
be a part of the relation, the simulator is not given access to this oracle directly,
but merely through the relation.

We specify the adversary and the relation in detail. The message distribution
is again the uniform distribution Myy;¢ on strings of superlogarithmic length and
we assume that hist returns the empty output. The adversary does not make any
decryption queries and thus expects to receive a key pk, possibly different from
the simulator’s input pk, and a challenge ciphertext ¢ immediately. Then, the
adversary Age, for security parameter k and key key € {0, 1}* works as follows:

— Agey first computes m* = PRF(key, 0, pk) and (w*,7*) = PRF(key, 1, pk, ).

— Next it computes (sk*, pk*) = KGEN(1¥,w*), i.e., the key generator’s output
for (pseudo)randomness w*, and ¢* = ENC(pk™, m*,r*).

— The adversary outputs pk*, c* and stops.

The relation Rkoey for input (pk,m, pk*,c*,m*) returns 1 if and only if m* =
PRF(key, 0, pk) and if there exists an r such that, for ¢ = ENC(pk, m, 1), we have
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(w,7) = PRF(key, 1, pk,c) and (sk*, pk*) = KGEN(1*,w). This relation is com-
putable in exponential time or, given on oracle O checking the second condition
on input (pk, m, pk", key), in polynomial time relative to the oracle.

We again assume that the encryption scheme is semantically secure (against
key-only attacks) with respect to Mynis and the equality relation defined by
Runsg-eq (Pk, m, pk*,m*, c¢*) = 1 iff m = m*.

Theorem 7. Encryption schemes which are completely non-malleable according
to black-box assisted simulators for M 3 Myyip and R 2 {Rkoey|key} U{Rumsg-eq}
do not ezist.

In contrast to the case of stand-alone simulators, we are not aware if the
theorem remains true if the simulator is only supposed to output pk’, ¢’ (and not
m’,r’ as we require here).

Proof. 1t is clear that the adversary Age, in an attack always outputs pk™, c*
which satisfy the relation Rkoey. We show that nay black-box simulator S, even if
given access to DEC, fails with overwhelming probability for randomly chosen key
key. Note that we apply the pseudorandom function at two places; prepending 0
or 1, respectively, makes these evaluations essentially independent. We therefore
assume below for simplicity that we deal with two independent pseudorandom
functions, described by keys key, and key,. Formalizing and proving this is easy
and omitted.

We first claim that the simulator, even with access to DEC, fails to ask the
relation Rkoey for an input (pk,m, ﬁc*,é*,m*) during the black-box simulation
such that the relation returns 1. Assume that this was not the case, and the
probability was noticeable. In particular, S manages to find an input such that
m* = PRF(key,, pk) with noticeable probability. We show that this refutes the
unpredictability of the pseudorandom function.?

For deriving the contradiction to the unpredictability we first change the
black-box simulation stepwise. In the first step, we let (each instance (i,5) of)
the adversary on input pk, ¢ pick independent random values (w*,r*) instead
of computing it as the output (w,r*) = PRF(key,, pk,¢) of the pseudorandom
function. There is one exception, though: If an instance is run for a previously
queried input pk,¢ then we let this copy use the same pair (w*,r*) as before,
even if this input appeared for a different instance. In any case, Ay, always uses
PRF(keyy, -) to compute the value m*.

With this modification the probability that S queries the relation about
an input such that m = PRF(key,, pk) remains noticeable according to the as-
sumption. If this were not the case it would be easy to build a distinguisher
for the pseudorandom function. Namely, we are given oracle access to either
PRF(key;,-) or a random function and are supposed to tell both cases apart.
For this, we “simulate the simulator” by picking a key key,, generating a key
pair (sk, pk) «+ KGEN(1*) and picking at random an index j between 1 and the

® Unpredictability says that it is hard to output z and an correct image y for the
pseudorandom function, even if one has queried the function about other values
2’ # x before. This property is implied by the pseudorandomness of the function.
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(at most polynomial) number of queries the simulator makes to Rkoey. We run
the black-box simulation but use the given (random or pseudorandom) function
oracle to compute the pairs (w*, ) if the adversary is invoked on pk,c. We an-
swer the first j — 1 queries to Rkoey with 0 and use the secret key sk to reply to
decryption queries. If S puts the j-th query (pk,m, ﬁc*,é*,m*) to the relation
then we stop with output 1 if and only if m = PRF(key,, pk) for the chosen key
keyq .

