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Abstract

Byzantine agreement (BA) is a primitive of fundamental importance for
fault-tolerant distributed computing and cryptographic protocols. BA
among a set of n players allows them to reach agreement about a value
even if some of the players are malicious and try to prevent agreement
among the non-faulty players by distributing false information.

Since the initial statement of the BA problem, a small number of wide-
ly accepted standard models have established, distinguishing between
aspects such as what means of communication are given among the play-
ers or how powerful the faulty players are. Both in research on Byzantine
agreement and its applications, these standard models are obstinately fol-
lowed.

Besides a selective overview on some standard models in Byzantine
agreement, this thesis gives a broader view on the problem by consid-
ering natural generalizations of these models and generalizations of the
problem definition itself. Thereby the main focus is on synchronous net-
works and active adversaries. It turns out that some of these generaliza-
tions, without restricting the adversarial power, allow for BA protocols
that achieve a level of security that is provably unachievable in their cor-
responding standard models. The main contributions are described in
the following paragraphs whereby n denotes the number of players and
t the number of cheaters among the players.

Security. Standard BA provides either unconditional or computational
security. Unconditionally secure protocols for BA are provably secure but
can only tolerate a relatively small number of cheaters, typically ¢t < n/3.
Computationally secure ones often tolerate any number of cheaters, ¢t <
n, but their security is based on unproven intractability assumptions. So
far, every previous computationally secure protocol from the literature
has the property that, in case its underlying intractability assumption is



false, it does not withstand one single cheater, ¢ = 0. In contrast, we
show that computational and unconditional security can be combined by
presenting protocols computationally secure against some large number
t1 of cheaters but, at the same time, still unconditionally secure against
some smaller number to > 0 of cheaters. It is shown that BA of this flavor
is achievable if and only if 2¢tg + t; < n and t; > t.

Communication. Standard communication models assume either pair-
wise authenticated or pairwise secure channels among the players. In
these models, unconditional BA is achievable if and only if ¢t < n/3.
A natural generalization of these models is to assume partial broadcast
among the players to be possible, i.e., that for some number b > 2, broad-
cast is achievable among each set of b players. It is shown that for any b,

. - . . b—
2 < b < n, BAis achievable if and only if ¢ < ¥=n.

New threshold paradigm. The security of standard BA is defined with
respect to one threshold ¢ meaning that BA is achieved in the presence
of up to f < t cheaters but that no security is guaranteed at all if f > t.
In particular, unconditionally secure protocols are completely insecure in
the presence of f > n/3 > t cheaters. However, in reality, nothing would
really guarantee that f < ¢ and thus the usefulness of non-fully resilient
protocols is questionable. Preferably, a non-fully resilient protocol should
guarantee BA for some threshold ¢ — but in case that more than ¢ players
are cheating, f > t, and BA cannot be achieved, it should be guaranteed
that all players safely abort the protocol in unison. We show that this is
possible if and only if ¢ = 0. More generally, we introduce the notion of
two-threshold BA, involving two different thresholds ¢, and ¢..: if at most
t, players cheat then the “validity condition” of BA is achieved and, if at
most ¢, players cheat then the “consistency condition” of BA is achieved.
We show that two-threshold BA is achievable if and only if both ¢, +2t. <
nand 2t, +t. <n,ort, =0,0rt. =0.



Zusammenfassung

Byzantine Agreement (BA) ist eine Primitive von fundamentaler Wich-
tigkeit far fehlertolerante verteilte Berechnungen oder kryptographische
Protokolle. BA unter n Spielern erlaubt ihnen, sich auf einen Wert zu
einigen, auch wenn einige der Spieler betrtigerisch sind und versuchen,
durch das Versenden falscher Information zu verhindern, dass sich die
ehrlichen Spieler auf den selben Wert einigen.

Seit der Erstformulierung des BA-Problems hat sich eine kleine Zahl
weit akzeptierter Standardmodelle etabliert, die Aspekte wie Machtig-
keit der Betruger oder Art der Kommunikation zwischen den Spielern
unterscheidet. In der Erforschung von Byzantine Agreement und dessen
Anwendungsgebieten werden diese Standardmodelle stur verfolgt.

Nebst einer selektiven Ubersicht solcher Standardmodelle fiir BA bie-
tet diese Dissertation eine umfassendere Sicht auf das Problem, indem
naturliche Verallgemeinerungen dieser Modelle und auch der Problem-
stellung selbt untersucht werden. Von Hauptinteresse sind dabei syn-
chrone Netzwerke und aktive Gegner. Es stellt sich heraus, dass gewisse
dieser Verallgemeinerungen, ohne dabei die Macht des Gegners einzu-
schranken, BA-Protokolle ermdglichen, deren Sicherheitsniveau im ent-
sprechenden Standardmodell beweisbar unmoglich ist. Die Hauptbei-
trége dieser Dissertation sind in den folgenden Abschnitten beschrieben.
Dabei sei n die Anzahl der Spieler und ¢ die Anzahl der Betrliger unter
den Spielern.

Sicherheit. Standard-BA bietet entweder unbeschrénkte oder berechen-
maéssige Sicherheit. Unbeschréankt sichere BA-Protokolle sind beweis-
bar sicher, kdnnen aber nur verhéltnisméssig wenige Betruger tolerieren,
Ublicherweise t < n/3. Berechenméssig sichere Protokolle tolerieren
haufig beliebig viele Betruger, t < n, aber deren Sicherheit basiert auf un-
bewiesenen Schwierigkeitsannahmen. Jedes bisherige solche Protokoll



10

aus der Literatur hat die Eigenschaft, dass es keinen einzigen Betrtiger
toleriert, t = 0, falls die zu Grunde liegende Schwierigkeitsannahme
falsch ist. Im Gegensatz dazu zeigen wir, dass berechenmassige und
unbeschrénkte Sicherheit kombiniert werden kénnen, indem wir Pro-
tokolle prasentieren mit berechenmassiger Sicherheit gegen eine grossere
Zahl t; von Betrligern und zusétzlicher unbeschrankter Sicherheit gegen
eine kleinere Anzahl ¢, > 0 von Betrligern. Es wird gezeigt, dass BA
dieser Art genau dann mdoglich ist, wenn 2tg + t; < nund t; > t, gilt.

Kommunikation. Standard-Kommunikationsmodelle setzen entweder
paarweise authentische Kandle oder paarwiese sichere Kanéle unter den
Spielern voraus. In diesen Modellen ist unbeschrankt sicheres BA genau
dann mdglich, wenn ¢t < n/3 gilt. Eine naturliche Verallgemeinerung
besteht daraus, partiellen Broadcast unter den Spielern vorauszusetzen,
d.h., dass fur eine bestimmte Zahl b > 2 Broadcast unter jeder Menge von
b Spielern moglich ist. Es wird gezeigt, dass fur beliebiges b, 2 < b < n,

BA genau dann méglich ist, wenn ¢ < 2—tn.

Neues Schwellen-Paradigma. Die Sicherheit von Standard-BA ist be-
zuglich einer Schwelle ¢ definiert mit der Bedeutung, dass BA erreicht
wird, falls bis zu f < t Betriger unter den Spielern sind, dass aber
nicht die geringste Sicherheit garantiert ist, falls f > ¢. Insbesondere
sind unbeschrénkt sichere Protokolle véllig unsicher, falls f > n/3 > t
Betruiger anwesend sind. In der Realitat wirde jedoch nichts garantieren,
dass tatsachlich nur f < ¢ Spieler betrligen, und deshalb ist der Nutzen
von Protokollen, die nicht beliebig viele Betriger tolerieren, fragwurdig.
Vorzugsweise sollte ein solches Protokoll fur eine bestimmte Schwelle ¢
BA erreichen aber im Falle, dass mehr als ¢ Spieler betrtigen, f > ¢, und
BA nicht erreicht werden kann, sollte garantiert sein, dass alle Spieler
zusammen das Protokoll wohlbehalten abbrechen. Es wird gezeigt, dass
dies genau dann mdglich ist, wenn ¢ = 0. Allgemeiner noch wird der Be-
griff des Zwei-Schwellen-BA eingeftihrt, das bezlglich zweier Schwellen
t, undt. definiertist: falls héchstens ¢, Spieler betrtigen, erreicht das Pro-
tokoll die “Validity-Bedingung” von BA, und falls hochstens t. Spieler
betriigen, errreicht das Protokoll die “Consistency-Bedingung” von BA.
Es wird gezeigt, dass Zwei-Schwellen-BA genau dann mdéglich ist, wenn
ty + 2t. < nund 2t, + t. < n gilt, oder ¢, = 0, oder t. = 0.
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Chapter 1

Introduction

The goal of information security and cryptography is to maintain the in-
tegrity of data with respect to several aspects. Two prominent aspects
are authenticity and privacy of information. Authenticity of a piece of
data or a statement with respect to an issuer means that the issuer indeed
uttered this statement. Privacy of a piece of data means that no unautho-
rized being is able to gain any information about it.

Consider two parties Annegret and Beat communicating over the In-
ternet. Using an authentication mechanism for their communication as-
serts them that an adversarial third party cannot modify nor introduce
any piece of information on behalf of either Annegret or Beat. Using an
encryption mechanism asserts them that no adversarial third party can
gain information about their communication by eavesdropping (or even
tampering with) their communication channel.

Traditionally, as in the example given above, such mechanisms are
used in order to protect the cooperation among mutually trusted parties
against adversarial threats from outside. However, mostly, cooperation
takes place among parties that do not necessarily trust each other. For
example, in a shop, both the customer and the salesperson want to co-
operate in order to close a trade. But still, the customer would check the
received change at the cash point.

Secure cooperation among mutually distrusted parties is a relatively
new paradigm in the field of information security. In case that such a
cooperation involves more than two parties an important aspect is con-
sistency among the honest parties: an adversarial party should not be
able to enforce different honest parties to obtain mutually inconsistent
views.
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Consider, for example, a global company that has three subsidiaries
distributed all over the world, each managed by its own director. Each
pair of directors can communicate bilaterally in an authenticated way,
e.g., by means of their cell phones, but it is not possible to physically
broadcast information in a way that all directors are guaranteed to get
the same message. Suppose now, that the directors want to reach agree-
ment on a common action to be performed in unison by all subsidiaries,
but that an arbitrary one of the three directors is possibly corrupted by
a company in competition, trying to enforce the honest directors to per-
form contrary actions. Two natural conditions can be required for such a
task. First, all honest directors must decide in the same way. Second, if
all honest directors vote for the same action then this must be the action
they finally decide on. This problem is a special case of so-called Byzan-
tine agreement. Note that already this simple instance of the problem has
no trivial solution: It can be proven that this problem cannot be solved
by having the directors exchange plain messages but that “cryptographic
mechanisms” are necessary to solve this problem.

More generally than in the example above, Byzantine agreement (BA)
is defined with respect to a number n of players and a threshold ¢ indi-
cating the maximal number of corrupted players among them; and the
goal is that all honest players reach agreement on the same output value
depending on the initial configuration of the honest players. BA has a
wide range of applications. For instance, it serves as a building-block for
redundant systems in airplanes, for the assertion of consistency among
replicated databases, for fault-tolerant distributed computing, or for elec-
tronic voting.

The BA problem was defined in [PSL80] by Pease, Shostak, and Lam-
port. In turn, several models for BA have been proposed during the last
twenty years, distinguishing aspects such as how parties communicate,
what security level is required, or how powerful the corrupted parties
are. Some of these models have established as widely accepted standards
and are being obstinately followed in research on BA and its applications.

Together with a selective overview on some standard models for BA,
some natural generalizations of these models and of the problem defini-
tion itself are introduced. The reason for considering generalizations of
standards is that, although tight bounds are known for the achievabil-
ity of BA in those standard models, strictly more powerful protocols can
be found when considering a more general view. One possible gener-
alization is to combine computational and unconditional security. For
example, we show that some optimally resilient protocols with compu-
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tational security can be augmented with additional unconditional secu-
rity up to a certain level — which is strictly more than achievable in the
original model only considering computational security. As another ex-
ample, it is possible to extend the standard definition of BA (with respect
to a threshold t) to still satisfy partial security conditions of BA for the
case that more than ¢ players are corrupted — without losing any secu-
rity for the case that only up to ¢ players are corrupted. In particular,
there is a protocol that achieves unconditionally secure BA if no play-
ers are corrupted but, additionally, that all players finally agree on the
same output value even if any number of players are corrupted. An-
other benefit from a more general view on the problem is its reduction
to small building-blocks with weaker properties than BA that are much
easier to implement. Such reductions can then be used in order to prove
the achievability of BA with certain properties in other (not necessarily
defined yet) models: in order to prove standard BA to be achievable, the
mere achievability of one of its weak forms has to be demonstrated.

As a special field of interest, it is shown how these results apply to
general multi-party computation (MPC), a problem that subsumes a large
class of problems such as electronic voting, etc.

Outline. Chapter 2 introduces some basic definitions and concepts re-
garding topics such as computation, complexity, or cryptographic prim-
itives. The definitions are thereby kept at a minimal informal level re-
quired by the following chapters.

Chapter 3 gives a selective overview on the established standard mod-
els and their related achievability and impossibility results concerning
fault-tolerance and efficiency. Thereby, six particular models are of inter-
est, characterized by the distinctions whether the network is synchronous
or asynchronous, whether unconditional or computational security is re-
quired, and whether corruption is active or fail-stop.

The remaining chapters are focused on synchronous networks and
on active corruption of players (which is the most severe form of corrup-
tion). Thereby two different models are considered. In the first model, be-
sides knowing the player set and the protocol to be executed, the players
do not share any consistent information such as a public-key infrastruc-
ture (PKI). In the second model, the players additionally share consistent
information in form of a PKI with respect to a digital signature scheme.
This distinction breaks with the tradition of primarily distinguishing be-
tween unconditional and computational security since, besides of com-
putational security allowing for more efficient protocols, unconditional
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security is achievable for Byzantine agreement basically in every model
where computational security is.

Chapter 4 elaborates on some major results from the literature. There-
by, the results are mostly represented in an alternative way such as giving
modular constructions that build up from small functionalities until the
full functionality is reached, or representing known constructions in a
way that may be more intuitive than originally. For the model where the
players do not share a PKI, several standard protocols from the literature
are described that are secure against ¢ < n/3 corrupted players. Further-
more, a standard proof is given that, in this model, no protocol can be
secure if t > [n/3]. For the model where the players do share a PKIl, a
standard protocol is presented that is secure against any number of cor-
rupted players, t < n. Moreover, for this model, a new security model is
introduced where protocols do not exclusively rely on the consistency of
the shared PKI nor on the security of the underlying signature scheme.
Thereby the goal is to construct protocols with respect to two thresholds
t, and t, < t, that are as secure as the underlying signature scheme as
long as up to t, players get corrupted but still unconditionally secure as
long as up to ¢, players get corrupted. We show that BA of such “hy-
brid security” is achievable if and only if ¢, + 2t, < n. This result is of
special interest for MPC. It is well-known that, when given a consistent
PKI with respect to a digital signature scheme, computationally secure
MPC is achievable if and only if ¢ < n/2 players get corrupted. Loosely
speaking, this result implies that unconditional security can additionally
be guaranteed “for free” for the case that only up to ¢t < n/4 players get
corrupted.

In Chapter 5, for the case where the players do not share a PKI, the
standard network model is extended, where players can only communi-
cate over pairwise channels. A natural generalization of this model is to
assume partial broadcast among the players to be possible, i.e., that for
some number b > 2, broadcast is achievable among each set of b players.
For example, b = 2 refers to the standard model where each pair of play-
ers can communicate bilaterally, and b = 3 refers to the case where each
player can send messages to any two other players such that it is guaran-
teed that both recipients get the same message. Forany b, 2 < b < n, itis
shown that, given broadcast among each subset of b players, global BA is
achievable if and only if t < 2;—}71 For instance, this implies that, given
broadcast among each triple of players (b = 3), global BA is achievable if
and only if t < n/2. This implies that the special case of b = 3, the mini-
mal extension over pairwise channels (b = 2), allows for unconditionally
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secure multi-party computation secure against ¢ < n/2 corrupted play-
ers which previously required to assume fully-resilient global broadcast
channels. Finally, a second natural extension over pairwise communica-
tion assumes the additional existence of an external information source
that is accessible by the players.

Chapter 6 introduces a new threshold paradigm for BA, motivated by
the unsatisfactory standard definition of BA: The security of standard BA
is defined with respect to one threshold ¢ meaning that all conditions of
BA are required to be satisfied if up to ¢ players get corrupted but that
nothing is guaranteed if more than ¢ players get corrupted. However,
what should guarantee that the given threshold ¢ will not be exceeded by
the number f of actual corruptions? Preferably, such a protocol should
guarantee BA for some threshold t — but in case that f > ¢ and BA can-
not be achieved, it should be guaranteed that all players safely abort the
protocol in unison. Hence, the worst any adversary could achieve in such
a protocol would be a denial-of-service attack but never any inconsisten-
cies could be enforced among the correct players. For this, we introduce
the notion of detectable broadcast that involves two different thresholds
tand T' > t: if at most ¢ players are corrupted then BA is achieved and
all players accept the outcome of the protocol but still, if at most T' play-
ers are corrupted then either all honest players reject the outcome, or all
honest players accept implying that BA has been achieved. It is shown
that detectable broadcast is achievable if and only if ¢t + 27" < nor t = 0.
This implies that full resilience (T' < n) is only possible for t = 0. More
generally, the notion of two-threshold BA is introduced, involving two
different thresholds ¢, and ¢.: if at most ¢, players are corrupted then
the “validity condition” of BA is achieved and, if at most ¢, players are
corrupted then the “consistency condition” of BA is achieved. We show
that two-threshold BA is achievable if and only if both ¢, + 2¢. < n and
2t,+t. < n,ort, = 0,0rt. = 0. The given results for detectable broadcast
are of special interest for MPC. It is well-known that broadcast channels
are required in order to achieve unconditionally secure MPC for ¢ < n/2.
We show that a weaker form of unconditionally secure MPC for ¢t < n/2is
still achievable without broadcast channels by presenting a protocol that
either achieves MPC as secure as in the model with broadcast channels
or wherein all honest players commonly abort the protocol even before
entering a private input.






Chapter 2

Foundations

2.1 Computation and complexity

Algorithms (or programs) take a variable input 2 from some domain D
(z € D) and, depending on this input, compute an output y = f(z) of
some range R. Deterministic algorithms use no randomness and, on the
same input, always compute the same output. Probabilistic (or random-
ized) algorithms have access to a random source and two executions with
the same input may result in completely different outcomes. As a stan-
dard, the notion of the Turing machine is used for the formal description
of a computation model.

Fundamental properties of algorithms are whether or not they always
compute a correct output (as ideally specified), and how long they take
to compute the output.

Deterministic algorithms are usually required to terminate in any case
and thereby compute a correct output. In contrast, probabilistic algo-
rithms are neither necessarily required to always terminate nor to always
compute a correct output upon termination. Of course, for such “non-
perfect” algorithms it is desirable that their probability of failure be small.

The computational complexity of an algorithm is defined in depen-
dence of the input size n, typically its number of bits. The computational
worst-case complexity is the maximal number of elementary computa-
tion steps required for an input of size n. As a standard, the computa-
tional complexity of algorithms is stated asymptotically.

Definition 2.1 (O and €2). Let g be a function from the natural numbers to the
real numbers, g : N — R.
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O-Notation: O(g) denotes the set of all functions f : N — R that are
upper-bounded by the function g:

O(g) :=={f:N>R|Je>0,np¥n >ng: f(n) <c-g(n)} .

-Notation: Q(g) denotes the set of all functions f : N — R that are
lower-bounded by the function g:

Qg) ={f:N>R|Je>0,ngVn>no: f(n) >c-g(n)} .

A function f is called polynomially upper-bounded (or polynomial, for
short) if there is a constant & > 0 such that f € O(n*). o

Note that it is common to write f = O(g) or f = Q(g) instead of
f€0(g)or feg).

A deterministic algorithm with a polynomially upper-bounded com-
putational worst-case complexity is called polynomial.

A probabilistic algorithm with a polynomially upper-bounded com-
putational worst-case complexity that, for all inputs, always computes a
correct output with probability strictly greater than % is called probabilistic
polynomial (PP) or an algorithm of type “Monte Carlo” .

A probabilistic algorithm with a polynomially upper-bounded com-
putational average-case complexity that is not guaranteed to always ter-
minate but, upon termination, always computes a correct output is called
probabilistic polynomial with zero error (ZPP) or an algorithm of type “Las Ve-
gas”.

An algorithm is called to be efficient if it is (probabilistic) polynomial,
and called inefficient otherwise.

2.2 Cryptographic primitives

Two basic tasks of cryptographic primitives are to provide secrecy and
authenticity of information. Their security is typically defined in func-
tion of a customizable security parameter x € N such that the success
probability of an adversary to violate the specified security conditions of
the system is negligible as a function of .

Definition 2.2 (Negligibility). A quantity () is called negligible in func-
tion of « if, for all ¢ > 0, there is a constant xq such that for all k > kg it holds
that =(k) < . o
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The negligibility of a quantity is usually demonstrated by showing it
to be exponentially small in the parameter «, e.g., (k) < 27",

A cryptographic primitive can be computationally or unconditionally
secure. Computationally secure means that an adversary who is bounded
to probabilistic polynomial computations cannot violate the security spe-
cifications of the primitive except for some negligibly small probability.
Unconditionally secure means that even a computationally unbounded ad-
versary cannot violate the security specifications of the primitive except
for some negligibly small probability. As a special case, perfectly secure
means unconditionally secure with zero error probability.

With lack of provable lower bounds, computational security must
be based on unproven computational hardness assumptions. Uncondi-
tional, however, means ultimately and provably secure.

2.2.1 Encryption schemes
2.2.1.1 Symmetric encryption

A symmetric encryption scheme is a mechanism that, among a set of
players that all know the same secret, allows to confidentially exchange
information among each other such that nobody outside listening to the
communication “gets any information” about its contents.

In particular, if two players Annegret and Beat agree on a secret key
K with respect to a symmetric cryptosystem then Annegret and Beat can
later exchange messages over an insecure channel in a private way. Sym-
metric cryptosystems can either provide unconditional [Ver26] or com-
putational (e.g., AES [DR98]) security. See [Kob94, Sim92, Gol01a, Sti02,
MOV97] for more information.

2.2.1.2 Public-key encryption

A drawback of symmetric encryption is key-management: each pair of
players that wants to communicate privately is required to use a different
secret key.

Asymmetric (or public-key) schemes, see for example [DH76, RSA78,
EIG85, CS98], overcome this restriction by involving two different keys, a
public key for encryption and a secret key for decryption. Among a set of
n players, now only n key pairs have to be used instead of (’2’) in order to
allow each pair to communicate privately. Public-key schemes provably
can only provide computational security.
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2.2.2 Authentication schemes
2.2.2.1 Message-authentication codes

A message authentication code (MAC) is a mechanism that, among a set
of players that all know the same secret, allows to convince each other
that a certain message was issued by one of these players.

In particular, if two players Annegret and Beat agree on a secret key
K with respect to an authentication code then Annegret and Beat can
later exchange messages over an insecure channel in an authenticated
way. An adversary can neither modify any such message nor introduce
a new message in a way such that the recipient accepts it to be authentic.
Message authentication codes can either provide unconditional [WC81]
or computational (e.g., CBC-MAC with AES [DR98]) security. See [Sim92,
Gol01a, Sti02, MOV97] for more information.

2.2.2.2 Digital signatures

A drawback of symmetric authentication schemes is that the set of play-
ers who are able to verify authenticity is exactly the set of players who
can also authenticate messages.

Digital signature schemes, see for example [DH76, RSA78, GMR88,
Sch91], overcome this restriction by involving two different keys, a se-
cret key that allows to sign (authenticate) messages and a public key that
allows to verify the authenticity of a signature. Not only can a signer
now “prove” authenticity of information to a verifier but also the veri-
fiers among themselves can “prove” to each other authenticity of infor-
mation with respect to the signer, i.e., in contrast to message authentica-
tion codes, digital signatures are arbitrarily transferable between players
without losing conclusiveness.

Definition 2.3. A digital signature scheme is a triple of algorithms (G, S, V).
Algorithm G (the key-generation algorithm) generates a secret key SK and
a public key PK for the signer. Algorithm S (the signing algorithm) takes
a message m, a secret key SK, and possibly some “randomness” r as inputs
and generates a signature o = S(m,SK,r). Algorithm V (the verification
algorithm) takes a message m, a signature o, and a public key PK as inputs,
and outputs

1 ,ifdr:o0=S(m,SK,r),
0 ,otherwise .

V(m,o,PK) = {
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Additionally, with respect to a given public key PK, it is infeasible to compute
valid signatures without knowing its corresponding secret key (unforgeability).
<

There are different standard levels of forgery a signature scheme can
be vulnerable to:

Total break: The adversary can either compute the signer’s secret key or
can find an efficient algorithm to correctly sign arbitrary messages.

Selective forgery: The adversary can create valid signatures for some spe-
cial class of messages.

Existential forgery: The adversary is able to forge the signature of at least
one arbitrary message, not necessarily having control over the sig-
nature’s corresponding message.

Standard (computational) signature schemes have the property that
signatures are arbitrarily transferable between players. Although un-
conditionally secure signature schemes do not exist in this generality it
is possible to construct unconditionally secure signature schemes with
restricted transferability for the case that the set of potential verifiers is
known in advance — so called pseudo-signature schemes [CR90, PW92,
PW96].

Definition 2.4. A pseudo-signature scheme among a player set P = {p1,

.., Pn } With respect to signer p, € P and transferability A is a triple (G, S, V)
where G is a protocol among player set P, and S and V are algorithms. Proto-
col G (the initialization protocol) generates a local secret key SK; for ps and
local public keys PK; for the players p; € P\ {ps}.! Algorithm S (the signing
algorithm) takes a message m and the secret key SK as inputs and generates
a pseudo-signature ¢ = S(m, SK,). Algorithm V (the verification algorithm)
takes a message m, a signature o, player p;’s version of the signer’s public key
PK;, and a transfer level £ (1 < £ < A) as inputs and computes

1 ,if(l=1A0=8(m,SKy)) V
V(m,o,PK;,f) = (€>1/\3pj:V(m,U,PKjag_l):l)v
0 ,otherwise .

Except for some negligible probability, an adversary, without knowing the
secret key SK,, cannot compute a message m and a pseudo-signature o such
that V(m,o,PK;,¢) = 1forany p; € Pand £ (1 < £ < A).

INote that these “public keys” PK; actually are secret verification keys. However, for

notional compatibility between ordinary signatures and pseudo-signatures, we stick to the
term “public key”.
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Except for some negligible probability, an adversarial signer p; cannot com-
pute a message m and a pseudo-signature o such that, for any p;,p; € P\ {ps}
and any Zi,éj (1 </ < Zj < )\), V(m, o, PKZ,&) 7é V(m,a, PK]',K]'). <o

In contrast to standard digital signatures, a pseudo-signature scheme
is secure against existential forgery by definition.

2.2.2.3 Reusability

A fundamental question is how often a given signature scheme can be
used, i.e.,, how many signatures on different messages a signer can is-
sue without making the particular instance of the scheme insecure, or,
in other words, how much information must signer and verifier store in
order to allow for s later signatures by the signer.

With respect to a computational signature scheme, the secret-key size
(which is a lower bound on the information to be stored) depends on
s in order Q(log s). With respect to an unconditional signature scheme,
the overall information to be stored among the n players basically de-
pends on s in linear order, O(s), when requiring the scheme to be non-
interactive. However, allowing interaction in form of a regeneration pro-
tocol [PW96] among the players, the order can be reduced to O(log2 s)
which is not considerably more than in the computational case.

2.2.3 Key management

Secrecy and authenticity of information is bound to the knowledge and
ignorance of keys. Players must be sure that they hold each other’s au-
thentic public keys. This can be achieved by physically meeting, or using
certificates and trust management.

Informally, a public-key infrastructure (PKI) is a setup among players
where each player holds some private keys and authentic public keys
from other players and possibly trusts some of the other players. Often, it
is sufficient that players are pairwise consistent, i.e., that pairs of players
hold mutually authentic public-keys from each other: it is not required
that a player uses the same secret key with respect to everybody else. Es-
pecially, this holds for public-key encryption. Annegret may either use
the same secret key with respect to Beat and Benito whose public keys are
identical. As well, Annegret may use different secret keys with respect to
Beat and Benito whose public keys differ. However, consider, for exam-
ple, the signing of a mutual contract between Annegret and Beat. For the
case that Beat breaks the contract, Annegret wants to be able to convince
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judge Jurg that Beat had signed this contract. This not only requires that
Annegret and Jurg know an authentic public key of Beat’s but also that
both of them hold the same public key and that Annegret knows that this
key is “approved” for the signing of contracts.?

Especially, for protocols among a fixed player set P = {p1,...,pn}
relying on digital signatures, it should be guaranteed that, with respect
to every player p;, all players hold the same public key PK;.

Definition 2.5. We say that a player set P = {p,...,p,} IS in possession of
a consistent public-key infrastructure for signatures (or shares a PKI, for
short) if either

A) for each player p, € P, a digital signature scheme (G, S, V) is given such
that SK is the secret key and PK is the public key generated by G, ps ex-
clusively knows secret key SK, and all players in P know and exclusively
use public key PK for the verification of signatures with respect to p,; or

B) for each player p; € P, a pseudo-signature scheme (G,S, V) is set up
among player set P with respect to p, as the signer.

In case (A) we say that the players share a computational PKI. In case (B) we
say that the players share an unconditional PKI. o

Given that communication among the players is possible, a consistent
PKI (with respect to signatures) according to Definition 2.5 allows the
players to authentically exchange public keys with respect to a public-
key cryptosystem, and hence allows for computationally secure (authen-
ticated and private) pairwise communication.?

2.3 Cryptographic protocols

Informally, a protocol is an interactive game between players. The play-
ers can be humans or machines that are connected with other players via
some communication network. A player can perform local computations,
can send or receive information to/from the network, and, possibly has
access to a (pseudo-)random generator.

2More precisely, it is only required that Annegret and Jiirg, except for some negligible
error probability, reach the same conclusion in {0, 1} when verifying a signature on a mes-
sage m. Pseudo-signatures satisfy this property although different verifiers generally hold
different public keys.

3 Although, not necessarily with respect to the same particular intractability assumption.
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More formally, a player (or “processor”) is usually defined as a Turing
machine (or algorithm) with a “read-write” working tape that addition-
ally shares pairwise tapes with other players (pairwise communication
channels) and/or share tapes with more than one other player (global or
partial broadcast channels).

An execution step by a player consists of receiving a finite (possibly
empty) set of messages from the other players, followed by a finite num-
ber (possibly zero) of local computation steps and finally, by sending a
finite (possibly empty) set of messages to other players. We call the cor-
responding states reception stage, computation stage, and sending stage.

Throughout this text, by default, the player set is denoted by P, its
cardinality by n = |P|, and the separate players by p; (i = 1,...,n), i.e.,
P ={py,...,pn}. As an exception, for a class of impossibility proofs, we
assume the player set to be P = {py, ..., pn—1} fOr convenience.

A protocol among deterministic Turing machines is called a determin-
istic protocol. A protocol among probabilistic Turing machines is called a
probabilistic protocol or randomized protocol. An instance of such a protocol
is said to terminate if all players’ local algorithms terminate.

2.3.1 Communication
2.3.1.1 Security

As a standard, a complete (i.e., fully connected) network of pairwise au-
thenticated channels among the players is assumed. In terms of the tape
description above this means that each pair of players p; and p; shares
a tape that is “write-only” for p; and “read-only” for p; and a tape that
is “write-only” for p; and “read-only” for p;. Thereby the player on the
“write-only” side (the sender) has exclusive write-access to the tape in
the sense that nobody else in the universe can change the contents of
the tape. In particular, this implies that the communication between the
players cannot be prevented by an adversary.

Additionally, one can assume that the authenticated channels pro-
vide privacy, i.e., that the player on the “read-only” side (the recipient)
has exclusive read-access to the tape in the sense that nobody else in the
universe can read the communication on the channel. A channel that is
authenticated and private is called a secure channel.

Sometimes, also authenticated broadcast channels among the play-
ers are assumed, called broadcast channels for short. A broadcast channel
among a set of players can be modeled as a tape shared among these play-
ers whereby one particular player (the sender) has “read-write” access
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and which is of type “read-only” for all remaining players. Addition-
ally, a broadcast channel guarantees that, independently of the sender’s
behavior, all players receive the same value.

Among a set of k players, there are k possible broadcast channels —
one with respect to each player being a sender.

2.3.1.2 Synchronicity

In a (fully) synchronous network all players synchronously operate in clock
cycles whereas each cycle is assigned a unique, globally known time de-
fined by a global clock. Messages being sent during a clock cycle are
guaranteed to have arrived at the beginning of the next cycle. Accord-
ingly, each player performs exactly one execution step per cycle: receive,
compute, and send.

In a synchronous network without a global clock all players operate in
synchronous clock cycles but they do not have access to a global clock,
i.e., the same clock cycle is not necessarily assigned the same time by all
players. Messages being sent during a clock cycle are guaranteed to have
arrived at the beginning of the next cycle.

In an asynchronous network the players operate in local clock cycles
that are not synchronized among the players. Messages being sent by a
player are only guaranteed to be delivered eventually.

2.3.2 Adversary

Usually, a central adversary is assumed with respect to some threshold
t. This adversary may corrupt up to ¢ of the n players (meaning to take
control over them) and centrally coordinate the behavior of these players.
Such a player is referred to as being corrupted or faulty. Non-corrupted
players are referred to as being correct or honest. The adversary has access
to all information that is sent over non-private communication channels.
A protocol that withstands an adversary with respect to a given threshold
t is called to be of resilience ¢ or to be t-resilient.

2.3.2.1 Corruption flavors

Player corruption: A passive adversary can read all internal information
of the corrupted players, i.e., she is allowed to read the corrupted play-
ers’ private inputs and outputs, internal states and random tapes, and all
their communication with other players. The adversary cannot influence
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the behavior of the players, i.e., she cannot make them deviate from a
protocol in any way. This corruption flavor is called passive corruption.

A fail-stop adversary can, for every single player she corrupts, select
an arbitrary point of time in the protocol to make him “die”. At this point
of time, the player stops the sending and receiving of messages. The ad-
versary can neither read any internal information held by the corrupted
players nor can she make them misbehave in any other way than “die”.
This corruption flavor is called fail corruption (or crash corruption).

An active (or Byzantine) adversary may corrupt players by making
them misbehave in an arbitrarily malicious way. She can read all their
information and make them deviate from the protocol completely.

Network scheduling: It is assumed that the adversary is in power to
maliciously schedule the whole network, meaning that, for each message
being sent during the protocol, the adversary can arbitrarily delay its de-
livery within the limits that are guaranteed by the network.

In a model with synchronous networks, during a protocol round, typ-
ically, all players perform some local computation and then send some in-
formation over the communication channels. In presence of an active ad-
versary, malicious scheduling implies that the behavior of the corrupted
players during any round k& can be based on all information sent to any
corrupted player and all information sent over non-private communi-
cation channels already during round k. It is simply assumed that the
adversary can undetectedly delay the corrupted players’ round actions
until the “round-k information” of all correct players has already been
spread.

In a model with asynchronous networks, malicious scheduling means
that the adversary can arbitrarily delay the delivery of sent messages —
but with the restriction that every message must eventually be delivered.

2.3.2.2 Computational power

Typically, the adversary is assumed to be either computationally boun-
ded or the adversarial power is assumed to be unlimited. Computational
security denotes security against an adversary who is bounded to prob-
abilistic polynomial time computations. Unconditional security or infor-
mation-theoretic security denotes security against an unlimited adversary.
Analogously to cryptographic primitives, security is typically defined
with respect to a security parameter x, allowing an error probability ¢
that is negligible in function of «, i.e., it is tolerated that the respective
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task fails with probability at most €. Unconditional security with zero
error probability is called perfect security.

2.3.2.3 Adaptiveness

A static adversary selects the players to be corrupted at the beginning of
the protocol. An adaptive adversary dynamically chooses new players to
be corrupted at any points of time during the protocol depending on the
development of the protocol so far — but corrupting at most ¢ players
overall.

Thereby, it is always assumed that, as soon as a player is corrupted,
he remains corrupted until the very end of the protocol (a so called non-
mobile adversary).

2.3.3 Complexities

The complexity of a protocol can be stated with respect to the local com-
putation complexity of the players and with respect to the amount of
communication that is required among the players.

The computational complexity of a protocol is defined as the maximum
over the local computational worst-case complexities of all correct play-
ers.

The communication complexity of a protocol is defined with respect to
two aspects. The bit complexity B of a protocol is the total number of bits to
be sent by all correct players during the protocol in the worst case, over-
all. The round complexity R of a protocol is the maximal number of subse-
quent execution steps that are required by any correct player in the worst
case. More precisely, if the network is synchronous then the round com-
plexity is the maximal number of cycles required by any correct player
in the worst case. In particular, also cycles are counted wherein a player
does neither communicate nor perform any local computations. A pro-
tocol for asynchronous networks does not operate in coordinated rounds
and thus there seems to be no reasonable definition for its round com-
plexity. However the round complexity of an asynchronous protocol
is often defined nevertheless. We will use the following definition: the
round complexity R of an asynchronous protocol is its round complexity
when run in a synchronous network.

