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Abstract. The term indistinguishability amplification refers to a set-
ting where a certain construction combines two (or more) cryptographic
primitives of the same type to improve their indistinguishability from an
ideal primitive. Various constructions achieving this property have been
studied, both in the information-theoretic and computational setting.
In the former, a result due to Maurer, Pietrzak and Renner describes
the amplification achieved by a very general class of constructions called
neutralizing. Two types of amplification are observed: a product theorem
(bounding the advantage in distinguishing the construction by twice the
product of individual advantages) and the amplification of the distin-
guisher class (the obtained construction is secure against a wider class
of distinguishers).

In this paper, we combine these two aspects of information-theoretic
indistinguishability amplification. We derive a new bound for the general
case of a neutralizing construction that keeps the structure of a product
theorem, while also capturing the amplification of the distinguisher class.
This improves both bounds mentioned above.

The new technical notion we introduce, central to our analysis, is the
notion of free-start distinguishing of systems. This describes the setting
where the distinguisher is allowed to choose any common state for both
systems and then it is supposed to distinguish these systems starting
from that chosen state.

Keywords: Information-theoretic cryptography, indistinguishability
amplification, neutralizing constructions, projected systems, free-start
distinguishing.

1 Introduction

Indistinguishability Amplification. An important goal of cryptography is
to provide real objects (e.g. functions, permutations) such that their behavior
is indistinguishable from the corresponding ideal object (e.g. a truly random
function or permutation) by a distinguisher interacting with these objects. One
reasonable way to approach this task is to devise constructions that allow us
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to combine objects of the same type to obtain a new one, with provably better
indistinguishability properties. This is called indistinguishability amplification.

A natural candidate for such an indistinguishability-amplifying construction
for permutations is the composition, while for random functions it is the quasi-
group combination of the outputs (e.g. XOR of the output bitstrings). Both these
constructions are widely used in the design of practical cryptographic primitives,
such as blockciphers. Therefore, the indistinguishability amplification achieved
by these constructions deserves being studied in detail. Both these examples as
well as other natural constructions are special cases of the general concept of a
neutralizing construction, introduced in [6].

In the information-theoretic setting, the most general treatment of indistin-
guishability amplification is due to Maurer, Pietrzak and Renner [6]. In their
work, two different types of indistinguishability amplification are presented. Both
are proved for the general class of neutralizing constructions, but for simplicity
we describe their contribution on the special case of the XOR of random func-
tions F ⊕ G. First, a product theorem is proved, stating that the advantage in
distinguishing F⊕G from the uniform random function R is upper-bounded by
twice the product of the individual distinguishing advantages for these functions.
Second, an amplification of the distinguishing class is observed, proving that the
advantage in distinguishing F ⊕ G from R adaptively is upper-bounded by the
sum of advantages in distinguishing F and G from R non-adaptively.

Our Contribution. First, we extend the random system framework from [3],
in which we perform our analysis. We introduce the concept of a system projected
to a specific state. Loosely speaking, any properly defined discrete system S and
a transcript t of interaction with this system together define a new system, which
behaves as the original system S would behave after this interaction t. We refer
to this new system as S projected to the state described by t. In particular,
any one-player game can be modelled as a special type of a discrete system.
Therefore, we are also able to model the intuitive situation where a player can
continue playing a given game from a specific position (where the game is not
won yet) or where it can pick an arbitrary such position in the game tree and
try to win the game from there.

This leads to the central new notion in this paper, free-start distinguishing.
Informally, the free-start distinguishing advantage of two systems is the best
advantage a distinguisher can achieve, assuming that it is allowed to project
both the distinguished systems to any one state consistent with both of them
and then try to distinguish the resulting systems.