Clearly, if S manages to put a query such that m* = PRF(key,, pk) in the
original setting, then we also output 1 with noticeable probability if the given
function oracle is pseudorandom. Namely, in this case we guess the smallest query
for which this happens correctly with noticeable probability, and in this case we
perfectly simulate the original setting. If, on the other hand, the probability that
the simulator fails to find such values if we use random values (w*,r*) instead,
except with negligible probability, then we output 1 with negligible probability
only in case the given function oracle is random. Hence, both cases would be
easy to distinguish.

In the next modification of the simulation experiment we let each adver-
sarial instance output an encryption c¢* = ENC(pk™,0% r*) instead of ¢* =
ENC(pk",m*,r*). We claim again that this cannot decrease the simulator’s suc-
cess probability for a relation query with m* = PRF(key,, pk) by more than a
negligible amount. Else it would be straightforward to derive a contradiction to
the semantic security of the encryption scheme, with a similar “simulation of the
simulator” technique as before and access to an encryption oracle for random
key pk*.

Note that the adversary’s behavior is now independent of m* and of the
pseudorandom function PRF(key,, ). Hence, we can mount the following attack
against a given function oracle PRF (key,, -), trying to predict a value PRF(key, pk)
with noticeable probability. We initially guess again an index j for the simula-
tor’s query to the relation. We start the experiment for random values (sk, pk) «—
KGEN(1¥) and key,. Each decryption query is answered with the help of sk, each
run of an adversarial instance is simply answered by (consistent yet) indepen-
dent random values pk*, ENC(pk*,0% r*). Observe that A’s reply is computed
independently of m* and we do not query the the function PRF(key,, ) at any
point. For the first j — 1 queries of S to the relation return 0; for the j-th query
(pk,m, ﬁc*,é*,m*) we stop immediately with output (pk,m*).

Clearly, by the assumption about the simulator, we have a noticeable success
probability that indeed 7* = PRF(key,, pk). And since we have never queried the
function oracle before, we derive a contradiction to the unpredictability of the
pseudorandom function. Hence, our initial assumption must have been wrong.
This also shows shows that the simulator will not manage to eventually find
values pk', ¢/, m’, r’ satisfying the relation, except with negligible probability. O

6.4 Signatures

The result from the previous sections (for stand-alone simulators) can be easily
transfered to signatures. This time the adversary tests the given oracle by letting
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it sign a fixed messages myes; = 0F and finally outputs a key vk* (together with
a signature s* for message Mmest) such that KGEN(1%, w) returns vk”*. Details are
omitted.

Proposition 6. Signature schemes which are completely non-malleable accord-
ing to black-box simulations for R O {Rkey|key} do not exist.

Yet, for signatures we can show that completely non-malleable systems for
general relations are impossible at all, even when allowing non-black-box con-
structions or if the simulator depends on the relation. For this let Rgpcoqe be
such that Rencode(vk, vk*,m*,s*) = 1 if and only if m* = vk||m||s encodes a
valid signature s for m under vk, i.e., such that vr(vk,m,s) = 1.

Theorem 8. There do not exist completely non-malleable signature schemes
with respect to class R 3 Rencode-

Proof. Suppose that there is such a signature scheme. Consider the following
adversary A which, on input vk, first queries the signature oracle S1G(sk, -) about
m = 0F to get a valid signature s for m under vk. The adversary then generates
a key pair (sk*, vk*) « KGEN(1*) and a signature s* for m* = vk||m||s under
vk*. She finally outputs vk™, m*, s*.

The adversary above generates a related output with probability 1 for relation
Rencode- But then there must be a simulator S such that S for input vk also
outputs a valid tuple vk, m’, s’ under relation Rencode With probability negligibly
close to 1. That is, the simulator’s output m’ must encode a valid signature s
of some message m under the given public key vk with probability almost 1.
In contrast to the adversary, the simulator does not get access to a signature
oracle, though. Hence, with high probability S produces a valid signature given
the public key vk only. This, however, contradicts the extra security property of
the completely non-malleable scheme being unforgeable in key-only attacks, and
there cannot exist such a signature scheme. ad

The usage of relation Rgpcodqe for our negative result is not surprising: a
signature oracle always leaks some information in the sense that it reveals that
the signature s for a message m stands in a relation to the public key vk via
VF(vk, m,s). These information is not available to the simulator, though. As for
our positive result in the next section, we will therefore exclude most of the
relations based on VF.