A protocol is efficient if its computational, round and bit complexities
are all polynomially bounded in the number n of players and a possible
security parameter k.
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Analogously to the definitions for probabilistic algorithms, an effi-
cient probabilistic protocol that always terminates in a polynomial num-
ber of rounds but that does not guarantee that all players always compute
correct outputs is called a protocol of type “Monte Carlo”. A probabilis-
tic protocol that terminates in an average polynomial number of rounds
in which, upon termination, the players always compute correct outputs
but that does not guarantee termination is called a protocol of type “Las
Vegas”.

Note that communication between players is typically much more ex-
pensive than local computations and hence, in the sequel, the analyses
of the protocols’ complexities is focused on communication. Their com-
putational complexities are evident and can be easily verified. Whereas
the round complexities are exactly stated, the bit complexities are given
as asymptotical upper bounds in O-notation.

2.3.4 Knowledge and initialization

It is always assumed that all players know the player set, the protocol,
and the whole network topology, i.e., they know which players partic-
ipate in the protocol and how they are connected with communication
channels. In the synchronous case, it is usually also assumed that the
players agree on a common point in time when the protocol is to be
started.

It can be assumed that, additionally, some (partially secret) data is
consistently set up among the players. This could for example be at-
tained by a precomputation phase involving a mutually trusted party
to distribute some related information to the players. The shared data
would typically be a PKI. In this case we say that the players hold con-
sistently shared data. In the case where no such shared data is assumed
(except for the common knowledge of the player set, the protocol, and
the network topology) we say that the players hold no consistently shared
data.

2.4 Definitions and notations

2.4.1 Standard models

We will always assume the network to be synchronous and the adversary
to be active — unless explicitly stated otherwise. The security of protocols
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is generally stated with respect to an adaptive adversary whereas impos-
sibility results are stated with respect to a static adversary.

Definition 2.6 (M auy).
Communication: Complete synchronous network of pairwise authenticated
channels.
Adversary: Active threshold adversary.
Initialization: No consistently shared data.

Definition 2.7 (Mec).
Communication: Complete synchronous network of pairwise secure chan-
nels.
Adversary: Active threshold adversary.

Initialization: No consistently shared data.
<

Definition 2.8 (MP"¢,). Model M,,;. Additionally, for each player p; € P

aut

there is an authenticated broadcast channel from p; to P. The broadcast channels
are synchronized with the pairwise communication channels. o

Definition 2.9 (M%), Model M... Additionally, for each player p; € P there
is an authenticated broadcast channel from p; to P. The broadcast channels are
synchronized with the pairwise communication channels. o

Definition 2.10 (MPX

aut/*

Communication: Complete synchronous network of pairwise authenticated
channels.

Adversary: Active threshold adversary.
Initialization: Consistently shared data in form of a PKI.

Definition 2.11 (MPXh),

sec

Communication: Complete synchronous network of pairwise secure chan-
nels.

Adversary: Active threshold adversary.
Initialization: Consistently shared data in form of a PKI.
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Definition 2.12. _

Let M € {Maut, Mgee, MES,, MPE MPEL MPKIY Then Mu] refers to
standard model M with an unbounded adversary (unconditional security) and
M (c] refers to standard model M with an adversary who is computationally
bounded (computational security). An asterisk stands for any of the defined sub-

models, e.g., MY™ means either MPX! or MPKL o

2.4.2 Protocol notation

Protocols are specified with respect to a player set S (which, in case of
a sub-protocol, may be only a subset of all players, S C P) and stated
with respect to the local view of player p;, meaning that all players p; € S
execute this code in parallel with respect to their own identity i. Player
p;’s input is called z;. For instance,

Protocol WeakConsensus (S, z;)

refers to a protocol that solves the “weak consensus” problem among the
player set S where each player p; € S holds input variable z; that is
loaded with the players input. Often, there is only one player holding an
input, for example the sender in a broadcast protocol. Then

Protocol Broadcast (S, p1, 1)

refers to a protocol that solves the “broadcast” problem among the player
set S where player p; holds input z;.

If an action is only to be performed by one particular player then this
is specified in form of an “if-statement”, for example,

if i = 1 then SendToAll(v;) fi; Receive(w;)

means that player p; sends the value stored in variable v, to all players
in S and that each player p; (including p;) writes the received value to
variable w;.
At the end of a protocol, each player computes an output (usually
called y;), written
returny; .

For a protocol, an input domain D and an output range R is spec-
ified, i.e., each input z; must be selected from D and each output y; is
computed in R. From the protocol context also the domain of interme-
diary local variables and values to be sent between players become clear.
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For simplicity, it is not explicitly stated how to handle values received
from corrupted players that are outside the (possibly implicitly) speci-
fied domain. Such a value is always implicitly assumed to be replaced by
a default value or by any arbitrary value inside the specified domain.

2.5 Chernoff and Hoeffding bounds

For a detailed analysis of the protocols in Chapter 5.4, Chernoff and Ho-
effding bounds [Hoe63, Chv79] will be applied in order to estimate upper
bounds on their error probabilities.

The Chernoff bound gives an upper bound on the probability that of
n independent Bernoulli trials the outcome deviates form the expected
value by a given fraction.

Let X; (1 <i < n) be a sequence of independent 0-1 distributed ran-
dom variables with expected value u. By C(u,n, \) we denote the Cher-
noff bound as follows

A<1: Cy(p,m,A) =Prob(>", X; < Aun) < e~ 5 (1-3)*
n By 1)2 (21)
A>1: Ci(yn,A) =Prob(30, X; > Aun) <e” 5D
Furthermore, a bound by Hoeffding can be used to estimate tail prob-
abilities of hyper-geometric distributions. By the term H(N, K,n, k) we
refer to a setting where N items are given of which K are “good”. The
experiment consists of selecting n out of the N items at random, and
H(N, K, n, k) denotes the probability that at least k of the n selections are
“good”. Lett = % — % The following inequation holds for any ¢ such
that0 <t < 1-— & [Chv79],

H(N,K,n, k) = zn: (f) (ﬁ‘_f) (i\[) - <e2n . (22)

i=k






Chapter 3

Byzantine Agreement and
Multi-Party Computation

3.1 Byzantine agreement

There are two major variations of Byzantine agreement, broadcast and con-
sensus. The goal of broadcast (or the Byzantine generals problem) is to
have some designated player, called the sender, consistently send an in-
put value (or message) to all other players. In consensus, every player
starts with an input value with the goal to make all players agree on the
same output value. If all correct players hold the same input value then
the output value is required to be the same as this input value. Both prob-
lems are trivial if the input domain D only contains one element. Thus we
will always implicitly focus on the case where |D| > 1 — also for further
variations of these definitions.

Definition 3.1 (Broadcast). Let P = {py,...,pn} be aset of n players and let
D be a finite domain. A protocol ¥ among P, where player p, € P (called the
sender) holds an input value s € D and every player p; € P finally decides on
an output value y; € D, achieves broadcast (or is a broadcast protocol) with
respect to P, ps, and D, if it satisfies the following conditions:

Validity: If the sender p; is correct then all correct players p; decide on the
sender’s input value, y; = x,.

Consistency (or Agreement): All correct players decide on the same out-
put value, i.e., if p; € P and p; € P are correct then y; = y;.
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Usually, also “termination” is demanded by the standard definition
of broadcast, i.e., that it must be guaranteed that all correct players even-
tually terminate the protocol except, possibly, for some error probability
negligibly small in a security parameter . Note that, by the given round-
complexity analyses of all protocols described in the sequel, termination
is always immediately implied.

The conditions “validity” and “consistency” are of orthogonal flavor.
Validity can be easily achieved by having the sender distribute his in-
put value to every recipient. However, this method allows a corrupted
sender to violate the consistency condition by simply distributing dis-
tinct values. On the other hand, consistency can be easily achieved by
having all recipients always output the same value v € D. However, this
method does not satisfy the validity condition since the sender cannot
influence the outcome of the protocol. It can already be seen that the so-
lution to the problem must lie somewhere between these two extremal
variants, involving several rounds of communication and cross-checking
of information between the players.

Definition 3.2 (Consensus). Let P = {py,...,p,} be a set of n players and
let D be a finite domain. A protocol ¥ among P where every player p; € P holds
an input value z; € D and finally decides on an output value y; € D achieves
consensus (or is a consensus protocol) with respect to P and D if it satisfies
the following conditions:

Validity (or Persistency): Ifall correct players p; hold the same input value
x; = v then all correct players p; decide on it, y; = v.

Consistency (or Agreement): All correct players decide on the same out-
put value, i.e., if p; € P and p; € P are correct then y; = y;. o

When clear from the context, we simply say that a given protocol
achieves broadcast (or consensus), neglecting the parameters P, ps, and
D.

It is evident that broadcast and consensus can be trivially achieved
for the case ¢t = 0, i.e., when no player can get corrupted. On the other
hand, there might also seem to exist easy solutions for the casest = n
and t = n — 1 since the respective conditions become trivial when there
is at most one correct player. However, recall that the threshold ¢ refers
to the maximal number of players that can get corrupted during the pro-
tocol (c.f. Section 2.3.2). Thus, for any given ¢, a protocol secure against ¢
corrupted players is defined to be a protocol secure against any number
f of corrupted players with 0 < f < t,* and hence these special cases are

41t is natural to assume that the adversary can also show a corruption profile that is
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non-trivial. For arbitrary resilience, instead of ¢t < n, we adopt the pop-
ular notation ¢ < n, which specifies the maximal case involving at least
one correct player.

In any model with an active adversary, the definition of consensus
can at most allow for a strict minority of corrupted players (¢t < n/2) —
otherwise the corrupted players, by majority, would always be able to
dictate the outcome independently of the inputs by the correct players.

Proposition 3.1. Consensus among n > 2 players, secure against t > n/2
actively corrupted players is impossible.

Proof. Let B,UP, = P be a partition of the player set into two sets of
cardinalities | Py| = max(n — ¢,1), |P1| = min(¢,n — 1); and let all players
p; € Py hold the same input value y; = 0 and let all players p; € P; hold
input value y; = 1. The adversary can now choose either (, Py, or P,
uniformly at random and corrupt the respective players but having them
honestly follow the protocol and thus, a correct player cannot distinguish
between correct and corrupted players.

If, at the end, all players compute the same output value v then valid-
ity is violated with probability at least % since the adversary corrupts P,
with probability % If, at the end, the players compute different output
values then consistency is violated with probability at least % since the
adversary does not corrupt any player with probability % O

In contrast, the definition of broadcast basically allows for any num-
ber of corrupted players since the validity condition only depends on the
correctness of the single sender of the protocol.

In the sequel, we mainly focus on binary Byzantine agreement (do-
main D = {0, 1}) since Byzantine agreement for any finite domain D can
be efficiently solved with any binary protocol (cf. Section 3.1.4).

Historically, resilience of protocols is distinguished between uncondi-
tional security and computational security. In the former case the players
would not be allowed to consistently share any data, e.g., standard model
Miec[u]. In the latter case it would be implicitly assumed that the players
share consistent data, typically in form of a PKI with respect to a given
signature scheme, e.g., standard model MPXi[c] — with the goal that the
protocol would be as difficult to break as forging corresponding signa-
tures. In other words, the historical distinction between unconditional
and computational security implicitly makes the additional distinction of
whether or not the players are in possession of consistently shared data.

strictly weaker than in the worst case.
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However, when not making this implicit distinction then, except for
the complexity of protocols, there is no real difference between the achiev-
ability of computational security and the achievability of unconditional
security (cf. Section 3.1.5). Thus, it seems to make more sense to pri-
marily distinguish between the case where no consistently shared data is
assumed among the players (nor any reliable precomputation), i.e., plain
models M € {Maut, Msec, - - - }, and the case where consistently shared
data among the players (or a reliable precomputation) is assumed, i.e.,
models M € { M2, MK}

Since the goal of this section is to give a short historical overview of
the most important results in this field, here, we will follow the tradition
of distinguishing between unconditional security with no consistently
shared data and computational security with consistently shared data.
In the subsequent sections, however, we will only distinguish between
whether or not consistently shared data is assumed.

The following sections give a short overview on previous results re-
lated to the six possible models resulting from the distinctions whether
the network is synchronous or asynchronous, whether unconditional or
computational security is required, and whether corruption is active or
fail-stop. Thereby, the main points of interest are

e tight conditions on ¢ such that Byzantine agreement is achievable,
e the existence of efficient protocols, and
e the message and round complexities of protocols.

3.1.1 Synchronous networks

The initial problem statement by Lamport, Shostak, and Pease [PSL80,
LSP82] refers to synchronous networks, active adversaries, and both un-
conditional or computational security. Fail-stop adversaries were later
considered by Dolev and Strong [DS82], and Lamport and Fischer [LF82].
A summary of the most important bounds with respect to active adver-
saries and a domain D of constant size are given in Tables 3.1 and 3.2.

3.1.1.1 Unconditional security

Active corruption. If n < 3t then Byzantine agreement perfectly secure
against active adversaries is impossible as was already shown in [PSL80,
LSP82]. Karlin and Yao [KY84] later proved that this bound more gener-
ally holds with respect to (non-perfect) unconditional security. An impor-
tant, easily generizeable paradigm for impossibility proofs for Byzantine



3.1 Byzantine agreement 41

|Security| Determinism | Protocol|| Resilience]
uncond | DET/RND | BC/C n > 3t

comp | DET/RND BC n >t
C n > 2t
| Security [Determinism|Protocol]¢-constraint] Round-complexity|
uncond/comp DET BC/C | n> 3t = t+1
uncond RND BC/C | n>3t = Q(1)
comp RND BC n <2t = t+1
BC/C | n>2 = Q)

|Security|Determinism|Protocol|¢-constraint|| Bit-complexity|

uncond | DET/RND | BC/C | n > 3t = Q(nt)
comp | DET/RND | BC/C | n <3t = Q(ntlo|)

Table 3.1: Synchronous networks: Lower bounds for broadcast (BC)
and consensus (C) with a domain D of constant size with
respect to resilience, round-, and bit-complexity. The
bounds for the round and bit-complexities depend on the
resilience t to be achieved by the protocol (column “t-
constraint”). |o| denotes the maximal size of a signature.

agreement problems was given by Fischer, Lynch, and Merritt [FLM86].
That this bound is tight was shown in [LSP82] by giving a perfectly se-
cure but inefficient protocol for the case n > 3t. The first efficient protocol
for n > 3t was given in [DS82], followed by a series of other solutions
[DFF*82, TPS87, BDDS92, FM97, BGP89, CW92, GM98].

Fischer and Lynch [FL82] proved that, independently of n, every de-
terministic protocol for Byzantine agreement requires at least ¢+ 1 rounds
of communication. Although the protocol in [LSP82] is inefficient it re-
quires exactly ¢ + 1 rounds and hence is round-optimal. The first effi-
cient protocol that is both optimally resilient (n > 3t) and round-optimal,
was given in [GM98] by Garay and Moses, following solutions with sub-
optimal resilience (up to n > 4t) given in [DRS82, MW94, BGP89, BG93].

Every protocol for Byzantine agreement requires a bit-complexity of
at least Q(nt) as was proven by Dolev and Reischuk [DR85]. The first
protocols to achieve this lower bound were given by Berman, Garay, and
Perry [BG89b, BGP92a], and independently by Coan and Welch [CW92]
— for a domain D of constant size. However, for domains D of general
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|Security [Determinism| Type | Protocol [[Resilience [Round-/ [Bit-Complexity |

uncond DET BC/C| [GM98] n>3t | t+1 o(n"t?)
[BGP9Z2a] || n >3t | O(f) O(nt)
[CwW92] n > 3t o(t) O(nt)
RND BC/C| [FM97] n > 3t O(k) O(nt + kt")
comp DET BC | [Ds83] n>t t+1 ICHED)
C [DS83] n > 2t t+1 O(n*|o])
RND BC/C|[Tou84] (*)|| n > 2t O(k) O(kn’|ol)

(*) requires some additional precomputation besides PKI.

Table 3.2: Synchronous networks: Protocols for broadcast (BC) and
consensus (C) with a domain D of constant size. The
bounds for probabilistic protocols are given with respect
to their “Monte Carlo” variants and a maximal error prob-
ability of e < 27%. For the case of computational security,
|o| denotes the maximal size of a signature. The bounds
represented in boldface are tight — see Table 3.1.

cardinality, their protocols have a bit complexity of Q(ntlog|D|), which
is not known to be optimal. Both protocols are optimally resilient (n >
3t) and require ¢t + o(t) rounds of communication. Whereas this round
complexity is of optimal order, i.e. O(t), it does not match the exact lower
bound of ¢ 4+ 1. So far, no protocol is known that is optimal with respect
to resilience (n > 3t), order of bit-complexity (O(nt)), and exact number
of rounds (¢ + 1).

The lower bound of ¢ + 1 on the number of communication rounds
does not apply for probabilistic protocols as was first discovered by Ben-
Or [Ben83] and independently by Rabin [Rab83a]. Ben-Or [Ben83] pro-
posed a protocol with resilience t = O(y/n) that terminates in a constant
expected number of rounds. In [Bra87b] Bracha proved the existence of
almost optimally resilient protocols (n > (3 + ¢)n, for any £ > 0) that
terminate in an expected number of O(log n) rounds. The first optimally
resilient protocol requiring a constant expected number of rounds was
given by Feldman and Micali [FM97] requiring an overall bit-complexity
of O((nt + t7) log |DJ).

The protocols in [Ben83, Bra87b, FM97] provide perfect security, error
probability 0, but can have (rare) non-terminating runs, i.e., they are of
type “Las Vegas”. Furthermore, these protocols do not guarantee that all
correct players simultaneously terminate during the same round. In fact,
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t + 1 communication rounds are necessary in order to guarantee simulta-
neous termination and error probability 0 [DRS82, DRS90, DM90] — see
Section 3.1.4 (“Simultaneous versus eventual Byzantine agreement”) for a
more precise treatment. However, the protocols in [Ben83, Bra87b, FM97]
can all be turned into protocols wherein all correct players simultane-
ously terminate after a fixed number of rounds linear in a customizable
security parameter , guaranteeing correctness of the outcome with an
error probability exponentially small in k, i.e., they can be turned into
“quasi constant-round” protocols of type “Monte Carlo” with exponen-
tially small error probabilities.

Whereas all cited deterministic protocols and the probabilistic pro-
tocols in [Ben83, Bra87b] require only pairwise authenticated channels
(since no secret information is involved), the protocol in [FM97] requires
secure pairwise channels for the correctness of their common coin.

Fail-stop corruption (or crash failures). Fail-stop corruption was first
considered in [DS82, LF82] where efficient, unconditionally secure proto-
cols are given that tolerate any number of corrupted players (¢t < n). As
for active corruption, independently of n, every deterministic protocol re-
quires at least t + 1 communication rounds [DS82, LF82]. More generally,
t + 1 communication rounds are necessary in order to guarantee simul-
taneous termination and error probability 0 as proven in [DM90]. Even
if no single player is corrupted, any agreement protocol requires every
player to either send or receive at least one message, and hence Q(n) is
a lower bound on the bit-complexity also for the case of fail-stop corrup-
tion. Galil, Mayer, and Yung [GMY95] showed that this bound can be
achieved with respect to unconditional security by giving an optimally
resilient (¢ < n) protocol that requires a polynomial number of rounds in
t.

3.1.1.2 Computational security

Regarding Section 3.1.1.1, with respect to fail-stop corruption only minor
improvements can be expected from weakening security from uncondi-
tional to computational, e.g., a resilience of t < n is already achievable
unconditionally, and the lower bounds on round and message complex-
ity are still the same with respect to computational security as with re-
spect to unconditional security. Hence, in this section, we focus on active
adversaries.

Computational security is typically achieved based on a digital sig-
nature scheme. Thereby it is assumed that the players already share a
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computational PKI according to Definition 2.5. Note that assuming a
PKI with respect to a signature scheme immediately allows for pairwise
secure communication (given that one-way functions indeed exist), and
hence we only require to assume pairwise authenticated channels for this
model (cf. Section 2.2.3).

For this paragraph, we assume that the length of a signature is |o|
bits including possible random padding and other additional informa-
tion, i.e., |o| can basically be seen as being linear in the security parame-
ter. A computationally secure broadcast protocol for ¢ < n was already
given in [LSP82], although an inefficient one. Note that the achievability
of broadcast for ¢ < n immediately implies the achievability of consen-
sus for ¢ < n/2 without any further assumptions (c.f. Proposition 4.11).
In [DS83] the first efficient (deterministic) protocol was given requiring
t + 1 rounds of communication together with a proof that ¢t + 1 is a
lower bound on the number of rounds for deterministic protocols. This
lower bound was independently proven by DeMillo, Lynch, and Mer-
ritt [DLM82]. The protocol in [DS83] requires a total number of O(nt)
messages with an overall bit-complexity of O(nt(log|D| + t|o|)). Dolev
and Reischuk [DR85] proved that at least Q(nt) signatures are required
by any protocol tolerating ¢ < n, which implies a lower bound on the
bit-complexity of Q(tlog |D| + nt|o]).

Rabin presented the first efficient probabilistic protocol in [Rab83a].
It requires an expected constant number of rounds and tolerates ¢t < n/4
player corruptions. Feldman and Micali [FM85] constructed an efficient
protocol to tolerate ¢ < n/3 and running in constant expected time. How-
ever, their solution requires a one-time interactive precomputation phase
with (t) rounds of communication. In [Bra87b], Bracha proved that, for
any ¢ > 0, there is a protocol that tolerates ¢ < n/(2 + ¢) and runs in
an expected number of O(logn) rounds. For the exact bound ¢ < n/2,
Toueg [Tou84] finally gave the construction of a “Monte Carlo” protocol
that terminates in a fixed number of rounds linear in a customizable se-
curity parameter x and guarantees correctness of the outcome with an er-
ror probability exponentially small in . The protocol can be transformed
into a protocol of type “Las Vegas” requiring a constant expected number
of communication rounds. Whereas the protocols in [FM85, Bra87b] only
assume that a PKI be shared among the players, those in [Rab83a, Tou84]
require some additional data to be set up among the players (once for a

5Note that computational security could also be achieved without using an explicit sig-
nature scheme. What is actually meant in [DR85] is that Q2(nt) messages have to be sent
from a player p to a player ¢ in a way such that the recipient ¢ can prove to any third player
r that he received this message from player p.
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life time).

3.1.2 Asynchronous networks

As an important difference to the synchronous model, broadcast as de-
fined in Definition 3.1 at the beginning of this chapter is not possible with
an asynchronous network: A correct recipient simply cannot distinguish
between the cases where the sender is correct but being arbitrarily de-
layed and where the sender is corrupted and will not deliver a message
at all. Bracha [Bra87a] defined a somewhat weaker version of broadcast
where the adversary may cause non-termination:

Definition 3.3 (Asynchronous Broadcast). Let P = {pi,...,p,} be aset
of n players and let D be a finite domain. A protocol ¥ among P where player
ps € P (called the sender) holds an input value z; € D and every player p; € P
finally decides on an output value y; € D achieves asynchronous broadcast
(or is an asynchronous broadcast protocol) with respect to P, p,, and D, if it
satisfies the following conditions:

Validity: If the sender p; is correct then all correct players p; eventually
terminate and decide on the sender’s input value, y; = x5 € D.

Consistency: If any correct player terminates then all correct players ter-
minate deciding on the same output value v € D. o

In contrast to broadcast, Definition 3.2 for consensus still makes sense
since each correct player is guaranteed to eventually receive the inputs of
at least n — ¢ different players.

Since broadcast (in its original version) cannot be achieved in asyn-
chronous networks, we focus on consensus in this subsection.

Fischer, Lynch, and Paterson [FLP85] proved that in an asynchronous
network, already with respect to fail-stop corruption, there is no protocol
that achieves consensus with probability 1 and is guaranteed to always
terminate — even if only one single player is corrupted (¢t = 1). Thus, all
protocols mentioned in this section are inherently probabilistic.

3.1.2.1 Unconditional security

Active corruption. In [Ben83], Ben-Or proposed the first asynchronous
protocol with unconditional security, tolerating t < n/5 but generally
being inefficient. However, for ¢ = O(/n), his protocol is efficient and
requires a constant expected number of rounds. Feldman [Fel89] gave
the first efficient protocol with linear resilience, n > 4¢. Bracha [Bra87a]
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gave the first optimally resilient but inefficient protocol, tolerating n >
3t, i.e., the same number of corrupted players as can be tolerated with
respect to synchronous networks. Canetti and Rabin [CR93] gave the first
efficient protocol with optimal resilience, n > 3t, requiring a constant
expected number of rounds. In contrast to most probabilistic protocols
for broadcast or consensus their protocol cannot be directly transformed
into a “Monte Carlo” protocol with a deterministic constant number of
rounds and a negligible error probability. Also the bit-complexity of their
protocol is very high (more than (n'?)). For a weaker model where the
adversary does not have full control over the network delays, a simpler
solution was given by Bracha and Toueg in [BT85].

Fail-stop corruption. No protocol can tolerate more than ¢ < n/2 fail-
corruptions as was proven in [BT85]. The first protocol to achieve this
bound was given in [Ben83]. However this protocol is inefficient. For a
weaker model where the adversary does not have full control over the
network delays, an efficient solution was given in [BT85].

3.1.2.2 Computational security

Active corruption. A lower bound of n > 3t was proven in [BT85,
Tou84]. The first protocol with respect to this model was given by Rabin
in [Rab83a], tolerating ¢ < n/10. The first efficient protocol with optimal
resilience was presented in [Tou84] by Toueg. The protocol terminates
in a fixed number of rounds linear in a customizable security parameter
k and guarantees correctness of the outcome with an error probability
exponentially small in k. It can be turned into a protocol of type “Las
Vegas” terminating in a constant expected number of rounds. Cachin,
Kursawe, and Shoup [CKS00] improved over the protocol in [Tou84], re-
ducing the (expected) message complexity to O(n?|s|). Besides a shared
PKI, all mentioned protocols require some additional precomputation.
In [Rab83a, Tou84] this additional precomputation grows linearly in the
number of required later broadcasts. In [CKS00] the precomputation
grows at most polylogarithmically in the number of required later broad-
casts; but the protocol’s security is proven only in the so-called “random-
oracle” model [BR93]. In [Nie02], Nielsen showed how to overcome this
requirement by presenting a cryptographic coin protocol based on stan-
dard computational assumptions.

Fail-stop corruption. The lower bound of n > 2t proven in [BT85] also
holds for computational security. The protocols in [CKS00] can finally be
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adapted to the fail-stop case achieving consensus for n > 2t while being
efficient and requiring a constant expected humber of rounds.

3.1.3 Variations of Byzantine agreement

Interactive consistency. A problem somewhere between broadcast and
consensus called interactive consistency was introduced in [PSL80]. There,
the goal is to have all players broadcast a value to everybody and all cor-
rect players decide on the same vector of broadcasted values. Obviously,
interactive consistency is achievable whenever broadcast is achievable.

Firing squad. Burns and Lynch [BL87] introduced the firing squad prob-
lem with respect to synchronous networks without a common clock with
the goal to initialize a global clock among the players, and thus to achieve
full synchronicity. More generally, the goal is to make all correct play-
ers synchronously perform a common action during the same round, al-
though the players initially do not agree on a point of time when this
action is to be performed.

For example, this problem is of special interest if some player wants
to “unexpectedly” initiate the execution of a new protocol (even in a fully
synchronous network). A correct initiator should be able to make all cor-
rect players start the protocol in the same communication round whereas
a corrupted player should not be able to initiate a protocol in a way such
that not all correct players start simultaneously. In [BL87] an efficient con-
struction is given that transforms any secure protocol for broadcast with
n > 3t into a secure protocol for the firing squad problem. More results
for this problem were given in [CDDS89] by Coan, Dolev, Dwork, and
Stockmeyer, e.g., that no firing squad protocol exists for n < 3¢ even with
respect to computational security. Furthermore, in [CDDS89], a proto-
col for “Byzantine agreement with non-unison start” is given. Given the
setup of a consistent PKI, their protocol achieves broadcast for ¢ < n even
when not all correct players start the protocol during the same round, i.e.,
the broadcast can be initiated by any player on the fly.

Strong validity. Consensus protocols usually make the players decide
on a default value when not all correct players start with the same input
value. Neiger [Nei94] defined the strong consensus problem where the out-
put value finally agreed on is required to be the input value of at least
one correct player. With respect to synchronous networks, an active ad-
versary, unconditional security, and an input domain of size m (|D| = m)
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he proved n > max(3,m)t to be a tight bound for the achievability of
strong consensus. The first efficient protocol with optimal resilience to
achieve strong consensus was given in [FG02]. Further models are con-
sidered there.

Weak broadcast. A weak form of broadcast was introduced in [Dol82],
called crusader agreement. As for example done in [GP92, FM00a, GL02],
the definition of crusader agreement can be slightly modified, yielding
a version which we will call weak broadcast (called “MakeUnique” in
[GP92] and “broadcast with abort and strengthened validity” in [GL02]).
The idea is to introduce an “invalidity” symbol L with the goal that
no correct players ever decide on different values that are valid. Note
that the term weak broadcast [FMO00a] is not to be confused with the weak
Byzantine generals problem introduced by Lamport in [Lam83]. In light
of [Lam83], the reuse of the predicate “weak” may seem awkward. On
the other hand, its reuse is justified for two reasons. First, Lamport used
this term for a problem that he proved to be futile anyway and hence
wasting this term for nothing.® Second, a problem called detectable broad-
cast (cf. Definition 6.5 in Section 6.3) is strictly stronger and achievable for
all cases where the weak Byzantine generals problem is achievable.

Definition 3.4 (Weak Broadcast). Let P = {py,...,p,} be aset of n players
and let D be a finite domain. A protocol ¥ among P where player p, € P (called
the sender) holds an input value z; € D and every player p; € P finally decides
on an output value y; € DU {L} (with L ¢ D) achieves weak broadcast with
respect to P, p,, and D, if it satisfies the following conditions:

Validity: If the sender p; is correct then all correct players p; decide on the
sender’s input value, y; = x5.
Consistency: If any correct player p; decides on a value y; € D then all
correct players p; decide on a value y; € {y;, L}. o
Definition 3.5 (Weak Consensus). Let P = {p1,...,p,} be aset of n players
and let D be a finite domain. A protocol ¥ among P where every player p; € P
holds an input value z:; € D and finally decides on an output value y; € DU{ L}
(with L ¢ D) achieves weak consensus with respect to P and D if it satisfies
the following conditions:

Validity: If all correct players p; hold the same input value z; = v then all
correct players p; decide on it, y; = v.

6;_)




3.1 Byzantine agreement 49

Consistency: If any correct player p; decides on a value y; € D then all
correct players p; decide on a value y; € {y;, L}. o

Graded broadcast. Graded broadcast [FM97] is a variation of broad-
cast where, additionally to the output value, every player gets a grade
g € {0,1,2} on the outcome of the protocol. We present a slightly mod-
ified version with binary grades. If any correct player gets grade 1 then
all correct players decide on the same output value, i.e., getting grade 1
implies detecting agreement. If the sender is correct then the protocol
achieves broadcast and all correct players get grade 1.

Definition 3.6 (Graded Broadcast). Let P = {p1,...,py} be aset of n play-
ers and let D be a finite domain. A protocol ¥ among P where player p, € P
(called the sender) holds an input value z; € D and every player p; € P finally
decides on an output value y; € D and a grade g; € {0,1} achieves graded
broadcast (or gradecast) with respect to P, p,, and D, if it satisfies the follow-
ing conditions:

Validity: If the sender p; is correct then all correct players p; decide on the
sender’s input value, y; = x5, and get grade g; = 1.

Consistency: If any correct player p; gets grade g; = 1 then all correct
players p; decide on the same output value, y; = y;. o

Definition 3.7 (Graded Consensus). Let P = {p1,...,pn} be a set of n
players and let D be a finite domain. A protocol ¥ among P where every player
p; € P holds an input value z; € D and finally decides on an output value
y; € D and agrade g; € {0,1} achieves graded consensus with respect to P
and D, if it satisfies the following conditions:

Validity: If all correct players p; hold the same input value z; = v then all
correct players p; decide on it, y; = v, and get grade g; = 1.

Consistency: If any correct player p; gets grade g; = 1 then all correct
players p; decide on the same output value, y; = y;. o

King consensus. King consensus is a form of consensus with a weak-
ened consistency property. It was implicitly introduced in [BGP89].

Definition 3.8 (King Consensus). Let P = {p1,...,p,} beaset of n players,
let D be a finite domain, and let p;, € P be a designated player called the king
(whereas every player knows the identity py, of the king). A protocol ¥ among P
where every player p; € P holds an input value x; € D and finally decides on
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an output value y; € D achieves king consensus with respect to P, py, and D,
if it satisfies the following conditions:

Validity: If all correct players p; hold the same input value z; = v then all
correct players p; decide on it, y; = v.
Consistency: If king py, is correct then all correct players p; decide on the

same output value, y; = yx. o

3.1.4 Further aspects

We briefly summarize additional important work in the area where al-
ternative models or problems are considered. Thereby, unless stated oth-
erwise, we focus on synchronous networks, unconditional security, and
active adversaries.

Reducing multi-valued to binary Byzantine agreement. Byzantine ag-
reement for any finite domain D can be efficiently solved with any binary
protocol. A simple way to do so is to encode elements from D in binary
and to run [log, |D|] binary protocols in parallel, one for each bit. A more
efficient method was shown by Turpin and Coan in [TC84] for the case
of unconditional security against ¢ < n/3 corrupted players. First, multi-
valued graded broadcast or graded consensus is invoked on the input(s)
in D. Then binary consensus on the grade value is invoked. Now, if con-
sensus on the grade value results in output 1 then the players decide on
their output (in D) from the multi-valued protocol and otherwise, they
decide on some default value v € D. This multi-valued protocol requires
at most 2 more communication rounds than the binary protocol and an
overhead in the overall message complexity of n” log, | D| bits over the bi-
nary protocol. Hence, the message complexity of multi-valued Byzantine
agreement depends on the domain size by a factor of at most n2.

Multiple invocations of Byzantine agreement.  Protocols for Byzantine
agreement with signed messages require that messages exchanged dur-
ing different invocations of the protocol must be uniquely associated with
their corresponding invocation as was observed for example by Gong,
Lincoln, and Rushby [GLR95].

If only the plain messages were signed then the adversary would be
able to “forge” signatures of correct players by a simple replay attack,
i.e., by using signatures previously seen during another invocation of the
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protocol. This problem can be solved by associating each invocation with
a unique protocol ID and including this ID in every message.

Early stopping. Deterministic protocols usually require a fixed number
of rounds even when no single player misbehaves. The idea of early
stopping is to tailor the protocol such that its number of rounds decreases
with the number f < t of players that get indeed corrupted until the end
of the protocol. This is typically achieved by a mechanism that allows to
locally detect agreement among the players and an internal persistency
property of the protocol that guarantees that, once achieved, agreement
can not be violated anymore by the adversary. This then allows a player
to safely stop as soon as he detects agreement. Note that all probabilistic
protocols of type “Las Vegas” include such an early-stopping mechanism.

The first such protocol was given by Dolev, Reischuk, and Strong
in [DRS82, DRS90] for the case that n = Q(¢2). Furthermore, they proved
that min(¢ + 1, f + 2) (where f is the number of corrupted players at
the end of the protocol) is a lower bound on the number of rounds that
an early stopping protocol can achieve. In [MW88], Moses and Waarts
gave an efficient protocol with resilience n > 6t that achieves this lower
bound of min(¢ + 1, f + 2). A protocol with optimal resilience, i.e. n >
3t, that achieves this lower bound was given by Berman, Garay, and
Perry [BGP92b]. However, their protocol requires an exponential amount
of data to be exchanged between the players.

Goldreich and Petrank [GP90] used the idea of early stopping in or-
der to combine probabilistic constant-expected-round protocols with de-
terministic (fixed-round) protocols such that the resulting protocol still
requires a constant expected number of rounds but requiring at most
t + O(log t) rounds in the worst case. More generally, they observed that
almost all existing protocols for Byzantine agreement have a common
structural property that can be exploited in order to combine a proba-
bilistic and a deterministic protocol such that the combined protocol ter-
minates both, in the same order of expected number of rounds as the
probabilistic protocol, and in almost the same order of number of rounds
as the deterministic protocol. Zamsky [Zam96] described a protocol with
resilience n > 8t that requires a constant expected number of rounds but
is still round optimal (min(¢ + 1, f + 2) rounds) in the worst case.