This concept, besides giving an interesting new viewpoint on the distinguish-
ing of random systems, allows us to perform a more careful analysis of the
indistinguishability amplification achieved by neutralizing constructions in the
information-theoretic setting. We use the notion of free-start distinguishing to
combine the two types of amplification described in [6]. We derive a new bound
which keeps the structure of a product theorem, while involving also the non-
adaptive distinguishing advantages, thus describing the amplification of the dis-
tinguisher class.
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Motivation and Intuition. As observed in [6], there is a tight correspondence
between distinguishing systems and winning an appropriately defined game. Dis-
tinguishing F⊕G from R can be reduced (by a factor of 2) to winning two games
constructed from F and G, while obtaining only the XOR of their outputs. As
long as none of the games is won, the output of the construction is useless to the
player, hence one of the games has to be won non-adaptively first. After achiev-
ing this, the player still has to win the other game, this time with access to
some (possibly useful) outputs. Since winning each of these games is as hard as
distinguishing the corresponding system from R, one could conjecture a bound
like

Δk(F ⊕ G,R) ≤ 2
(
ΔNA

k (F,R) · Δk(G,R) + ΔNA
k (G,R) · Δk(F,R)

)
,

where Δk(S,T) and ΔNA
k (S,T) denote the adaptive and non-adaptive advantage

in distinguishing S from T with k queries, respectively.
However, this is not correct, since winning the first game may involve getting

the second game into a state where winning it becomes much easier than if
played from scratch. We model this by allowing the player to choose the starting
position in the second game freely, with the only restriction being that the game
is not won yet in the chosen position. Translated back into the language of
systems distinguishing, this gives us a valid bound

Δk(F ⊕ G,R) ≤ 2
(
ΔNA

k (F,R) · Λk(G,R) + ΔNA
k (G,R) · Λk(F,R)

)
, (1)

where Λk(S,T) denotes the free-start distinguishing advantage for systems S and
T, as described above. In this paper we prove a general theorem for neutralizing
constructions, of which the bound (1) is a simple corollary.

Related Work. There has been a lot of previous research on indistinguishabi-
lity-amplifying constructions, both in the information-theoretic and the compu-
tational setting.

In the former, a product theorem for the composition of stateless permu-
tations was proved by Vaudenay using the decorrelation framework [11]. The
amplification of the distinguisher class was proved in [5] for a class of construc-
tions and in [4] also for the four-round Feistel network. As mentioned above, the
paper [6] addressed both these types of indistinguishability amplification for any
neutralizing construction.

On the other hand, computational product theorems for various constructions
were proved by Luby and Rackoff [2], Myers [8,9] and Dodis et al. [1]. For the gen-
eral case of a neutralizing construction a product theorem was proved by Maurer
and Tessaro [7]. The second type of amplification considered here, amplification
of the distinguisher class, does not in general translate to the computational
setting, as observed by Pietrzak [10].
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2 Preliminaries

2.1 Basic Notation

Throughout the paper, we denote sets by calligraphic letters (e.g. S). A k-tuple
is denoted by uk = (u1, . . . , uk), and the set of all k-tuples of elements of U
is denoted by Uk. The tuples can be concatenated, which we write as ukvl =
(u1, . . . , uk, v1, . . . , vl). By ms(i) we denote the set of monotone binary sequences
of length i where zeroes are preceding ones, i.e., ms(i) = {0i, 0i−11, . . . , 1i}.

We usually denote random variables and concrete values they can take on by
capital and small letters, respectively. Naturally, for any binary random variable
B, we denote the event that it takes on the value 1 also by B. The complement
of an event A is denoted by A. For events A and B and random variables U and
V with ranges U and V , respectively, we denote by PUA|V B the corresponding
conditional probability distribution, seen as a function U ×V → 〈0, 1〉. Here the
value PUA|V B(u, v) is well-defined for all u ∈ U and v ∈ V such that PV B(v) > 0
and undefined otherwise. Two probability distributions PU and PU ′ on the same
set U are equal, denoted PU = PU ′ , if PU (u) = PU ′ (u) for all u ∈ U . Conditional
probability distributions are equal if the equality holds for all arguments for
which both of them are defined. To emphasize the random experiment E in
consideration, we usually write it in the superscript, e.g. PE

U|V (u, v). By a lower-
case p we denote (conditional) probability distributions that by themselves do
not define a random experiment.