6.5 Revisiting Relations over Messages Only

Inspecting the impossibility proof for encryption schemes and black-box simula-
tors enables us to extend our separation example of Section 5 for non-malleability
for relations over messages only. There we have shown that, if the relation can
depend on the public key, the notion of non-malleability for such relations con-
stitutes a strict extension for chosen-ciphertext pre-processing attacks (uncon-
ditionally). Here we show that the same is true for post-processing attacks for
black-box (stand-alone) simulators.
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We slightly change the construction of the previous sections for stand-alone
simulators and let the pseudorandom function return tuples (Mmgest, 'test, m™, )
instead of (Myest, Ttest, w). The adversary finally outputs ¢* = ENC(pk, m*;r*)
and we define the relation to be satisfied iff ¢* is the ciphertext under pk ob-
tained by encrypting the message m* contained in the pseudorandom value for
pk, using randomness 7*. The same argument as before shows that the simulator
will not be able to learn this ciphertext from the adversary. Hence, the simu-
lator’s probability of accidently outputting a ciphertext of this message m* is
significantly less than 1, the adversary’s success probability. We will now take
advantage of this modification for our negative result about basic non-malleable
encryption schemes and relations ranging over the public key.

Let {Rpx key|key} be the set of relations such that Ry key(pk, m,m*) = 1 iff
m* is part of the output PRF(key, pk). Basically, the result then says that one
cannot construct black-box simulators for these relations, even under chosen-
ciphertext post-processing attacks. On the other hand, the [DDNO0O] construction
is in fact a black-box construction for such attacks and relations Ry, over
messages only.

Proposition 7. Assume trapdoor permutations exist. Then there is an encryp-
tion scheme which is (completely) non-malleable according to black-boz, stand-
alone simulators for Rysg and Mpping. Yet, encryption schemes which are
(completely) malleable according to black-box, stand-alone simulators for R 2
{Rpk.key| key} do not exist.

We are not aware if our results for assisted simulators can be applied as well,
and if similar separations hold for such simulators.

7 Solutions in the Random Oracle Model

In this section we show how to modify schemes like RSA-OAEP and Fiat-Shamir
signatures to get efficient completely non-malleable schemes.

7.1 Encryption

Recall from Section 2.2 that, in RSA-OAEP, a message m is encrypted under
public key (N, e) and in presence of two random oracles G, H by computing

y= (m||0" & G(r) || (r® Hm|0F®G(r)) € Zj.

and then outputting the ciphertext as ¢ = y® mod N. Here we slightly mod-
ify this by incorporating the public key into the hash function evaluations for
random oracle G. Call this RSA-OAEP ., 1,:

Key Generation: Generate an RSA modulus N and an RSA exponent e.
The public key is given by pk = (N,e) while the secret key is given by
d = e~ mod p(N).
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Encryption: To encrypt a message m pick a random string r and compute
y = (m[|0* ® G(pk,r)) || (r& H(m|0" © G(pk, 1)) € Zy.

Return ¢ = y® mod N. We further assume that the position of the (at least)
k zero-bits in the left part is uniquely determined by the public key.

Decryption: To decrypt ¢ € Zj compute y = ¢ mod N and parse y as
(m||0* & G(pk,7)) || (r ® H(m||0* ® G(pk,7))). Compute the hash value
of the left part under H and xor it to the right part to retrieve r. Then
compute the exclusive-or of the left part and G(pk, 7). If the least significant
k bits are all 0 then output m.

We also assume that the adversary may only output well-formed RSA keys,
i.e., where e is relatively prime to ¢(NV), independently of N. Put differently,
we presume that decryption is unique. As discussed in Section 3.1 we do not
consider the enforcement of this property to be an issue of non-malleability.

Proposition 8. Under the RSA assumption RSA-OAEP.,,, with well-formed
keys is a completely non-malleable encryption scheme for any distribution class
M and any relation class R.

Proof. The proof makes use of the plaintext-extractor in [BR95,FOPS01] which
basically allows to replace the decryption oracle by inspecting the queries to the
random oracles and thereby retrieving the plaintext from a ciphertext. Here, we
slightly modify the original extractor and take the public-key prefix for hashes
into account and also let the extractor return both the plaintext and the ran-
domness.