Simultaneous versus eventual Byzantine agreement. The drawback of
probabilistic protocols of type “Las Vegas” or protocols with early stop-
ping, in general, is that they cannot guarantee that all players simultane-
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ously terminate the protocol during the same round, i.e., the adversary
can always achieve that the players get “desynchronized” by one or more
communication rounds. Protocols of this flavor are said to achieve even-
tual Byzantine agreement (EBA): agreement is eventually achieved but the
players do not necessarily terminate at the same time; whereas simulta-
neous Byzantine agreement (SBA) additionally requires that all players ter-
minate at the same time. As proven in [DRS82, DRS90, HM90, DM90],
deterministic protocols and probabilistic protocols of type “Las Vegas”
require at least ¢ + 1 communication rounds in order to guarantee SBA.
For most applications SBA is required, implying that early-stopping
protocols (and “Las Vegas” protocols, in particular) cannot be applied.

Extended adversary models. Meyer and Pradhan [MP91], and Garay
and Perry [GP92] considered a model where active and fail-stop corrup-
tion can occur simultaneously, i.e., that the adversary may corrupt ¢, of
the players actively and some (distinct) ¢y players in a fail-stop man-
ner. They proved that, in this model, Byzantine agreement is possible
if and only if 3t, + ¢ty < n and gave efficient protocols for the achiev-
able cases. Hirt and Maurer [HMO00] introduced the notion of a gen-
eral adversary with respect to secure multi-party computation (see Sec-
tion 3.2.2, “Extended adversary models”). They implicitly proved that
broadcast unconditionally secure against an active adversary is possi-
ble if and only if no three elements of the adversary structure cover the
full player set. Their very elegant recursive construction for respective
multi-party-computation protocols allows for optimally resilient broad-
cast with computation and bit complexities polynomial in the size of the
adversary structure — but generally exponential in n. The first protocols
with a bit complexity polynomial in n were given in [FM98, AFM99].

Link- and omission failures. So far, we always assumed players, i.e.,
processors, to be corrupted (plus possibly the scheduling of messages in
the network) whereas the channels between the players were assumed to
be reliable. In contrast, in a model with link failures the processors are as-
sumed to be reliable but the communication channels may fail. Amongst
others, this model is treated by Berman, Diks, and Pelc in [Pel92, BDP97].
A failure type somewhere between fail-stop corruption of processors and
link failures was introduced by Hadzilacos [Had83], called omission fail-
ures, where processors may fail to send one or more messages. This
model is further treated in [CMS89, HH93b].



3.1 Byzantine agreement 53

Overview texts. For further information, the reading of [Lyn96, AW98,
HM90, FHMV95, CD89, Can95] is recommended.

3.1.5 Folklore and fairy tales

Also with respect to Byzantine agreement, generally, “more things are
known than are true”. This section gives a variety of further aspects of the
problem that are often wrongfully believed, ignored, or misunderstood.
Again, we focus on synchronous networks and active adversaries.

Unconditional versus computational resilience. As already stated at
the beginning of this chapter it is often believed that, with respect to gen-
eral “achievability”, there is a fundamental difference between uncondi-
tionally secure and computationally secure Byzantine agreement.

“Claim” 3.1. Given a synchronous network of pairwise authenticated (or se-
cure) channels among the players, unconditionally secure Byzantine agreement
is achievable if and only if ¢ < n/3 and computationally secure Byzantine agree-
ment is achievable if t < n.

Although not essentially wrong, such claims implicitly rely on a fur-
ther difference in the models. Whereas, for unconditional security, typi-
cally no consistently shared data (see Section 2.3.4) is assumed among the
players, this is mostly assumed for the case of computational security. For
the case that the players do not hold consistently shared data, Borcherd-
ing [Bor96] observed that n > 3t is necessary in order to achieve Byzan-
tine agreement even with respect to computational security. This fact is
also implied by an impossibility proof in [FLM86]. On the other hand,
Pfitzmann and Waidner [PW96] proved that consistently shared data al-
lows to tolerate ¢ < n even in the unconditional case by giving a construc-
tion for unconditional pseudo-signatures (cf. Section 2.2.2). However, for
n < 3t, computationally secure protocols are much more efficient.

Composition of Byzantine agreement protocols. As a reaction to work
by Lindell, Lysyanskaya, and Rabin [LLR02] some people started to be-
lieve the following

“Claim” 3.2. Even when given a consistent PKI among the players (model
MPXD) parallel composition of Byzantine agreement is impossible if n < 3t
and sequential composition is not known to be achievable efficiently for general
n whenn < 2t.
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Of course, this claim only holds for models where the correct players
are rigorously restricted — so called stateless players. A stateless player
is only allowed to store data during a precomputation phase whereas
data that is stored during an execution of the protocol is irrecoverable
after the execution. In a model where players are allowed to coordinate
different executions of the protocol (e.g., by storing an ID number be-
tween two sequential executions) this claim is obviously false (see also
Section 3.1.4 “Multiple invocations of Byzantine agreement”).

On the other hand, in [LLROZ2], a solution is given for the sequen-
tial composition of Byzantine agreement among stateless players for ¢ <
n/2. However, their solution requires an external trusted party to syn-
chronously trigger all the players to execute the protocol, since the pro-
tocol does no “firing” a la [BL87] and the players are not allowed to re-
member how many cycles have passed since the precomputation.

Furthermore, the “stateless players” model implies that, in general,
the parallel composition of Byzantine agreement (or the parallel compo-
sition of authenticated communication) is impossible even for ¢t = 0 since
a player cannot assign messages received in parallel to their correspond-
ing protocol instances. Additionally, following the same reasoning as in
[LLROZ2], if the authenticated channels have to be simulated with help
of insecure channels and authentication mechanisms then the “stateless
players” model does not even allow for the sequential composition of
Byzantine agreement for any ¢ > 0. Hence, their positive result with
respect to sequential composition only holds for a model where the au-
thenticated channels are physically given.

Multiple invocations of constant-expected-round protocols. Depend-
ing on the application, typically a lot of parallel and sequential invoca-
tions of broadcast are required. If the given broadcast protocol is deter-
ministic, the overall round complexity of all invocations together is fixed
by the number of sequential executions times the number of rounds of
the single protocol. Analogously, given a probabilistic protocol of type
“Las Vegas” that requires a constant expected number of rounds (e.g.,
the one in [FM97]), we get the following

“Claim” 3.3. Given a protocol ¥ that requires a constant expected number of
rounds, the expected round complexity of & parallel invocations of ¥ is constant
and the expected round complexity of k£ sequential invocations of ¥ is O(k).

In [BEQ3], Ben-Or and El-Yaniv observed that £ parallel invocations
of protocols requiring some O(f(n)) expected number of rounds are not
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necessarily bounded by the same order O(f(n)). However, for “typical”
protocols as the one in [FM97] where the probability of non-termination
decreases exponentially in the number of rounds, the expected number of
rounds of k parallel executions is still logarithmically bounded, O(log k).
See also Section 4.1.2.3.

Weak Byzantine generals. The weak Byzantine generals problem de-
fined by Lamport in [Lam83] is the same as the broadcast problem but
with a weakened validity condition: all correct players must agree on the
same output value which is required to be the sender’s input only if no
player is corrupted. Evidently, unconditionally secure “weak Byzantine
generals” is achievable if ¢ < n/3 since its conditions are strictly weaker
than those of broadcast.

“Claim” 3.4. In model M . or M., unconditionally secure “weak Byzantine
generals” is not achievable if n < 3t.

Indeed, in [Lam83], it is proven that the weak Byzantine generals
problem cannot be achieved if n < 3t, i.e., that this weakened variant
does not allow for more players to be corrupted than broadcast. How-
ever, this proof is restricted to a model that does not allow for private
(local) randomness by the players. Assuming the players to have access
to private randomness in fact allows to tolerate t < n as is implied by
Theorem 6.9.

3.2 Multi-party computation

Byzantine agreement is a special case of the more general problem of
multi-party computation (MPC), initially defined by Yao [Ya082], where the
players want to distributedly evaluate some agreed function(s) on their
inputs in a way preserving privacy of their inputs and correctness of the
computed result.’

More precisely, in a multi-party computation among a player set P
with respect to a collection of functions (f, ..., f.), every player p; € P
holds a secret input (vector) x; and secretly receives an output (vector)
Yi = fi('rlv v 7mn)'

"Note that this problem is sometimes called secure function evaluation whereas the term
multi-party computation would then refer to the more general problem of ongoing compu-
tations where several function evaluations might be “intertwined”.
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From a qualitative point of view, the security of multi-party computa-
tion is often broken down to the conditions “privacy”, “correctness”, “ro-
bustness”, and “fairness”, and ideally, a protocol should satisfy all these
properties. However, depending on the adversarial power, a protocol
cannot always guarantee all properties. In particular, there are settings
where it is unavoidable that the adversary can force correct players to

abort the computation.

Privacy. A protocol achieves privacy if the adversary cannot learn more
about the correct players’ inputs than given by the inputs and out-
puts of the corrupted players.

Correctness. A protocol achieves correctness if the correct players’ out-
puts are indeed computed as defined by the functions f;.

Robustness. A protocol achieves robustness if no correct player aborts the
protocol.

Fairness. A protocol achieves fairness if the adversary gets no informa-
tion about the correct players’ inputs in case that any correct player
aborts.

More formally, multi-party computation is modeled by an ideal pro-
cess involving a mutually trusted party = where the players secretly hand
their inputs to 7, followed by 7 computing the players’ outputs and se-
cretly handing them back to the corresponding players. This model is
referred to as the ideal model [Bea91, Can00, Gol01b].

The goal of multi-party computation is now to achieve the same func-
tionality in the so-called real model where there is no such trusted party
such that an adversary gets no advantage compared to an execution of
the ideal protocol. A multi-party computation protocol is defined to be
secure if, for every adversary A in the protocol, there is an adversary S
in the ideal model that, with similar costs, achieves (essentially) the same
output distribution as the adversary in the protocol. For the case that not
all conditions can be satisfied by a real-model execution, it is natural to
restrict the trusted party’s behavior in its corresponding ideal model to
what is in fact achievable in the real model, as is done in [Gol01b] (see,
for example, Goldreich’s “first malicious model™).

In this text, two models are of particular interest. The first model
(standard computation) captures all qualitative properties listed above.
The second model (non-robust computation) achieves all properties ex-
cept for robustness. In the sequel, when not explicitly stating the model
we refer to standard computation.
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Standard computation. In the corresponding ideal model, the players se-
cretly hand their inputs to the trusted party = who reliably eval-
uates the functions f; on the given inputs z;, and secretly hands
each output y; back to player p;. A real-model protocol is secure
if any real-model adversary 4 can be transformed into an ideal-
model adversary S that, by interacting with 7, enforces an output
distribution that is indistinguishable from the one A enforces in the
real model whereas the output distribution is the distribution of the
adversary’s view and the correct players’ outputs.

Non-robust computation. The corresponding ideal model is defined as
for standard computation — with the only difference that an ac-
tively corrupted player can hand the special symbol L to 7, in which
case 7 delivers output L to every player meaning that the compu-
tation was aborted.

The standard models for multi-party computation primarily distin-
guish between unconditional and computational security, and between
passive and active corruption.

With respect to unconditional security, model M;..[u] (secure bilat-
eral channels and no broadcast channels among the players) is typically
assumed independently of whether the adversary is passive or active. We
will refer to this model as the unconditional model.

With respect to computational security against a passive adversary,
also model M[c] (secure bilateral channels and no broadcast channels
among the players) is assumed. With respect to computational secu-
rity against an active adversary, model MP¢ [c] (secure bilateral channels
and broadcast channels among the players) is assumed. Alternatively to
model ME< [c], also model MP¥i[c] can be assumed since a PKI allows
for private bilateral communication and broadcast. We wiill refer to these
models as the computational models.

In the unconditional model, it is demanded that the output distribu-
tion produced by any real-model execution be statistically indistinguish-
able by the one produced by an ideal-model execution. In the computa-
tional model, only computational indistinguishability is demanded and
A, 8, and the transformation from 4 to S are required to be polynomial-
time computable.

The following sections give a short selective overview on previous
results in this topic whereby we focus on models with synchronous net-
works. For a more precise treatment of the topic, the reader is referred
to [Fra93, Can95, Can00, Gol01b, Cra99, Hir01].
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3.2.1 Protocols and impossibility results

Goldreich, Micali, and Wigderson [GMW87] gave the first complete so-
lution to the problem. Their protocols work in the computational model.
For the model with a passive adversary they gave an efficient protocol
that tolerates any number of corrupted players, ¢ < n. For the model
with an active adversary they gave an efficient protocol that tolerates
any faulty minority, n > 2¢, which is optimal in the sense that no pro-
tocol exists for n < 2¢. Other protocols for the computational model
were for instance given by Franklin and Haber [FH96], Gennaro, Ra-
bin, and Rabin [GRR98], and Cramer, Damgéard, and Nielsen [CDNO1].
In [GMWS87, BG89a, GL90, Gol01b] protocols were given that are com-
putationally secure against t < n players but wherein the adversary can
force the protocol to prematurely abort, i.e., the protocol achieves privacy
and correctness but neither robustness nor fairness.

For the unconditional model, Ben-Or, Goldwasser, and Wigderson,
and Chaum, Crépeau, and Damgéard [BGW88, CCD88] gave efficient pro-
tocols for the passive case that tolerate ¢ < n/2 and protocols for the
active case that tolerate ¢t < n/3. Both bounds are tight. Other proto-
cols with unconditional security were for instance given by Gennaro, Ra-
bin, and Rabin [GRR98] (fast multiplication), Ishai and Kushilevitz [1K00]
(constant-round protocols), and Hirt and Maurer [HMO01] (player elimi-
nation).

For the unconditional model where, additionally, reliable broadcast
channels are assumed among all the players (i.e., for “non-standard”
model MPEC [u]), Beaver [Bea89], and Rabin and Ben-Or [RB89], proposed
efficient protocols that tolerate ¢ < n/2. This bound is tight. A more
efficient protocol for this model was given by Cramer et al. [CDD+99].

3.2.2 Further aspects

The role of broadcast. Broadcast is an important building block for
MPC protocols with an active or a fail-stop adversary. At some points in
a computation it may be necessary that the players vote on how to pro-
ceed with the protocol. Thereby it is important that all players receive
exactly the same vote from every player since, otherwise, two correct
players might proceed with completely different steps of the protocol.
For instance, in order to guarantee that the data distributed among cor-
rect players remains consistent, MPC protocols often require that subsets
of players cross-check their information. In case that such a cross-check
reveals any inconsistency, the involved players announce this inconsis-
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tency with a public “complaint” and, as a reaction to the complaint, some
sub-protocol is invoked among all players in order to correct this error. In
case that no inconsistency is revealed the protocol can continue directly
without any further measures. Such “complaints” must be guaranteed
to be consistently received by all players and hence are usually sent with
help of a broadcast protocol (or channel).

Secret sharing. In MPC, players are often required to distribute a se-
cret piece of information among the players without revealing it. This
can be achieved with secret sharing, introduced by Blakley [Bla79] and
Shamir [Sha79]. Secret sharing is a two-phase protocol among a player
set P with a designated player, called the dealer, and two designated sub-
sets of players S, R C P, the shareholders S and the recipients R. First, in
phase “share”, the dealer inputs a secret o and each player s; € S com-
putes a local share o;. Thereby it is guaranteed that the adversary gets no
more information about the secret ¢ than she has already known before
this phase. Second, in phase “reconstruct” (at any later point of time), all
shareholders s; € S input their shares o; and the recipients r; € R all
reconstruct secret . Typically, it holds that P = S = R.

Whereas ordinary secret sharing is enough when dealing with a pas-
sive adversary, further conditions must be specified for the case that the
dealer is corrupted when dealing with an active adversary: at the end
of the sharing phase, a unique secret ¢ must be defined that will be re-
constructed by all correct recipients during the reconstruction phase.? In
other words, it is guaranteed that the dealer is committed to a unique
value that cannot be changed after the sharing phase. This is the notion
of verifiable secret sharing, introduced by Chor, Goldwasser, Micali, and
Awerbuch [CGMAS5].

Extended adversary models. In contrast to unconditionally secure pro-
tocols, computationally secure ones have the disadvantage that they rely
on unproven computational assumptions and hence could be completely
insecure. Chaum, Damgard, van de Graaf [CDG87] gave the first compu-
tational MPC protocol to partly overcome this problem. Their protocol,
assuming authenticated broadcast channels among the players, is com-
putationally secure against ¢ < n/2 corrupted players but, with respect
to one distinct player, unconditional privacy is guaranteed. In [Cha89],

8This includes the possibility that the dealer is publicly detected to be cheating where o
would be set to a default value.
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for model M;., Chaum gave a protocol with respect to a passive adver-
sary that is computationally secure against ¢ < n corrupted players and,
at the same time, provides unconditional security for ¢ < n/2. In other
words, in order to make the protocol fail, the adversary must be able to
“break” the computational assumption and, additionally, corrupt half or
more of the players. For model M?¢, and with respect to an active adver-
sary, he gave a protocol that is computationally secure against ¢t < n/2
corrupted players and, at the same time, provides unconditional privacy
(but not necessarily correctness) for t < n/3. Note that the later protocols
in [Bea89, RB89, CDD*99] strictly imply this result.

Another flavor of hybrid security can be defined with respect to a
mixed adversary that may corrupt some ¢, of the players actively, and ad-
ditionally some ¢, of the players passively. Such a model was first in-
troduced by Galil, Haber, and Yung [GHY87].° For model M%<, Chaum
gave an MPC protocol that is unconditionally secure for 2t, + t. < n
and 2t. < n where t. denotes the maximal number of corrupted players
that collude, possibly including actively corrupted ones [Cha89]. This
result is also strictly implied by the protocols in [Bea89, RB89, CDD*99].
In [FHM98], besides active and passive corruption, the additional fail cor-
ruption of ¢; players is considered. For the model with secure channels
it is shown that MPC is achievable if and only if 3t, + 2t, + ty < n. For
the model with secure channels and authenticated broadcast channels it
is shown that MPC is achievable if and only if 2¢, + 2t, +¢; < n.

Ito, Saito, and Nishizeki [ISN87] introduced the notion of general ac-
cess structures for secret sharing. A general access structure is a subset
of the power set of the player set. Thereby the idea is that exactly the
player sets contained in the access structure shall be able to reconstruct
a shared secret. Dually, a general adversary structure is also a subset of
the power set of the player set — but meaning that the adversary may
select exactly one of the elements of the structure and corrupt the cor-
responding players. The threshold case of a general adversary structure
then simply forms the special case where the adversary structure contains
exactly all player subsets of cardinality up to ¢. An adversary that is re-
stricted to a general such access structure is called general adversary. Hirt
and Maurer [HMO00] showed that, in the passive model with pairwise se-
cure channels, MPC unconditionally secure against a general adversary
is achievable if and only if the union of no two elements of the adversary

9Note that, unlike the work referred to below, they distinguish between compromisers
(passively corrupted players, i.e., read-only corruption) and violators (actively corrupted
players but with no read access by the adversary, i.e., write-only corruption).
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structure is equal to the player set. For the active model with pairwise
secure channels, they showed that MPC unconditionally secure against
a general adversary is achievable if and only if the union of no three el-
ements of the adversary structure is equal to the player set. A natural,
modular construction for such general MPC that can be based on any lin-
ear scheme for secret sharing is given in [CDMO0] by Cramer, Damgard,
and Maurer. In [FHM?99], a hybrid model with a general mixed adversary
is considered.






Chapter 4

Protocols and Impossibility
Proofs

This chapter elaborates on some fundamental protocols and impossibil-
ity results for Byzantine agreement. Throughout, the network is assumed
to be synchronous, and the adversary is assumed to be active. Section 4.1
treats the case where no data is consistently shared among the players
(except for the common knowledge of the player set, the protocol, and
the network topology — see Section 2.3.4), i.e., plain models M, and
Miec. Section 4.2 treats the more powerful case where some data is con-
sistently shared among the players in the form of a consistent PKI (mod-
els MPX and MPK), In Section 4.2.2, a hybrid model is defined where the
players share a consistent PKI but Byzantine agreement is also required
to be achieved in some cases where the adversary is able to forge sig-
natures: If the adversary cannot forge signatures then Byzantine agree-
ment is required to be achieved with respect to some large threshold but
even if the adversary can forge signatures then Byzantine agreement is
still required to be achieved with respect to some small threshold. In
other words, a model is treated where protocols do not exclusively rely
on the consistency of the given PKI and the security of the given signature
scheme. Section 4.3 describes how the achievability of temporary broad-
cast among a set of players can be exploited in order to set up consistently
shared data in the form of a consistent PKI — the converse problem of the
one in Section 4.2 where consistently shared data is exploited in order to
achieve broadcast.



64 Protocols and Impossibility Proofs

4.1 Broadcast without consistently shared data

This section presents a selection of deterministic and probabilistic proto-
cols for broadcast secure against t < n/3 actively corrupted players for
models wherein no consistently shared data exists among the players.
The deterministic protocols all provide perfect security; the probabilis-
tic ones provide unconditional security with an error probability that is
exponentially small in the security parameter «. Finally, it is proven that
Byzantine agreement is not possible if n > 3t when no data is consistently
shared among the players. These results are subsumed by the following
theorem.

Theorem 4.1 (Tight Bounds for Broadcast [LSP82, DS82]). In standard
models May¢[u] and Mec[c] when no data is consistently shared among the
players, (efficient) broadcast or consensus are possible if and only if n > 3t.

Proof. The theorem follows from Theorem 4.8 (achievability of broad-
cast) and Theorem 4.16 (impossibility of broadcast), and Proposition 4.11
(equivalence of broadcast and consensus). O

Note that the achievability of Byzantine agreement in model M, [u]
implies its achievability also in the models M,,[c] (weaker security),
Misec[u] (stronger communication model), and Msec[c]. On the other
hand, the impossibility of Byzantine agreement in model Mg.[c] im-
plies its impossibility also in the models M,,s[c] (weaker communication
model), M. [u] (stronger security), and M [u].

4.1.1 Deterministic broadcast protocols

Two basic deterministic broadcast protocols are presented, Exponential
Information-Gathering (EIG) [LSP82, BDDS92] and Phase-King [BG89b,
BGP89]. The model is M., (pairwise authenticated channels). Both pro-
tocols provide perfect security against an active adversary who corrupts
up tot < n/3 players.

4.1.1.1 EIG protocol

Information gathering (IG) is the archetypal mechanism for broadcast
(and Byzantine agreement in general). Its principle is based on a simple
recursion of message distribution. However, when applied in its original
way, this leads to inefficient protocols, namely exponential information
gathering (EIG) [LSP82]. In [BDDS92] it is shown how EIG can be made
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efficient by limiting the number of recursions to a constant but repeating
the same procedure several times.

EIG among n players is implicitly based on sub-protocols that achieve
broadcast among less than n players but satisfying validity and consis-
tency with respect to different thresholds.

Definition 4.1 (Two-Threshold Broadcast). Let P = {p;,...,p,} be a set
of n players and let D be a finite domain. A protocol ¥ among P where player
ps € P (called the sender) holds an input value z; € D and every player p; € P
finally decides on an output value y; € D achieves two-threshold broadcast
(TTBC, for short) with respect to P, ps, D, and thresholds ¢,, and ¢. if it satisfies
the following conditions:

Validity: If at most f < t, players are corrupted and the sender p; is
correct then all correct players p; decide on the sender’s input value,
Yi = Ts.

Consistency: If at most f < t. players are corrupted then all correct play-
ers decide on the same output value. o
TTBC among a player set S C P (n = |S]) with sender p, and thresh-

olds t, and t. such that ¢t. < ¢, recursively works as follows. First, the

sender p; distributes his input value z; to all players in S. Second, each
player p;, € S\ {ps} redistributes the value he received from p, with an
instance of TTBC among the n’ = n — 1 players in S\ {p;} with thresh-
olds t! =t, and t. = t. — 1. The EIG protocol for broadcast then simply
consists of an invocation of TTBC among P with thresholds ¢, = t. = t.

Protocol 4.1 TTBC (S, ps, Zs, ty, tc)
1. if = sthen SendToAll(ws);y; := xs;returny; fi ; Receive(z);
2. if t.=0then y; :=z} else
3. Vp; € S\{ps} : ! := TTBC (S\{ps},pj, 25, to, tc — 1);
4 T = {jE{l,...,n}\{s}|xZ=0};
Th = {je{l,...,n}\{s}| ©l = 1}
if |T?|>n—t,—1then y;:=0else y; :=1fi ;
6. fi ; returny;

o

Lemma 4.2. In model M, Protocol 4.1 achieves perfectly secure TTBC if
2t, +t. < nandt. < t,.

Proof. The proof proceeds by backward induction on ¢.. The induction
base is given by ¢t. = 0, in which case the Protocol 4.1 trivially achieves
TTBC.
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Let now n, t, and t. > 0 be given such that 2¢, + t. < n and (¢. < t,),
and suppose that Protocol 4.1 achieves TTBC for n'’ =n — 1, ¢, = t,, and
th=t.— 1.

We first show that validity is satisfied with respect to threshold t,.
Assume that f < ¢, players are corrupted and that the sender p, is correct
with input z. Then all correct players p; receive z{ = z; and redistribute
this value with TTBC among n’ = n — 1 players. Since, by assumption,
all executions of TTBC in step 3 satisfy the validity property for ¢;, = t,,
every correct player p; hence receives value arf =z, fromatleastn—t,—1
different players p; € S\{p,} and x{ =1—z, by at most ¢, > t. different
players. Since 2t, +t. < nand t. > 0 itholds thatt¢, < n —t, — 1,
and hence that every correct player decides on y; = =} = x,; according to
step 5.

We now show that consistency is satisfied with respect to threshold
t.. Assume that f < t. players are corrupted. If the sender p; is correct
then consistency follows from validity for ¢, since t. < t,. Thus, assume
that the sender is corrupted (and hence t. > f > 0). Then, among the
remaining n’ = n—1 players involved in the executions of TTBC in step 3,
there are at most t' = f — 1 corrupted players left. By assumption, these
executions among n’ = n — 1 players achieve consistency for ¢/, = ¢, — 1
and hence any two correct players p; and p; compute exactly the same
values z¥ = x;” for all k # s, and the correct players all compute y; in the
same way. [l

Protocol 4.2 Broadcast (P, ps, )
1. y;i:=TTBC (P,ps,s,t,t);
2. returny;

Theorem 4.3. In model M ., Protocol 4.2 achieves broadcast perfectly secure
against ¢ < n/3 corrupted players. Its round complexity is R = ¢t 4+ 1 and its
bit complexity is exponential in n.

Proof. That Protocol 4.2 achieves broadcast follows from Definition 4.1,
Lemma 4.2, and the fact that t. = t, = ¢t < n/3. Round and bit complexi-
ties can be easily verified by code inspection. O

4.1.1.2 Phase-king protocol

The phase-king paradigm was proposed in [BG89b, BGP89]. We reformu-
late it in a modular way as a stepwise reduction from broadcast to weak
consensus. The reduction proceeds in three steps, each reducing a more
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involved problem to a simpler one: graded consensus is reduced to weak
consensus, king consensus to graded consensus, and, finally, broadcast
to king consensus.

Weak consensus can be achieved by simply having the players tell
each other their initial value. Each player will then tally the votes for 0
and 1. Every player p; then computes bit y; € {0,1} if he received y; at
least n — ¢ times — otherwise he computes y; = L.

Protocol 4.3 WeakConsensus (P, z;)

1. SendToAll(z;); Receive(z},...,z7);
SP={je{1,...,n}| ) =0} St={je{1l,...,n}| ! =1}
if |S?| > |S} then y;:=0else y;:=1f ;
if |SY|<n—tthen y;:=Lfi ;
return y;

o wn

Lemma 4.4 (Weak Consensus). In standard model M ,,, Protocol 4.3 achie-
ves weak consensus among n players secure against ¢ < n/3 corrupted players.

Proof.

Validity: If all correct players hold the same value v at the beginning
of the protocol then there are at least n — ¢ players (all correct ones) that
consistently distribute v during step 1 of the protocol, and hence for every
correct player p;, it holds that |SY| > n —tand |S; Y| <t < n —t, and
hence y; = v at the end of the protocol.

Consistency: Let p; and p; be two correct players and suppose that p;
decides on y; € {0,1}, i.e., [SY*| > n — t. Since at most ¢ players (all cor-
rupted ones) distribute inconsistent information this implies that |Sj¥" >
(n—t)—t =n—2t > tand thus |S;~*| < n—t,and hence, y; € {y;, L}. O

Protocol 4.3 can now be transformed into a protocol for graded con-
sensus, as described by Protocol 4.4. The players first perform an invo-
cation of weak consensus on their inputs followed by an “echo round”
where the players tell each other their particular outcome of weak con-
sensus. Finally, every player p; tallies the votes for 0 and 1 in order to
determine his output value y; and grade g;.

Protocol 4.4 GradedConsensus (P, z;)

1. z; := WeakConsensus (P, z;);
SendToAll(z;); Receive(z),...,20");
SP={je{l,....,n}| 2l =0}; St:={je{1,...,n}| 2l =1}
if |S?| > |S}|then y;:=0else y;:=1f ;
if |SYi|>n—tthen g;:=1lelse g;:=0fi ;
return (y:, g:)

ok wd
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Lemma 4.5 (Graded Consensus). In standard model M ., Protocol 4.4
achieves graded consensus among n players secure against ¢ < n/3 corrupted
players.

Proof.

Validity: If all correct players hold the same value v at the beginning of
the protocol then, by the validity property of weak consensus, all correct
players p; get z; = v which they send during step 2. Hence, during step 2,
all correct players receive v at least n — ¢ times, and hence |S?| > n —t
and |S} Y| < t,and hence y; = vand g; = 1.

Consistency: Let p; and p; be two correct players and suppose that p;
decides on y; € {0,1} and g; = 1, i.e,, |S/*| > n — t. Hence, at least
(n —t) — t > t correct players sent value y; during step 2. Together with
the consistency property of weak consensus (step 1) this implies that no
correct players sent value 1 — y; during step 2, i.e., every correct player
received value y; strictly more than ¢ times but received value 1 — y; at
most ¢ times, and hence decides on y; = y; by majority. O

As will follow from the rest of the construction, the achievability of
graded consensus implies broadcast independently of the number of cor-
rupted players, i.e., for ¢t < n. Since this is of fundamental importance
for the rest of this text, from now on, we simply assume a protocol for
graded consensus to be given secure for some arbitrary (fixed) threshold
t, 0 <t < n, and show how this protocol can be turned into a protocol
for broadcast with respect to the same threshold ¢. In other words, broad-
cast with respect to any threshold ¢ is reduced to graded consensus with
respect to the same threshold.

We now proceed by transforming Protocol 4.4 into king consensus, as
given by Protocol 4.5. The players first perform an invocation of graded
consensus on their inputs followed by an “echo round” where player py,
the king, sends to all players his particular outcome of graded consensus.
This has the effect that a correct king can enforce agreement at the end of
the protocol whereas a corrupted king has no effect whenever the correct
players already start in the state of agreement on some value.

Protocol 4.5 KingConsensus (P, py, x;)
1. (yi,9:i) := GradedConsensus (P, z;);
2. if ¢=kthen SendToAll(y;)fi ; Receive(yik);
3. if g;=0then y;:=yFfi ;
4. returny;
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Lemma 4.6 (King Consensus). Let GradedConsensus be a protocol that
achieves graded consensus among n players secure against any fixed number
t (0 <t < n) of corrupted players. Then, in model M, Protocol 4.5 achieves
king consensus among n players secure against ¢ corrupted players.

Proof.

Validity: If all correct players hold the same value v at the beginning
of the protocol then, by the validity property of graded consensus, all
correct players p; decide on y; = v and compute g; = 1, and hence they
all ignore the king p;, and stick to y; = v.

Consistency: Let p;, be correct and assume that all correct players p; adopt
the king’s value y* in step 3 because they all compute grade g; = 0 —then
all decide on the same value y; = y* since py, is correct and distributes the
same value to all players during step 2.

On the other hand, let p;, be correct and assume that some correct
player p; ignores the king because he computes grade g; = 1. Then, by
the consistency property of graded consensus, every other correct player
p; received y; = y; in step 1. Hence, p;, distributes y;, = y; during step 2,
and all correct players decide on y; independently of whether or not they
adopt p;’s value. O

Finally, king consensus secure against ¢ corrupted players can be tur-
ned into broadcast with respect to ¢. This is achieved by having the
sender distribute his input value, followed by ¢ invocations of king con-
sensus — with the restriction that the sender and the king players of each
phase must all be pairwise distinct. Note that the sender can be seen as
an initial king player. For convenience, broadcast Protocol 4.6 is stated
with respect to sender p,. For easier references in the rest of this text,
Protocol 4.5 for king consensus (marked KC) is directly in-lined into the
following protocol.

Protocol 4.6 Broadcast (P, p1,21)

1. if i=1then SendToAll(zi)fi ;  Receive(y;);

2. for k=2to t+1do

3. (yi, gi) := GradedConsensus (P, y;); } KC
4. if i=kthen SendToAll(y;)fi ; Receive(yl);

5. if gi=0then y,:=yFfi ;

6. od; returny;

Lemma4.7. Let GradedConsensus be a protocol that achieves graded consen-
sus among n players secure against any fixed number ¢ (0 < ¢ < n) of corrupted
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players. Then, in model M ., Protocol 4.6 achieves broadcast among n players
secure against ¢ corrupted players.

Let R4 be the round complexity and Bg. be the bit complexity of Proto-
col GradedConsensus. The resulting broadcast protocol requires a round com-
plexity of R =t - R + t + 1 and a bit complexity of B = O(n?) + t - B.

Proof.

Validity: If sender p, is correct then all correct players p; enter step 2 with
the same value y; = z1, and validity follows from the validity property
of king consensus.

Consistency: For the case that sender p, is correct, consistency is implied
by the validity property of broadcast. If p; is corrupted then, among the ¢
phases of king consensus at least one involves a correct king. At the end
of this phase, all players agree on a value by the consistency property of
king consensus. Finally, by the validity property of king consensus, all
players will stay with this value, and consistency follows.

Complexity: The round and bit complexities of the protocol can be easily
verified by code inspection. O

Instantiating GradedConsensus with Protocol 4.4, we immediately get

Theorem 4.8 (Broadcast [BGP89]). In model M ., Protocol 4.6 achieves
broadcast among n players perfectly secure against ¢ < n/3 corrupted players.
Its round complexity is R = 3t + 1 and its bit complexity is B = O(tn?).

4.1.2 Probabilistic broadcast protocols

In this section we present two basic probabilistic broadcast protocols for
model M. (pairwise secure channels). Both protocols provide uncon-
ditional security against an active adversary who corruptsup to ¢ < n/3
players. Note that probabilistic protocols typically require secure chan-
nels (instead of only authenticated ones) in order to “hide” the random-
ness from the adversary. As an exception, the protocols in [Ben83, Bra87b]
use randomness only for local decisions and hence only require authen-
ticated channels.

Randomization allows to beat the lower bound of ¢ + 1 rounds for
deterministic protocols. It is possible to achieve broadcast in a (small)
constant expected number of rounds with error probability 0 but requir-
ing arbitrary many rounds in the worst case, i.e., protocols of type “Las
Vegas”. However, the probability of non-termination within » rounds can
be made exponentially small in r which, loosely speaking, in fact ensures
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fast termination. On the other hand, this fast decrease allows for proto-
cols of type “Monte Carlo” by running the protocol for a fixed humber
of rounds r guaranteeing termination within r rounds but accepting an
error probability exponentially small in r.

This section is restricted to protocols of type “Monte Carlo” since
these protocols have the important advantage to guarantee that all play-
ers terminate the protocol within the same communication round, i.e.,
they achieve SBA (cf. Section 3.1.4, “Simultaneous versus eventual By-
zantine agreement”), implying that, after any broadcast invocation with-
in a larger protocol, all players would simultaneously continue the rest
of the protocol during the same round.

4121 Collective coin-tossing

Probabilistic protocols typically make use of a binary shared coin protocol,
i.e., a protocol that allows the good players to produce, by exchanging
messages, a reasonably unpredictable coin toss. We use the following
definition in [FM97]:

Definition 4.2. Let C = {0, 1} be the set of possible outcomes, and ¥ a protocol
in which each player p; computes an output value ¢; € C. Then ¥ is a g-fair
shared coin protocol if and only if, Va € C, in a random execution of C' with at
most ¢ players being corrupted

Pr(V correct players p; : ¢; =z) > q. o

In other words, ¢-fairness guarantees that, for each bit z € C, the prob-
ability that all correct players will agree on z at the end of the protocol is
at least ¢. It is important to note that this definition does not guarantee
that the correct players always agree on the outcome.

As for unconditional security, shared coin protocols have for example
been developed in [FM97, MR91, BGR96]. The protocol in [FM97] works
in standard model M, and tolerates ¢ < n/3. Their protocol terminates
in a fixed constant number of rounds providing g-fairness for ¢ > 0.35.