2.2 Random Systems

In this subsection, we present the basic notions of the random systems frame-
work introduced in [3], following the notational changes in [6]. The input-output
behavior of any discrete system can be described by a random system in the
spirit of the following definition.

Definition 1. An (X ,Y)-random system S is a (generally infinite) sequence of
conditional probability distributions pS

Yi|XiY i−1 for all i ≥ 1.

The behavior of the random system is specified by the sequence of conditional
probabilities pS

Yi|XiY i−1(yi, x
i, yi−1) (for i ≥ 1) of obtaining the output yi ∈ Y

on query xi ∈ X given the previous i − 1 queries xi−1 = (x1, . . . , xi−1) ∈ X i−1

and their corresponding outputs yi−1 = (y1, . . . , yi−1) ∈ Yi−1.
We shall use boldface letters (e.g. S) to denote both a discrete system and

a random system corresponding to it. This should cause no confusion. We em-
phasize that although the results of this paper are stated for random systems,
they hold for arbitrary systems, since the only property of a system that is rel-
evant here is its input-output behavior. It is reasonable to consider two discrete
systems equivalent if their input-output behaviors are the same, even if their
internal structure differs.
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Definition 2. Two systems S and T are equivalent, denoted S ≡ T, if they cor-
respond to the same random system, i.e., if pS

Yi|XiY i−1 = pT
Yi|XiY i−1 for all i ≥ 1.

A random system can also be defined by a sequence of conditional probabil-
ity distributions pS

Y i|Xi for i ≥ 1. This description is often convenient, but is
not minimal: the distributions pS

Y i|Xi must satisfy a consistency condition for
different i. The conversion between these two forms can be described by

pS
Y i|Xi =

i∏
j=1

pS
Yj |XjY j−1 and pS

Yi|XiY i−1 =
pS

Y i|Xi

pS
Y i−1|Xi−1

. (2)

A random function is a special type of random system that answers consistently,
i.e., it satisfies the condition Xi = Xj ⇒ Yi = Yj . For example, R denotes
a uniform random function, which answers every new query with an element
uniformly chosen from its (finite) range. A random permutation on X is a random
function X → X mapping distinct inputs to distinct outputs: Xi �= Xj ⇒ Yi �=
Yj . For example, P denotes a uniform random permutation, which for a domain
and range X realizes a function chosen uniformly at random from all bijective
functions X → X . Following [7], we say that a random function is convex-
combination stateless (cc-stateless) if it corresponds to a random variable taking
on as values function tables X → Y. For example, both R and P are cc-stateless.

We can define a distinguisher D for an (X ,Y)-system as a (Y,X )-system
which is one query ahead, i.e., it is defined by the conditional probability distri-
butions pD

Xi|Xi−1Y i−1 for all i ≥ 1. In particular, the first query of D is determined
by pD

X1
. After a certain number of queries (say k), the distinguisher outputs a

bit Wk depending on the transcript XkY k. For a random system S and a dis-
tinguisher D, let DS be the random experiment where D interacts with S. The
distribution of XkY k in this experiment can be expressed by

PDS
XkY k(xk, yk) =

k∏
i=1

pD
Xi|Xi−1Y i−1(xi, x

i−1, yi−1)pS
Yi|XiY i−1(yi, x

i, yi−1)

= pD
Xk|Y k−1(xk, yk−1) · pS

Y k|Xk(yk, xk), (3)

where the last equality follows from (2).
We consider two special classes of distinguishers. By NA we denote the class

of all (computationally unbounded) non-adaptive distinguishers which select all
queries X1, . . . , Xk in advance, i.e., independent of the outputs Y1, . . . , Yk. By
RI we denote the class of all (computationally unbounded) distinguishers which
cannot select queries but are given uniformly random values X1, . . . , Xk and the
corresponding outputs Y1, . . . , Yk. These distinguisher classes correspond to the
attacks nCPA (non-adaptive chosen-plaintext attack) and KPA (known-plaintext
attack) from the literature, respectively.