The plaintext-extractor PE here takes as input the well-formed RSA-key
(N,e), avalue c € Z} and two lists (7;, G, )i=1,2,... and (J;, Hs, )i=1,2,... of queries
and answers to oracles G and H. From the lists it first filters out those where
(N, e) is not a prefix of v;. With the remaining pairs it generates all possible
ciphertexts (&;]|y; & H(gi)e mod N and checks if the given ¢ is among them, and
if the k least significant bits of G, @ d; are all zero. If it finds such a pair then
it outputs G, @ d; (without the & least significant 0-bits) as well as v; as the
random bits. Otherwise P& returns 1.

As in [FOPS01] it follows that the extractor’s answer is unique and, given
that oracles G, H have been queried to produce ¢ under (N, ), then the extractor
perfectly simulates the decryption oracle. This holds even if the extractor is given
an arbitrary, yet well-formed key (N*,e*) instead.

Our proof also relies on the observation in [FOPS01] that RSA is a so-called
set partial-domain one-way function: Given an algorithm A that gets as input
some well-formed key (N,e) and a random ¢ = (s||t)® mod N the algorithm
is supposed to output a list including s. That is, the algorithm should find a
list including parts of the preimage of ¢. Denote by Succ® P?~"(A) the success
probability of A. Fujisaki et al. [FOPS01] show that, as long as the length of s
is large enough, e.g., as in case of RSA-OAEP, every polynomial-time algorithm
A only has negligible success probability under the RSA assumption.
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We now show how to construct a simulator S from any adversary A such
that the simulator outputs related data almost with the same probability as
A. Fix some distribution M and relation R. The simulator gets a public key
pk = (N, e) and oracle access to G, H. It starts a simulation of A on pk. The
simulator records each hash oracle query of A to G or H, retrieves the answer
for this query from its own oracle and hands this reply back to the adversary.
Each decryption query about some ciphertext is answered by running PE on
(N, e), the ciphertext as well as the list of queries and answers to G and H. We
assume that the simulator strips off the randomness from the answer of PE.

In the second phase a message m «— M(pk) is sampled and h < hist(m) is
given to the simulator. S passes a random value ¢ € Z}; and h to the adversary.
Each further oracle calls, either to G, H or the decryption oracle, are answered
as before. If the adversary finally outputs a well-formed pk* = (N*, e*) and a
ciphertext ¢* then the simulator invokes once more PE on pk*, ¢* and the query
lists to get m*, 7*. It outputs pk’ = pk*, ¢ = ¢*, m’ = m*, v’ = r* and stops.

To show that the simulator approximates the adversary’s success probability
closely, we use the approach in [FOPS01] and consider the following sequence of
games, starting from A’s attack with decryption queries and transforming it into
the simulation above with plaintext-extractions. In each game GAME; we denote
by m; the adversary’s success probability menc(A, M, R) in this game. Below we
also use the notation s = m||0* ®© G(pk,r) and t = r @ H(s) for the left and right
part of ciphertexts.

In A’s original attack (GAMEg) and the subsequent games we add an ar-
tificial step at the end, when the adversary has output pk*,c*. We then run
an all-powerful decryption oracle DEC* which, given a well-formed key (N*, e*),
computes (presumably in exponential time) the decryption key d* and decrypts
c* to m* and r*. Note that all values d*, m*,r* are uniquely determined given
pk*,c* and H,G because the key is well-formed. This extra steps enables us to
relate the simulator’s final run of P& with a decryption request to DEC*, i.e.,
while morphing the actual attack into a simulation we will replace this decryp-
tion oracle DEC* by the (efficient) plaintext-extractor.

GAME: Describes the actual attack of A when given pk, oracle access to G, H
and a decryption oracle DEC(sk, -), a ciphertext ¢ = (s||t)® mod N for the
sampled message m «— M(pk) and h < hist(m). When the adversary has
output pk*, c* run DEC* to get m*,r*. Let mg = Tenc(A, M, R).

GAMEy-: ¢ Execute GAME, but if the adversary finally outputs pk* # pk but
c¢* = c then let DEC* return L instead. Note that for a well-formed key
pk* = (N*,e*) the ciphertext ¢ uniquely determines ¢ = (s*|[t*)¢” mod N*.
Given s*,t* oracles G, H then pin down r* and m™*. In other words, s*,r*
are a function of pk* (for given parameters ¢, G, H). Hence, the probability
that the adversary finds some pk* # pk during the attack such that the least
k significant bits of s* ¢ G(pk",r*) —whose positions are fixed once the key

5 Our games here correspond to the games in [FOPS01]. Yet, this is an extra step
which does not appear there.
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is chosen— equal 0 for the given ¢, is negligible. Note that for pk* = pk the
bits are certainly 0%, but for pk* # pk the value G(pk*,r*) is independently
distributed. We derive that |mg — mo«| is negligible, too.