4.1.2.2 Feldman-Micali protocol

The archetypal form of randomized Byzantine agreement, due to Ra-
bin [Rab83a], is to combine some alleviated form of consensus like weak
consensus with a shared coin in the following way. First the sender dis-
tributes his input value. Then, similar to phase-king Protocol 4.6, several
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phases are run wherein a protocol for alleviated consensus is followed
by a protocol implementing a shared coin. In each phase, a player who
“dislikes” the outcome of alleviated consensus simply adopts the value
of the shared coin. Thus the coin simply takes the role of the king player
of Protocol 4.6.1°

For the “Las Vegas” variant of randomized Byzantine agreement gra-
ded consensus (in its original form with ternary grade values g; € {0,1,2}
[FM97]) can be used as the alleviated form of consensus mentioned above.
In each phase, a player p; who gets grade g; = 0 in graded consensus
adopts the coin; if he gets g; = 1 then he stays with his value; and if he
gets g; = 2 then he terminates the protocol. This guarantees agreement
after the first phase wherein all correct players agree on the outcome of
the coin ¢ and some correct player computed z; = ¢ as the output value of
graded consensus; and termination after one additional round. Using the
shared-coin protocol in [FM97], this protocol is efficient and terminates in
a constant expected number of rounds.

For the “Monte Carlo” variant, Protocol 4.7 below, weak consensus
can be used as the alleviated form of consensus. In each phase, every
player p; who outputs z; = L in weak consensus adopts the coin. This
guarantees agreement after the first phase wherein all correct players
agree on the outcome of the coin, and either all correct players computed
x; = L or the outcome of the coin is equal to the value x; of any correct
player p;.

Let CoinF1ip({0, 1}) denote the binary shared-coin protocol in [FM97]
and let x be a security parameter.

Protocol 4.7 Broadcast (P, ps, ©s)
1. if i=sthen SendToAll(z;)fi ; Receive(z;);
2. for k=1to xdo
3 x; := WeakConsensus (P, z;)
4. ¢i := CoinFlip(P, {0, 1});
5 if z; =1lthen z; :=¢;fi ;
6. od; y;:=z;;
7. returny;

Theorem 4.9 (Broadcast [FM97]). In model M g, Protocol 4.7 achieves un-
conditionally secure broadcast among n players secure against ¢ < n/3 cor-
rupted players in O(x) rounds with an error probability of at most (2)".

0In fact, in contrast to the way presented here, phase-king is actually based on this
paradigm whereby the coin is replaced by the vote of the king player.
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Proof.

Validity: If the sender p, is correct then all correct players start the first
phase with the same value =, and hence validity follows by the validity
property of weak consensus.

Consistency: Consider any phase where the coin is common, i.e., that
for all correct players p;, pj, it holds that ¢; = ¢;. If every correct player
computed z; = L in step 3 then all correct players adopt the coin, and
consistency follows. If any correct player computed z; # L in step 3 and
¢; = x; then, by the consistency property of weak consensus, every cor-
rect player p; with z; # z; adopts the coin, and consistency follows.

The shared coin guarantees that, with a probability of at least %, all
players compute the same coin, and additionally, that ¢; = z; if some
correct player p; computed z; # L in step 3. Thus, the probability that
consistency never occurs during all x phases is at most (2)". O

Furthermore, the applied shared-coin protocol is efficient and hence
also the resulting broadcast protocol is. In particular, an analysis of the
protocol in [FM97] yields a bit complexity of B = O(n"x) (assuming that
t = Q(n)).

4.1.2.3 Probabilistic phase-king protocol

The protocol in [FM97] has the disadvantage that running ¢ independent
invocations of it in parallel requires x + Q(log ¢) phases per protocol in
order to achieve an error probability that is still negligible in x, as was
observed in [BEO3]. There an efficient protocol was proposed that over-
comes this problem, i.e., an O(x)-round protocol for any (polynomial)
number of parallel broadcasts such that the overall error probability is
negligible in .

The probabilistic-phase-king paradigm allows for the parallelization
of broadcast in a simpler way than in [BEO3]. Essentially, this protocol is
obtained from Protocol 4.6 by electing the “king” at random during every
phase. This can be achieved by the leader-election protocol in [FM97] that
terminates in a (fixed) constant number of rounds. It guarantees that,
with probability % all correct players choose the same correct player as
“king” by a random selection process.

Let LeadElect(P) denote the leader-election protocol of [FM97]. Note
that during each phase of the final broadcast protocol, all players must act
as a potential “king” already before the election process since, otherwise,
an adaptive adversary could successively corrupt all “phase kings” for at
least ¢ — 1 rounds.
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Protocol 4.8 Broadcast (P, ps, )
1. if i=sthen SendToAll(z;)fi ; Receive(w;);
2. for k=1to kdo
3 (zi, gi) := GradedConsensus (P, z;);
4 SendToAll(x;); Receive(z},...,z]);
5. k := LeadElect(P);
6 if gi=0then z; :zxffi ;
7. od; y; = zi;
8. returny;

Theorem 4.10 (Broadcast [FG02]). In model M e, Protocol 4.8 achieves
broadcast among n players secure against ¢ < n/3 corrupted players in O(x)
rounds with an error probability of at most (2)".

Proof.

Validity: If the sender p, is correct then all correct players start the first
phase with the same value z,. By the validity property of graded consen-
sus, at the end of each phase, every correct player p; computes g; = 1 and
x; = xg, and validity follows.

Consistency: Note that the steps 3 to 6 simply constitute a probabilistic
version of king consensus. Protocol LeadElect(P) guarantees that, with
probability % all correct players agree on the same correct king p,. Hence,
the probability that they never agree on a common correct king is at most

(2)", and by the consistency property of king consensus, consistency is

satisfied with an error probability of at most (2)". O

Since the applied leader-election protocol is efficient [FM97], also the
resulting broadcast protocol is. Furthermore, with respect to the same
error probability, an arbitrary number of broadcasts can now be run in
parallel by merging their leader-election invocations into one single in-
stance in order to elect one central king to deliver his default values with
respect to all parallel protocols.

4.1.3 Generic reductions

This section treats the reducibility between broadcast, consensus, and
their weakened variants. The question is about which primitives can
be built from others with respect to which threshold. All reductions are
given with respect to unconditional security. By simple arguments, it can
be shown that the pairs broadcast and consensus, graded broadcast and
graded consensus, and, weak broadcast and weak consensus, can all be
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used to simulate each other if t < n/2. As a maybe more surprising fact,
it can also be shown that weak broadcast implies broadcast if t < n/2,
and hence, that all mentioned problems are equivalent with respect to
t<n/2

At a first sight it might seem not to make sense to make these con-
siderations with respect to any threshold ¢ > n/3 since, for this case,
broadcast is not achievable anyway. Nevertheless, these reductions will
be of some importance in the sequel. More general reductions along these
lines will be given in Chapter 5.

4.1.3.1 Broadcast and consensus

Proposition 4.11. In models M, and M., if t < n/2 then (efficient) broad-
cast is achievable if and only if (efficient) consensus is achievable.

Proof.

“=": Suppose that broadcast is achievable. Then consensus can be simu-
lated by having every player broadcast his input value and having every
player decide on the majority of received values. Since all values are dis-
tributed by broadcast and a majority of the players is correct, this protocol
achieves consensus.

“«<": Suppose that consensus is achievable. Then broadcast can be sim-
ulated by having the sender distribute (multi-send) his input value to all
players and having all players run a consensus protocol on the values
received from the sender. Since a majority of the players is correct, this
protocol achieves broadcast. O

The implicit constructions in the proof of Proposition 4.11 immedi-
ately show how the previously mentioned broadcast protocols can be
turned into protocols for consensus in a generic way. However, specif-
ically modifying such a protocol directly usually yields a more efficient
solution. For example, Protocol 4.6 can be directly turned into a consen-
sus protocol by removing step 1 but having every player start with his
own input, y; := z;, and appending one more round of king consensus
— saving a factor of n in bit complexity compared to the generic reduc-
tion involving n parallel broadcast protocols.

Analogously to Proposition 4.11 we get the following

Proposition 4.12. In models Mt 0r Mg, if t < n/2 then (efficient) weak
broadcast is achievable if and only if (efficient) weak consensus is achievable, and
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(efficient) graded broadcast is achievable if and only if (efficient) graded consen-
sus is achievable.

Proof.

Weak case.

“=": Suppose that weak broadcast is achievable. Then weak consen-
sus can be simulated by having each player distribute his input by weak
broadcast, followed by having him decide on value v € {0,1} if he re-
ceived v at least n — ¢ times and else on L.

“«<": Suppose that weak consensus is achievable. Then weak broad-
cast can be simulated by having the sender multi-send his input to ev-
ery player, followed by a protocol of weak consensus where everybody
inputs the received value.

Graded case.

“=": Suppose that graded broadcast is achievable. Then graded consen-
sus can be simulated by having each player distribute his input by graded
broadcast. Each player now decides on value y; = v if he received v at
least n — ¢ times, and on y; = 0 otherwise. Finally he computes g; = 1 if
y; was received at least n — ¢ times with grade 1.

“«<": Suppose that graded consensus is achievable. Then graded broad-
cast can be simulated by having the sender multi-send his input to every
player, followed by a protocol of graded consensus where everybody in-
puts the received value. O

4.1.3.2 Weak broadcast and broadcast

We now show how to reduce broadcast (and consensus) to weak broad-
cast for any ¢ < n/2. This will be of use for the constructions in Sec-
tion 4.2.2 and Chapter 5. That broadcast can be generically reduced to
weak broadcast for any ¢ < n/3 was already mentioned in [Dol82].

Recall Lemma 4.7. It states that, with respect to any threshold ¢, gra-
ded consensus implies broadcast with the same resilience. Hence, it is
sufficient to show that weak broadcast implies graded consensus if ¢ <
n/2. This is demonstrated by Protocol 4.9 which basically consists of two
consecutive rounds wherein each player weak-broadcasts a value. Note
that, in step 4 of the protocol, the domain of weak broadcast is ternary,
namely {0, 1, L }. Following the restriction to focus on protocols with bi-
nary domains we can simply interpret such a protocol as being simulated
by two parallel invocations of binary weak broadcast.
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Protocol 4.9 GradedConsensus (P, z;)

1. Yje{l,...,n}: 2= WeakBroadcast (P, pj,z;); .
SP={je{1,...,n}al =0}; S} ={je{1,... n}al =1}
if |S7i|>n—tthenz; :=uz;elsez; :=Lfi ;

Vj € {1,...,n}: 2} := WeakBroadcast (P, p;, z;);

T ={je€ {1,...,n}|z] = 0} T ={j € {1,...,n}z] = 1};
if |T?| > |T/|then y;:=0else y;:=1fi ;

if |T/{|>n—tthen g;:=1lelse ¢g; =0fi ;

return (y:, g;)

N O WD

Lemma 4.13 (Graded Consensus). In model M .., Protocol 4.9 achieves
graded consensus secure against ¢ < n/2 corrupted players.

Let Rybe be the round complexity and 5,1, be the bit complexity of the given
primitive for weak broadcast. Then Protocol 4.9 requires a round complexity of
R = 2Rwbe and a bit complexity of B = 3n - Bype.

Proof.

Validity: If all correct players hold the same value v at the beginning of
the protocol then, by the validity property of weak broadcast in step 1,
every correct player p; gets value v at least n — ¢ times but value 1 —
v at most t < n — t times, and hence computes z; = v. By the same
argument with respect to weak broadcast in step 4, every correct player
finally computes y; = v and g; = 1, and validity follows.

Consistency: Note that steps 1 to 3 constitute an instance of weak con-
sensus (cf. proof of Proposition 4.12). In particular, all correct players p,
that do not set z, := L in step 3 compute the same value for z, € {0, 1}.

Now, let p; and p; be two correct players and suppose that p; decides
ony; =v € {0,1}and g; = 1,i.e,|TY| > n —t. Then, at least one correct
player p; must have sent z; = v in step 4 — but no correct player p, can
have sent z; = 1 — v as follows from the above remark.

Let f, be the number of corrupted players whom p; received value
v from in step 4. Then, for every correct player p;, it holds that |T7}| >
n —t — f,. Furthermore, by the validity property of weak broadcast, p;
can have received value 1 — v from at most ¢ — f,, (corrupted) players, and
T} "| <t— f,. Sincen > 2t,weget|T}| >n—t—f,>t—f, >|T, ",
and p; decides on y; = v = y; in step 6. Hence, consistency follows.
Complexity: The stated complexities can be easily verified by code in-
spection (regarding that the second invocations of weak broadcast are
ternary and must hence be simulated by two parallel invocations of bi-
nary weak broadcast). O
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Theorem 4.14 (Weak Broadcast Implies Broadcast). In model M 4, if
t < n/2 then (efficient) weak broadcast implies (efficient) broadcast.

Let Rybe be the round complexity and 5,1, be the bit complexity of the given
primitive for weak broadcast. Then there is a broadcast protocol that requires
round complexity R = 2t - Ryne + t + 1 and bit complexity B = O(n?) + 3nt -
Bwbc-

Proof. The theorem follows from Lemma 4.7 (broadcast from graded con-
sensus for any t) and Lemma 4.13 (graded consensus from weak broad-
cast fort < n/2). O

4.1.4 Impossibility result

In this section, we prove that broadcast among n > 3 players is impos-
sible if ¢ > n/3 with respect to both unconditional and computational
security. From Proposition 4.11 it then immediately follows that also con-
sensus is impossible for this bound. As a warm-up, we first prove the
impossibility of the special case n = 3and ¢t > 1, and then generalize it to
arbitrary numbersn > 3and ¢t > n/3.

For model M, with n = 3 and ¢t > 1, Graham and Yao [GY89]
proved a tight bound of % for the possible success probability of By-
zantine agreement. In contrast, our impossibility proof is given along
the lines of [FLM86] where it is shown that broadcast for ¢ > n/3 is not
achievable in the more powerful model M., which immediately implies
unachieveability in model M, as well. We prove that every protocol
can only succeed with a probability of at most 2 in the unconditional case
and with a probability of at most 2 in the computational case. For model
Mt [u] this is a slightly weaker bound than the one given in [GY89].

The idea of the proof is to assume that there exists a broadcast proto-
col for three players secure against one corrupted player which then can
be used to build a different system with contradictory behavior, hence
proving that such a protocol cannot exist.

Lemma 4.15. In models M 4, Or Msec, broadcast among n = 3 players {po,
p1,p2} 1S not achievable if ¢ > 1. For every protocol there exists a value zo €
{0, 1} such that, when the sender holds input z, the adversary can make the
protocol fail with a probability of at least %

Proof. Suppose ¥ to be any broadcast protocol for the three players pg, p1,
and p», with sender py. Let mg, w1, 75 denote the players’ corresponding
processors with their local programs and, for each & € {0,1,2} let 745
be an identical copy of processor =,.
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Figure 4.1: Rearrangement of processors in proof of Lemma 4.15.

Instead of connecting the original processors as required for broad-
cast, we build a network requiring all six processors (i.e., the original
ones together with their copies) by arranging them in a circle, i.e., each
processor 7, (k € {0,...,5}) is (exactly) connected by one channel with
T(k—1) mod 6 and one with T(k+1) mod 6+

We now prove that, in the new system and without the presence of
an adversary, for every pair of adjacent processors 7y and 7(x41)mods
their common view is indistinguishable from their view as two proces-
SOIS Tk mod3 aNd T(x41)moas IN the original system with respect to an
adversary who corrupts the remaining processor m(;42)moa3 IN an ad-
missible way. Refer to Figure 4.1. The original system is depicted in
Figure 4.1-(a). With respect to the processors my and mq, m is “split” into
two different copies, m» and w5, where mo is connected to w5 and my is
connected to 7 (Figure 4.1-(b)). By assumption, when running this sys-
tem, the processors 7y and m; achieve broadcast independently from the
behavior of the processors 7 and =5. Furthermore, by arranging the six
processors in a circle as described above and shown in Figure 4.1-(c), this
“splitting” is simultaneously achieved with respect to every pair 73, and
T(k+1)mod 6. HeNce, for every such pair, their joint view is indistinguish-
able from their view (as processors mj moa3 and m(x11) moa ) iN the origi-
nal system where the adversary corrupts 72y moa3 by simply simulat-
ing all the remaining processors of the new system. For example, with
respect to pair (7o, 71 ) the corresponding adversary strategy for the orig-
inal system is to corrupt 7, simulate the correct processors 7, ..., 75 in
the new system, and make 7, behave to m like 7 in the new system and
to mg like 75 in the new system — in other words, the adversary simulates
the subsystem encircled by the dotted line in Figure 4.1-(c).

The new system involves two processors of the type corresponding to
the sender, namely, oy and 73, and these are the only processors that enter
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an input. Let now 7y and x5 be initialized with different inputs, i.e., let’s
assume that o has input zo € {0, 1} and that 73 has input 3 = 1 — .

We now show that there are at least two pairs of adjacent processors
in the new system, i.e., one third among all six such pairs, for which the
broadcast conditions are not satisfied despite being completely consis-
tent with two correct processors in the original system. First, suppose
that consistency holds with respect to every pair on, wlog, the value z,.
Then the validity condition is violated with respect to both pairs involv-
ing processor 73 since x3 # xo. SUppose, otherwise, that the consistency
condition is violated with respect to at least one pair. Then there must be
at least two such pairs because the processors are arranged in a circle.

Hence, for any possible run of the new system on inputs =y = 0 and
x3 = 1 it holds that, chosen a pair (74, 7(;+1) moa ) OF adjacent processors
uniformly at random, the probability that the conditions for broadcast
are violated for this pair is at least % Otherwise, there would exist in-
vocations of the new system where strictly less than two pairs fail. In
particular, either

A) Chosen a pair from {(n5,m0), (70, m1), (71, 7=2)} uniformly at ran-
dom, the probability that the conditions for broadcast are violated
for this pair is at least 1; or

B) Chosen a pair from {(m2,73), (73, 74), (74, 75)} uniformly at ran-
dom, the probability that the conditions for broadcast are violated
for this pair is at least 1.

If case (A) holds then, on sender input z, = 0, if the adversary se-
lects a pair (7, T(k+1)modas) OF the new system at random and corrupts
T(k4+2)moa3 IN the original system by simulating the processors in ¥ =
{710y moasll € {2,...,5}} then the protocol fails with a probability of
at least % If case (B) holds then the same holds for sender input zy = 1.
Hence the lemma follows. O

The following theorem proceeds in the same way as Lemma 4.15. It
is assumed that there exists a broadcast protocol for n players secure
against ¢ > n/3 corrupted players which then can be used to build a
different system with contradictory behavior.

Theorem 4.16 (Impossibility [LSP82, KY84, FLM86]). In models M . or
Mec, broadcast among a set of n > 3 players P = {po,...,pn—1} is not
achievable if n < 3t. For every protocol there exists a value zo € {0,1} such
that, when the sender holds input zq, the adversary can make the protocol fail
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Figure 4.2: Rearrangement of processors in proof of Theorem 4.16
for the special casen = 6 andt = 2.

» with a probability of at least £ if she is computationally bounded, and
e with a probability of at least % if she is computationally unbounded.

Proof. Assume ¥ to be a broadcast protocol for n players pg,...,pn_1
with sender po that tolerates ¢ > n/3 corrupted players.

LetII = {mo,...,m—1} be the set of the players’ corresponding pro-
cessors with their local programs and let IT, UIT, UIl, = II be a partition of
IT such that, for each set ITj, it holds that 1 < |II;| < ¢. Furthermore, for
eachi € {0,...,n — 1}, let m;,, be an identical copy of processor 7;. For
every m; (0 < i < 2n—1) let the type of processor «; be defined as the num-
ber i mod n. Finally, for each k € {0,1,2}, let ;43 = {mipn | m € O}
form identical copies of the sets 1.

Instead of connecting the original processors as required for broad-
cast, we build a network involving all 2n processors (i.e., the original
ones and their copies) by arranging the six processor sets I, in a circle —
as done with the single processors in the proof of Lemma 4.15 — see Fig-
ure 4.2. In particular, for all sets I, (0 < k£ < 5), every processor 7; € Il
is connected (exactly) by one channel with all processors in I \ {7;},
(x—1)mods: @Nd Il(x11)moas- HeNce, each processor m; in the new sys-
tem is symmetrically connected with exactly one processor of each type
(different from his own one) as in the original system. We say that Il
and II, are adjacent processor sets if and only if ¢ = k £ 1 (mod 6).

Analogously to the proof of Lemma 4.15, for every set II; UIL (14 1) mod 6
(0 < k < 5) in the new system and without the presence of an adver-
sary, their common view is indistinguishable from their view as the set



82 Protocols and Impossibility Proofs

of processors Iy, mod 3 U Il (141) moa 3 IN the original system with respect to
an adversary who corrupts all processors of the remaining processor set
M (4+2) moa s iN an admissible way whereas |12y moas| < t by construc-
tion.

Let now my and =, be initialized with different inputs. For any pos-
sible run of the new system on inputs z, = 0 and z,, = 1 it holds that,
chosen a pair (I, I(;41)moas) OF adjacent processor sets uniformly at
random, the probability that the conditions for broadcast are violated for
this pair is at least 1. In particular, either

A) Chosen a pair from {(II5, I, ), (ITy, II; ), (II;, IT5) } uniformly at ran-
dom, the probability that the conditions for broadcast are violated
for this pair is at least %; or

B) Chosen a pair from {(II, IT3), (IT3, I14), (I14, IT5) } uniformly at ran-
dom, the probability that the conditions for broadcast are violated
for this pair is at least 3.

If case (A) holds then, on sender input 2, = 0, if the adversary se-
lects a pair (I, T (;41) moas) Of the new system at random and corrupts
I(442)moas IN the original system by simulating the processors in ¥ =

U?:2 I (x+¢) moas then the protocol fails with a probability of at least % If
case (B) holds then the same holds for sender input z;, = 1. Hence the
theorem holds for the computational case.

Furthermore, if the adversary is unbounded then, given any protocol
¥, she can compute such a pair (I, (44 1) moa s) fOr which the conditions
for broadcast are violated with a probability of at least 1, accordingly
corrupt the processors in Il 2)mod3, and hence forcing the protocol to
fail on input

. _{ 0 ,if0e{k,k+1},and
o711 else,

with a probability of at least 3. O

4.2 Broadcast from consistently shared data

Consider model MP¥ i.e., the players are connected by pairwise authen-
ticated channels and they share a consistent PKI. As proven in [DS83],
in this model, broadcast secure against any number ¢t < n of corrupted
players can be efficiently achieved — and thus consensus secure against

t<mn/2.
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Theorem 4.17 (Tight Bounds for Broadcast [LSP82, DS83]). In standard
models M5 and MPXi efficient broadcast as secure as the underlying PKI is

possible for any ¢ < n and (efficient) consensus as secure as the underlying PKI
is achievable if and only if ¢ < n/2.

Proof. The theorem follows from Theorem 4.18 (achievability of broad-
cast) and Proposition 4.11 (equivalence of broadcast and consensus for
t < n/2), and Proposition 3.1 (impossibility of consensus for¢t > n/2). O

Thus, in contrast to unconditional security, the security of such a pro-
tocol is conditioned by the security of the underlying PKI. Such a PKI
is typically set up with respect to a computationally secure digital signa-
ture scheme (e.g. [RSA78]). For this case, the protocol in [DS83] achieves
computational security (more precisely, is as secure as the underlying sig-
nature scheme) and is very efficient. Less typically, a PKI can also be set
up with respect to a pseudo-signature scheme that provides unconditional
security with an exponentially small error probability (cf. Section 2.2.2.2).
For this case the protocol in [DS83] provides unconditional security but
is less efficient (though polynomial). The Dolev-Strong protocol [DS83]
is given in the following section. In Section 4.2.2, a protocol with hybrid
security is given: as secure as the underlying signature scheme for some
threshold ¢, but still perfectly secure for some smaller threshold ¢,,.

4.2.1 Dolev-Strong protocol

The Dolev-Strong protocol [DS83] can be based on any PKI according to
Definition 2.5, e.g., based on the computational signature scheme secure
against adaptive chosen-message attacks in [GMR88] or based on the un-
conditionally secure pseudo-signature scheme in [PW96]. Independently
of the used signhature scheme, making the protocol fail implies that the
adversary can forge signatures. In other words, the protocol is as secure
as the used signature scheme.

The original protocol in [DS83] requires that messages are recursively
resigned by different players. Here, we apply a modification in [PW96]
that requires values to be signed only once.

For simplicity, let o;(v) denote a signature by player p; on value v
as generated by p;’s signing algorithm and Vl.j(v,a) denote the verifica-
tion of a signature ¢ on value v with respect to signer p; as performed
by player p;: Vij(v,a) = V(v,0, PKj) according to Definition 2.3 where
PK/ is player p;’s public key or V7 (v,0) := V(v,0,PK?, ¢) where PK! is



84 Protocols and Impossibility Proofs

player p;’s version of p;’s public key and ¢ is the transfer level according
to Definition 2.4.

Let ps be the sender with input z,. Every player p; maintains a set A;
of accepted values that, at the end, is either §, {0}, {1}, or {0, 1}. Further-
more, every player p; maintains two sets S;[0] and S;[1] where he collects
signatures by the other players, signatures on 0 in S;[0] and signatures on
1in S;[1]. Informally, a player accepts a value if he has seen a valid sig-
nature on it by the sender and enough other players confirm having seen
a valid signature by the sender — whereas a confirmation is itself given
by signing the respective value. At the end of the protocol, every player
p; computes his output y; depending on the set A; of accepted values.

Protocol 4.10 Broadcast (P, ps, s)
The whole protocol proceeds for ¢ + 1 rounds. In a first round, ps
computes a signature o, (zs) on his input, sends the pair (zs, {os(zs)})
to every other player, computes ys; := x5, and halts. During rounds
r =1,...,t + 1 every player p; (i # s) performs the following actions
where, initially, A; = 0:

e Ifany valuev € {0,1} has been newly added to the set of accepted
values A; during round r — 1 then p; computes o;(v) and sends the
pair (v, Si[v] U {oi(v)}) to everybody.

e Ifapair (v, S) is received from any player p; such that v € {0,1}
and the set S contains valid signatures on v by at least r distinct
players including the sender p, then v is added to A;, A; := A; U
{v}, and the set S is memorized, S;[v] := S.

At the end of the protocol, every player p; computes output y; = 1 if his

set of accepted values is A; = {1} and y; = 0 otherwise (where 0 serves
as a default decision value for the cases 4; = ) and 4; = {0, 1}).

Note that, in the case of unconditional pseudo-signatures, the signa-
tures checked during round r must be valid with respect to level ¢ = r,
i.e., it must hold that V (v, s, PK,r) = 1. Furthermore, note that the sig-
natures in the sets S;[-] can be sent “loosely”, i.e., without specifying the
corresponding signers, since the recipient can simply verify each signa-
ture with respect to every player. This does not affect security in any
significant way.

Theorem 4.18 (Broadcast [DS83, PW96]). In model MPX! given player set
P = {p1,...,pn}, Protocol 4.10 achieves broadcast for any number ¢ < n of
corrupted players.

The protocol requires a round complexity of R = ¢ + 1 and a bit complexity
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of B = O(n?)|o| where |o| is the maximal length of a signature including pos-
sible random padding and encoding of a session ID (cf. Section 3.1.4 “multiple
invocations of Byzantine agreement”).

Proof.

Validity: If the sender p; is correct then, for every correct player p;, A; =
{z,} at the end of the protocol since p; accepts z, after the first commu-
nication round but never accepts the value 1 — x since ps; never signs it
and hence Aos; € Si[1 — z;] : V(1 — x5,05) = 1. Or, in other words,

any correct p; accepting value 1 — z; implies that the adversary can forge
signatures. Hence, all correct players p; decide on y; = z,.

Consistency: Assume players p; and p; to be correct. We show that p; and
p; decide on the same value y; = y; by showing that A; = A; at the end
of the protocol.

Consider any value v € A;. If p; accepts v first during a round r €
{1,...,t} then p; is in possession of valid signatures on v by r distinct
players including p, but excluding himself (assuming that the adversary
cannot forge signatures on behalf of p;). Hence, during phase r + 1, he
sends r + 1 valid signatures by distinct players including the one by p;
to p; who in turn accepts, and hence v € A;. On the other hand, if p;
accepts v only during phase t + 1 then some player p, sent him ¢ + 1 valid
signatures on v by ¢ + 1 distinct players including ps. One such player
pe Must be correct and hence sent the same information to every correct
player, especially to p;, and hence v € A;.

Complexity: The round complexity is evident. In the worst case, each
player sends to each other two lists of O(n) signatures (one list for each
possible v € {0,1}), and hence R = O(n?|o]). O

Evidently, the same principle can also be used to construct proto-
cols for consensus secure against ¢ < n/2 corrupted players. Further-
more, probabilistic broadcast protocols as in Section 4.1.2 with an error
probability that decreases exponentially in the number of communica-
tion rounds can also be achieved for the case that t < n/2 by combining
the protocol in [Tou84] with the shared-coin protocol in [BS94].

4.2.2 Hybrid security

Suppose that the player set P shares a PKI according to Definition 2.5.
A natural question is whether, for Byzantine agreement, unconditional
security can be combined with the (typically only computational) secu-
rity of the PKI’s corresponding signature scheme (cf. Section 3.2.2 “Ex-



86 Protocols and Impossibility Proofs

tended adversary models”). Of course, demanding both with respect
to the same threshold ¢ makes little sense since unconditional security
would subsume the security of the underlying signature scheme. How-
ever, simultaneously achieving unconditional security for some “small”
bound ¢,, while achieving the signature scheme’s security for some larger
bound ¢, can be strictly more powerful than any protocol described in
the previous sections since then, in order to make the protocol fail, the ad-
versary would have to either corrupt more than ¢, players — or corrupt
more than t,, players even if she is able to break the underlying signature
scheme or the given PKI is inconsistent.

The first such hybrid protocol to combine unconditional security and
conditional security is “adaptive Byzantine agreement” by Waidner and
Pfitzmann [WP89]. There, assuming a consistent PKI with respect to
a so called fail-stop signature scheme, their protocol tolerates t, < n
with respect to computational security and ¢, < n/3 with respect to
(non-perfect) unconditional security. However, unconditional security
for t, < n/3 is only guaranteed if the PKI is indeed consistent. Fur-
thermore, note that the protocol achieves strictly less than Protocol 4.10
unconditionally tolerating t < n when assuming a consistent PKI with
respect to unconditional pseudo-signatures [PW96].

In contrast, our construction is generic in the sense that it works for ar-
bitrary signature schemes. Moreover, security with respect to ¢,, is guar-
anteed even if the shared PKI is inconsistent. Given a PKI with respect
to a computationally secure signature scheme (e.g. [GMR88]), our hybrid
protocol provides perfect security for threshold ¢,, and, given the PKI is
consistent, computational security for threshold ¢,. For this case our pro-
tocols are very efficient. Given a PKI with respect to an unconditionally se-
cure pseudo-signature scheme [PW96], the hybrid protocol provides per-
fect security for threshold t,, and, given the PKI is consistent, non-perfect
unconditional security for threshold ¢,. For this case our protocols are
less efficient (though polynomial).

It turns out that, in this model, broadcast is possible if and only if
2t, +t, < n (whereast, < t,)asis proven in [Hol01]. Efficient protocols
are only known for the case that 2¢t, < n is additionally satisfied, i.e.,
when guaranteed that the correct players form a majority. Regarding the
construction of protocols, we restrict ourselves to this special case.

Theorem 4.19 (Bounds for Hybrid Broadcast [FH02]). In model MPX
(efficient) broadcast (or consensus) as secure as the underlying PKI for ¢, and
perfectly secure for ¢,, is achievable for all ¢,, and t,, such that t,, < ¢, 2t, < n,

and 2t,, + t, < n. If 2t,, + t, > n then there is no such protocol.
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Figure 4.3: Theorem 4.19: tight bounds for broadcast and consensus
with hybrid security.

Proof. The theorem follows from Theorem 4.21 (broadcast achievability),
Theorem 4.22 (impossibility of broadcast), and Proposition 4.11 (equiva-
lence of broadcast and consensus for ¢ < n/2). O

Consider for example consensus. Consensus is only possible if t <
n/2 even in model MPXi[c]. The above bound implies that optimally re-
silient consensus with respect to the (typically computational) security
of the signature scheme, i.e., t, < n/2, can additionally guarantee per-
fect security with respect to ¢ < n/4 “for free”. Furthermore, this allows
for computationally secure multi-party computation in MPX! with opti-
mal resilience that, at the same time, is unconditionally secure against
t < n/4 corrupted players — which is strictly more powerful than previ-
ously achievable by any MPC protocol based on a consistent PKI.

4221 Model

We consider a set of n players in model M,,;, additionally sharing a
(possibly inconsistent) PKI. We refer to this model as MPX",

As there are two bounds ¢, and t, on the number of players an ad-
versary possibly corrupts, it is necessary to distinguish between these
bounds and the actual number f of players that are corrupted at the end
of the protocol — as the adversary may be adaptive, the number of cor-
rupted players might increase during the execution of the protocol, and

reach its maximum at the end.
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For the sequel of this section we make the following

Assumption 4.1. Let n be the number of players, and ¢,, and ¢,, be two integers
such thatt,, < t,, n > 2t,, and n > 2t, + t,. Let f be the number of players
corrupted by the adversary by the end of the protocol. It is assumed that:

e The adversary cannot corrupt more than ¢, players: f < t,.

e If the adversary corrupts more than ¢,, players then she cannot forge sig-
natures and the given PKI is consistent.

4.2.2.2 A phase-king protocol

Recall Theorem 4.14 in Section 4.1.3. There, with respect to unconditional
security, it is shown that the achievability of weak broadcast implies the
achievability of broadcast for n > 2¢. Since n > 2t, holds by Assump-
tion 4.1, it is hence sufficient to give a protocol for weak broadcast for
n > 2t,,n > 2t, +t,, and t, < t,. This protocol for weak broadcast can
then be plugged into Protocol 4.9 for graded consensus which, in turn,
can be plugged into broadcast Protocol 4.6 — maintaining the security
level of the underlying protocol for weak broadcast.

As in Section 4.2.1, let again o;(v) denote a signature by player p; on
value v as generated by p;’s signing algorithm and Vij(v, o) the verifica-
tion of a signature ¢ on value v with respect to signer p; as computed by
bi-

It is important to note that, even if the adversary is able to forge sig-
natures, the signature by a correct player p; is always valid. Moreover
the signature o (v) by a correct player p; on avalue v € {0, 1} can always
be assumed to guarantee that V/ (v,0,(v)) = 1and V7 (1 — v,0;(v)) = 0.

The protocol works as follows. The sender p, signs his input value
and sends his input together with its signature to every other player:
(zs,05(xs)). Every player except for the sender now redistributes this
information to everybody (but without signing this new message him-
self). Now, every player received n values, one from every player. Each
player p; now decides on the outcome of the protocol:

e If he received some bit v together with a valid signature by p, at
least n — t,, times from different players then he computes output v.

e Otherwise, if he received a bit v together with a valid signature by
ps at least n — t, times but no single correct signature by p, for bit
1 — v then he decides on v.

e Otherwise, he decides on L.
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Protocol 4.11 WeakBroadcast (P, ps, )
1. if ¢=sthen SendToAll(zs,os(xs)) fi ; Receive(z},o});
2. if i# sthen SendToAll(z{,of)fi ; Vj # 5 : Receive(z!, 07 );
3. S8?:={p; € Plz) =0 A V7(0,0)) =1};
St:={p; € Plz) =1 A Vi*(1,0)) =1};

4. if Fbe{0,1}:|S!| >n—tuthen yi:=b (A)
elseif  3b€{0,1}:|S?|>n—t, A SI'™” =0then y;:=b (B)
else y;, :=_Lfi ; ©

5. returny;

Note that, in case of unconditional pseudo-signatures, only transfer-
ability A = 2 is required. Thus, a simpler scheme than the one in [PW96]
could be used, e.g., the information checking protocol in [CDD*99].

Lemma4.20. In model MP”, under Assumption 4.1, Protocol 4.11 among the
players P = {p1,...,p,} with sender p; € P achieves weak broadcast.

Its round complexity is R = 2 and its bit complexity is B = O(n?)|o| where
|o| is the maximal length of a signature including possible random padding

etc. (cf. Section 3.1.4).

Proof. We show that the validity and consistency properties are satisfied.
For this, let f be the number of corrupted players at the end of the proto-
col.

Validity: Suppose that the sender p, is correct. Hence, every correct
player p; receives the sender’s input v := x, during step 1 of the protocol,
z{ = v, and a valid signature o}, i.e., V#(v,0f) = land V(1 —v,0f) = 0.

If f <t,thenevery correct player p; receives the value v together with
avalid signature by p, from at least n —t,, different players during steps 1
and 2. Hence, |S}| > n — t,, and p; decides according to condition (A) in
step 4. Furthermore, p; receives the value 1 — v at most ¢, < n — t,, times
which implies that |S;~Y| < n — t,, and thus p; (uniquely) computes
output y; = v according to condition (A).

If t, < f < t, then every correct player p; receives the value v to-
gether with a correct signature by p, from at least n — ¢, different players
during steps 1 and 2. Hence, |S?| > n —t, and S} ¥ = ) since the adver-
sary cannot forge signatures in this case (cf. Assumption 4.1). Hence, p;
computes y; = v according to either condition (A) or (B).