For two (X ,Y)-systems S and T, the distinguishing advantage of D in distin-
guishing systems S and T by k queries is defined as

ΔD
k (S,T) =

∣∣PDS(Wk = 1) − PDT(Wk = 1)
∣∣ .
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We shall denote by ΔD
k (S,T) and Δk(S,T) the maximal advantage over the

class D of distinguishers and over all distinguishers issuing at most k queries,
respectively. On the other hand, we define

δD
k (S,T) := ||PDS

XkY k − PDT
XkY k || =

1
2

∑
xkyk

|PDS
XkY k(xk, yk) − PDT

XkY k(xk, yk)|

to be the statistical distance of transcripts when D interacts with S and T,
respectively. Again, δDk (S,T) and δk(S,T) denote the maximal value over the
class D of distinguishers and over all distinguishers, respectively. The statisti-
cal distance of transcripts is closely related to the distinguishing advantage: in
general we have ΔD

k (S,T) ≤ δD
k (S,T), but for a computationally unbounded

distinguisher D that chooses the output bit optimally, we have ΔD
k (S,T) =

δD
k (S,T). In particular, we have Δk(S,T) = δk(S,T), ΔNA

k (S,T) = δNA
k (S,T)

and ΔRI
k (S,T) = δRI

k (S,T). Finally, using (3) to expand the definition of δD
k (S,T),

we obtain

δD
k (S,T) =

1
2

∑
xkyk

pD
Xk|Y k−1(xk, yk−1) ·

∣∣∣pS
Y k|Xk(yk, xk) − pT

Y k|Xk(yk, xk)
∣∣∣

=
∑
xkyk

pD
Xk|Y k−1(xk, yk−1) ·

(
pS

Y k|Xk(yk, xk) − pT
Y k|Xk(yk, xk)

)
, (4)

where the last summation goes only over all xkyk such that pS
Y k|Xk(yk, xk) >

pT
Y k|Xk(yk, xk) holds.
For two (X ,Y)-systems S and T and a uniform random bit B, 〈S/T〉B denotes

the random system which is equal to S if B = 0 and equal to T otherwise. If
mentioning the random variable B explicitly is not necessary, we only write
〈S/T〉. The following simple lemma comes from [6].

Lemma 1. For every distinguisher D, we have:

(i) ΔD
k (S,T) = 2

∣∣PD〈S/T〉B (Wk = B) − 1
2

∣∣ ,
(ii) ΔD

k (S, 〈S/T〉B) = 1
2ΔD

k (S,T).

We denote by C(·, ·) a construction that invokes two other systems as its subsys-
tems. If we instantiate these subsystems by S1 and S2, we denote the resulting
system by C(S1,S2). Upon each query to C(·, ·), the construction may adap-
tively issue 0 or more queries to its subsystems. A construction is neutralizing
for pairs of systems (F, I) and (G,J) if C(F,J) ≡ C(I,G) ≡ C(I,J). Moreover,
let k′ and k′′ denote the maximal number of queries made to the first and second
subsystem, respectively, during the first k queries issued to the construction (if
defined). There are two important examples of neutralizing constructions that
we shall consider in this paper:

Quasi-group combination. For (X ,Y)-random systems F and G and for a
quasi-group1 operation � on Y, the construction F � G feeds any query it

1 A binary operation � on X is a quasi-group operation if for every a, c ∈ X (every
b, c ∈ X ) there is a unique b ∈ X (a ∈ X ) such that a � b = c.
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receives to both subsystems and then combines their outputs using � to
determine its own output. This is a neutralizing construction for random
functions F, G and I ≡ J ≡ R.

Composition. For a (X ,Y)-random system F and a (Y,Z)-random system G,
F�G denotes the serial composition of systems: every input to F�G is fed to
F, its output is fed to G and the output of G is the output of F �G. This is
a neutralizing construction for a permutation F, a cc-stateless permutation
G and I ≡ J ≡ P.