GAME;: Run GAMEg« with one exception: Preselect a value r and answer G, =

G(pk,r) at the outset of the execution, use them for creating the ciphertext
¢ and substitute each further query to G about (pk,r) by the answer G,.
Note that w1 = mg+ because r and G, are still random.

GAME;: Run GAME,, only this time do not replace further queries to G about

r by the preselected value G, but answer with the true value G(pk,r) in-
stead. Still, we use G, to compute the ciphertext. Then, unless the adversary
or the decryption oracles query oracle G about pk,r during the execution
(event AskGz), we have m = ma. Therefore, |m; — m2| < Prob[AskG;]. Note
that if the adversary was allowed to submit the challenge ciphertext ¢ to the
decryption oracle or if we ran DEC* on ¢, then the Prob[AskGs] could be 1.

GAMEj;: Execute GAMEs. But this time preselect independent random values

s and H, at the beginning and a substitute each query to H about s by
answering with H,. It follows that, since G(pk,r) = s ® m/||0* is also chosen
at random, Prob[AskGg] = Prob[AskGs] and g = 7.

GAME,: This game is almost identical to the previous one, only drop the re-

quirement about answering H(s) consistently, i.e., if the decryption algo-
rithm or the adversary at some point query H about s (event AskHy) return
the genuine value H(s) instead of H. Given that AskHy does not occur we
have Prob[AskGz] = Prob[AskGy] and 73 = w4, and thus | Prob[AskGy] —
PI‘Ob[ASng,] ‘7 ‘7‘1’3 - 7T4| S PI‘Ob[ASkH4].

Also, the value r = t ® H, is uniformly distributed an independent of the
adversary’s view. Hence, the probability Prob[AskG,] that the adversary or
the decryption oracle queries G about r among the at most polynomial num-
ber of queries is negligible.

GAME5;: Replace the ciphertext ¢ by an independent and randomly selected

value in Z%. Clearly, Prob[AskH4] = Prob[AskHs] and 74 = 5.

GAMEg: Run GAME; but slightly modify the decryption oracles (i.e., the orig-

inal decryption oracle and the special oracle DEC*). Each time a ciphertext
¢ is submitted (for key pk € {pk, pk*}) that would decrypt to message m
for randomness 7, reject this ciphertext with output L if the adversary has
not queried G(pk,7) before. Note that G(pk,7) is uniformly and indepen-
dently distributed and hence, if G(pk,7) has not been queried before, then
only with probability 27% the least significant bits of 5 ® G(pk,T) equal 0F.
Hence, except with negligible probability, none of these at most polynomi-
ally many submitted ciphertexts would have been decrypted correctly by the
decryption oracle. Therefore, | Prob[AskHs] — Prob[AskHg] | and |75 — mg]
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are negligible.

GAME7: Again, run GAMEg but this time let the decryption oracles also reject
ciphertexts (5|[f)¢ mod N where the encrypted part 5 has not been obtained
previously from oracle H. The only difference to the previous game stems
from submitted ciphertexts such that G(pk,7) has been queried but H(3)
has not. For the ciphertext it must hold 7 = ¢ ® H(s). But H(3s) is indepen-
dently and uniformly distributed, and the probability that ¢ & H(s) equals
one of the at most polynomially many queries before is negligible, and so are
| Prob[AskHg] — Prob[AskH7] | and |mg — 7.

GAMEg: Replace the decryption oracles by PE. In GAME; only decryption re-

quest with previously queried values 7,5 are decrypted. For such queries
the plaintext-extractor simulates the oracles perfectly, i.e., Prob[AskH;] =
Prob[AskHg] and 77 = 7.
We claim that Prob[AskHs] is negligible. For this, note that it is easy to
modify the adversary A for GAMEg into an attacker A on the partial-domain
one-wayness of RSA. Algorithm A gets as input (N, e) and a value ¢ € Z};
and simulates A by running GAMEg, providing and recording random but
consistent answers to A’s oracle queries G, H and applying the plaintext-
extractor. A also uses c as the fake challenge ciphertext. Algorithm A finally
outputs the list of queries to oracle H. Recall that AskHg is the event that
the value s encrypted in the value ¢ given to A is passed to H in GAMEs.
Hence, Prob[AskHg] < Succ® P4 (A).