Consistency: Suppose that some correct player p; computes output v :=
y; # 1. We have to show that hence, every correct player p; computes an
outputy; € {v, L}.

Suppose first, that p; decides according to condition (A) in step 4, i.e.,
|S{| > n —t,. For p; this implies that [S}| > [S}| —t, >n —t, —t5 >ty
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and hence that |S;*”| <n—t,and Sy # (. Hence, p; cannot compute
y; = 1 — v, neither according to condition (A) nor to condition (B).

On the other hand, suppose that p; decides according to condition (B)
in step 4, i.e., |SY| > n—t, and S;™Y = . Since n > 2t, this implies
that at least one correct player relayed a correct signature by p, on v, and
hence, S} # ¢ and |S;*”| <t, <n-—-t, <n—t, Hence, if p; computes
y; # L according to condition (A) then y; = v because of the argument of
the last paragraph; and if p; computes y; # L according to condition (B)
then y; = v since S # 0.

Complexity: Round and bit complexities can be easily verified by code
inspection. O

Theorem 4.21 (Broadcast [FH02]). In model M P57 under Assumption 4.1,
broadcast is efficiently achievable, i.e., broadcast as secure as the underlying PKI
with respect to ¢, and perfectly secure with respect to ¢,, where t,, < t,, 2t, < n,
and 2¢, + ty < n.

Thereby a round complexity of R = 5¢ + 1 and a bit complexity of B =
O(n*)|o| can be achieved where || is the maximal length of a signature includ-

ing possible random padding etc. (cf. Section 3.1.4).

Proof. Achievability and complexity follow from Lemma 4.20 and Theo-
rem 4.14. (|

4.2.2.3 Impossibility result

It now remains to show that the bound 2t,, + t, < n is tight when ¢,, > 0.
Note that, for this impossibility proof, it is not assumed that 2¢, < n. The
impossibility result even holds for model M2 j.e., in model M. with
an additional, possibly inconsistent PKI.

Theorem 4.22 (Impossibility [FHO02]). Let ¢, and ¢, be bounds such that
0 < t, <ty and 2t, +t, > n. Then, in model MPEX”, there is no broadcast
protocol among n players that is as secure as the PKI with respect to ¢, and
unconditionally secure with respect to ¢,,.

For every protocol there exists a sender input o € {0,1} such that the
adversary can make the protocol fail with a probability of at least % — either
being unbounded and corrupting ¢,, players or being able to forge signatures (or

having made for an inconsistent PKI) and corrupting ¢, players.

Proof. The proof proceeds similarly to the proof of Theorem 4.16. For
the sake of contradiction, we assume such a broadcast protocol to exist.
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Figure 4.4: Rearrangement of processors in proof of Theorem 4.22.

This protocol is then used to build a different system with contradictory
behavior.

Assume any protocol ¥ for a player set P with |P| = n > 3 that toler-
ates 2t,, + t, > n (with ¢, > 0), i.e., that is secure for the case that either
the adversary corrupts up to ¢,, players, or that the adversary corrupts up
to t, players but is unable to forge signatures (and the PKI is consistent).

LetII = {no,...,m,—1} be the set of the players’ corresponding pro-
cessors with their local programs. Since 0 < t, < t,, it is possible
to partition the processors into three sets, II,UII,UIl, = II, such that
1 < |p| €ty, 1 < |I4] < ty,and 1 < |TI5| < t,. Note that, hence,
|H0 UH1| >n — ty, |H1 UH2| >n—ty, and |H2 UHO| >n — ty.

Furthermore, for each 7; € Ilo, let 7 be an identical copy of processor
m;. Let the number i denote the type of any processor 7; (or «}, respec-
tively). Finally, let I, = {«} | m; € Iy} form an identical copy of set II,.

Instead of connecting the original processors as required for broad-
cast, we build a network involving all processors in I, U IT; U II, U IIj
with their pairwise communication channels connected in a way such
that each processor m; (or 7;) communicates with exactly one processor
of each type j € {1,...,n}\ {i}. Consider Figure 4.4. Exactly all pairs in
(Hg UHl) X (Hg UHl), (H1 UHZ) X (Hl UHZ), and (Hz UH6) X (HzUHB) are
connected by pairwise channels (excluding reflexive connections). There
are no connections between the sets I, and II,, and no connections be-
tween the sets IT; and IIj,. Messages that originally would have been sent
from a processor in Il to a processor in I, are discarded. Messages that
originally would have been sent from a processor in II; to a processor
in I, are delivered to the corresponding processor in IIj,. Messages sent
from a processor in I, to a processor in IT; are discarded.

We now show that for the sets IT, U II;, II; U II,, and II, U IIj, their
joint view is indistinguishable from their view in the original setting for
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an adversary corrupting the remaining processors in an admissible way.

The adversary can corrupt all processors in I, in the original system
by simulating the processors in I, and IIj, of the new system. This is pos-
sible since |IIy| < t, and since, by corrupting the processors, she learns
the secret keys of all corresponding players with processors in IIy. Thus
the joint view of the processors in I1; UII, in the original system is exactly
the same as their view in the new system.

Analogously, the adversary can corrupt all the processors in II; in the
original system by simulating the processors in I, UII; of the new system
— where I, simply is an imaginary set for the adversary’s strategy. This
is possible since |II; | < t,, since she knows all public keys, and since she
can forge signatures in this case. Thus the joint view of the processors
in II, U I, in the original system is exactly the same as the view of the
processors in I, U ITj in the new system.

Finally, the adversary can corrupt all the processors in II, in the orig-
inal system by simulating the processors in II, U IIj of the new system.
This is again possible since |II,| < t,,, she knows all public keys, and she
can forge signatures in this case. Thus the joint view of the processors in
I1o UII, in the original system is exactly the same as their view in the new
system.

Let now the sender in Il be assigned input 0 and the sender’s copy
in II;, be assigned input 1. Hence, for each run of the new system, there
must be a set among Sy = Iy UIly, Sy = II; UIl,, and Sy = I, U IIy,
for whom either validity or consistency is violated although being com-
pletely consistent with a set of corresponding processors in the original
system. In particular, there is a set S; (¢ € {0,1,2}) such that, over all
possible such runs, the probability that the conditions of broadcast are
violated for the processors in S; is at least %

If this holds for i = 0 then even a computationally bounded adversary
can make the protocol fail with a probability of at least % by corrupting
the players in I and acting accordingly (simulating I, with respect to
sender input 0 and simulating IIj, with respect to sender input 1).

On the other hand, if this holds for some ¢ € {1,2} then a computa-
tionally unbounded adversary can make the protocol fail with a proba-
bility of at least % by corrupting the players in II; (forinputzo = 1ifi =1
and for input zy = 0 if i = 2). Since the adversary is unbounded, given
protocol ¥, she can compute such an i € {1,2} and act accordingly. O
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4.2.24 Applications

When additionally assuming pairwise secure channels instead of only au-
thenticated ones, Theorem 4.21 immediately implies that also MPC is
achievable with respect to the bounds 2t, < n and 2t,, + t, < n.

Theorem 4.23 (Tight Bounds for MPC [FH02]). In model MPX?, MPC
unconditionally secure with respect to ¢, and as secure as the underlying PKI
with respect to ¢, is efficiently achievable if ¢, < t,, 2t, < n, and 2t,, +t, < n.
This bound is tight — if either 2¢, > n or 2t, + t, > n then MPC is not

achievable.

Proof. The protocol in [CDD*99] for model MPS. achieves uncondition-
ally secure MPC with an error probability exponentially small in the se-
curity parameter. Substituting each invocation of a broadcast channel
with hybrid broadcast along the lines of Theorem 4.21 thus immediately
yields an MPC protocol for model MPXi?,

If the adversary corrupts at most ¢,, players then all broadcast invo-
cations are unconditionally secure, and hence so is the MPC protocol. If
the adversary corrupts at most ¢, players then the broadcast invocations
are as secure as the underlying PKI and signature scheme, and hence also
the MPC protocol, i.e., making the MPC protocol fail with non-negligible
probability implies being able to forge signatures (or that the PKI is in-
consistent).

It is well known that computationally secure MPC guaranteeing both
privacy and robustness, is not possible if ¢ > n/2 which implies the neces-
sity of 2¢, < n. Since broadcast is the special case of an MPC, 2t,, +t, < n
is also necessary for MPC as follows from Theorem 4.22. O

4.3 Consistently shared data from broadcast

A key ingredient for some of the following constructions are protocols
that, given “temporary” broadcast, perform a precomputation among the
players that allows for future broadcast secure against ¢t < n corrupted
players even when this “temporary” broadcast is not available anymore.
In other words, such a protocol preserves the functionality of broadcast
for any later time. This can be done by computing consistently shared
data among the players (cf. Section 2.3.4).

Definition 4.3 (Precomputation). A protocol among n players where every
player p; € P computes some private data A; achieves precomputation for
broadcast (or precomputation, for short) if it satisfies
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Correctness: broadcast is achievable after an execution of this protocol.

Independence: A correct player’s intended input value for any broadcast
precomputed for need not be known at the time of the precomputation. |
Such a precomputation can only exist for some limited number b of
later broadcasts. A precomputation protocol that allows for at least b
later broadcasts is said to achieve precomputation for b broadcasts.
Independence implies two important properties: first, the precompu-
tation may be done long before the actual broadcasts it is used for; and
second, that the adversary gets no information about any future inputs
by correct senders.

In order to get computational security, such a precomputation can be
easily achieved (given that secure signature schemes exist):

Protocol 4.12 Precomp(P)
With respect to the given signature scheme, every player generates
a secret-key/public-key pair, and, during the phase where temporary
broadcast is achievable, every player broadcasts his public key to the
other players.

Proposition 4.24. In model M., when additionally given temporary broad-
cast, Protocol 4.12 achieves precomputation for broadcast computationally se-
cure against ¢ < n corrupted players (in plain model M, again).

Let Ry and By, be the round and bit complexities of the given temporary
broadcast (for broadcasting one bit). Then there is a precomputation protocol
that requires R = Ry rounds and a bit complexity of B = nk - By, where &
is the maximal size of a public-key. Independently of the precomputation, the
protocol for future broadcast can be any protocol based on digital signatures.

Proof. The correctness of the protocol is obvious: After the protocol, they
share a consistent PKI and can, for example, use Dolev-Strong Proto-
col 4.10 for broadcast that is secure against t < n corrupted players. In
the protocol, n players broadcast a public key in parallel, hence yielding
the given complexities R and B. |

In order to get unconditional security, more involved methods must
be applied but still, the goal of the precomputation is the same: to set up
a consistently shared PKI. The first such protocol was given by Baum-
Waidner, Pfitzmann, and Waidner in [BPW91]. This protocol allows for
later broadcast secure against ¢t < n/2 corrupted players. In [PW96,
Wai92], a protocol is constructed that allows for later broadcast secure



4.3 Consistently shared data from broadcast 95

against ¢ < n corrupted players. More details about this protocol are
given in the following section.

4.3.1 Pfitzmann-Waidner protocol

The Pfitzmann-Waidner Protocol uses temporary broadcast in order to
set up a pseudo-signature scheme (Definition 2.4) among the players. The
fact that pseudo-signatures are only transferable for a finite number of
times allows for unconditional security. Finite transferability obviously is
sufficient for broadcast. For example, the Dolev-Strong Protocol requires
a transferability of ¢ + 1 as can be easily verified.

The pseudo-signature scheme is set up with respect to every single
player as a future signer as follows. Between the signer and every other
player (the future verifiers), many instances of a scheme for uncondition-
ally secure message authentication codes (e.g., [WC81]) is set up in a way
that the signer does not learn which keys belong to which players. This
can be done by the verifiers choosing their respective keys and anony-
mously sending them to the signer with the Dining-Cryptographers Pro-
tocol [Cha88, BB90]. Note that the Dining-Cryptographers protocol re-
quires secure channels and broadcast, M.

Later a signer will simply sign a value by computing the value’s au-
thentication code with respect to every single key. Verification depends
on the “transfer level” of the signature. Getting the signature directly
from the signer, a verifier accepts the signature if and only if all authenti-
cation codes with respect to the verifier’s own keys are correct. The more
intermediate players the signature is passed through, the fewer authen-
tication codes are required to match with respect to the final verifier’s
keys.

Let s be the index of the sender of the future broadcast.

Protocol 4.13 Precomp(P)
e For(j=s,4),and (4, 4), (,B) (4 € {1,...,n}\{s}) in parallel:
e Fork=1...min parallel:
e Repeat until everything “consistent” (less than n?/2 times):

e If i # j: select random authentication key k;;

e For{=1...2nin parallel:
e Vp, (h # i) agree on a pairwise key K}(fi);
e broadcastx? ' + Y, ., K17
e If i = j: broadcast whether a fault occurred (“complaint™);
e broadcast information and eliminate players/keys;
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Proposition 4.25 (Pfitzmann-Waidner [PW96]). In model M g, for any in-
teger b > 0 and security parameter x > 0, there is a protocol that, additionally
given temporary broadcast, achieves precomputation for b broadcasts uncondi-
tionally secure against ¢ < n corrupted players (in plain model M. again —
or even model M,,;). Thereby the error probability of each one of the b later
broadcasts ise < 27",

Let Ry and By be the round and bit complexities of the given broadcast
channel (for broadcasting one single bit). There is a precomputation protocol
requiring round complexity R < ”72 + 2n? - Ry and bit complexity B =
O(nBbloglog |D|(k + logn + logloglog|D])? - (1 + Bhe)).

Independently of the precomputation, the protocol for future broadcast can be
any protocol based on digital signatures (but using pseudo-signatures instead).
In particular, Protocol 4.10 then has round complexity R’ = ¢ + 1 and bit
complexity B’ = O(n? log |D| + n®(k + logn)?).

The correct players all terminate the precomputation protocol and every sin-
gle later broadcast protocol during the same communication rounds.

Proof. The proposition follows from the analysis in [PW96] for the pre-
computation for one single broadcast of an element in domain D — their
protocol is simply run b times in parallel. O

In [PW96, Wai92], also a regeneration technique is described that al-
lows to precompute for b later broadcasts requiring a communication
complexity that depends on b only in polylogarithmic order (as compared
to logarithmic in the computational case). The idea is to initially pre-
compute for a “sufficient” number of broadcasts that allows to run a new
precomputation protocol plus at least one additional broadcast to be used
for its “application”, i.e., together with each one of the b later broadcast
protocols an additional regeneration protocol is run. The disadvantage
of this solution is that the round complexity for later broadcast basically
grows to n3 and that the bit complexity depends on n in order of Q(n!7).
However we shall keep in mind the following

Proposition 4.26 (Pfitzmann-Waidner [PW96]). In model M g, for any in-
teger b > 0 and security parameter « > 0, there is a protocol that, additionally
given temporary broadcast, achieves precomputation for b broadcasts uncondi-
tionally secure against ¢ < n corrupted players (in plain model M. again).
Thereby the error probability of each one of the b later broadcasts ise < 27",

If temporary broadcast is efficient then the precomputation and the b later
broadcast protocols have round complexities polynomial in n and bit complexities
polynomial in n, &, log|D|, and log b.
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The correct players all terminate the precomputation protocol and every sin-
gle later broadcast protocol during the same communication rounds.






Chapter 5

Extended Communication
Models

5.1 Introduction

Opposed to the standard communication models Mgy, Mgec, MES,, or
MPe | several “non-standard” communication models have been studied
in context of different problems.

Incomplete networks. Dolev [Dol82] considered the problem of gen-
eral incomplete networks where not necessarily every pair of players is
connected by a channel. He proved that, in this model, Byzantine agree-
ment unconditionally secure against an active adversary requires the ad-
ditional property that, between every pair of nodes, there exist 2¢ + 1
node-disjoint paths. Dolev, Dwork, Waarts, and Yung [DDWY93] studied
the problem of perfectly secure communication over general (incomplete)
point-to-point communication networks in presence of a mixed-type ad-
versary with simultaneous active and passive corruption.

Partial broadcast. Franklin and Yung [FY95] considered the problem
of unconditionally secure private point-to-point communication in the
presence of a passive adversary, given partial-broadcast but not neces-
sarily private communication channels among pairs of players. Franklin
and Wright [FWO00], and Wang and Desmedt [WDO01], considered uncon-
ditionally secure point-to-point communication over local-broadcast net-
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works in the presence of an active adversary.

External information sources. An external information source is a de-
vice that repeatedly submits information to the involved players. Such
primitives are of special interest since they are non-interactive as, for in-
stance, opposed to a primitive to achieve partial-broadcast. An exter-
nal information source could for instance be realized by a satellite. Ra-
bin [Rab83b] considered problems such as contract signing with fair ex-
change with help of an external information source to distribute random
integers to the involved parties. Blum, Feldman, and Micali [BFM88]
showed that, in this model, non-interactive zero-knowledge is achiev-
able. Maurer [Mau93] considered unconditionally secure two-party se-
cret-key agreement with help of authenticated channels and an external
random source whose signal cannot be perfectly received, neither by the
parties nor by the adversary.

This chapter focuses on two particular models, both based on model
either M, or Mgec. In the first model, M‘gﬁ’g or MP¢ . besides of the
pairwise channels, it is assumed that every set of b players can reliably
broadcast information to each other (either with help of a protocol, tam-
per proof hardware, or whatever). In the second model, Mg, or M4,
besides of the pairwise channels, it is assumed that the players have ac-
cess to a common, external information source. Throughout this chap-
ter, we assume no data to be consistently shared among the players. All
constructions provide unconditional security whereas the impossibility
proofs are given with respect to computational security.

One of the main results is that, in MY (the minimal extension over
pairwise communication), global broadcast is achievable if and only if
t < n/2. In context of multi-party computation this implies that for the
protocols in [Bea89, RB89, CDD*99] global broadcast is not required but
that broadcast among triplets of players is sufficient. Furthermore, in
general model Mb< (b > 3), global broadcast is achievable even against
faulty majorities.

5.2 Motivation

Although it is arguable how realistic such “non-standard” models might
be, from a theoretical point of view, it can be interesting for several rea-
sons. First of all, it is a natural question how much partial consistency
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among subsets of players is required in order to achieve global consis-
tency among all players. Second, the generic reduction of complex tasks
to simple ones is a useful tool in order to prove whether or not a task
is achievable under given conditions, only requiring a construction for
the simple task in order to prove the achievability of the complex one,
and only requiring to show the impossibility of the complex task in or-
der to prove the unachieveability of the simple one. For example, such
a reduction together with an application was already given in Chapter 4.
Theorem 4.14 states that weak broadcast implies broadcast if ¢ < n/2. In
Section 4.2.2, this theorem was applied in order to show that broadcast
with hybrid security is achievable if 2¢,, + t, < n and 2t, < n by merely
giving a construction for weak broadcast. Third, in view of the fact that
communication takes place in a physical world where some level of con-
sistency is guaranteed, for instance by exploiting the proximity of enti-
ties communicating by radio channels, it is interesting to investigate how
such given minimal consistency guarantees can be exploited and ampli-
fied. While the models given here can perhaps not directly be motivated
as being available in the physical world, other models might be.

5.3 Partial broadcast

We start with an efficient, optimally resilient protocol for model MPS

and some further considerations related to this model (Section 5.3.1). In
Section 5.3.2 a generic, optimally resilient protocol for model M2 for
any b > 2 is given. That protocol, however, generally is not efficient. Fi-
nally, optimal resilience of the given protocols for models M® is proven

in Section 5.3.3. The general tight bounds are anticipated by the following

Theorem 5.1. In model Mb, global broadcast among n > 2 players is achiev-

able if and only if ¢t < 2—n.

Proof. The theorem follows from Theorems 5.10 and 5.11. O

5.3.1 3-broadcast
5.3.1.1 Model

We consider model M, (pairwise authenticated channels) but, addi-
tionally, we assume that unconditionally secure, synchronous broadcast
channels among each triple of players are available, i.e., that for each
subset of three players (S C P, |S| = 3) and for any selection of a sender
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among them there is an authenticated broadcast channel from the sender
to the remaining two players. Such broadcast channels from a sender to
two recipients will be denoted as BC3 channels. The security of the BC3
channels is not necessarily required to be perfectly secure but we assume
their error probability ¢y to be customizable to an arbitrarily small level.
More precisely, we assume that, given any security parameter x > 0, such
a channel can be customized such that its error probability is bounded by
275, & < 2%, We will refer to this model as M

aut*®

5.3.1.2 A phase-king protocol

In this section, we give the construction of an efficient broadcast protocol
that tolerates ¢ < n/2 corrupted players. As follows from Theorem 4.14
(reduction from broadcast to weak broadcast for n > 2t), it is sufficient to
give an efficient protocol for weak broadcast. By the construction behind
this theorem, the final broadcast protocol will be a phase-king protocol.

Let p; be the sender. The following protocol for weak broadcast is
simple: p,; simultaneously sends his input value with all BC3 channels
he is involved in as a sender, i.e., all (”;1) BC; channels with sender p,
and two distinct recipients in P\ {ps}. Every recipient p; then decides on
v € {0, 1} if he received v in each of the n — 2 invocations of BC3 he was
involved in and on L, otherwise.

In the following protocol, let Broadcast ({ps, pi, pj }, ps, ©s) denote an
invocation of the BC3 channel among {ps, p;, p; } with sender p, where p;
holds input z,.

Protocol 5.1 WeakBroadcast (P, ps, )
1. V] € {17 HR) TL}\{S, Z} (Ug ‘= Broadcast ({ps,pi;pj};ps;l's);
2. if Fve{0,1}Vj:v] =vthen y; :=velse y =11 ;
3. return y;

Lemma 5.2. In model M2, Protocol 5.1 achieves efficient weak broadcast se-
cure against any number of corrupted players.

In order to achieve that the error probability satisfies e < 2%, the se-
curity parameter kpc, of the underlying BCs channel can be set t0 kpe, >
k+2logyn = k + O(logn).

Let Ry, be the round complexity and By, be the bit complexity of the given
BC; channel. Then Protocol 5.1 requires a round complexity of R = Ry, and
a bit complexity of B = (",") - Bye, = O(n?)Bpc,.
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Proof. Consider Protocol 5.1. The validity property follows from the fact
that a correct sender sends the same value z, for all instances of BC3, and
hence a correct recipient p; consistently receives v; = z,, and decides
y;i = xs. The consistency property follows from the fact that any two
correct players p; and p; share an instance of BC3, namely the one among
{ps,pi,p;} where both receive the same value. Hence, if p; decides on

y; € {0,1} then p; decideson y; € {y;, L}.

There are (";1) = n=U("=2) ~ 2% executions of BC3 and hence, the

overall error probability of Protocol 5.1 is at most ¢ < ’?722—’“’03 (union
bound). Thus, demanding kbc, > k + 2log, n > k + logQ(”;) yields

2
n
e< 727'%% < 277,

The complexity of the protocol can be easily verified by code inspec-
tion. O

Theorem 5.3 (Broadcast [FM00b, FMO00a]). In model M ';fj’g‘, global broadcast
unconditionally secure against ¢ < n/2 corrupted players is efficiently achiev-
able.

Let Rbe, and By, be the round and bit complexities of the underlying BC;
channels. For any x > 0, given BC3 channels with security parameter xpc, >
k + log,(3tn3) = k + O(logn), there is a broadcast protocol with security
parameter « (error probability e < 27%) requiring round complexity R = 2t -
Ries + t + 1 and bit complexity B = O(n*)Bp.,-

Proof. Consider the broadcast protocol resulting from plugging weak bro-
adcast Protocol 5.1 into graded consensus Protocol 4.9 and, in turn, plug-
ging Protocol 4.9 into Protocol 4.6. By Lemmas 5.2, 4.13, and 4.7 this
protocol obviously tolerates ¢ < n/2 corrupted players and requires the
stated round and bit complexities. The overall number of BC3 invoca-
tions is upper-bounded by ¢ = 3tn?, and hence the error probability can
be estimated as
€ < 3tnd2 Fbes < 27K

O

Note that the bilateral authenticated channels of model M"¢ are not

required in the given construction. The same correctness argumentation
still holds when replacing each send from a player p; to a player p; by a
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respective broadcast on the BC3 channel from p; to player p; and some
arbitrary other player p; ¢ {pi,p;}.

For the given constructions, we assumed the underlying BC; chan-
nels to be reliable independently of the number of corrupted players in-
volved. Consider broadcast among three players secure against only one
corrupted player, denoted by BC3 ; (standing for BC,,—3;—;). BC3; im-
mediately implies BCs, i.e., resilience against any number of corrupted
players, since, in the presence of more than one corrupted player, the only
condition to be satisfied is that a correct sender decides on his own input
value. This can be easily guaranteed. Moreover, weak broadcast among
three players secure against one corrupted player, denoted by WBCs3 1,
implies BC; ;, as follows from the general reduction of Theorem 4.14 —a
more efficient reduction for the special case n = 3 is implied by the proof
of the following lemma.

Lemma5.4. In model M, WBCs ; implies BCs.

Given that the WBC3 ; channels involve security parameter kyhc,, round
complexity Rwbe,, and bit complexity Byhe,, there is a protocol for BCs with
security parameter kK = Kybeg, round complexity R = Ryne; + 1 and bit
complexity B = Bype, + O(1).

Proof. Given WBC3; 1, BC3 can be implemented as follows: First, the sen-
der distributes his value with WBC; ;. Then both recipients exchange the
values they have received from the sender. A recipient who received a
value = # L from the sender sticks to this value, y := z, whereas in the
other case (x = 1), he decides on y := 2’ where 2’ is the value received
from the other recipient (during the second round). Finally, if y = L, y is
replaced by a default value, e.g., y := 0.

Hence, if the sender is correct, a correct recipient always decides on
the sender’s value. On the other hand, if the sender is corrupted, then
two correct recipients either receive the same value z € {0, 1} or at least
one of them receives x = L (by the consistency property of weak broad-
cast) which makes him adopt the other players’ value «' if ' € {0,1}.
Finally, if the weak broadcast results in x = L for both recipients then
both of them replace their values by the default bit. O

There remains the natural question of what happens “between” the
extremes of WBC; ; and global broadcast secure against ¢t < n/2 cor-
rupted players. More generally, suppose that we are given a protocol ¥
for weak broadcast among v players where v > 3 (but not necessarily
v < n). How much resilience is necessary and sufficient for ¥ in order
to allow for broadcast among the n players with respect to some fixed
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resilience ¢t € [[n/3],n/2)? Itis not hard to see that any protocol for weak
broadcast among v > 3 players with 7 € [[n/3],n) (WBC, ;) allows for
broadcast among n > 3 players with ¢ € [[n/3],n/2) (BC,,) and vice
versa, i.e., that all respective primitives are equivalent. This fact is stated
in the following theorem.

Theorem 5.5. In any model implying synchronous authenticated communica-
tion, (efficient) WBC,, 1,31 implies

o (efficient) WBC,, ,—1, and
o (efficient) BC,,; ifand only if ¢t < [251].

Proof. The lemma follows from the following four efficient reductions,
and from Theorem 5.11 which implies that, in model M2, broadcast for
t > n/2is impossible.

1. WBC, /31 = WBC;3,;: Assume that the three players {p;, pz,ps}
want to achieve weak broadcast with sender p, secure against one
corrupted player. For this, each player p; simulates k; of the play-
ers in the given WBC,, 1, /31-protocol such that 1 < k; < [v/3] and
such that the sender of the given protocol is simulated by player
p1. At the end, every player p; decides on the output of any one
of the players he simulates. If at most one player in {p1, pa,ps} is
corrupted then, in the given protocol for weak broadcast, no more
players are simulated by a corrupted player than tolerated by the
protocol. Hence, this simulation achieves WBC3 ; among the play-

ers {p1, p2,p3}

2. WBC;3,; = BCjs: This reduction is given by Lemma 5.4.
3. BC3; = WBC,, ,,—:: This reduction is given by Lemma 5.2.

4. BC3 = BCn“T_lJ: This reduction is given by Theorem 5.3.

5.3.2 General b-broadcast

In this section, model M2S is generalized to a model with broadcast

among any number b > 2 of players and, depending on b, we completely
characterize the number ¢ of corrupted players that can be tolerated for
global broadcast when given partial broadcast among b players.
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Figure 5.1: Comparison of Theorem 5.1 to [CLMOQO] for the special
case of b = 4.

The first results for this general model were given in [CLMO00] by Con-
sidine, Levin, and Metcalf. They showed that, for any integer & > 1,
broadcast among b = 2k players is necessary and sufficient for global
broadcast secure against t = k—;ln corrupted players. However, their re-
sult does not give a complete picture of what is exactly achievable since
only even integers b = 2k (kK > 1) and resiliences of the exact form
t = %n are considered. In contrast, we give a precise tight bound by
showing that, in a model with broadcast among b > 2 players, global
broadcast is achievable if and only if ¢t < %n Consider, for example,

the case b = 4. Whereas after [CLMO00] only ¢ < % is proven to be tol-

erable, the bound that is given here states that actually up to ¢t < %n
corrupted players can be tolerated. Figure 5.1 gives a graphical compari-
son. A similar gap (though decreasing in function of b) appears for every

b.

It is important to note that, in this section, we deviate from the pop-
ular notation for arbitrary resilience, ¢ < n (c.f. Section 3.1), and instead
writet <n — 1 (ort < n — 2) which describes the largest non-trivial case
— implying the achievability for ¢ > n — 1 as well. The reason is the
derived tight bound ¢t < Z;—%n that, for the special case n = b, satisfies

b—2< g;—}b < b — 1 and thus yields the tight bound ¢ < b — 1. Thus, for
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notational convenience and without any further consequence, we define
arbitrary resiliencetobet < n — 1.

5.3.2.1 Model

We consider model M, (pairwise authenticated channels) but, addi-
tionally, we assume that unconditionally secure, synchronous broadcast
channels among each b-tuple of players are available, i.e., that for each
subset of b players (S C P, |S| = b) and for any selection of a sender
among them there is an authenticated broadcast channel from the sender
to the remaining b — 1 players. Such broadcast channels from a sender to
b — 1 recipients will be denoted as BC,, channels. The security of the BC,
channels is not necessarily required to be perfectly secure but we assume
their error probability 4 to be customizable to an arbitrarily small level
(as for the special case of BC3 of the previous section). We will refer to
this model as MP¢

aut*

5.3.22 An IG protocol

In this section, we give a (generally inefficient) 1G-protocol for global
broadcast in model MP unconditionally secure against ¢ < gjr—}n cor-
rupted players. The protocol is efficient if and only if n and b differ by
a constant, i.e., n — b = O(1). Along the lines of Section 4.1.1.1 we start
with a protocol for TTBC among player set S C P (|.S| = n) with respect
to thresholds ¢, and ¢...

For any predicate @), we define /\2:1 Q := true; and, in step 4 of the
protocol, let “min” denote any minimal set that satisfies the given condi-
tion. Furthermore, note that it is a binary broadcast protocol. Thus the
recursion in step 7 does not only branch in order of n (n — 1 sub-calls) but
also in order log b since ¢; € {0,...,b — 1} must be processed bit-wise.

Protocol 5.2 TTBC (S, ps, s, tw, tc)
1. VSy—2 C S\{ps,pi}, [Sp—2| =b—2:

Uisbfz := Broadcast (Sy_2 U {ps,pi }, ps, xs) fi ;

2. if i=sthen y; =z, returny; fi ;

3. if tc=0Vb=nthen y; :=v;;returny; fi ; [“any received value”]
4. Yz e {0,1}:if 3Sp_p: 0" = zthen

Ti[2] := min(T C S\{ps,pi HVSo_2 D T+ vyP % = 2);
else Ti[z]:=Sfi ; [assign a sentinel]
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5. if |T3[0]] < |T3[1]| then wv; :=0else wv;:=1fi ;
6. if v; =0then ¢ :=min(|Ti[vi]|, %))
else ¢;:=b—1—min(|Ti[vi]|, [55]) fi ;

7. Vp; € S\{ps}: € := TTBC (S\{ps},pj, b;, tu,te — 1) fi ;

8. VLe[0,b—1]:Li[f] := |{p; € S\{ps} | & = £}|;

9. if AL (Lilk — 1]+ Li[k] > n—t.) A (L;[0] > n —t, — 1) then
10. yi:=0else y;:=1

11. fi ; returny;

Lemma 5.6. Consider Protocol 5.2 in model M2 with n > b. For every
correct player p; it holds that |T;[0]| + |T:[1]| > b — 1.

Proof. Let p; be a correct player and let ko := |T;[0]| and &k, := |T;[1]].
Hence, there are ko distinct players qi,...,qx, ¢ {ps,pi} such that all
instances of BC;, in step 1 involving the players in {ps,pi,q1,- .., qx, } re-
sulted in output value v; = 0.

Now, assume that |7;[0]| + |T3[1]| < b — 1 and consider any k; distinct
players ri,...,rx, ¢ {ps,pi} and the set U := {ps,pi} U{q1,. -, Qo } U

{r1,...,7k, }. Since |U| < b, there is at least one instance of BC; involving
all the players in U. This instance cannot have resulted in v; = 0 and
v; = 1 at the same time, and thus the lemma follows. O

Lemma 5.7. Consider Protocol 5.2 in model M with n > b, and consider
any two correct players p; and p;. For any v; € {0,1}, |T;[v;]| < b — 3 implies
|Tjlva]] < |Tifwil| + 1.

Proof. Assume that |T;[v;]| < b — 3. Hence, there are £ < b — 3 distinct
players q1,...,q ¢ {ps,pi} such that all instances of BC; in step 1 in-
volving the at most b — 1 players in {ps, pi, q1, - - ., qr } resulted in output
value v;, in particular, all instances involving the at most b players in
{ps,pi,Pj q1, .-, qr}. Hence, all instances of BC, involving the players in
{ps,pjsPisq1, - -, qi } resulted in output value v;, and thus |T)[v;]| < k+1,
and the lemma follows. O

Lemma 5.8. Consider Protocol 5.2 in model M2 with n > b. If p; is correct

then, for some ¢ € {—1, 1}, every correct player p; computes ¢; € {¢;,¢; + c}.

Proof. Consider a correct player p; with a minimal set T;[v;], i.e., such that
for all v; € {0,1} and all correct players p; it holds that |7} [v;]| > |T;[v;]|.
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If |T;[v;]] > |%5%] then, by the minimality of |T;[v;]|, every correct
player p; computes £; € {|5t],6—1— |52} = {|52], [52]}, and
the lemma follows.

If |T;[v;]| < |%52] then, by Lemma5.7, it holds that |T;[v;]| < |T;[v;]| +
1 < |52 ]. Furthermore, by Lemma 5.6, it holds that |7;[1 — v;]| > b—1—
|T; il

We distinguish three cases:

o If|Ty[v;]] < [552] then [Ty[1—vi]| > b—1—|Tj[vi]| > b—1— 254 =
[4] > [Ty[vi]|-

o If|T;[v;]| = [%52] and bis even then |T;[1 — v;]| > b— 1 — |Tj[v;]| =
[ > [55H] = IT[wi]l.

o If | T;[v;]| = |52 and bis odd then |T;[1 — v;]| > b— 1 — |Tj[v;]| =
[ = [%5H] = IT[wi]l.

The first two cases imply that v; = v; since |T}[v;]| < |T;[1 — v;]| (see
step 5). Furthermore, by Lemma 5.7, it holds that |T}[v;]| < |T;[vi]| + 1
and thus that p; computes ¢; € {¢;,¢; + 1} ifv; =0and ¢; € {¢;,¢; — 1} if
v = 1.

The third case implies that |T;[v;]| = |Tj[1 — v;]| = |%52]. Since b
is odd, it holds that |22 | = b — 1 — |251], and thus that p; computes
éj:€i+1ifvi:0and€j:Ei—lifvz_ . O

Lemma5.9. Consider Protocol 5.2 in model M2, 1f (b—1)n > (b—1)t.+2t,

and t. < t, then the protocol achieves TTBC with respect to thresholds ¢, and
te.

Proof. The proof proceeds by backward induction over n. Thus, assume
that Protocol 5.2 achieves TTBC among n’ = n — 1 players whenever
(b—1)n' > (b— 1)t + 2t/,, and hence, achieves TTBC for the special case
thatn' =n—1,¢, = t,,and ¢, = t. — 1,since (b — )n > (b — 1)t. + 2¢,
implies(b—1)n' = (b—1)(n—1) > (b—1)(t. — 1)+ 2t, = (b— 1)t. + 2¢..
Validity: Assume that at most ¢, players are corrupted and that the sen-
der p, is correct. Ift. = 0 or b = n then validity is trivially satisfied (step 3)
since p; distributes the same value z; with all BC, channels — this case
constitutes the induction base. Thus, assume thatt. > 0, b < n, and by
induction, that the protocol achieves validity with respectto n’ = n — 1,
t =ty andt!, =t.— 1.
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Since correct p, distributes the same value z; with all BC, channels,
all correct players p; compute T;[z;] = 0 and thus ¢; = zs - (b — 1). By
assumption, in step 7, every correct player receives this £; from every one
of the at least n — ¢, — 1 remaining correct players in S\ {ps}.