2.3 Monotone Boolean Outputs and Games

Among random systems, we shall be in particular interested in systems having
a monotone bit as a part of their output, in the sense of the following definition
from [6].

Definition 3. For a (X ,Y × {0, 1})-system S the binary component Ai of the
output (Yi, Ai) is called a monotone binary output (MBO), if Ai = 1 implies
Aj = 1 for all j > i. For convenience, we define A0 = 0. For a system S with
MBO we define two derived systems:

(i) S− is the (X ,Y)-system obtained from S by ignoring the MBO.
(ii) S� is the (X ,Y × {0, 1})-system which masks the Y-output to a dummy

symbol (⊥) as soon as the MBO turns to 1. More precisely, the following
function is applied to the outputs of S:

(y, a) 
→ (y′, a) where y′ =
{

y if a = 0
⊥ if a = 1.

The reason for studying this particular type of systems is that any one-player
game can be seen as a (X ,Y ×{0, 1})-system S with a monotone binary output.
Here the player makes moves X1, X2, . . . and receives game outputs Y1, Y2, . . ..
Additionally, the game after each move also outputs a monotone bit indicating
whether the game has already been won. The goal of the player2 is to provoke
the change of this bit, which is initially 0. Note that it is irrelevant whether the
player can see this bit, so we can think of it interacting only with the system S−.

For a (X ,Y × {0, 1})-system S with an MBO called Ai and for a player D,
we denote by νD

k (S) the probability that D wins the game S within k queries,
i.e., νD

k (S) = PDS
Ak

(1). As usually, νD
k (S) and νk(S) denote the maximal winning

probability over the class D of players and over all players, respectively.
The relationship between distinguishing two systems and winning an appro-

priately defined game was studied in [3] and later in [6], where the following
lemma was proved.

Lemma 2. For any two (X ,Y)-systems S and T there exist (X ,Y × {0, 1})-
systems Ŝ and T̂ such that
2 Note that a player is formally the same type of object as a distinguisher, hence we

shall use both terms, depending on the context.
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(i) Ŝ− ≡ S
(ii) T̂− ≡ T
(iii) Ŝ� ≡ T̂�

(iv) δD
k (S,T) = νD

k (Ŝ) = νD
k (T̂) for all D.

Intuitively, Lemma 2 states that any two systems S and T can be extended by
adding an MBO to each of them that “signals” whether the system has deviated
from the common behavior of both S and T. The systems are equivalent as long
as the MBOs are 0 and the probability that a distinguisher D turns one of these
MBOs to 1 is equal to the statistical distance of transcripts of the experiments
DS and DT.

Moreover, it was proved in [6] that if any (X ,Y × {0, 1})-systems Ŝ and T̂
satisfy for every i ≥ 1 the conditions (for T̂, the conditions are analogous)

pŜ
Y iAi|Xi(yi, 0, xi) = mS,T

xi,yi

pŜ
Y iAi|Xi(yi, 1, xi) = pS

Y i|Xi(yi, xi) − mS,T
xi,yi

(5)

where
mS,T

xi,yi = min{pS
Y i|Xi(yi, xi), pT

Y i|Xi(yi, xi)},
then they also satisfy the properties stated in Lemma 2. In fact, Lemma 2 was
proved in [6] by demonstrating that the systems Ŝ and T̂ satisfying (5) can
always be constructed.

3 Projected Systems

Any system S and a transcript of the initial part of a possible interaction with it
together define a new system that simulates the behavior of S from the state at
the end of this interaction onwards. This is formalized in the following definition.

Definition 4. For an (X ,Y)-random system S and (xj, yj) ∈ X j × Yj, let
S[xj , yj ] denote the system S projected to the state xjyj, i.e. the random system
that behaves like S would behave after answering the first j queries xj by yj.
Formally, S[xj , yj ] is defined by the distributions

p
S[xj ,yj ]
Yi|XiY i−1(yi, x

i, yi−1) := pS
Yj+i|Xj+iY j+i−1 (yi, x

jxi, yjyi−1)

if pS
Y j |Xj (yj , xj) > 0 and undefined otherwise.