Putting all probabilities together we obtain for a negligible function v(k):

7
|mo — ms| < [mo — mo«| + |mox — 71 +Z|7Ti — i1
i=1
= v(k) +|m1 — ma| + |m5 — 76| + w6 — 77|
|7T1 —7T2| +3V(k)

IN

where

|1 — m2| < Prob[AskGz] = Prob[AskGs]
< Prob[AskGy] 4+ Prob[AskH,] = v(k) + Prob[AskH4]
= v(k) 4+ Prob[AskH5] <= 2v(k) 4+ Prob[AskHg]
< 3v(k) 4+ Prob[AskH7]
= 3v(k) 4+ Prob[AskHs]
< 3u(k) 4 Succ® P47 (A)
is negligible.
Hence, the probability of A outputting related data in GAMEg is negligibly

close to the one in the actual attack. But GAMEg perfectly describes the simula-
tion of A by S, including the final step where S runs the plaintext-extractor once
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more, but on the adversary’s output pk*,c*. Note that if ENC(pk", m*;r*) = c*
then the all-powerful decryption oracle DEC* would recover m* and r* for the
well-formed key pk™ = (N*,e*). So does the plaintext-extractor in GAMEg, and
the simulator approximates therefore m closely. a

7.2 Signatures

We consider the classical Fiat-Shamir like signature schemes in the random or-
acle model. Recall that we have presented the Schnorr signatures as a concrete
instantiation of such signatures in Section 2.3. More formally, we require the
following common properties of the underlying identification schemes:

Definition 3. A canonical Fiat-Shamir identification scheme is a tuple (KGEN,;q,
COM,q, RESP,4, VE;q) of efficient algorithms such that

— (Completeness). For any security parameter k, any keys (vk, sk) € [KGEN(1F)],
any commitment (com,r) € [COM;4(vk, sk)], any challenge ¢ € {0,1}!, any
response resp € [RESP;q(vk, sk, 7, c)], we have VFq(vk, com, ¢, resp) = 1.

— (Passive Security). For any pair of probabilistic polynomial-time algorithms
(Ao, A1) the probability that VF,q(vk, com, c, resp) = 1 for (vk, sk) < KGEN(1%),
(com, a) « Ag(vk), ¢+ {0,1}, resp — A1(«, ¢), is negligible.

— (Entropy of Commitment). For any value comg the probability that (com,r) «—
COM;4( vk, sk) yields a collision com = comyg is negligible.

— (Recovery of Commitment). For any security parameter k, any keys (vk, sk) €
[KGEN(1F)], any commitment (com,r) € [cOM,4(vk, sk)], any challenge c €
{0,1}!, any response resp € [RESP;4(vk, sk, 7, c)], one can recover com from
(vk, ¢, resp) in polynomial time.

— (Special Zero-Knowledge). There exists an efficient algorithm Z, the zero-
knowledge simulator, such that for any vk, for ¢ < {0,1}! the output resp «—
Z(vk, c) is identically distributed” to resp « RESP,;4(vk, sk, 7, c) for (com,r) «
COM,4( vk, sk).

— (Quasi Unique Responses). For any efficient adversary A the probability that
for (vk, sk) «— KGEN;q(1¥), (com,r) «— coMq(vk, sk), ¢ «— {0,1}}, resp «—
RESP;4(vk, sk, r, ¢), resp* «— A(vk, com, c, resp),

resp 7 resp” and VF;q(vk, com, c, resp™) =1
1s negligible.

The original Fiat-Shamir transformation [FS86] turns the interactive identifi-
cation scheme into a non-interactive signature scheme by replacing the challenge
¢ by the hash value over com and the message m. Here, we slightly change this
by hashing the verification key vk in addition to com and m. That is, the chal-
lenge is given by ¢ = H(vk, com,m); all other steps remain. We call this the
Fiat-Shamir signature protocol with public-key hashing.

" Computational indistinguishability actually suffices for our result. But most schemes
indeed achieve perfect indistinguishability and this simplifies the proof of complete
non-malleability.
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Definition 4. Let (KGEN;4, COM;q, RESP;q, VF;q) be a canonical Fiat-Shamir iden-
tification scheme. Then the derived Fiat-Shamir signature scheme (KGEN, SIG, VF)
with public-key hashing is described by the following algorithms in the random
oracle model:

Key Generation: Algorithm KGENT (1%) runs KGEN;4(1%) to get keys (sk, vk).