If z, = 0 then every correct player p; computes L;[0] > n — ¢, — 1 and
thus y; = 0 = z,. If 23 = 1 then, since (b — 1)n > (b — 1)t. + 2t, implies
(b=(nzte) 4 A (Lilk—=1]4Li[k] > n—t.) A (L;[0] > n—t,—1) would
imply that 30} L[] > C2ntte) 4y 41>t 4n—t,—1>n—1
in contradiction to the fact that n' = n — 1, and thus it must hold that

',_Z;é L;[¢] <n — 1, and every correct player p; computes y; = 1 = z,.

Consistency: Assume that at most t. players are corrupted. The induction
base consists of the case that either b = n (then the protocol achieves
broadcast by definition) or that the sender is correct (then, since ¢, > t.,
consistency directly follows from the validity property proven above —
especially, this is the case if t. = 0).

Thus, assume that the sender p, is corrupted (and hence ¢t. > 0),b < n,
and by induction, that the protocol achieves TTBC with respect to n' =
n—1,t =t, andt, =t. — 1.

Since the sender is corrupted, at most ¢t. — 1 = ¢t.. corrupted players
remain in S\ {ps}, and are involved in step 7. Hence, by induction, every
invocation of the protocol in step 7 achieves consistency. Furthermore,
since ¢/, > t', also validity is achieved, i.e., all invocations of the protocol
in step 7 achieve broadcast. This implies that two correct players p; and
p; compute exactly the same sets L;[0] = L;[0] =: L[0], ..., Li[b — 1] =
Li[b—1]=:Lb-1].

Let p; be a correct player with minimal ¢-value, i.e., such that for all
other correct players p;: ¢; < ¢;. By Lemma 5.8, it holds that ¢; € {¢;,¢; +
1}. We now show that all correct players p; compute y; = y;. If {; = ¢;
then both players have exactly the same view and hence decide in the
same way, y; = y;. Thus, suppose that ¢; = ¢; + 1.

e If p; computes y; = 0 then AL (L[k — 1]+ L[k] > n—t.) A (L[0]
n —t, — 1), and by Lemma 5.8 it also holds that L[¢;] + L[¢; + 1]
n —t.. Hence, A\ (Ly_1 + Ly > n—t.) A (Li[0] > n—t,—1) an
pj computes y; = 0 = y;.

e Ifp; computesy; = 1then - AL, (L[k—1]+L[k] > n—t.) V =(L[0]
n—t, —1),and thus = Ay (L[k — 1] + L[k] > n —t.) vV =(L[0]
n —t, — 1), and p; computes y; = 1 = y;.

a IVIV

v v
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Protocol 5.3 Broadcast (P, ps, =)
1. y;:=TTBC (P,ps,xs,t,t);
2. returny;

Theorem 5.10. In model M2, Protocol 5.3 achieves broadcast perfectly secure
against ¢t < 2+1n corrupted players. Its round complexity is R = min(t +
1,n — b+ 1) and its computational and bit complexities are polynomial in n if

n—b=0(1).

Proof. That Protocol 5.3 achieves broadcast follows from Definition 4.1,
Lemma 5.9, and the fact that ¢, = t. = t and thus (b — 1)n > (b — 1)t. +
2t, = (b+ 1)t
The round complexity can be easily verified by code inspection. The
bit complexity satisfies B < S ot 0) (n1=d) (T(L”lll), [log, b]’. Given
that n — b = O(1) we get
n—b
B< n" "~ flog, b]* < n""logh~"n = Poly(n).
=0
Furthermore, if n — b = O(1) then the sets T;[0] and T;[1] can be effi-
ciently computed by a breadth-first-search technique, and thus also the
computational complexity of the protocol is polynomial for this case. [

5.3.3 Impossibility result

The following theorem, generalizing Theorem 4.16, states that global bro-
adcast among n players secure against ¢ > 2 T Ln corrupted players is im-

possible in model M2 (or model MPS where secure bilateral channels

are given). Recall that, for notational ease, we use the bound ¢t < n —1 for
arbitrary resilience.

Theorem 5.11 (FGMOO02]). Let b > 2. In model MPS | broadcast among a
set of n > b players P = {po,...,pn—1} is not achievable if ¢ > [’g*—} n]. For
every protocol there exists a value zo € {0, 1} such that, when the sender holds
input g, the adversary can make the protocol fail

e with a probability of at least if she is computationally bounded, and

2b+2
e with a probability of at least b+1 if she is computationally unbounded.

Proof. For the sake of contradiction we assume that, in model M for

sec

some b > 2, there is a broadcast protocol ¥ among a player set P =
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{po,...,pn_1} that tolerates ¢t > (,’;—}n]. This protocol is used to build a
different system with contradictory behavior.

LetIT = {mo,...,m—1} be the set of the players’ corresponding pro-
cessors with their local programs and let II,UII,U. .. UIl, = II be a par-
tition of IT into b + 1 sets of cardinalities |11y, | € {|;77], [577]}. In other
words, ¢ = nmod (b + 1) sets of cardinality (HLI] and b + 1 — / sets of
cardinality LHLlJ with the following property: if ¢ > HTl then, of any two
adjacent sets 11 and I ;1) mod (p+1), at least one is of cardinality (Hil].
Furthermore, for each ¢ € {0,...,n — 1}, let =;1,, be an identical copy of
processor 7;. Finally, for each k& € {0,...,b}, let 1), = {mipn | m € Ui}
form an identical copy of set II,.

Instead of connecting the original processors as required for broad-
cast, we build a network involving all 2n processors by connecting them
with instances of BC;, such that for every set I UTL ;1) mod (25+2) Of pro-
cessors in the new system, and without the presence of an adversary,
their common view is indistinguishable from their view as processors in
Mk mod (5+1) U IL(k41) mod (5+1) IN the original system with an adversary
that corrupts the processors in II\ (ITx mod (6+1) U (x+1) mod (p+1)) IN @N
admissible way.

Note that for every BC,;, in the original system there is a set II;, such
that no processor in 11, is connected to it. This is because there are b + 1
different sets II;,. The BC,’s are now reconnected in the following way:
For each BC, that originally connects a set S of b processors in IT\ Il
(k € {0,...,b}), there are now two BC,’s, one connecting the processors
{mi € Mpy1 U+ UIltgn—1 | i mod (b+1) € S} and one connecting the pro-
cessors {m’ € Miy14n U - Ukt 140 | Timod (b41) € 5}-

We now show that every set Il U II(; 1) mod (2042) Of processors con-
tains at least n — ¢ correct processors, implying that protocol ¥ satisfies
the broadcast conditions with respect to all processors in the union of two
such adjacent processor sets. We have two cases:

€< YL T U T g1y mod (2642)] > 2 [HLIJ = {ﬁr—"lJ =n+ liznfb(ﬂl)”J

_ b—1 b—1
—n—{—nJ Zn—{w—ln—l >n—t,and

€> 8L Ul kg1) mod (2642)] = [,,%J + [b%] > [b%J >n—t.

Let now 7 and m,, be initialized with different inputs. For any possible
run of the new system on inputs z, and z,, = 1 — z; it holds that, cho-
sen a pair (Mg, M(x41) moa (2042)) OF adjacent processor sets uniformly at
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random, the probability that the conditions for broadcast are violated for
this pair is at least ;.

In particular, there is a pair (ITg, (54 1) mod (26+2)) iN the new system
such that, over all possible runs on inputs 2o = 0 and z,, = 1 the probabil-
ity that the conditions of broadcast are violated for (IIx, Il (x41) mod (2642))
is at least 71

If the adversary is unbounded, given any protocol ¥, she can compute
such a pair (I, IT(;41) mod (25+2)) @nd act accordingly by corrupting the
processors in 42y mod (b+1) U* * * UL (k48) mod (v+1) 1N the original system,
hence forcing the protocol to fail on input

_f 0 ,ifoe{kk+1},and
To=197 1 ,else,

with a probability of at least ;.

If the adversary is computationally bounded then she can still make
the protocol fail with a probability of at least ﬁ as follows along the
lines of the proof of Theorem 4.16. O

5.3.4 A hierarchy of partial consistency

Recall the tight bound for global broadcast when given broadcast among
b players: t < ’g;—}n The constructions in Section 5.3.2 relied on the fact
that BC,, allows to distribute a value such that, even when the sender is
corrupted, all correct players’ views are “adjacent” (Lemma 5.8). More
precisely, by having the sender distribute his input bit by all BC, chan-
nels he is involved in, a protocol was achieved that solves the following

problem.

Definition5.1. Let P = {p1,...,p, } beaset of n playersand b > 0 an integer.
A protocol ¥ among P where player p, € P (called the sender) holds an input
value z; € {0,1} and every player p; € P finally decides on an output value
yi € {0,...,b— 1} achieves b-set-neighboring (N’;l, for short) with respect to
P and p; if it satisfies the following conditions:

Validity: If the sender is correct with input z:; € {0, 1} then every correct
player p; decides on y; = x5 - (b — 1).

Consistency: There is a value £ € {0,...,b — 2} such that every correct
player p; decides on either y; = £ory; = £ + 1. o

N’;L with respect to b = 2 achieves simply the same as the multi-send
of a bit: if the sender is correct then all players decide on the sender’s
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input value and, trivially, all correct players always decide on either 0 or
1. Recall Definition 3.4 of weak broadcast. Substituting the recipients’
output range with 0 — 0, L — 1 and 1 — 2 exactly yields Definition 5.1
with respect to b = 3. Recall Definition 3.6 of graded broadcast. Substi-
tuting the recipients’ output range with (y; = 0,9; = 1) — 0, (0,0) — 1,
(1,0) — 2, and (1,1) — 3 exactly yields Definition 5.1 with respect to
b = 4. Finally, the original version of graded broadcast in [FM97] yields
Definition 5.1 with respect to b = 5. Thus, N’,’L is simply a generalization
along the lines of these four well-known special cases. In [Rot00], von
Rotz already observed that b-set-neighboring implies broadcast among
n = b players tolerating any number of corrupted players, t < n.

Proposition 5.12 ([Rot00]). For any b > 2, BC, and N’g are equivalent.

Proof.

BCy, = NE: N,’i can be achieved from BC, by having the sender broadcast
his bit and having the recipients decide on 0 on receiving 0,and on b — 1,
otherwise.

NP = BCy: The proof proceeds by induction. First, note the trivial fact
that N} (b > 2) implies N}, for any ¥/, 1 < ' < b, since N’_! can be
obtained from N’g by removing a player and mapping both output values
yie{b—2,b—1}toy;:=b—2.

That N% implies BCs is the induction base (both functionalities achieve
exactly the same). We now show how to achieve BC, from BC;_; and
N’g. First, the b players perform an instance of N,’i where the sender p,
inputs his value z; € {0,1} to be broadcast, decides on y, := z,, and
terminates. Second, all b — 1 remaining players p; broadcast among each
other their received values y; € {0,...,b— 1} with help of BC,_; (in a bit-
wise manner). Finally, a player p; decides on 0 if every value v € [0, y;]
was broadcast by at least one of the b — 1 players p; # p, —and on 1,
otherwise. The correctness of this construction follows from the facts

- that all correct players p; # ps end up with the same b — 1 values y;
(j # s) since these values are redistributed by broadcast, and
- that at least one of the b values in {0,...,b— 1} is not redistributed,
and
- that, for any two correct players p; and pj, it holds that y; = y; £ 1.
([l

Theorem 5.13. For any b > 2, NZ (b < k < n) implies global broadcast if and

H b—1
Only ift < H—ln
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| b ] Primitive Full Res. General n |
2 Multi-Send: N2 & BCy & t<n/3
3 Weak Broadcast (WBC): N> & BCy; & t<n/2
4 | Graded Broadcast (GBC): N, < BC, <& t<3n/5
5 [FM97]-GBC: N> & BCy; & t<2n/3
n—1 - Nl BC,,& t<n-—2
n - N, & BC, & t<n

Table 5.1: Hierarchy of partial consistency; partial broadcast with
full resilience, and global broadcast with resilience t.

Proof. From Lemma 5.8 it follows that BC, implies NZ with arbitrary re-
silience. N’ trivially implies N? (b < k < n) as is mentioned in the
proof of Proposition 5.12. By Proposition 5.12, N’g implies BC,. Finally,
by Theorems 5.10 and 5.11, BC, implies global broadcast if and only if
t < gjr—}n [l

In particular, the observations made in this section imply the well-
known fact that multi-send for ¢ < n is achievable if and only if pairwise
authenticated channels are achievable and, together with Theorem 4.1,
that multi-send implies global broadcast with resilience ¢ < n/3. Weak
broadcast for ¢t < n is achievable if and only if BC; is achievable and, to-
gether with Theorem 5.10, weak broadcast implies global broadcast with
resilience ¢t < n/2 (as separately stated by Theorem 4.14). Graded broad-
cast for t < n is achievable if and only if BC, is achievable and, together
with Theorem 5.10, graded broadcast implies global broadcast with re-
silience t < 3n/5. See Table 5.1 for the full picture.

5.4 External information sources

It can be easily proven that an additional global random source (i.e., a
beacon) does not help to improve the classical bound of ¢t < n/3 for
broadcast in standard models M ,; or M., namely by simply assum-
ing such a source in the proof of Theorem 4.16 — still with exactly the
same reasoning. However, by slightly modifying the functionality of
such arandom source, as described in the following section, it does. Note
that a straightforward solution could be achieved with the help of an ex-
ternal information source that simulates the whole protocol in [BPW91]
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or [PW96] in order to establish broadcast for the future (cf. Section 4.3.1).
However, this would be a rather complex task to be performed by an in-
formation source requiring a lot of mathematical structure. In contrast,
the following solution is based on very simple correlated information.

5.4.1 The Q-flip model

We assume model M,,; (pairwise authenticated channels). But on top,
some additional primitive is assumed among each triple of players, called
Q-Flip. This model is denoted as model M

aut*

Q-Flip, as described for the three players p;, p2, and ps, is a ran-
dom generator that (for every invocation), with uniform distribution,
generates a random permutation on the elements {0, 1,2}, (z1,z2,z3) €
{(0,1,2),(0,2,1),(1,0,2),(1,2,0),(2,0,1),(2,1,0)},and sends element z;
(2 € {1,2,3}) to player p;. No single player p; learns more about the per-
mutation than the value x; which he receives, i.e., a single player does not
learn how the remaining two values are assigned to the other players.

The Q-Flip primitive was originally motivated by quantum entangle-
ment considerations about the Byzantine agreement problem. A detailed
description of these quantum physical aspects is given in [FGMO01].

5.4.2 Efficient protocol

We construct an efficient protocol for broadcast that tolerates ¢ < n/2
corrupted players. As follows from Lemma 5.5, it is sufficient to show
that WBC; ; can be efficiently achieved among every triplet of players,
i.e., weak broadcast among three, secure against one corrupted player.
We now describe such a protocol for a sender s and two recipients ro and
ry.

Let z; € {0,1} be the input of sender s, and y, and y; be the final
outputs of the players ry and r; (whereas s always implicitly decides
on ys = z,). The primitive Q-Flip is invoked some m times and each
player receives a sequence of m elements in {0, 1,2}, i.e., s receives @, =
(Qs[1],...,Qs[m]), ro receives Qo = (Qo[l],...,Qo[m]), and 7, receives
Q1 = (Q1[1], ..., Q1[m]), where the triplet (Qs[i], Qoli], @1]¢]) represents
the outcome of the i-th invocation of Q-Flip. The protocol now proceeds
as follows:

First, s sends to ry and r; his input bit z, and the set o, of all indices
i € {1,...,m} such that s received the complement of z, for the i-th
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Figure 5.2: (A) Possible outcomes of Q-Flip and selection of o; (B,C)
Basic cheating strategies for s and r.

invocation of Q-Flip (see Figure 5.2-A):
os={ie{l,...,m}:Q4fi] =1—z,} . (5.2)

If this is done correctly then o, is of large size (i.e., approximately m/3,
which is important for good statistics on the corresponding Q-Flips) and
both recipients r, (k € {0,1}) never received the value 1 — z, for any
Q-Flip invocation with respect to o,: {i € o5 : Qg[i] =1 — x5} = 0.

Let z;, and oy, (k € {0, 1}) be the information that (potentially faulty) s
actually sent to recipient r,. The recipients now decide on y;, = = if and
only if o, is of large size and the value 1 — x; was never received with
respect to oy:

U = { :Jn_k ::Lsgak large) A ({i € o : Qrli] =1 — =z} = 0) (52)

Now, r sends to r; his value yo and the set p, of all indices ¢ € og
such that he received z, for the corresponding Q-Flip invocation:

pPo = {Z € 0p: Q()[Z] = JZ()} . (53)

If yo # y1 butyo,y1 € {0,1}, 1 now redecides in the following way:

Before describing the protocol in detail, we give a rough argumenta-
tion why none of the players can make the protocol fail.

r; faulty: r; cannot significantly misbehave since r; is silent.



118 Extended Communication Models

s faulty: In order to make the protocol fail, s must achieve that ro and r;
decide on distinct values yo # y; such that yo,y1 € {0,1} (Equa-
tion (5.2)) and that r; does not redecide on y; = yo according to
Equation (5.4). The only way to achieve this is to select zo € {0,1}
and z; = 1 — xg, and to basically compose large sets oy and o, as
shown in Figure 5.2-B (as shown with respect to 2, = 0)%. But then,
ro learns a large set po of indices i (Figure 5.2-B, last row) such that,
mainly, ¢ ¢ o1 and Q1[i] = 2 which will “convince” r; to redecide
on y; = yo according to Equation (5.4).

ro faulty: In order to make the protocol fail, ro must achieve that r; re-
decides on y; = yo # x5 according to Equation (5.4). Since correct
ssendsos = {i € {1,...,m} : Qs[i] = x5} to both players, r, can-
not come up with a large set pg of indices ¢ such that most of them
satisfy ¢ ¢ o, and Q1[i] = 2 (see Figure 5.2-C) since r, cannot dis-
tinguish between the outcomes corresponding to the first and the
last row.*?

From this argumentation, it can be seen that the Q-Flip primitive is
simply used in order to set up a pseudo-signature scheme with transfer-
ability 2.

Protocol 5.4 WeakBroadcast ({s,ro,r1}, S, Ts)

1. s,ro,r1: invoke primitive Q-Flip m times;

2. s ro,r1:%s,0s = {1€{1,...,m} : Qs[i]=1—xs}; 74 Receive(zy,o%)
S.Ys 1= s,

3. it ([{i€ok : Qrli]l=zr}| = mo) A ({i €0k : Qrli]=1—=zr} = 0) then
yr =z else  yp:=1 fi ;
4 1o By Yo, po ={i € 00 : Qoli] = yo}; r1: Receive(yo1, po1)
5 ritif  (L#yor #y1 #L) A (lpor| > mo) A
(I{i € po1 \ o1 : Q1[i] = 2}| > A|po1]) then yi:=yor fi

The detailed protocol is described by Protocol 5.4. There, two free
protocol parameters are introduced, mg (mg = Q(m); mo < m/6) for

"' Note that for every selection i € oy, (k € {0, 1}) such that Q;[i] # 1 — xy, it holds with
a probability of % that Qx[i] = 1 — x, which makes rj, decide on L (or 1 — z;,) according
to Equation (5.2).

2Note, that ro completely learns all instances indicated by an arrow but nothing more
about the other instances.
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asserting that the sets o, and pq are of sufficiently large cardinality, and A
(3 < X < 1) for the test according to Equation (5.4). Both parameters will
be fixed for the final analysis of the protocol.

Lemmab5.14. Let A\g < 1 and Ay > 1. The probability Prgyts that of m invoca-
tions of Q-Flip any one of the six possible outcomes in {(0,1,2),...,(2,1,0)}
occurs either less than mgo = A% < % or more than m; = A\ym > 7 times
satisfies Prsgas < 6max (Cy(5,m, o), C(%,m, A1)).22

Proof. The respective probability for each particular outcome, e.g. (0,1, 2),
can be independently estimated by the Chernoff bound (with random
variable X; representing the i-th Q-Flip). The overall probability is at
most as large as the sum of these six probabilities (union bound). O

Lemma 5.15 (All players correct). If all players are correct and each possible
outcome of Q-Flip appears at least m times, then Protocol 5.4 achieves WBCs ;.

Proof. By the given assumptions we have o5 = 09 = 0y and z; = 29 = a1
after step 1 of the protocol. Since o5, = {i € {1,...,m}: Qs[i] =1 — x5},
it holds for both recipients r;, that

{ieak:Qk[i]:l—l’k}:w A |{i€ak:Qk[i]:mk}|2m0.

Hence yo = y; = z, after step 3, and thus also at the end of the protocol.
O

Since ry does not actively participate in the protocol, i.e., since he does
not send a single message, we immediately get

Corollary 5.16 (r; possibly faulty). If the players s and r( are correct and
each possible outcome of Q-Flip appears at least mg times, then Protocol 5.4
achieves WBCs ;.

It now remains to determine upper bounds on the error probabilities
for the cases that s is faulty (Pr;) or that r is faulty (Pr,,,). The following
lemma will be used for the analysis of the former case in the proof of
Lemma 5.18.

Lemmab5.17. If each possible outcome of Q-Flip appears at least m o times and at
most m; times and if (faulty) sender s submits zo € {0,1}torgandz; = 1—x9
to r; and selects k indices i € {1,...,m} such that either

e | EogNoy,O0r

135ee Section 2.5 for the definition of C; and Cy.
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e i € 0p \ oy suchthat Qi] =2

then yo = z¢ and y; = 1—x (i.e., disagreement) holds at the end of the protocol
with a probability of at most ( —21 )k,

mo+m1
Proof. If s submits one single index i € og N oy then either Qyfi] =1 — zo
or @Q1[i] = 1 — z; with a probability of at least % (since the only
information by s is Q);[i] and hence s risks, with the respective probability,
to produce a “collision” on either recipient’s side which makes that one
decide on 1).

On the other hand, if s submits one single index i € oy \ o1 such
that Q;[i] = 2 (the only possibility in order to achieve that Qo[i] = zo
and @[] # 2) then ro decides on L with a probability of at least oy —
(since s risks, with the respective probability, to produce a “collision” on
ro’S side which makes that one decide on L).

Finally, in order to achieve that yo = z9 and y; = 1 — zo holds at the
end of the protocol, s must prevent any single collision for all k& index

selections. This can be achieved with a probability of at most (—21—)*,

mo+m1

Lemma 5.18 (s possibly faulty). If the players o, and r; are correct and
each possible outcome of Q-Flip appears at least mg times and at most m
times, then Protocol 5.4 fails to achieve WBC3 ; with probability at most Pr, <
)(I—X)mo

(m0+1ml
Proof. The only way for s to make the protocol fail is to force the recipi-
ents to decide on distinct bits, i.e., yo = 2o = b € {0,1} and y; = x; =
1 — b. Hence both recipients must already decide on those values during
step 3 of the protocol which implies |po1| = |po| > mo Since, otherwise,
ro would set yo = L. Furthermore, ro must not be able to convince r; to
redecide on y; = yo1 = yo during step 5 of the protocol. Since the first
two conditions according to step 5 are satisfied, i.e.,

e | #yg=1yo1 #y1 (since the recipients hold distinct bits), and

® |po1| > mo (see above),

the last condition must be violated, i.e., it must hold that

I{i € por \ o1 : Q1[i] = 2} < Alpos] -

Hence s must find some ¢ > (1 — X) |po1| > (1 — A)my indices ¢ such that
either

e i€poNor (CopNoy),or
e i€poi\or A Qi]i] # 2 (and hence Q,[i] = 2),
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such that no collision occurs. By Lemma 5.17 this happens with probabil-
(1—>\)m0
) . O

ity at most Pr, < (mO“}rlml
Lemmab5.19 (ro possibly faulty). If the players s and r; are correct and each
possible outcome of Q-Flip appears at least m times and at most 1 times then,
forany A > mo”fml , Protocol 5.4 fails to achieve WBC3 ; with a probability of

at most Pr,,, < H(m,my,mg, Amg).14

Proof. The only way for o to make the protocol fail is to make r, adopt
Y1 := yo1 # xs during step 5 of the protocol. Hence the following condi-
tions must hold:

e you=1l-y1=1-x4,
e |po1| >mo,
e [{i€por\or:Qili] =2} > X|pos]

Let u = |po1| > myo. Since s is correct and hence

{iE{1,...,m}:Qs[i]:1—ms:y01 A Q1[2]22} g Og =01,

ro must select « indices i such that for Au of them it holds that i ¢ o, and
Qoli] = yo1, and Q1[i] = 2. An optimal strategy in order to achieve this is
by randomly selecting mg indices i such that Qy[i] = 1 — z, (correspond-
ing to random selections from the first and the last row in Figure 5.2-C).

This process corresponds to a hyper-geometric distribution with N =
m, K = mq, and n = my (see Section 2.5). The probability for ro to suc-
ceed is hence given by the tail of this distribution according to k& > Amy.

By Equation (2.2), for any A > mgilml, this probability can be estimated
as

Cofa__m1 )?
Pr., < H(m,my,u,\u) < H(m,my,mg, Amg) < e Z()‘ m0+m1) mo

O

Lemma 5.20. For every desired security parameter x > 0 there exist parame-
ters m, myg, and A such that Protocol 5.4 has communication and computation
complexities polynomial in x and achieves WBC3 ; in model My . with an error
probability of at moste < 2%,

Let R, and B, be the round and bit complexities of the underlying Q-Flip
primitive, and let x be the desired security parameter. Then Protocol 5.4 requires
a round complexity of R = Ry + 2 and a bit complexity of B = O(x)By.

14See Section 2.5 for the definition of .
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Proof. We let A\ = 2 and A\; = 2, and fix the parameterization of the
protocol as follows such that there is only one free parameter left, namely
m, the number of Q-Flip invocations:

m = WE = T

— 5
mo= nE o=
A= =3

Now, as a function of security parameter «, let m > 288 (k + 2). Ac-
cording to Corollary 5.16 and Lemmas 5.14, 5.18, and 5.19 we get the
following estimations:

m_
2

1 1
Prstats S 6 max (Cl(g,m,Ao),CT(g,m,Al)) S be ™ 288 R

Pr., =0,

Pr < < m1 )(1—>\)m0 _ < )\1 >(1—)\)>\0m
5= mo + mq - Ao + A1 -

my )Zmo

Y (LS
Pr., <e ( mo+my

|
/7~
o] co
NG
|
(2
M

AN

o

|

33

§
B

,2()\,)‘71>zm 3
Xo+A1 O — e 128 < g 43 .

¥

=e€

Finally, the overall error probability can be estimated by the sum of
the probabilities that either the statistics of Q-Flip fail, i.e., that at least one
of the six possible outcomes appears less than mg or more than m; times,
or that, given good statistics, a faulty player can nevertheless successfully
misbehave:

e < Prsas +max(P,,, P, P,) < 6e” 25 + e 8

m m m—576
< Te s < elemm <emm <e R,

The protocol requires two additional communication rounds after the
invocations of the Q-Flip primitive, hence the stated round complexity
follows. During these rounds, overall, three subsets of {1, ..., m} (which
can be encoded with m bits, each) and three bits are sent. Since m =
288(k + 2) = O(k) guarantees an error probability of ¢ < e™", we get a
bit complexity of B = O(m)By + O(m) = O(k)Bq. O
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Theorem 5.21 (Broadcast [FGMRO02]). In model M3, ., unconditionally se-
cure broadcast is efficiently achievable for ¢t < n/2.

Let R and B, be the round and bit complexities of the underlying Q-Flip
primitive. Then, for any x > 0, there is a broadcast protocol with security
parameter « that requires a round complexity of R = 2t - R4 + 5t + 1 and a bit
complexity of B = O(n*(k + logn))By.

Proof. First, note that Protocol 5.1 achieves global weak broadcast even
when replacing BC3 by WBC3 ; in step 1 of the protocol. Thus, con-
sider the broadcast protocol resulting from transforming Protocol 5.4 for
WBC; ; into a protocol for weak broadcast with respectto n and ¢ < n/2
according to Protocol 5.1 and, in turn, transforming this protocol for weak
broadcast into a broadcast protocol with respect to n and ¢ < n/2 accord-
ing to Theorem 4.14.

By Lemma 5.20, in order to achieve WBC3; ; with security parameter
Kwbes, Protocol 5.4 requires Ryne, = Rq + 2 rounds and a bit complexity
of Bwb03 = O(Iﬁ:wbcg)Bq.

By Lemma 5.2 (including the above remark), turning this WBCj; ; pro-
tocol into weak broadcast with respect to n and ¢ < n/2 results in a pro-
tocol that requires Rybe = Rwbes = Rq + 2 and Bype = O(n?)Bybes =
O(n?Kwbes)Bq, and involves a security parameter of kwbe > Kwbes —
log, (n?) = Kybe, — 2log, n.

By Theorem 4.14, turning this weak broadcast protocol with respect
to n and ¢t < n/2 into broadcast with respect to n and ¢ < n/2 results
in a protocol that requires R = 2tRyne + ¢t + 1 = 2tRy + 5t + 1 and
B = O(n?)+3ntBybe = O(n*kybes ) By, and involves a security parameter
of & > Kwbe — 10gy 12 > Kybey — 41og, 0.

Thus, in order to achieve security parameter x, kyne, Can be cus-
tomized to kywbe; = & + O(logn). Finally, we get the stated complexities
R =2t -Rq+5t+1and B=O0(n*(x + logn))B,. O

5.5 Applications and open problems

As follows from Theorem 5.3, the protocols in [Bea89, RB89, CDD*99] for
unconditionally secure MPC in model MP<. do not necessarily require
the availability of global broadcast but also work in model MP%. Note

sec *

that, although global broadcast is achievable in model M (BC; and

aut

authenticated channels), for MPC secure channels are required besides.

Theorem 5.22. In model MBS, MPC unconditionally secure against t < n/2

sec !

corrupted players is efficiently achievable.
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Proof. Such an MPC protocol can be constructed by modifying the proto-
col in [CDD*99]: each invocation of a broadcast channel is simply simu-
lated with help of BC3 along the lines of Theorem 5.3. O

The same can also be achieved in model M{,;, even without requir-
ing the additional condition of secure channels since the Q-Flip primitive
helps to build pairwise one-time pads among the players:

Annegret and Beat can generate a one-time pad (OTP) of length ap-
proximately k£ by using 3k Q-Flip invocations shared with an arbitrary
third player Charlotte and reporting to each other where they got a value
different from 2. By this exchange of information Charlotte does not get
any additional information about the actual outcome of the Q-Flip invo-
cations. Finally, the OTP is formed by those Q-Flip instances where both
Annegret and Beat, got either 0 or 1, e.g., by Annegret’s respective bits —
which are the complements of Beat’s.

Theorem 5.23. In model M3 .., MPC unconditionally secure against ¢ < n/2
corrupted players is efficiently achievable.

Proof. Such an MPC protocol can also be constructed by modifying the
protocol in [CDD*99]. Each invocation of a broadcast channel is sim-
ulated with help of Q-Flip along the lines of Theorem 5.21. Further-
more, secure pairwise communication is substituted by one-time-pad en-
crypted communication over the pairwise authenticated channels where-
by the one-time pads are extracted from Q-Flip as shown above. O

The result behind Theorem 5.22 turned out to be useful for the char-
acterization of complete primitives. More generally than assuming pair-
wise communication channels or broadcast channels among subsets of
players, it can be assumed that, for some cardinality £ < n, each subset
of k& players shares a communication primitive of “some kind”. Such a
primitive would take a secret input from each player, perform some com-
putation, and secretly return an output to each player. Such a primitive
is called complete if MPC can be achieved among the n players having ac-
cess only to such primitives and local computation. Following a series of
work by Kilian, and Beimel, Malkin, and Micali [Kil88, Kil91, BMM99],
Kilian [Kil00] completely characterized which primitives of cardinality
k = 2 are complete for unconditionally secure two-party computations
(n = 2) for both the passive and the active model. In [FGMOQ1], it
is proven that, in order to achieve MPC unconditionally secure against
t < n/2 actively corrupted players, a primitive of cardinality at least
k = 3 is required. There, primitives of cardinality £ = 3 are proven to
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be complete by showing that the primitives allow to simulate pairwise
secure channels and BC3 channels, and applying Theorem 5.22.

Finally, although the achievability of global broadcast when given
BC; channels was fully characterized in Section 5.3 by showing that glo-
bal broadcast is achievable ifand only if t < Z;—}n generally, it remains an
open problem whether efficient protocols exist that achieve this bound.
A related question is whether always full connectivity of partial broad-
cast is required among the players in order to achieve global broadcast,
i.e., whether partial broadcast among all (’g) subsets is necessary.






Chapter 6

Generalized Security
Definitions

6.1 Introduction

Consider protocols among n players with respect to a threshold adver-
sary. The standard way to define security is to make it depend on one
threshold ¢: if the adversary corrupts at most ¢ players then the protocol
satisfies some required properties — but nothing is guaranteed for the
case that the adversary corrupts more than ¢ players, i.e., in this case the
protocol may fail in any arbitrary way.

A natural way to eliminate this drawback would be a protocol that
satisfies all desired properties if at most some ¢ players are corrupted but
in which all players safely abort the protocol when these properties can-
not be satisfied, i.e., if more than ¢ players are corrupted. This principle
was applied by Bennett and Brassard [BB84] for key agreement among
two players with help of a quantum channel. Their protocol reliably
works if no eavesdropper is present but is aborted by both players if the
quantum channel is being tapped.

Another approach is to specify different levels of correctness depend-
ing on the number of corrupted players being present. This principle was
applied in [VP93] by Vaidya and Pradhan. They defined the “degradable
agreement” problem with respect to two thresholds m and u, u > m,
where broadcast must be achieved if up to m players are corrupted but
only a very weak form of broadcast must be achieved if up to u players
are corrupted. They proved that degradable agreement is achievable if
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and only if n > 2m + u.

In this chapter, in a similar way as in [VP93], the notion of broadcast
is generalized to two thresholds t, and t. in the sense that the validity
property of classical Definition 3.1 is guaranteed as long as up to f <
t, players are corrupted and the consistency property is guaranteed as
long as up to f < t. players are corrupted. Note that this definition was
already given by Definition 4.1 of two-threshold broadcast (TTBC), the
purpose of which was to easily demonstrate the correctness of the EIG
protocol for standard broadcast.

In other words, this definition requires that broadcast is achieved if
f < min(t,, t.) but that still either validity or consistency is guaranteed if
f < max(t,,t.). We distinguish the two cases:

e Broadcast with extended validity (ExtvalBC): ¢, > t., and
¢ Broadcast with extended consistency (ExtConsBC): t. > ¢,,.

Furthermore, the version with extended consistency can additionally
be defined to also achieve agreement about the fact whether or not valid-
ity is achieved (validity detection), called ExtConsBC™. The version with
extended validity can additionally be defined to also guarantee that ei-
ther all players end up with the same output value or all players learn
that no consistency has been achieved (consistency detection), This variant
is called ExtValBC™. Note that these variants with detection are related
to the failure-discovery problem by Hadzilacos and Halpern in [HH93a],
a variant of broadcast in the sense that the broadcast conditions are re-
quired to be satisfied only provided that no correct player discovered
that “something went wrong”. However, the difference is that, in our
context, global failure discovery is required, i.e., the broadcast conditions
are required to be satisfied provided that any single correct player did
not discover that “something went wrong”.

ExtvalBC is achievable if t. = 0ort.+ 2t, < nand ExtConsBC? is
achievable if t, = 0 or t, + 2t. < n. Furthermore, it can be shown that
these bounds are tight even with respect to the variants without “detec-
tion”. These bounds are depicted in Figure 6.1.

Theorem 6.1 ([Hol01, FHHWO03]). Two-threshold broadcast (TTBC) with “de-
tection” is (efficiently) achievable if

ty =0V t. =0V ((t.+2t, <n) A (ty + 2t. <n)).

If this condition is violated then not even TTBC without “detection” is achiev-
able.
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Figure 6.1: Tight bounds for two-threshold broadcast.

Proof. The theorem follows from Theorems 6.2 and 6.6 (achievability of
broadcast with extended validity and consistency detection), Theorems
6.9 and 6.11 (achievability of broadcast with extended consistency and
validity detection), and Theorem 6.12 (impossibility of TTBC). O

The protocols for broadcast with extended consistency and validity
detection can be turned into “detectable” precomputation protocols along
the lines of precomputation Protocol 4.12 or the Pfitzmann-Waidner pro-
tocol: either all players commonly accept implying that future broadcast
is possible, or all players commonly reject. “Detectable precomputation”
is of special interest with respect to multi-party computation: it imme-
diately implies that any protocol in a model with broadcast (e.g., stan-
dard model M?,) can be transformed into a non-robust protocol (cf. Sec-
tion 3.2) in the corresponding model without broadcast (standard model
Msec)'

Broadcast with extended consistency for the special case t, = 0 was
introduced by Lamport [Lam83] under the name “weak Byzantine gener-
als” (cf. Section 3.1.5). He proved that there is no deterministic protocol
when t. > n/3. Broadcast with extended consistency and validity de-
tection for the special case ¢, = 0 was introduced in [FGMO01, FGMR02]
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under the name “detectable broadcast”, and shown there to be achiev-
able if t. < n/2. In [Hol01, FGH'02] it was shown that, for this special
case where t, = 0, broadcast with extended consistency and validity de-
tection is even achievable if t. < n. The above definitions with respect to
general thresholds ¢, and t. were given in [Hol01, FHHWO03].