This is most intuitive if we consider a game (i.e., a special type of system with
an MBO), where the transcript represents a position in this game. For a (X ,Y×
{0, 1})-system S representing a game, the MBO bits are also a part of the output,
therefore we have to specify them when describing its answers to the first j
queries. To denote a position where the game is not won yet, we set these bits
to 0, obtaining the system S[xj , yj0j ].
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Definition 5. Let S be a (X ,Y × {0, 1})-system with the MBO Ai and let D
be a compatible player. Let j ≤ k be non-negative integers. For any xj ∈ X j

and yj ∈ Yj such that pS
Y jAj |Xj (yj , 0, xj) > 0, we call νD

k−j(S[xj , yj0j]) the
probability of D winning the game S from the position xjyj within the remaining
k − j queries. Moreover, we also define the probability of winning S within k
queries with a free start to be

λk(S) := max
j,xj ,yj

νk−j(S[xj , yj0j ]),

where the maximization3 goes over all j ≤ k, xj , yj such that the projected system
S[xj , yj0j] is defined.

Intuitively, if a player starts playing the game S from the position xjyj (assuming
the game is not won yet), νk−j(S[xj , yj0j ]) describes the probability that it wins
the game within the remaining k − j queries if he plays optimally from now on.
On the other hand, if the player is allowed to choose any position in the game
tree within the first k queries (where the game is not won yet) and play from
that position, it can win with probability λk(S). Obviously λk(S) ≥ νk(S).

Let us now consider a construction C(S1,S2). In this section, we assume that
S1 and S2 are two (X ,Y×{0, 1})-systems (games) with MBOs Ai and Bi, respec-
tively. Moreover, we assume that C(S1,S2) is a (X ,Y ×{0, 1})-construction and
it combines the last binary outputs of its subsystems using the AND operation
to determine its own binary output Ci. Note that although the construction may
determine the number and ordering of the queries to its subsystems adaptively,
we can assume that the order of the queries to the subsystems is well-defined for
every run of the experiment. This justifies the following definition.

Definition 6. In the experiment DC(S1,S2), let F i
j denote the event that the

game Si was won during the first j queries to C(S1,S2) and it was the first of
the games S1, S2 that was won.

Note that if both games are to be won, one of them always has to be won first.
Afterwards, the adversary needs to also win the second game in order to provoke
the MBO of the whole construction. This is captured by the following lemma.

Lemma 3. Let S denote the system C(S1,S2) with MBO as described above.
Then we have

νD
k (S) ≤ PDS(F 1

k ) · λk′′ (S2) + PDS(F 2
k ) · λk′ (S1).

Proof. Since the MBO of S is the AND of the MBOs of the subsystems, we have

νD
k (S) ≤ PDS(F 1

k ∧ Bk′′) + PDS(F 2
k ∧ Ak′)

= PDS(F 1
k ) · PDS(Bk′′ |F 1

k ) + PDS(F 2
k ) · PDS(Ak′ |F 2

k ).

3 Note that depending on the game S, any j ∈ {0, . . . , k − 1} may maximize the term
νD

k−j(S[xj , yj0j ]).
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It remains to upper-bound the terms PDS(Bk′′ |F 1
k ) and PDS(Ak′ |F 2

k ). Let Xi

and Yi be the random variables corresponding to the i-th input and Y-output
of S, respectively; and let Mi and Ni (Ui and Vi) be the random variables
corresponding to the i-th input and Y-output of S1 (S2), respectively. Let T
denote the random variable corresponding to the initial part of the transcript
of the experiment from its beginning until the MBO A is provoked or until the
end of the experiment, whichever comes first. This transcript contains all the
queries Xi to the construction, all the corresponding answers (Yi, Ci), as well as
all the query-answer pairs (Mi, (Ni, Ai)) and (Ui, (Vi, Bi)) of the subsystems, in
the order as they appeared during the execution. Conditioning over all possible
values of T , we have