Signing: Algorithm sic on input the signing key sk and a message m €
{0,1}* computes (com,r) — COM,;q4(sk), ¢ — H(vk, com,m) and resp —
RESP;4(sk, T, ¢). It outputs the signature s = (c, resp).

Verifying: Algorithm VEH on input the verification key vk, a message m and
a signature s = (c, resp) first recovers com, then compares c=H (vk, com, m)
and, in case of equality, finally returns V¥;q(vk, com, ¢, resp).

The class Ryosig for which show complete non-malleability consists of rela-
tions of the form

R (vk, vk*, m*, s*)
= [ve (vk,m*,s*) A RE (vk, vk*,m*,s%)] vV R{"™(vk, vk*,m*,s")

where H,;(x) is a restricted oracle which returns L if vk is a prefix of x, and
H(z) else. In particular, relation R; cannot include verification checks Vil with
respect to the random oracle and the given key vk, and the only possible verifi-
cation step is to verify m*, s* under vk and via relation Ry.

Proposition 9. Fiat-Shamir signature protocols with public-key hashing are com-
pletely non-malleable with respect to class Ryo sig-

Note that the class R.osig is comprehensive enough to include the relations
Rstr-unf and Riey-sub for thwarting strong-unforgeability and key-substitution at-
tacks. Hence, before giving the proof of Proposition 9 we conclude:

Corollary 1. Fiat-Shamir signature schemes with public-key hashing are strongly
unforgeable and secure under key-substitution attacks, both under adaptive chosen-
message attacks.

Proof. (of Proposition 9) It has been shown in [PS00] that Fiat-Shamir signature
schemes are secure against adaptive chosen-message attacks and, in particular,
under key-only attacks. This easily transfers to the case of public-key hashing.
It remains to prove the “actual” property of complete non-malleability.

Assume that there is an adversary A that mounts a complete non-malleability
attack on input vk and access to a signature oracle sIG” (sk,-) and a random
oracle H. We construct a simulator & which gets vk as input and access to
random oracle H. It runs an execution of A on input vk and also simulates a
random oracle H' for A which we define next.

To define oracle H' we first specify how to deal with signature requests m
of the adversary. For such a query the simulator S picks ¢ at random, runs
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the special zero-knowledge simulator Z for the underlying Fiat-Shamir protocol
to derive resp matching this challenge. S replies with s = (¢, resp) and sets
H'(vk, com,m) « ¢, i.e., if the adversary later submits a query (vk, com, m) to
H' then S answers with ¢ on behalf of H’. Analogously, any direct query to
oracle H' involving prefix vk is answered by picking a random value ¢ and re-
using this value ¢ (if either the adversary later resubmits this value to H', or
if this value appears during a signature simulation). The simulator answers any
other query = of A to H' by forwarding x to H and handing the oracle reply
back to A. When the adversary finally outputs vk, m* and s* the simulator too
returns these values if they have never been answered by the simulated signature
oracle, and the simulator returns | otherwise.
Fix some relation R € Ry, sig. Recall that

R (vk, vk*, m*, s*)
= [VFH(Uk,m*,s*) A RE (vk, ok, m*, %) v R (vk, ok*,m*, s*)

Let (vk,m;, s;) with s; = (¢;, resp;) be the sequence of answers of the simulated
signature oracle. We show that, compared to the adversary, the simulator only
fails to generate a good output with very small probability.

The first observation is that the simulator perfectly simulates a random oracle
from the adversary’s viewpoint, unless the simulator preselects some hash value
¢ for some query (vk, com, m) such that the same tuple appears later in one of
the signature queries. In this case, the simulation above yields some inconsistent
answer. By the entropy of the commitment the probability that this occurs
during an attack is negligible, though, and we will from now on neglect executions
with such inconsistencies.

We have to ensure that the adversary hardly outputs a key vk", a message
m* and a signature s* = (c*, resp*) such that the relation holds with respect to
the simulated oracle H' but not for the given oracle H. But the only difference
between the two functions originates from hash values with prefix vk. Such values,

however, do not affect R{{“k = Rfék; only the outcome of the first part of the
relation may depend on them.