6.2 Motivation

The mentioned bounds for ExtConsBC' demonstrate that, beyond the
classical lower bounds, Byzantine agreement can nevertheless be run in
an “optimistic” manner. Consider, for example, the case n = 3 where
ordinary Byzantine agreement is not achievable for ¢ > 0. The achiev-
ability of ExtConsBC™ with respect to the thresholds t. < nand t, = 0
shows that there is a protocol that achieves Byzantine agreement for the
case that no player gets corrupted but, still, for any number of corrupted
players, achieves that all players reliably detect whether or not the pro-
tocol has been successful.

This “optimistic” model is of particular interest when faults or cor-
ruption are expected to be rare but to appear in bursts. Virus infections
of servers, for example, only occur from time to time but then it must
be expected that many servers get infected at the same time. Repeatedly
running invocations of detectable precomputation thus allows to reliably
detect a first phase wherein only few servers are infected which can be
exploited in order to “vaccinate” the system against future infections of
any number of servers.

6.3 Model and definitions

For self-containedness, we start with the redefinition of two-threshold
broadcast.

Definition 6.1 (Two-Threshold Broadcast — restated Definition 4.1). Let
P ={p1,...,pn} beasetofn playersand let D be a finite domain. A protocol ¥
among P where player p; € P (called the sender) holds an input value =, € D
and every player p; € P finally decides on an output value y; € D achieves two-
threshold broadcast (TTBC, for short) with respect to P, p,, D, and thresholds
t, and t. if it satisfies the following conditions:

Validity: If at most f < ¢, players are corrupted and the sender p; is
correct then all correct players p; decide on the sender’s input value,



6.3 Model and definitions 131

Yi = Ts.

Consistency: If at most f < t. players are corrupted then all correct play-
ers decide on the same output value. o

The case where t,, > t. can then be explicitly defined as follows:

Definition 6.2 (Broadcast with extended validity). Let P = {p1,...,pn}
be a set of n players and let D be a finite domain. A protocol ¥ among P where
player p, € P (called the sender) holds an input value x; € D and every player
p; € P finally decides on an output value y; € D achieves broadcast with
extended validity (ExtValBC) with respect to P, p,, D, and thresholds ¢, and
t. (t, > t.) if it satisfies the following conditions:

Consistency: If at most f < t. players are corrupted then all correct play-
ers decide on the same output value.

Validity: If at most f < t, players are corrupted and the sender p; is
correct then all correct players p; decide on the sender’s input value,

Yi = Ts. o>

The drawback of this definition is that the players do not learn whe-
ther or not consistency has been achieved. The next definition gives a
stronger version which includes an additional grade output g; for ev-
ery player that allows to detect whether consistency has been achieved.
However, for ¢, > n/3, it is not possible that the players achieve agree-
ment about whether or not consistency has been achieved — this would
immediately imply standard broadcast for ¢ > n/3. But still, it can be
guaranteed that consistency is always detected if f < t. (“completeness™)
and never incorrectly detected if f < ¢, (“soundness”), i.e., g; = 1 always
implies reliable detection of consistency.

Definition 6.3 (Broadcast with extended validity and consistency detec-
tion). Let P be a set of n players and let D be a finite domain. A protocol ¥
among P where player p; € P (called the sender) holds an input value =, € D
and every player p; € P finally decides on an output value y; € D and a grade
value g; € {0,1} achieves broadcast with extended validity and consis-
tency detection (ExtVaIBC+ for short) with respect to P, p, D, and thresholds
t, and t. (t, > t.) if it satisfies the following conditions:

Consistency: If at most f < t. players are corrupted then there is a value
y such that every correct player p; computes y; = y and g; = 1.

Validity: If at most f < ¢, players are corrupted and the sender p, is
correct then every correct player p; decides on the sender’s input value,
Yi = Ts.
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Consistency Detection: 1If at most f < ¢, players are corrupted and any
correct player p; computes g; = 1 then every correct player p; computes

Yi = Yi- o

The given protocol for ExtValBC™ in Section 6.4 assumes standard
model M.,:[u] whereas the respective impossibility proof for ExtValBC
is even given with respect to standard model Mge[c].

Definition 6.4 (Broadcast with extended consistency). Let P = {pq,...,
pn} be a set of n players and let D be a finite domain. A protocol ¥ among P
where player p, € P (called the sender) holds an input value z; € D and every
player p; € P finally decides on an output value y; € D achieves broadcast
with extended consistency with respect to P, p,, D, and thresholds ¢. and ¢,
(t. > t,) if it satisfies the following conditions:

Validity: If at most f < t, players are corrupted and the sender p; is
correct then all correct players p; decide on the sender’s input value,
Yi = Ts.

Consistency: If at most f < t. players are corrupted then all correct play-
ers decide on the same output value. o

Analogously to ExtValBC, the drawback of this definition is that the
players do not learn whether or not validity has been achieved. The next
definition gives a stronger version which includes an additional grade
output g; for every player that allows to detect whether validity has been
achieved. In contrast to the inherently non-common consistency detec-
tion in ExtValBC™ for t, > n/3, for ExtConsBC it is always possible that
the players decide on the same grade output g;. If f < ¢, then validity
is always detected (“completeness”), and if f < t. then the detection of
validity always implies validity (“soundness”).

Definition 6.5 (Broadcast with extended consistency and validity detec-
tion aka Detectable Broadcast). Let P be a set of n players and let D be a
finite domain. A protocol ¥ among P where player p, € P (called the sender)
holds an input value s € D and every player p; € P finally decides on an
output value y; € D and a grade value g; € {0,1} achieves broadcast with
extended consistency and validity detection (ExtConsBC+, for short) with
respect to P, ps, D, and thresholds ¢. and ¢, (t. > t,) if it satisfies the following
conditions:

Validity: If at most f < t,, players are corrupted then every correct player
p; computes grade g; = 1. If, additionally, the sender p; is correct then
Yi = Ts.
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Consistency: If at most f < t. players are corrupted then every correct
player p; decides on the same pair of outputs (y, g), y; = y and g; = g.

Validity Detection: If at most f < t. players are corrupted, the sender py
is correct, and any correct player p; computes g; = 1 then every correct
player p; computes y; = . o

Along the lines of [BPW91, PW96], “detectable broadcast” can be tur-
ned into a “detectable precomputation” (see Section 4.3) for future broad-
cast with arbitrary resilience (¢ < n).

Definition 6.6 (Detectable precomputation). A protocol among n players
where every player p; € P computes some private data A; and finally decides on
a decision bit g; € {0, 1} achieves detectable precomputation for broadcast
(or detectable precomputation, for short) with respect to thresholds ¢. and ¢,
(t. > t,) if it satisfies:

Validity (or Robustness): If at most f < t, players are corrupted then the
correct players accept (g; = 1).

Consistency (or Correctness): If at most f < t. players are corrupted
then all correct players commonly accept (g; = 1) or commonly reject
(g; = 0) the protocol. If the private data A; held by all correct players
is inconsistent in the sense that it does not guarantee for arbitrarily
resilient broadcast then the correct players reject (g; = 0).

Independence: At the time of the precomputation, a correct player does
not yet need to know the value to be broadcast later. o

The given protocols for ExtConsBC™ in Section 6.5 assume standard
model Mgec[u] (0r Mayi[c]) whereas the impossibility of ExtConsBC is
even stated with respect to standard model M,..[c]. Note that ExtConsBC
with perfect security is not achievable if t. > n/3, as follows from the im-
possibility of the “weak Byzantine generals problem” [Lam83].

All given definitions can be naturally adapted to the consensus vari-
ant of Byzantine agreement, yielding two-threshold consensus (TTC),
consensus with extended validity (ExtValC), consensus with extended

validity and consistency detection (ExtVaIC+), etc.

6.4 Broadcast with extended validity

We directly present an efficient solution for broadcast with extended va-
lidity and consistency detection, ExtVaIBC+, which is strictly stronger
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than broadcast with extended validity. The model is M ,.s¢.

6.4.1 Zero consistency

We start with the special case t. = 0 and t, < n, i.e., the case where
consistency is only guaranteed if no player is corrupted. In this case,

ExtValBC™ can be achieved by a simple two-round protocol that was first
given in [Hol01].

Protocol 6.1 ExtValBC' (P, ps, Ts,ty,tc)

1. if i=sthen SendToAll(z)fi ; Receive(y;);
2.  SendToAll(y;); Receive(y!,...,y");
3. if yy=yl=---=ylthen g;:=1lelse g;:=0fi ;
4. return (i, g:)

Theorem 6.2 ([FGH*02]). In sjrtandard model M., Protocol 6.1 achieves
unconditionally secure ExtValBC ™ for thresholds ¢, = 0 and ¢, < n. Its round
and bit complexities are R = 2 and B = O(n?log|D|) where D is the value
domain.

Proof. Since a correct player p; directly accepts the value y; received from
the sender, validity is trivially satisfied. That consistency holds if no
player is corrupted can also be directly seen. Finally, if any correct player
p; computes g; = 1 then all correct players sent value y; during step 2.
Thus, every correct player p; holds the same vlaue y; = y;, and consis-
tency detection follows. The stated complexities can be easily verified by
code inspection. O

6.4.2 Non-zero consistency

ExtValBC™ with non-zero consistency can be achieved by a phase-king
protocol. For its construction, we can proceed in the same way as was
done in Section 4.1.1.2 for the standard phase-king protocol but thereby
distinguishing between validity with respect to threshold ¢, and consis-
tency with respect to threshold ¢.. We directly start with a respective
protocol for graded consensus including the implicit construction of a
respective protocol for weak consensus.

For completeness, we first define the problems two-threshold weak
consensus (TTWC) and two-threshold graded consensus (TTGC), which
simply generalize the original definitions of weak and graded consensus
with respect to separate thresholds ¢,, and ..
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Definition 6.7 (Two-threshold variants).

TTWC: A protocol ¥ among P achieves two-threshold weak consensus
with respect to thresholds ¢, and ¢, if it achieves the validity condition of weak
consensus if at most ¢,, players are corrupted and its consistency condition if at
most ¢. players are corrupted.

TTGC: A protocol ¥ among P achieves two-threshold graded consensus
with respect to thresholds ¢,, and ¢.. if it achieves the validity condition of graded
consensus if at most ¢, players are corrupted and its consistency condition if at
most ¢. players are corrupted. o

Protocol 6.2 TTGC (P, z;, ty, t.)

1. SendToAll(z;); Receive(z},...,z7);
SY={je{l,...,n} |zl =0}; St:={je{l,...,n}|a] =1}
if |S7i|>n—t,then z;:=uz;else 2z :=L1fi ;

SendToAl1(z;); Receive(z,...,z0);
T :={je{1,...,n}| 2 =0} T := {je{l,...,n}|zf =1}
if |T?| > |T/|then y;:=0else y;:=1fi ;

if |TY|>n—t,then gi:=1lelse g;:=0fi ;

return (yi, g:)

© N g~ wN

Lemma 6.3. In model M ., if t. + 2t, < n then the first three steps of Proto-
col 6.2 achieve TTWC for thresholds ¢, and ¢, (with output z;).

Proof.

Validity: If at most f < t, players are corrupted and every correct player
p; holds the same input value z; = x then, for every correct player p;, it
holds that |S?| > n — t, and hence every such p; computes z; = z; = z.
Consistency: If f < t. and any correct player p; holds value z; € {0,1}
after step 3 then |S]'| > n — t, and thus, for every correct player p;, it
holds that |Sj" >n—t, —t. >t,and thus z; € {z;, L} afterstep 3. O

Lemma6.4. In model M., if t. +2t, < nandt, > t., Protocol 6.2 achieves
TTGC with respect to thresholds ¢, and ¢..

Proof.

Validity: Suppose that f < t,, and that every correct player p; enters
the protocol with the same input value z; = z. Then, by Lemma 6.3
(validity), every correct player p; holds value z; = z at the end of step 3
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and thus value z is redistributed by all correct players in step 4. Thus
|TF| > n —t, > t,, and every correct player computes y; = z and g; = 1.

Consistency: Suppose that f < t. and that some correct player p; com-
putes g; = land y; = y € {0,1}. Then |[T| > n — t,, and thus |T}| >
n —t, — t. for every correct player p;. Furthermore, at least one correct
player p;, must have sent value z;, = y in step 4. By Lemma 6.3 (consis-
tency), this implies that |Tj1’y| <t.<n—t,—t. <|T/|; and consistency
follows. O

Protocol 6.2 could now be directly transformed into a phase-king pro-
tocol for broadcast with extended validity. However, in order to achieve
broadcast with extended validity and consistency detection (ExtVaIBC+),
the definition of two-threshold graded consensus has to be augmented
with consistency detection for the case that t. < f < t, players are cor-
rupted. This is achieved by extending the grade range to g; € {0,1,2}
whereas g; > 1 implies consistency detection if at most f < ¢. players are
corrupted and g; = 2 implies consistency detection if at most f < ¢, play-
ers are corrupted, yielding the following definition for graded consensus
with extended validity and consistency detection (ExtVaIGC+, for short
and forever).

Definition 6.8 (ExtVaIGC+). Let P = {pi1,...,pn} be aset of n players and
let D be a finite domain. A protocol ¥ among P where every player p; € P
holds an input value z; € D and finally decides on an output value y; € D and
a grade g; € {0,1,2} achieves graded consensus with extended validity
and consistency detection (or ExtVaIGC+, for short) with respect to P and D
and thresholds ¢,, and ¢, if it satisfies the following conditions:

Consistency: If f < t. and any correct player p; computes g; > 1 then
every correct player p; computes y; = y;.

Validity: If at most f < ¢, players are corrupted and all correct players p;
enter the protocol with the same input value z; = x then every correct
player p; computes outputs y; = x and g; > 1, and in particular g; = 2
if at most f < ¢, players are corrupted.

Consistency Detection: If f < t, and any correct player p; computes

g; = 2 then every correct player p; computes y; = y;. o

ExtValGC™ can be achieved by only refining the computation of grade
g; in Protocol 6.2, yielding the following protocol.
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Protocol 6.3 ExtValGC' (P, z;, to, t)
1. SendToAll(z;); Receive(z;,...,z});

2. 8= {jE{l,...,n}|mZ =0}; S = {je{l,...,n}|mg =1}
3. if |Si| >n—t,then z;:=uz;else z :=L1fi ;

4.  SendToAll(z;); Receive(z,. .., 2M);
5. TP:={je{l,...,n}|zl=0}; T':={j€e{l,....,n}| 2l =1}
6. if |TP| > |T!|then y; :=0else y; :=1fi ;

7. if [T/ >n—tc.then g; :=2

8. elseif |TY{|>n—t,then g;:=1

9. else g;:=0fi ;

10.  return (y:, g;)

Lemma6.5. Ift.+2t, < nandt, > t.then Protocol 6.3 achieves Extvalcc™
with respect to ¢, and #...

Proof.

Consistency: Consistency follows from the proof of Lemma 6.4.

Validity: If f < t, then validity follows from Lemma 6.4. If f < ¢, then,
for every correct player, it holds that |T;"*| > n — ¢., and thus g; = 2.
Consistency detection: Suppose that f < t, and that some correct player
p; computes g; = 2and y; = y € {0,1}. Let C be the set of corrupted
players, SY be the set of correct players who sent value y in step 1, and
let 7V be the set of correct players who sent value y in step 4. Note that
SY = S{\Cand T¥ =T/\C for any j.

Grade g; = 2 implies [T}| > n —t., and thus |TY| > n —t. — t,. Since
zj € {x;, L} for every correct player p; it follows that |[7¥| < |S¥|. Hence,
for every player p;, |S;v‘| > |SY| > n—t.—t,. Thebound n > t.+ 2t, now
implies that |S; Y| < t, +t, < n —t, and hence that 71~ = (). Thus,
|Tj1’y| <ICl <teand |T7| > [TY| >n—t. —t, > ty, and y; = y;. O

Protocol ExtValBC* can now be built along the lines of phase-king
Protocol 4.6 by basically replacing graded consensus by TTGC. The only
difference is an additional, final round of ExtValGC" in order to allow
for consistency detection (note that the sender and all kings might be
faulty if f > t.). A more uniform way to present the protocol would
be to interpret the sender as a first king and reversing the order between
“king’s vote” and TTGC. Nevertheless, in order to maintain compatibility
with the previous chapters, we preserve the standard order.
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Protocol 6.4 ExtValBC' (P,py,z1,ty, te)
1. if ¢=1then SendToAll(z:)fi ; Receive(y;);
for k:=2to t.+1do
(yi7 hl) = TTGC (P7 Yis tu, tC)!
if i=kthen SendToAll(y;)fi ; Receive(yl);
if h;=0then y;:=yFfi ;
od; (yi, hi) := ExtValGC' (P, yi, tv,te);
if h; =2then g;,:=1else ¢;:=0fi ;
return (y:, g:)

©No A~ WN

Theorem 6.6 ([FHHWO03]). In model M.y, if t. + 2t, < nand t, > .
(and t. > 0), Protocol 6.4 achieves efficient, perfectly secure ExtvalBC* with
respect to sender p; and thresholds ¢, and ¢.. The round and bit complexities are
R =3t.+3and B = O(n?).
Proof.
Validity: If f <t, and the sender p; is correct then, by the validity prop-
erties of TTGC and ExtVaIGC+, every correct player p; computes y; = x;
at the end of the protocol.
Consistency: If f < t. then there is a correct player p; € {p1,...,pt.+1}
At the end of phase k£ = £, every correct player p; holds the same value
y; = y¢ = y which, by the validity properties of TTGC and ExtVaIGC+,
stays persistent until step 7 of the protocol and every correct player fi-
nally computes y; =y, h; = 2, and thus g; = 1.
Consistency Detection: Suppose that f < ¢, and that some correct player
p; computes g; = 1. This implies that h; = 2 after step 6, and by the
consistency-detection property of ExtVaIGC+, that every correct player
p; computed y; = y; during this invocation and thus terminated the pro-
tocol with y; = y;.

The stated complexities can be easily verified by code inspection. [

6.5 Broadcast with extended consistency

We directly present a construction for detectable precomputation which
is strictly stronger than ExtConsBC™. We first give a generic construc-
tion, followed by the case where ¢, = 0 (zero validity), and then by the
general case of t,, + 2t. < n. The models are M, for the protocols with
computational security, and M. for the protocols with unconditional
security.
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6.5.1 Generic construction

It turns out that any “reasonable” precomputation protocol according
to Definition 4.3 based on temporarily available broadcast can be trans-
formed into a protocol for detectable precomputation (or a protocol for
detectable broadcast) in the same model but not requiring broadcast.

This generic construction is basically obtained by substituting each
invocation of a broadcast channel by an invocation of ExtValBC™ with
respect to thresholds ¢/ = ¢. and ¢, = t,. Assume set P = {p1,...,pn}
of players in model M € { My, Msec} and let ¥ be a precomputation
protocol for model M where, additionally, players are assumed to be able
to broadcast messages; and let B = {f, ..., (.} be a set of protocols for
model M where each protocol §; achieves broadcast with sender p; when
based on the information exchanged during an execution of ¥. Further-
more, assume that ¥ satisfies the independence property of Definition 6.6
with respect to the protocols in B.

If protocol ¥ always efficiently terminates even if all involved broad-
cast invocations fail and all protocols g; always efficiently terminate even
when based on any incorrectly precomputed information then a protocol
for detectable precomputation can be achieved from ¥ and B as follows:

Protocol 6.5 DetPrecomp(P)
1.  Run protocol ¥ wherein each invocation of broadcast is replaced by
an invocation of ExtvalBC™* (Protocol 6.1 or 6.4) with the same sender
with respect to thresholds ¢, = t. and t,, = t,.
2. Compute the logical AND of the grades gotten during all ¢ invoca-
tions of ExtvalBC* in (modified) Protocol ¥, T'; := G; := /\i:1 gk

3. Send value G; to each other player; receive the values G}, ..., G?.
4. For each player p; € P, participate in an invocation of Protocol 3;
wherein p; inputs T';; receive the valuesT'}, ..., T?, and set T := T;.

5. Computeg; = 1if|[{j| G =1}| > n—t, —t. A |{j| T} =1} > n—t,
and g; = 0, otherwise.

Note that the protocols §; in step 4 do not necessarily achieve broad-
cast since the invocation of ¥ during step 1 might have failed. However,
they will always efficiently terminate by assumption. We now argue that
the resulting protocol achieves detectable precomputation.

Lemma 6.7. Consider model M € { My, Msec }. Let ¥ be a precomputation
protocol for model M where the players are additionally assumed to be able to
broadcast messages, and let B = {f;]i € {1,...,n}} be a set of protocols for
model M where each protocol 3; achieves broadcast with sender p; when based
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on the information A computed during the execution of .

If protocol ¥ always efficiently terminates even if all broadcast invocations
fail and all protocols 3; always efficiently terminate even when based on arbitrary
precomputed information then Protocol 6.5 achieves detectable precomputation.

Proof.
Consistency: Suppose that f < t. players are corrupted. If every correct
player p; rejects by computing ¢g; = 0 then consistency is satisfied.

Thus, suppose that some correct player p; accepts by computing g; =
1. We first show that, according to the definition of ExtVaIBC+, this im-
plies that all invocations of Protocol 6.1 (or 6.4, respectively) achieved
broadcast (when neglecting the grade outputs), thus implying that the
players share a PKI according to Definition 2.5:

et, =0: g; = 1implies that |{j | Fﬁf}| > n, in particular thatI'; = 1, and
thus that all invocations of Protocol 6.1 achieved broadcast.

ot, >0: g;=1,ie, |{j| G} =1} >n—t, —t. > t., implies that at least
one correct player p; sent G = 1 and thus, that all invocations of
Protocol 6.4 achieved broadcast.

Hence, the S-protocols in step 4 all achieve broadcast and all correct play-
ers p; compute the same set of values F}, ..., I'}. Furthermore, since
g; = 1, for every correct player p, it holds that |{j | Fi}| > n —t, and thus
that |{j | G, = 1}| > n — t, — t., and every player p, computes g, = 1.
Validity: Suppose that f < ¢, players are corrupted. Hence, according to
the definition of ExtVaIBC+, all invocations of Protocol 6.4 (or 6.1, respec-
tively) achieve broadcast (when neglecting the grade outputs) and that
every correct player p; computes g; = 1. Thus, the players share a PKI,
all correct players p; compute G; = 1, all g-protocols achieve broadcast,
and, in steps 3 and 4, the players p; compute values G{ and 1“{ such that
{ilGI =1} >n—t, >n—t,—t.and |{j| T =1} > n —t,. Finally,
every correct player p; computes g; = 1.

Independence: Independence directly follows from the assumed inde-
pendence property of precomputation Protocol . O

6.5.2 Zero validity

6.5.2.1 Computational security

We now tailor generic Protocol 6.5 to computational security with respect
tot, = 0and t. < n in model M,,;. Note that step 3 of generic Proto-
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col 6.5 (the additional echo round before broadcast) becomes obsolete for
this special case.

Protocol 6.6 DetPrecomp(P)

1. Generate a secret-key/public-key pair (SK;, PK;) according to the key
generation algorithm of a digital signature scheme. For every player
Dj ExtValBC* Protocol 6.1 with respect to thresholds #, < n and
t., = 0 is invoked where p; inputs his public key PK; as a sender. Ev-
ery player p; stores all received public keys PK}, ... PKZ and grades
gila N

2. ComputeT; := A}_, g

4. Foreveryplayer p; € P aninstance of broadcast Protocol 4.10 (Dolev-
Strong) is invoked where p; inputs I'; as a sender. Store the received
valuesT7 (j € {1,...,n}\ {i}) and I} :=T;.

5. Compute g; := 1if A”_ T = 1and g; := 0, otherwise.

Note that the bit complexity of the whole protocol can be reduced by
replacing the n parallel invocations of the Dolev-Strong protocol during
step 4 by a consensus-like protocol with default value 1. For this, the n
broadcast protocols (with respect to n different senders) are run in paral-
lel in a slightly modified way. In the first round, a sender p, who accepts
simply sends bit G; = 1 without a signature (or no message at all), and
only if he rejects sends bit G; = 0 together with a signature on it. As
soon as, during some round r = 1,...,¢ + 1, a player accepts the value
G = 0 from one or more senders p, because he received valid signatures
from r different players (including ps) on value G; = 0 with respect to
the protocol instance with sender p, then, for exactly one arbitrary such
sender p;, he adds his own signature for 0 with respect to this sender’s
corresponding protocol instance and, during the next round, relays all
r + 1 signatures to every other player, decides on 0, and terminates. If a
player never accepts value G = 0 from any sender p, then he decides on
1 after round ¢ + 1. If all players p, are correct and send value G5, = 1
then, clearly, all players decide on 1 at the end. On the other hand, if any
correct player decides 0 then all correct players do so. Overall, during
this protocol, at most O(n) more signatures are exchanged than during a
single invocation of the Dolev-Strong protocol.

Theorem 6.8 (Detectable precomputation [FGHT02]). In model M .y,
Protocol 6.6 achieves detectable precomputation among n players computation-
ally secure with respect to thresholds ¢. < n and ¢, = 0. The correct players all
terminate the protocol during the same communication round. The round and
bit complexities are R = ¢, + 3 and B = O(n?kxey + n*|0]). Where kyey is the
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maximal size of a public key and |o| is the maximal size of a signature.

Proof. Validity and consistency follow from Lemma 6.7, and indepen-
dence is evident.

Termination and complexities: That all correct players terminate during
the same communication round can be easily seen by code inspection.
As ExtvalBC* Protocol 6.1 requires R., = 2 rounds and a bit complexity
of Bey = nzkkey, and the n merged parallel invocations of Dolev-Strong
Protocol 4.10 as described above require Ry, = t. + 1 rounds of commu-
nication and a bit complexity of B,. = O(n?|o|) bits, Protocol 6.6 requires
R = t. + 3 rounds and a bit complexity of B = O(n?kyey + n3|o]|). O

6.5.2.2 Unconditional security

We now tailor generic Protocol 6.5 to unconditional security with respect
tot, = 0and t. < n in model M.

A direct approach would be to instantiate Protocol ¥ in Protocol 6.5
with Pfitzmann-Waidner Protocol 4.13. However, most of that proto-
col consists of fault localization, i.e., sub-protocols that allow to iden-
tify players that have been misbehaving. These steps are not required
if £, = 0 since, for this special case, we are only interested in detecting
whether faults occurred or not. As soon as a fault is detected the play-
ers simply reject the outcome of the whole protocol. We now sketch a
reduced version of the Pfitzmann-Waidner protocol where the fault lo-
calization steps are stripped off.

Protocol 6.7 Precomp(P)
e For (j =s,A),and (j,A), (j, B) (j € {1,...,n}\{s}) in parallel:
e Fork =1...min parallel:
e If i # j: select random authentication key «;;
e For{=1...2nin parallel:
o Vpy (h # i) agree on a pairwise key K*;
e Broadcastx? '+, , K\
e If i = j: send to all players “accept” or “reject”;
e Decide to accept (h; := 1) if and only if all signers p; sent message
“accept” with respect to (j, A) and (j, B); otherwise reject (h; := 0);

Note that, in contrast to the original Pfitzmann-Waidner protocol, it
is sufficient to have the signers p; distribute their acceptance/rejection
at the end by normal bilateral sending instead of broadcast since a final
broadcast round according to step 4 of generic Protocol 6.7 will follow
anyway.
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Protocol 6.8 DetPrecomp(P)

1. Execute precomputation Protocol 6.7 for b + n future broadcasts
wherein each invocation of broadcast is replaced by an invocation of
ExtValBC™" Protocol 6.1 with respect to thresholds ¢, < n and ¢, = 0.
Of these instances, b are computed with respect to the intended fu-
ture senders s € {1,...,n} of the future broadcasts. Of the other n
instances, one is computed with respect to each player p; € P.

2. ComputeT; = Af_ g/ A AV ™ where the g/ are the grades
received during all £ invocations of ExtvalBc™* during step 1 and A"
is the bit indicating whether p; accepted the m-th execution of pre-
computation Protocol 6.7.

4. Forevery player p; an instance of Protocol 4.10 (Dolev-Strong — with
pseudo-signatures) is invoked where p; inputs I'; as a sender. Store
the received values T (j € {1,...,n}\ {i}) and T := ;.

5. Compute g; := 1if A]_, T/ = 1and g; := 0, otherwise.

Again, step 3 of generic detectable precomputation Protocol 6.5 (the
additional echo round before broadcast) becomes obsolete for this special
case.

Theorem 6.9 (Detectable precomputation [FGH*02]). In model M., for
any integer b > 0 and security parameter x > 0, Protocol 6.8 achieves detectable
precomputation for b broadcasts among n players unconditionally secure with
respect to thresholds ¢. < n and ¢,, = 0 with the following properties:

The error probability of any future broadcast is e < 2~ *. Protocol 6.8 has
round complexity R = t.+5 and bit complexity B = O((n+b)n" loglog |D|(k+
logn + logb + logloglog |D|)? + n?log |D|) where D is the domain of future
messages to be broadcast (including possible padding for session IDs, etc.). Pro-
tocol 4.10 for future broadcast then has round complexity Ry, = t. + 1 and bit
complexity B, = O(n?log |D|+n°(k +logn)?). All correct players terminate
the protocol during the same communication round.

Proof. Validity and consistency follow from Lemma 6.7. Independence
follows form the independence property of Protocol 6.7.

Executing Protocol 6.7 with security parameter x guarantees each sin-
gle of the b + n broadcasts to have an error probability of ¢ < 27" as
follows from Proposition 4.25. The error probability of each of the b “net”
broadcasts is given by the probability that one of the n broadcasts dur-
ing step 4 fails and the probability that the one broadcast fails given that
those n broadcasts reliably worked, which is bounded by (n + 1) times
the error probability of one single broadcast being precomputed for. Exe-
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cuting Protocol 6.7 with security parameter x,. > k+ [log,(n + b)] hence

bounds the error probability of any single “net” broadcast to e < 27",

Protocol 6.7 where broadcast is substituted by ExtValBC™ Protocol 6.1
requires R, = 4 communication rounds and, per future broadcast, a bit
complexity of B, = O(n" loglog |D|(kpc + logn + logloglog |D])?) where
D is domain of future messages to be broadcast. Protocol 4.10 with the
respective pseudo-signatures requires Ry = t.+1 rounds of communica-
tion and bit complexity By. = O(n?log |D|+n°(k+logn)?). Protocol 6.7 is
invoked for b + n broadcasts (step 1) and Protocol 4.10 is invoked n times
in parallel (step 4) hence yielding round complexity R = 4 + (t. + 1) =
t. + 5. Including a consensus-like step 4 as mentioned for the compu-
tational case, Protocol 6.8 has bit complexity B = (b + n)Bpc + Bbhe =
O((b+n)n"loglog |D|(x +logn +log b+logloglog |D|)? +n?log |D|). That
all correct players terminate during the same communication round can
be easily seen by code inspection. O

Furthermore, as follows from Proposition 4.26, using the regeneration
techniques in [PW96], the bit complexity of Protocol 6.7 can be reduced
to polylogarithmic in the number b of later broadcasts to be precomputed
for, i.e., to polynomial in n, log|D|, , and log b.

6.5.3 Non-zero validity
6.5.3.1 Computational security

For completeness, we again state the full protocol for detectable precom-
putation for model M., with respect to any thresholds ¢. and ¢, such
that ¢, + 2t. < n.

Protocol 6.9 DetPrecomp(P)

1. Generate a secret-key/public-key pair (SK;, PK;) according to the key
generation algorithm of a digital signature scheme. For every player
D) ExtValBC* Protocol 6.4 with respect to thresholds ¢/, = t. and t, =
t, is invoked where p; inputs his public key PK; as a sender. Store all
received public keys PK}, ..., PK? and grades g/, ..., g

2. ComputeT; :=G; = A}_, gF.

Send value G; to each other player; receive the values G}, ..., G?.

4. Foreach player p; € P, aninstance of broadcast Protocol 4.10 (Dolev-
Strong) is invoked where p; inputs T'; as a sender. Store the received
valuesT¥ (5 € {1,...,n}).

5. Computeg; = 1if |{j| G =1} > t. A |{j| ¥ =1} > n—t, and
gi = 0, otherwise.

w
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Theorem 6.10 (Detectable precomputation [FHHWO3]). In model M .,
Protocol 6.9 achieves computationally secure detectable precomputation among
n players with respect to any thresholds ¢. and t, satisfying ¢, + 2t. < n.
The correct players all terminate the protocol during the same communication
round. The round and bit complexities are R = t. + 3t, + 4 < 4(t. + 1) and
B = O(n'kykey + n3|o|) where kyey is the maximal size of a public key and |o|
is the maximal size of a signature.

Proof. Validity and consistency follow from Lemma 6.7 (note that n—t¢,, —
t. > t.), and independence is evident. That all correct players terminate
during the same communication round can be easily seen by code inspec-
tion.

Protocol 6.4 requires Rey = 3(t, + 1) = 3(t, + 1) rounds and a bit
complexity of Bey = O(n’kyey). Protocol 4.10 requires Ry = t. + 1
rounds of communication and a bit complexity of B,. = O(n?|s]). Hence,
Protocol 6.6 requires R = t. + 3t, + 4 rounds and a bit complexity of
B = O(n*(kkey + |0|)). O

6.5.3.2 Unconditional security

For completeness, we again state the full protocol for detectable precom-
putation for model M. with respect to any bounds ¢. and ¢, such that
ty + 2t. < n.

Protocol 6.10 DetPrecomp(P)

1. Execute precomputation Protocol 4.13 for b + n future broadcasts
wherein each invocation of broadcast is replaced by an invocation
of ExtvalBC™ Protocol 6.4 with respect to thresholds ¢, = t. and
t. = t,. Of these instances, b are computed with respect to the in-
tended senders s € {1,...,n} of the future broadcasts. Of the other
n instances, one is computed with respect to each player p; € P.

2. Every player p; computes T; := G; = A._, g¥ where the gF are the
grades received during all ¢ invocations of ExtvalBC* during step 1.
Synchronize: Wait and start executing the next step at round
Ln2(9t5+10)J +1.

Send value G; to each other player; receive the values G}, ..., G,

4. For every player p; an instance of broadcast Protocol 4.10 (Dolev-
Strong — with pseudo-signatures) is invoked where p; inputsI'; as a
sender; receive the values T'}, ..., "7,

5. Computeg; = 1if |{j| GI =1} >t A |{j| T} =1} > n—t, and
g; = 0, otherwise.

w
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Theorem 6.11 (Detectable precomputation [FHHWO3]). In model M 4,
for any integer b > 0 and security parameter x > 0, Protocol 6.10 achieves
unconditionally secure detectable precomputation for b later broadcasts among
n players with respect to thresholds ¢. and ¢, satisfying ¢, + 2t. < n with the
following properties:

The error probability of any future broadcast is e < 27%. Protocol 6.10

has round complexity R = LMJ + t. + 1 and bit complexity B =
O(n'tlog |D|loglog |D|(k +logn + logloglog | D])? + n? log |D|) where D is
the domain of future messages to be broadcast (including possible padding for
session 1Ds, etc.). Protocol 4.10 for future broadcast then has round complexity
Rbe = t + 1and bit complexity By. = O(n?log |D| + nb(k + logn)?).

The correct players all terminate the protocol during the same communica-
tion round.

Proof. Validity and consistency follow from Lemma 6.7. Independence
follows form the independece property of Protocol 4.13. Executing Pro-
tocol 4.13 with security parameter x guarantees each single of the b + n
broadcasts to have an error probability of ¢ < 27" as is stated in Proposi-
tion 4.25. The error probability of each of the b “net” broadcasts is given
by the probability that one of the n broadcasts during step 4 fails and the
probability that the one broadcast fails given that those n broadcasts reli-
ably worked, which is bounded by (n + 1) times the error probability of
one single precomputed broadcast. Executing Protocol 4.13 with security
parameter k. > k + [log,(n + b)] hence bounds the error probability of
any single “net” broadcastto e < 2%,

Protocol 6.4 requires 3(¢, + 1) = 3(t, + 1) rounds, and hence Proto-
col 4.13 where broadcast is replaced by Protocol 6.4 requires Ry < ”72 +

3n? -3ty +1) = %Q(Qt,, + 10) communication rounds — note that hence
all correct players get synchronized at the end of step 2 and thus will ter-
minate during the same communication round — and, per future broad-
cast, a bit complexity of By = O(n® loglog |D|(k + logn + logloglog |D|)? -
n3log|D|) where D is the domain of future messages to be broadcast.
Protocol 4.10 with the respective pseudo-signatures requires Ry,. = t.+ 1
rounds and bit complexity B, = O(n?log|D| + n®(x + logn)?).