PDS(Bk′′ |F 1
k ) =

∑
t

PDS
T |F 1

k
(t) · PDS

Bk′′ |TF 1
k
(t). (6)

Let now t be fixed such that PDS
T |F 1

k
(t) > 0, we need to prove PDS

Bk′′ |TF 1
k
(t) ≤

λk′′ (S2). Let us consider a player D′ defined as follows: it simulates the behavior
of the player DC(S1, ·). However, as long as the MBO A is not provoked, all its
choices are fixed to follow the transcript t. After these “cheated” choices, as soon
as the MBO A is provoked (and t ends), it simulates D, C and S1 faithfully.
Let j denote the number of queries issued to S2 in t, let uj and vj denote these
queries and the corresponding answers, respectively. For the described player D′,
we have

PDS
Bk′′ |TF 1

k
(t) = PD′S2

Bk′′ |UjV jBj
(uj , vj)

≤ max
D

PDS2

Bk′′ |UjV jBj
(uj , vj)

= νk′′−j(S[uj , vj0j ])
≤ λk′′ (S2),

and since
∑

t PDS
T |F 1

k
(t) = 1, from (6) we have PDS(Bk′′ |F 1

k ) ≤ λk′′ (S2). The

same argument gives us a symmetric bound for PDS(Ak′ |F 2
k ) and concludes the

proof. ��

4 Free-Start Distinguishing

The notion of winning a game with a free start, captured by the quantity λk(S),
has a counterpart in the language of systems indistinguishability, which we now
define formally.

Definition 7. For any random systems S and T, we define the free-start dis-
tinguishing advantage of S and T to be

Λk(S,T) := max
j,xj ,yj

Δk−j(S[xj , yj ],T[xj , yj]),

where the maximization goes over all j ∈ {0, . . . , k − 1} and all xj , yj such that
the systems on the right side are defined.
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Informally, suppose that the distinguisher is allowed to choose an arbitrary tran-
script xjyj compatible with both the systems it is supposed to distinguish,
project them to the states described by this transcript and then try to distin-
guish the resulting systems with the remaining k − j queries. Then the quantity
Λk(S,T) denotes the optimal advantage it can achieve.

To demonstrate the relationship between λk and Λk, we exploit the connection
between distinguishing two systems and winning an appropriately defined game
described in [6]. Let us consider the setting with a real system F (e.g. a random
function) and an ideal system I (e.g. a uniform random function). Using Lemma 2
(and, in particular, condition (5)), we can add MBOs to the systems F and I to
obtain systems F̂ and Î such that νk(〈F̂/Î〉) = Δk(F, I) and the systems behave
identically as long as the MBO is not provoked. Since provoking this MBO
corresponds to distinguishing the systems, one can expect νk−j(〈F̂/Î〉[xj , yj0j])
to be related to the advantage in distinguishing F and I projected to the state
described by the transcript xjyj on the remaining k−j queries. In the following,
we capture this intuition.

Lemma 4. Let F and I be two random systems, let F̂, Î be the systems obtained
from F, I by adding the MBOs according to Lemma 2 and condition (5). Then
we have

νk(〈F̂/Î〉[xj , yj0j]) = Δk(F̂[xj , yj0j]−, Î[xj , yj0j]−)

for any xj,yj such that the system on the left side is defined.

Proof. First note that νk(〈F̂/Î〉[xj , yj0j ]) = νk(F̂[xj , yj0j]), hence it suffices to
prove νk(F̂[xj , yj0j]) = Δk(F̂[xj , yj0j]−, Î[xj , yj0j]−). We prove this claim by
showing that the MBO of F̂[xj , yj0j], originally defined to capture the differences
between F and I, keeps the properties guaranteed by Lemma 2 also with respect
to the systems F̂[xj , yj0j]− and Î[xj , yj0j ]−. We achieve this by showing that
the system F̂[xj , yj0j ] satisfies the condition (5) with respect to the systems
F̂[xj , yj0j]− and Î[xj , yj0j]−. Seeing this, the claim follows from Lemma 2.