Assume that the adversary runs a successful attack and outputs vk™, m*, s* =
(¢*, resp*) such that VFH' (vk, m*, s*) holds. Let com* and com be the recovered
commitments from (vk™,c*, resp*) and from (vk, c*, resp*), respectively. Since
the attack is successful s* must by definition be a valid signature for m* under
vk* and (vk*,m*,s*) has never been returned by the signature oracle (which,
otherwise, would have been the only case in which the simulator does not copy
the adversary’s output). Below we distinguish between four cases, depending on
vk, vk*, m* and the signature queries m;.

Case 1. Suppose first that vk" # vk. The hash value ¢* in s* = (c*, resp*) must
be valid for both (vk*, com*, m*) and (vk, com, m*), i.e,

Proby [ H' (vk*, com*, m*) = H'(vk, com, m")]

= Proby [H(vk", com*, m*) = H'(vk, com,m")|.
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The latter probability is negligible, and the probability of finding such a tuple
among the polynomial number of hash queries during the attack is therefore
negligible, too. We can therefore assume that vk* = vk.

Case 2. If vk* = vk and m* # m,; for all signature replies then the adversary
can only output a valid signature under vk with negligible probability. If this
were not the case then it would be straightforward to construct a successful
attacker forging signatures under adaptive chosen-message attacks on the basic
Fiat-Shamir scheme (without public key hashing). Namely, the forger is given a
public key vk, a signature oracle and a random oracle H and runs the adversary
by relaying all messages between the oracles, except if the adversary submits a
message m to the signature oracle; then the forger first modifies it to a message
vk||m. Note that the given random oracle H has the same distribution as the
simulated one H’ and the adversary therefore would also succeed for v&* = vk and
m* # m; here with noticeable probability, as in the simulation. The constructed
forger, though, would contradict the unforgeability of the underlying scheme
against adaptive chosen-message attacks [PS00].

Case 3. The case vk* = vk, m* = m; for one signature query m; (or even
some queries), implies that s* = (c¢*, resp*) # s; = (¢4, resp;) for all such in-
dices; else the adversary would merely duplicate a signature. Denote by com*
and com; the commitments recovered from vk™, ¢*, resp* and vk, ¢;, resp;, respec-
tively. If com™ # com,; for one of these indices 7 with noticeable probability then
we construct an impersonater successfully attacking the passive security of the
underlying identification scheme, as explained next.

For deriving the impersonater we presume that the adversary never queries
the random oracle twice about a value, and that the adversary queries the ran-
dom oracle about the about the final output (vk, com®, m*) at some point; if
not, the probability that this tuple is sent to ¢* by H’ is negligible. We pre-
sume that the impersonater correctly guesses the corresponding query among
the polynomial number of hash queries.

The impersonater is given a public key vk and starts an emulation of the ad-
versary. This emulation perfectly mimics the simulator’s behavior. Each hash or-
acle query with prefix vk* # vk is answered by returning a random value. Further-
more, except for the guessed query (vk, com*, m*), the impersonater simulates
signature requests like the simulator by picking the challenges in advance and
running the zero-knowledge simulator. For the query (vk, com*, m*) the imper-
sonater invokes into an execution with the verifier vF;q on key vk. It sends com*
to this verifier and receives a challenge c¢* as reply. The impersonater returns c*
as the hash function value to the adversary. We remark that, if com™ # com;,
the impersonater never has to give a signature for this commitment and does
not have to pick the value ahead of the commitment.

At the end of the execution, the impersonater gets a valid signature s* =
(c*, resp*) with noticeable probability. It forwards resp* to the verifier. The ver-
ifier accepts this answer with noticeable probability, and this refutes the passive
security of the identification scheme.
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Case 4. Finally, suppose vk* = vk, m* = m; for some i, com* = com; and
thus ¢* = ¢;, but resp* # resp,. By the property of quasi unique responses of the
underlying identification protocol the probability of finding such a valid response
resp* # resp for (vk, com;, c;) is negligible.

Altogether, the simulator’s success probability is negligibly close to the ad-
versary’s success probability, and the scheme with public-key hashing is therefore
completely non-malleable. ad

It is interesting of course to pin down the step in the proof where we escape
the negative result from the previous section. In the case of black-box simula-
tions, the simulator essentially cannot run the adversary on the given public key
vk because it is necessary to provide a valid signature under vk for this. Here,
the simulator can indeed provide such a valid signature by modifying the ran-
dom oracle. The unconditional impossibility result is bypassed by restricting the
relations such that altering the hash values does not affect the outcome.
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