Protocol 4.13 is invoked for b + n later broadcasts (step 1) and Pro-
tocol 4.10 is invoked n times in parallel (step 4) hence yielding round
complexity R = LMJ + t. + 1. Thus, Protocol 6.10 has bit com-
plexity B = (b+n)Bo + nBye = O((n + b)n'! log |D|loglog |D|(k + logn +
logloglog |D|)? + n?log | D). O
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Furthermore, using the regeneration technique sketched in Section
4.3.1, the protocol can be modified such that the number b of later broad-
casts only contributes to the message complexity in polylogarithmic or-
der.

6.6 Impossibility result

It remains to show that the given bounds for ExtValBC* and ExtConsBC™
(, and detectable precomputation) are optimal. It fact, these bounds are
optimal even with respect to the weaker definitions of ExtValBC and
ExtConsBC. Since ExtValBC and ExtConsBC are special cases of TTBC,
we directly show that two-threshold broadcast (TTBC) is impossible if
t. > 0,t, > 0, and either t. + 2t, > nort, + 2t. > n.

Theorem 6.12 (Impossibility [FHHWO3]). In standard models M . and
Mec, two-threshold broadcast among a set of n players P = {po,...,pn_1} IS
impossible if t. > 0, t, > 0, and either t. + 2¢, > n or t, + 2t. > n. For every
protocol there exists a value zo € {0, 1} such that, when the sender holds input
xo, the adversary can make the protocol fail

e with a probability of at least £ if she is computationally bounded, and

o with a probability of at least % if she is computationally unbounded.

Proof. Assume ¥ to be a protocol for two-threshold broadcast among n
players po, - - . , prn—1 With sender py that tolerates t. > 0, ¢, > 0, and either
te + 2t, > nort, + 2t. > n. Lett, = max(t.,t,) and t— = min(t., t,).

LetII = {no,...,m,—1} be the set of the players’ corresponding pro-
cessors with their local programs. As follows from the impossibility of
standard broadcast it must hold that ¢_ < n/3, and thus, that ¢, > n/3.
Hence, the processors can be partitioned into three sets, I1,UIl; UIl, = 11,
such that 1 < |Ip| < t., 1 < |II4] < ¢y, and hence 1 < |II,| < ¢4. Note
that, hence, |TIop UIL; | > n —ty, |II; UILa| > n—t., and [T, UIlp| > n —¢,.

Furthermore, for each i € {0,...,n — 1}, let 7;,, be an identical copy
of processor m;. For every m; (0 < i < 2n — 1) let the type of processor
m; be defined as the number i mod n. Finally, for each k € {0,1,2}, let
Mjy3 = {mitn | m; € I } form identical copies of the sets IT.

Instead of connecting the original processors as required for broad-
cast, we build a network involving all 2n processors (i.e., the original
ones together with their copies) by arranging the six processor sets II;, in
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Figure 6.2: Rearrangement of processors in the proof of Theo-
rem6.12.

acircle. In particular, for all sets 1, (0 < k < 5), every processor m; € I
is connected (exactly) by one channel with all processors in IIj \ {m;},
(1) mods: aNd Il 4 1) moas- HeNce, each processor w; in the new sys-
tem is symmetrically connected with exactly one processor of each type
(different from his own one) as in the original system. We say that II,
and II, are adjacent processor sets if and only if £ = k £+ 1 (mod 6).

Now, along the lines of [FLM86], for every set II; U II(}41) moas (0 <
k < 5) in the new system and without the presence of an adversary, their
common view is indistinguishable from their view as the set of proces-
$0rs I moa 3 UL (x41) moa 3 IN the original system with respect to an adver-
sary who corrupts all (up to either ¢_ or ¢) processors of the remaining
processor set Il ;o) moq 3 iN @an admissible way.

Let now 7wy and =, be initialized with different inputs. We now ar-
gue that, for each run of the new system, there are at least two pairs
Mg U Hgq1)moas (0 < k < 5) such that the conditions of two-threshold
broadcast are not satisfied for them:

By the validity property of two-threshold broadcast, the at least n — ¢,
players p; € II; U I, must compute y; = xo wWhereas the players p; €
IT, U I3 must compute y; = =, = 1 — zy. By the consistency property
of two-threshold broadcast, the at least n — t. players p; € II; U II, must
compute y; = 1— o whereas the players p; € 11, UIl; must compute y; =
xo. By either the validity or the consistency property of two-threshold
broadcast, the at least n — t players p; € Il U II; must compute y; =
yo = o Whereas the players p; € I3 UIl, must compute y; = y,, = 1 —xg.

Hence, for any possible run of the new system on inputs zy and z,, =
1 — x¢ it holds that, chosen a pair (ILy, IT(;41) mod ¢) Of adjacent processor
sets uniformly at random, the probability that the conditions for two-
threshold broadcast are violated for this pair is at least %
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In particular, there is a pair (I, (3 41) moas) IN the new system such
that, over all possible runs on inputs z; = 0 and z,, = 1 the prob-
ability that the conditions for two-threshold broadcast are violated for
(T, T(k41) mod 6) IS at least .

If the adversary is unbounded, given any protocol ¥, she can compute
such a pair (I, I(x+1) moas) @nd act accordingly by corrupting the pro-
cessors in Il ;4 2) moas IN the original system, hence forcing the protocol
to fail on input

_f 0 ,ifoe{kk+1},and
To=191 1 ,else,

with a probability of at least 3.
If the adversary is computationally bounded then she can still make
the protocol fail with a probability of at least % O

Finally, including the consensus variant of Byzantine agreement, we
get the following

Theorem 6.13 (Refinement of Theorem 6.1). In model M ,, perfectly se-
cure broadcast with extended validity and consistency detection (ExtVaIBC+) is
efficiently achievable if either t. = 0 or t. + 2t, < n (with ¢, > t.). If these
bounds are not satisfied then not even computationally secure broadcast with
extended validity (ExtValBC) is achievable in model M gec.

In model M., unconditionally secure broadcast with extended consistency
and validity detection (ExtConsBC+) or, more generally, detectable precompu-
tation is efficiently achievable if either ¢, = 0 or ¢, + 2t. < n (with ¢t. > t,).
If these bounds are not satisfied then not even computationally secure broadcast
with extended consistency (ExtConsBC) is achievable. If ¢. > n/3 then there is
no deterministic protocol for ExtConsBC.

With respect to the corresponding consensus variants, the same bounds hold
except that ¢, < n/2 is additionally necessary.

Proof. The theorem follows from Theorems 6.2 and 6.6 (achievability of

ExtVaIBC+), Theorems 6.9 and 6.11 (achievability of ExtConsBC+), The-
orem 6.12 (impossibility of TTBC), and [Lam83] (impossibility of deter-
ministic ExtConsBC for ¢. > n/3). O

6.7 Observations and applications

The given protocols for ExtConsBC" or detectable precomputation with
respect to thresholds ¢. and ¢, were based on protocols for ExtvalBC*
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with respect to thresholds ¢, = ¢. and ¢/, = t,. We now show that also
the converse is possible in a very simple way: to obtain a protocol for
ExtValBC™ from any implementation of ExtConsBC*.

Lemma 6.14. In standard model M., the achievability of ExtvalBC* for
thresholds ¢/, and ¢/, < ¢! satisfying /. + 2t!, < n or ¢, = 0 implies the achiev-
ability of ExtConsBC™ for thresholds t. = t, and t, = t.. In standard model
M, the achievability of ExtConsBC ™ for thresholds tl.and ¢!, < ¢/ implies the

achievability of ExtValBC™ for thresholds t, =t andt. =t ;

Proof.

ExtValBCT = ExtConsBC™: This direction follows form the construc-
tions given in the previous section.

EzxtConsBC™ = ExtValBC™: Suppose that ExtConsBC™ is achievable

with respect to thresholds ¢/, and ¢,. Then ExtvalBC " with sender p, and
thresholds ¢, =t/ and ¢. = ¢/, can be achieved in the following way:

e The sender sends his input value z, to all players; player p; receives
value 3?.

e The players participate in an instance of ExtConsBC™ with sender
ps With respect to thresholds ¢, = t, and ¢, = t.; player p; receives
output y} and grade g;.

o Player p; decides y; := y".

Consistency: If f < t. = t,, players are corrupted then, by the validity
and consistency properties of ExtConsBC™, there is a value y such that
every correct player p; computes y; = y and g; = 1; and if the sender is
correct then y = x,. Finally, y; = y} = y is computed.

Validity: If f < t, = t, players are corrupted then, by the consistency
property of ExtConsBC+, all correct players p; receive the same output
y} = y and the same grade g; = g € {0, 1}.

If g = 1 then every correct player p; decides on y; := y! = y and, by
the validity-detection property of ExtConsBC+, it follows thaty; = y =
xs whenever the sender is correct. If ¢ = 0 then every correct player p;
decides on y; := »?, and validity is trivially satisfied.

Consistency Detection: If f < t, = ¢/, and any correct player p; computes
g; = 1 then, by the consistency property of ExtConsBC+, every correct
player p; computes y; = y; = y;. O
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6.7.1 Detectable multi-party computation

Detectable precomputation immediately allows to turn any protocol ¥
(e.g., a protocol for multi-party computation) in model MP¢, (or MP¢)
into a “detectable version” for standard model M., (Or Me.) without
broadcast channels. For the case that f < ¢, players are corrupted this
transformation preserves any security properties of ¥ except for zero-
error. For the case that f < t. players are corrupted the transforma-
tion still preserves any security properties of ¥ except for zero-error and
robustness. Robustness is lost since detectable precomputation cannot
guarantee validity for ¢. (at least for the interesting cases where ¢t. > n/3).
Zero-error is lost since there is no deterministic protocol for detectable
precomputation as follows from Lamport’s result [Lam83].

Theorem 6.15 ([FHHWO03]). Given any protocol ¥ in model MBS, secure
against ¢ corrupted players (for any t), for any ¢, < ¢t and ¢, < t. such that
either t, = 0 or ¢, + 2t, < n, there is a protocol ¥’ in model M. with respect
to thresholds ¢. and ¢, such that all security properties of ¥ except for zero-error
are guaranteed when up to f < ¢, players are corrupted, and all security proper-
ties of W except for robustness and zero-error are guaranteed when up to f < ¢,

players are corrupted.

Proof. Such a protocol ¥’ can be obtained by first running a protocol for
detectable precomputation for broadcast which is possible exactly with
the stated bounds for ¢, and t,,. If it is successful, then ¥ is run, replacing
every call to the broadcast channel with an execution of Dolev-Strong
Protocol 4.10 with help of the precomputed PKI. O

In particular, it is possible to define the “detectable” version of multi-
party computation.

Definition 6.9 (Detectable precomputation for MPC). Let ¥ be an MPC
protocol among P in a model assuming broadcast, model MP¢ e {MP¢, MDY,
and let M, € {Maut, Msec} be the same model as Mb¢ but without broadcast.
A protocol among P where every player p; € P computes some private data A;
and finally decides on a decision bit g; € {0, 1} achieves detectable precom-
putation for MPC with ¥ with respect to thresholds ¢. and ¢, (¢, > t,), and t,

if it satisfies the following conditions:

Robustness: If at most f < t,, players are corrupted then the correct play-
ers accept (g; = 1).

Correctness: If f < t. then all correct players commonly accept (g; = 1)
or commonly reject (g; = 0) the protocol; moreover, if the private data
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A; held by all correct players is inconsistent in the sense that it does
not guarantee for MPC secure against ¢ corrupted players in model M.
then the correct players reject (g; = 0).

Independence: At the time of the precomputation, a correct player does
not yet need to know his input values for the later multi-party compu-
tations. o
Regarding the results in [Bea89, RB89, CDD*99], detectable precom-

putation for broadcast trivially allows for detectable MPC such that only

robustness is lost since non-zero error is necessary for multi-party com-
putation secure against ¢ > n/3 corrupted players [DDWY93]. Thus, we

get the following corollary of Theorem 6.15.

Theorem 6.16 ([FHHWO03]). Let ¥ be the MPC protocol in [CDD199] for
model MPS, unconditionally secure against a faulty minority of corrupted play-
ers. In model M., detectable precomputation for unconditionally secure MPC
with ¥ among n players with respect to thresholds . and ¢, (¢, < t.), and ¢, is
efficiently achievable if ¢, + 2t. <n V ¢, =0andt < n/2.

For the case that ¢, > 0 and t,, + 2t. > n, and ¢t > n/3, detectable precom-
putation for MPC is not even achievable with respect to computational security.

Proof. Achievability follows from [CDD*99] and Theorems 6.9 and 6.11.
Impossibility follows from Theorem 6.12 (impossibility of TTBC for ¢, >
0 and t,+2t. > n)and from the impossibility of broadcast fort > n/3. O

Alternatively, for example the protocol in [Gol01b] for MPC without
robustness nor fairness in model MPS computationally secure against
t < n corrupted players can be detectably precomputed for with help of
detectable precomputation Protocol 6.8 or Protocol 6.6.

Corollary 6.17 ([FHHWO3]). Let ¥ be the non-robust MPC protocol without
fairness in [Gol01b] for model MBS, computationally secure against ¢ < n stat-
ically corrupted players. In model M., detectable precomputation for compu-
tationally secure MPC with ¥ among n players is efficiently achievable if ¢, = 0

or t, + 2t. < n.
Proof. Achievability follows from [Gol01b] and Theorem 6.8. O

In [GLO02], for the special case of computational security and ¢, = 0,
Goldwasser and Lindell improved over the efficiency of the given reduc-
tions by relaxing the security properties to not demanding agreement on
the outcome, and not demanding fairness for the case where ¢ < n/2.
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6.7.2 Involving quantum channels

Unconditionally secure detectable precomputation for broadcast or MPC
with respect to threshold ¢, = 0 can even be achieved in a slightly weaker
model than with secure channels, namely in a model with classical au-
thenticated channels and insecure quantum channels. Since every player
has the possibility to initiate rejection of the precomputation, we can ap-
ply quantum key agreement [BB84] before the protocol for detectable
precomputation or MPC. Whenever any quantum channel between two
correct players were eavesdropped they would detect it and just initiate
rejection of the whole precomputation.

Theorem 6.18 ([FGMRO02, FGH*02]). In model M, with additional inse-
cure pairwise quantum channels among the players, efficient and uncondition-
ally secure detectable precomputation for broadcast among n players is achiev-
able with respect to t, = 0 and ¢. < n. In the same setting, efficient and
unconditionally secure detectable precomputation for MPC is achievable with
respect to¢t, = 0and t. < n/2.

Proof. The theorem follows from Theorem 6.9, the protocol in [BB84], and
the remarks above. O

6.7.3 Ad-hoc computations and PKI setup

For all previous “detectable protocols” it was implicitly assumed that all
players start the protocol in the same communication round. This re-
quires agreement among the players on which protocol is to be run and
on a point of time when the protocol is to be started (cf. Sections 2.3.4
and 3.1.3).

We now show that this assumption is not necessary, i.e., such a proto-
col exists for the synchronous model without a global clock and not even
agreement is required on the player set among which the protocol will
be run. This problem can be seen as a very strong version of the firing
squad problem — but additionally allowing the correct players to abort
in unison.

We describe a protocol wherein a player p; who shares authenticated
(or secure) channels with all members of a player set P’ to (unexpectedly)
initiate a protocol among the players in P = P'U{p;} for a detectable pre-
computation. Let such a player p; be called the initiator and the players
in P’ be called the initiees of the protocol. The following protocol descrip-
tion is split into the initiator’s part and the initiees’ part.
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Protocol 6.11 InitAdHocComp(P) [Initiator p;]

1. Sendto P’ an initiation message containing a unique random session
identifier id, the specification of the player set P’ and of a multi-party
computation protocol ¥ among player set P = P’ U {pr}.

2. Perform detectable precomputation Protocol 6.8 among P’ to pre-
compute for all broadcast invocations required by protocol P.
Thereby, combine each message with session identifier id. In the final
“broadcast round”, instead of broadcasting the value G to indicate
whether all conditional gradecast protocols achieved broadcast, the
value G A Sy is broadcast where St indicates whether all players in
P’ synchronously entered the precomputation protocol and always
used session identifier id.

3. Accept and execute protocol ¥ (with identifier id) if and only if Gr A
Sr and all players in P’ broadcasted their acceptance at the end.

Protocol 6.12 AdHocComp(P) [Initiee p;]

1. Upon receipt of an initiation message by an initiator p;:

e decide whether you are interested to execute an instance of ¥ am-
ong player set P.

¢ check that the specified id is not being used in any concurrent in-
vocation.

e check whether p; € P'.

e check whether there are authenticated (or secure) channels between
p; and all other players in P" U {p} as required by protocol .

2. Ifall checks in step 1 were positive then perform detectable precom-
putation Protocol 6.8 to precompute for all broadcast invocations re-
quired by protocol ¥. Thereby, combine each message with session
identifier «d and do not initiate any ad-hoc computation with the
same identifier id. In the final “broadcast round”, instead of broad-
casting the value G; to indicate whether all conditional gradecast pro-
tocols achieved broadcast, the value G; A S; is broadcast, where S;
indicates whether all players in P’ synchronously entered the pre-
computation protocol and always used session identifier id.

3. Accept and execute protocol ¥ (with identifier :d) if and only if G; AS;
and all players in P’ broadcasted their acceptance at the end.

Note that the first check in step 1 of the initiees’ Protocol 6.12 implic-
itly prevents the adversary from “spamming” players with initiations in
order to overwhelm a player with work load. A player can simply ignore
initiations without affecting consistency among the correct players.

Theorem 6.19 ([FGH*02]). Suppose there is a player set P’ and a player p;
such that p; shares authenticated (or secure) channels with every player in P’
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(whereas no additional channels are assumed between the players in P’). Then
pr can initiate a protocol among player set P = P’ U {pr} that achieves the
following properties for t < n:

1. All correct players in P either commonly accept or reject the protocol (in-
stead of rejecting it is also possible that a player ignores the protocol, which
is an implicit rejection). If they accept, then broadcast or multi-party com-
putation will be achievable among P (with everybody knowing this fact).

2. If all players in P are correct and all players are connected by pairwise
authenticated (or secure) channels then all players accept.

Proof.

1. First, suppose that all correct players accept the precomputation.
Then all correct players share pairwise authenticated (or secure)
channels and synchronously performed a detectable precomputa-
tion with respect to the same protocol ¥ — using the same ses-
sion identifier id and accepting the outcome of the precomputation.
Thus, all correct players synchronously execute protocol ¥ (using
the same identifier) which has been reliably precomputed for.

Second, suppose that correct player p; rejects the precomputation
or ignores it because he did not get an invitation message. If he
ignores it then all non-ignoring correct players notice this and reject.
If he rejects then he sent or received a rejection message during the
final “broadcast round” of the precomputation. Thus, every other
non-ignoring player has either already rejected before this round or
reliably receives the same rejection message during the final round,
and thus also rejects.

2. If all players in P are correct and are connected by pairwise au-
thenticated (or secure) channels then they all accept the precompu-
tation unless two different precomputations with the same session
identifier id have been initiated during the same round. Having id
be randomly chosen from a large enough domain, such a collision
happens with negligible probability.

O

Note that protocol ¥ can be omitted from this protocol, resulting in
an “optimistic” protocol for the ad-hoc setup of a PKI without a trusted
party nor broadcast channels.






Chapter 7

Concluding Remarks

In this thesis, we have generalized some fundamental standard models
for Byzantine agreement and multi-party computation for synchronous
networks in several ways.

7.1 Standard communication

A first direction addressed the resilience of protocols with respect to stan-
dard pairwise communication. It could be shown that the generalization
of standard security definitions often allows for a level of resilience that
is strictly better than previously achievable. Thereby, two different mod-
els were considered, the model where a PKI is shared among the players,
and the model where the players do not share a PKI.

Shared PKI. For the model where a PKI is shared among the players,
the following main result was obtained (Section 4.2.2). PKI-based secu-
rity of Byzantine agreement can be augmented with unconditional se-
curity up to a certain non-trivial level: Given two thresholds ¢, and ¢,
(t, > ty), the aim is to have a protocol for Byzantine agreement that is
as secure as the underlying PKI if up to ¢, players are corrupted and,
independently, unconditionally secure if up to t,, players are corrupted.
It could be shown that, with respect to thresholds ¢, and ¢,,, broadcast
is achievable if and only if 2¢,, +t, < n and consensus is achievable if and
only if 2¢, + t, < n and 2t, < n. Efficient protocols are given for every
case where 2t, < n. As an implication, multi-party computation com-
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putationally secure against ¢ < n/2 corrupted players (which is optimal)
can additionally tolerate ¢ < n/4 corrupted players unconditionally.
The following problem remains open:

o Forthe case that 2t, > n itis not yet known whether efficient broad-
cast is achievable.

No shared PKI. By separating the resilience of Byzantine agreement
with respect to the two orthogonal conditions “consistency” (threshold
t.) and “validity” (threshold ¢,), protocols with interesting new proper-
ties can be constructed for the model where no consistent PKI is given
among the players. The following main result was obtained (Chapter 6).
TTBC with respect to thresholds ¢, and ¢. is achievable if and only if

ty=0Vt.=0V 2ty +t. <nA2t,+1t, <n).

TTBC can be strengthened in a way that allows the players to additionally
detect whether both validity and consistency, have been achieved. Some
implications of this result are listed below.

e As a special case, broadcast among three players is possible such
that both conditions validity and consistency, are satisfied if no
player is corrupted, but that consistency is additionally satisfied in-
dependently of the number of corrupted players; furthermore, the
players detect whether validity has been achieved.

e Inascenario where the adversary does not have permanent control
over the corrupted players, broadcast secure against any number of
corrupted players is achievable from scratch. Furthermore, a first
phase wherein the adversary does not corrupt any player can be
reliably detected and exploited such that broadcast with arbitrary
resilience will be possible in the future — this is achieved by so-
called “detectable precomputation”.

e Detectable precomputation allows for multi-party computation se-
cure against faulty minorities without broadcast channels after the
first phase without corruption.

e Any protocol for a model with secure pairwise communication and
broadcast channels can be generically transformed into a protocol
for the same model but without broadcast channels satisfying all
security conditions of the original protocol except for robustness
and zero-error.
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For ExtVaIBC+, relatively efficient, perfectly secure protocols could
be given (B = O(n?)). For ExtConsBC™ (and detectable precomputa-
tion), relatively efficient, computationally secure protocols could be given
(B = O(n%)); however, the given protocols with unconditional security
are quite costly (B = Q(n") and B = Q(n'!)).

The following questions remain open:

o Do protocols for unconditionally secure ExtConsBC™ and detecta-
ble precomputation exist that have low communication complexi-
ties?

o Are there other applications for detectable precomputation than
given here?

7.2 Modular reductions and extended commu-
nication

A second direction addressed the reducibility among standard Byzantine
agreement and some of its variations such as partial broadcast or weak
broadcast. It was shown that broadcast among each subset of b > 2 play-
ers (BC;) allows for global broadcast secure against ¢ < ’g;—}n corrupted
players; and that this bound is tight. Moreover, the well-known primi-
tives multi-send, weak broadcast, and graded broadcast were captured
by a single, parameterized definition, b-set-neighboring among n players
(N’,’L), that naturally extends over these special cases where N2 is multi-
send, N? is weak broadcast, and N is graded broadcast. It was shown
that N’ and BC, are equivalent. Some implications of these results are
stated below.

e In order to demonstrate the achievability of broadcast for t < n/2
with respect to a certain model it is sufficient to construct a weak-
broadcast protocol for ¢ > [n/3].

e In order to demonstrate the achievability of broadcast for t < n/2
with respect to a certain model it is sufficient to show that weak
broadcast is achievable among every triplet of players.

¢ Instead of global broadcast, broadcast among each triple of play-
ers is sufficient for multi-party computation unconditionally secure
against faulty minorities.
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Whereas the given constructions and reductions with respectto b < 3
are all efficient, those with respect to b > 4 are only efficient if n — b =
O(1).

The following questions remain open:

o Given BCy, is it possible to construct efficient protocols for broad-
cast among all n players with respect to ¢ < ’gjr—}n? If not, for which
bounds on t are there efficient protocols?

o Is full connectivity of partial broadcast, i.e., that every subset of b
players shares broadcast channels, required in order to achieve op-
timal resilience? If so, what resilience can be achieved with lower
connectivity? Note that the necessity of full connectivity would im-
ply that efficient global broadcast is impossible for most cases, e.g.,
for all cases where b = Q(n) and n — b = Q(n).

7.3 Future directions

Although the main focus of this thesis was on generalizing existing stan-
dard models in Byzantine agreement, two major restrictions have been
made throughout: assuming synchronous instead of asynchronous net-
works, and assuming a threshold adversary instead of a general non-
threshold adversary. Asynchronous networks are more realistic to as-
sume (e.g., the Internet is not synchronous) and yet, often allow for the
same resilience as synchronous networks — although typically at the cost
of less efficient protocols. The notion of a general adversary strictly sub-
sumes the notion of a threshold adversary. Thus, the following tasks re-
main to be solved:

o to transform the given results to the asynchronous model,
o to extend the given results to the general adversary model, and

o to combine the given model generalizations, e.g., considering de-
tectable precomputation based on partial broadcast.
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Computational security

Unconditional security

Invalid value or symbol to represent rejection
Security parameter

Transferability of a pseudo-signature scheme;
fraction factor (Section 5.4)

Processor set
Processor

Signature or pseudo-signature;
index set (Section 5.4)

Protocol

Bit complexity

Byzantine agreement

Broadcast among b players
Broadcast

Consensus

Domain

Eventual Byzantine agreement
Exponential information gathering

Broadcast with extended consistency

Broadcast with extended consistency and validity detec-

tion
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ExtValBC Broadcast with extended validity
ExtValBC* Broadcast with extended validity and consistency detec-

tion
f Number of corrupted players that are present
g Grade value
GBC Graded broadcast
GC Graded consensus
IG Information gathering
KC King consensus
log Logarithm to a base of size O(1)
M Model
m Message — but often just a free variable
MPC Multi-party computation
n Number of players
N’,’L b-set-neighboring among n players

Player set
P Player
Pi Local player
PK Public key
PKI Public-key infrastructure
Poly Of polynomial order
Polylog Of polylogarithmic order
Ps Sender (sending player) in a broadcast protocol
R Range or round complexity
SBA Simultaneous Byzantine agreement
SK Secret key
t Corruption threshold
TTBC Two-threshold broadcast
TTC Two-threshold consensus
TTGC Two-threshold graded consensus
\% Verification algorithm of a (pseudo-)signature scheme
WBC Weak broadcast

wC Weak consensus
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adversary, 30
ad-hoc computation, 153-155
ad-hoc PKI setup, see PKI
adaptive adversary, 31
adversary, 29
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adaptive, 31
Byzantine, see active
computational power, 30
extended, 52, 59
fail-stop, 30
general, 52, 60
mixed, 60
network scheduling, 30
non-mobile, 31
passive, 29, 58-60
static, 31
agreement
degradable, 127
detection, 49, 51
algorithm, 21
deterministic, 21
efficient, 22
inefficient, 22
Las Vegas, 22
Monte Carlo, 22
polynomial, 22
probabilistic, 21

signing, 24, 25
termination, 21
verification, 24, 25
Annegret, 23
asymmetric
encryption, 23
authenticated channel, 28
authentication, 24

b-broadcast, 105, 107-112
b-set-neighboring, 113
BA, see Byzantine agreement
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BC3, 101-104, 123
BC, 107
Beat, 23
bit complexity, 31
broadcast, 37
agreement, 37
asynchronous network, 45
channel, 28
consistency, 37
extended, 128, 132, 138-
147, 149
consistency detection, 132
detectable, 48, 130, 132
Dolev-Strong, 84
EIG, 66, 111
Feldman-Micali, 72
graded, 49, 75
hybrid security, 85-92
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probabilistic, 74
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two-threshold, 65, 107, 128,
130, 147-149
validity, 37
extended, 128, 131, 133-
138, 149
validity detection, 133
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with consistent PKI, 82-92

with extended consistency, 128,

132, 138-147, 149
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131, 133-138, 149

without consistent PKI, 64—
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Byzantine adversary, see adver-
sary
Byzantine agreement, 37

asynchronous network, 45,
46

binary, 50

broadcast vs. consensus, 75

composition, 53

computational security, 43,
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desynchronization, 52

early stopping, 51

EBA, 51

eventual, 51

extended adversary, 52

fail-stop corruption, 43, 46

further aspects, 50-53

future directions, 160

generic reductions, 74-77
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impossibility, 78, 80-82, 90—
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known bounds, 40-46

multi-valued, 50

multiple invocations, 50, 54,
73,74

non-unison start, 47

overview texts, 53

probabilistic, 42, 44, 45

reductions, 74-77

SBA, 51

simultaneous, 51

termination, 38

tight bound, 64, 83, 101

trivial cases, 38

unconditional security, 40, 45

variations, 47-49

with consistent PKI, 82-92

without consistent PKI, 64—
78, 80-82

Byzantine generals, 37
weak, 48, 55, 129

channel
authenticated, 28
BCs;, see BC3
BC;, see BCy,
broadcast, 28
quantum, 127, 153
secure, 28
Chernoff bound, 35
coin-tossing, 71
communication
model, 28
extended, 99
security, 28
complete network, 28
complexity, 21
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bit, 31 crash, see fail-stop
computational, 21, 31 crusader agreement, 48
round, 31 cryptographic protocol, 27
computational
complexity, 21, 31 data
PKI, 27 consistently shared, 32, 63,

security, 23, 30, 43, 83
consensus, 37, 38
agreement, 38
asynchronous network, 45
consistency, 38
dishonest majority, 39
graded, 49, 67, 68, 75, 76
with extended validity, 136
impossibility, 39, 78
king, 49, 68, 69
persistency, 38
termination, 38
tight bound, 64, 83
two-threshold, 133
graded, 135
weak, 135
validity, 38
weak, 48, 67, 75
protocol, 67
consistency
detection, 128, 132
extended, 128, 132, 138-147,
149
partial, 113-115
consistent PKI, see PKI
consistently shared data, 32, 63,
82,93
from broadcast, 93-96
correct, 29
correctness, 56
corrupted, 29
corruption, see adversary
fail-stop, 30, 43, 60

82,93
from broadcast, 93-96
degradable agreement, 127
detectable
broadcast, 48, 130, 132
multi-party computation, 151,
152
precomputation, 129, 133, 139-
147, 153
detection
agreement, 49, 51
consistency, 128
validity, 128
deterministic
algorithm, 21
protocol, 28
digital signature, 24, 83
forgery, 25
key generation, 24
signing algorithm, 24
transferability, 25
verification algorithm, 24
dining cryptographers, 95
dishonest, see corrupted
Dolev-Strong, see protocol

early stopping, 51
EBA, see Byzantine agreement
efficient

algorithm, 22

protocol, 31
EIG, see information gathering
encryption

asymmetric, 23
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symmetric, 23
execution step, 28
exponential information gather-
ing, 64, 65, 66
ExtConsBC, 128, 132, 138-147, 149
ExtConsBC™, 128
extended
communication model, 99
consistency, 128, 132, 138-147,
149
validity, 131
external information source, see
information source
ExtValBC, 128, 131, 133-138, 149
ExtVaIBC+, 128, 134, 138
ExtValGC™, 137

fail-stop
adversary, 30
corruption, 30, 43, 60
fairness, 56
faulty, see corrupted
Feldman-Micali, see protocol
firing squad, 47
forgery of a signature, 25

general
access structure, 60
adversary, see adversary
adversary structure, 60
generalized security, 127
global clock, 29
graded
broadcast, 49, 75
consensus, 49, 67, 68, 75, 76
with extended validity, 136
graded consensus, 67, 77

Hoeffding bound, 35
honest, see correct
hybrid

model, 63, 87
security, 85-92

ideal
model, 56
process, 56
IG, see information gathering
incomplete network, 99
inefficient, 22
information
gathering, 64
exponential, 64, 65, 66
source, 100, 115, 124
information-theoretic, see uncon-
ditional
initialization, 32
interactive consistency, 47

key
agreement, 127
management, 23, 26
public, 23-25
secret, 23-25
king consensus, 49, 68, 69
knowledge, 32

Las Vegas
algorithm, 22
protocol, 32, 42, 44, 46, 51,
70,72
link failure, 52

Mauty 33
Mz, 33
M2S 102
Mg, 107
M;’ﬁ;; 33
MPEET 87,90
aut, 116

MSeC’ 33
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Mbe 111
MpXi 33
message
authentication code, 24, 95
delivery, 29, 30
mixed adversary, 60
model
extended communication, 99
hybrid, 63, 87
ideal, 56
partial broadcast, 101-112, 123
Q-flip, 116, 124
real, 56
standard, 32
Monte Carlo
algorithm, 22
protocol, 32, 43, 44, 46, 71,
72
MPC, see multi-party computa-
tion
multi-party computation, 55, 93,
123,124
ad-hoc, 153-155
detectable, 151, 152
extended adversary, 59
hybrid security, 93
non-robust, 57
standard, 56

Nb 113

negligibility, 22, 23

network
asynchronous, 29
complete, 28
global clock, 29
incomplete, 99
scheduling, 29, 30
synchronous, 29

no global clock, 29

notation, 32

0,21

0,21
arbitrary resilience, 39, 106

O, see notation
optimism, 130
optimistic protocol, 130

partial
broadcast, 99
consistency, 113-115
partial-broadcast model, 101-112,
123
passive
adversary, 29, 58-60
corruption, 30, 58-60
perfect security, 23, 31
Pfitzmann-Waidner, see protocol
phase-king, see protocol
PKI, 26, 27, 32
ad-hoc setup, 155
computational, 27
consistent, 27, 63, 83, 94
unconditional, 27
player, 27
correct, 29
corrupted, 29
polynomial
algorithm, 22
precomputation, 93, 94-96
detectable, 129, 133, 139-147,
153
Pfitzmann-Waidner, 95
reduced, 142
phase, 32
primitive
complete, 124
cryptographic, 22
privacy, 56
probabilistic
algorithm, 21
polynomial, 22
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protocol, 28 phase-king, 66, 67-70, 88-90,
processor, 28 102, 103
protocol, 27 probabilistic, 73, 74
broadcast precomputation, 94
Dolev-Strong, 84 detectable, 139, 141, 143-
EIG, 111 145
Feldman-Micali, 72 Pfitzmann-Waidner, 95
IG, 66 probabilistic, 28

phase-king, 69, 70
complexity, 31
bit, 31
computational, 31
round, 31
cryptographic, 27
detectable
precomputation, 139, 141,
143-145
deterministic, 28
dining cryptographers, 95
Dolev-Strong, 83-85
efficient, 31
EIG, 107-111
ExtValBC™, 134, 138
ExtValGC™, 137
Feldman-Micali, 71-73
graded consensus, 67, 77
information gathering, 64
exponential, 64-66
intermediary variables, 34
king consensus, 68
Las Vegas, 32, 42, 44, 46, 51,
70,72
Monte Carlo, 32, 43, 44, 46,
71,72
multi-party computation
ad-hoc, 154
notation, 34
optimistic, 130
Pfitzmann-Waidner, 95, 129,
142

resilience, 29
security, 30
termination, 28
two-threshold broadcast, 65,
107
two-threshold graded consen-
sus, 135
weak broadcast, 89, 102, 118
weak consensus, 67
pseudo-signature, 25, 83, 118
initialization, 25
reusability, 26
signing algorithm, 25
transferability, 25
verification algorithm, 25
public key, 23-25
public-key
encryption, 23
infrastructure, see PKI

Q-flip model, 116, 124
quantum channel, 127, 153

randomized, see probabilistic
real model, 56

resilience, 29

resilient, see resilience
robustness, 56

round complexity, 31

SBA, see Byzantine agreement
secret
key, 23-25
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sharing, 59
verifiable, 59
secure
channel, 28
function evaluation, 55
security
computational, 23, 30, 43, 83
generalized, 127
hybrid, 85-92
information-theoretic, 30
of a protocol, 30
parameter, 22, 30
perfect, 23, 31
unconditional, 23, 30, 40, 83
SFE, see secure function evalua-
tion
shared coin, 71
signature
digital, see digital signature
pseudo, see p.-signature
stage
computation, 28
reception, 28
sending, 28
standard model, 32
static adversary, 31
step, see execution step
strong validity, see validity
symmetric
cryptosystem, 23
encryption, 23
synchronicity, 29

t-resilient, 29
termination, 21, 28, 38
transferability

of a digital signature, 25

of a pseudo-signature, 25
trusted party, 56
TTBC, see two-threshold broad-

cast

two-threshold
broadcast, 65, 107, 128, 130,
147-149
generic reductions, 150
impossibility, 147
tight bound, 128, 149
consensus, 133
graded consensus, 135
weak consensus, 135

unconditional
PKI, 27
security, 23, 30, 40, 83

validity
detection, 128, 133
extended, 128, 131, 133-138,
149
strong, 47
verifiable secret sharing, 59
very elegant construction, 52
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weak
broadcast, 48, 75, 76, 88, 89,
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Byzantine generals, 48, 55,
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protocol, 67