Throughout the proof let p denote the probability pF̂
Y jAj |Xj (yj , 0j , xj) =

pÎ
Y jAj |Xj (yj , 0j, xj) (by the assumptions of the lemma, p > 0). We first show

that the relevant probabilities describing the behavior of the random system
F̂[xj , yj0j] (and Î[xj, yj0j ]) correspond to the probabilities describing the origi-
nal system F̂ (and Î) scaled by the factor 1/p. More precisely, we have

p
F̂[xj ,yj0j ]
Y i|Xi (yi, xi) =

∑
ai∈ms(i)

p
F̂[xj ,yj0j ]
Y iAi|Xi (yi, ai, xi)

=
1
p
·

∑
ai∈ms(i)

pF̂
Y j+iAj+i|Xj+i(yjyi, 0jai, xjxi)

=
1
p
· pF̂

Y j+iAj |Xj+i(yjyi, 0j, xjxi)
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and similarly p
Î[xj ,yj0j ]
Y i|Xi (yi, xi) = 1

p · pÎ
Y j+iAj |Xj+i(yjyi, 0j, xjxi). We can use this

to express the quantity m
F̂[xj ,yj0j ]−,Î[xj ,yj0j ]−

xi,yi as

m
F̂[xj ,yj0j ]−,Î[xj ,yj0j ]−

xi,yi = min
{

p
F̂[xj ,yj0j ]−

Y i|Xi (yi, xi), pÎ[xj ,yj0j ]−

Y i|Xi (yi, xi)
}

=
1
p
· min

{
pF̂

Y j+iAj |Xj+i(yjyi, 0j , xjxi),

pÎ
Y j+iAj |Xj+i(yjyi, 0j , xjxi)

}

=
1
p
· pF̂

Y j+iAj+i|Xj+i(yjyi, 0j+i, xjxi) (7)

=
1
p
· mF̂,Î

xjxi,yjyi .

To justify the step (7), note that from the condition (5), which is satisfied for F̂
and Î, we have pF̂

Y j+iAj+i|Xj+i(yjyi, 0j+i, xjxi) = pÎ
Y j+iAj+i|Xj+i(yjyi, 0j+i, xjxi)

and also pY j+iAj |Xj+i(yjyi, 0j , xjxi) = pY j+iAj+i|Xj+i(yjyi, 0j+i, xjxi) for at
least one of the systems F̂ and Î.

Now we can verify that the condition (5) is satisfied also for the system
F̂[xj , yj0j] with respect to the systems F̂[xj , yj0j]− and Î[xj , yj0j ]−. For the
first equation of (5), we have

p
F̂[xj ,yj0j ]
Y iAi|Xi (yi, 0, xi) =

1
p
· pF̂

Y j+iAj+i|Xj+i(yjyi, 0, xjxi)

=
1
p
· mF̂,Î

xjxi,yjyi = m
F̂[xj ,yj0j ]−,Î[xj ,yj0j ]−

xi,yi

and since clearly p
F̂[xj ,yj0j ]
Y i|Xi (yi, xi) = p

F̂[xj ,yj0j ]−

Y i|Xi (yi, xi), the second equation of

(5) is satisfied as well. Therefore, by Lemma 2(iv), we have νk(F̂[xj , yj0j]) =
Δk(F̂[xj , yj0j ]−, Î[xj , yj0j ]−). ��

Lemma 4 involves the systems F̂ and Î projected to a specific state, but it is
more desirable to consider the original systems F and I instead. This is achieved
by the following lemma.

Lemma 5. In the setting described in Lemma 4, we have

Δk(F̂[xj , yj0j ]−, Î[xj , yj0j ]−) ≤ Δk(F[xj , yj ], I[xj , yj ])

for any xj,yj such that the systems on the left side are defined.

Proof. To prove the lemma, we show that for any distinguisher D we have
δD
k (F̂[xj , yj0j]−, Î[xj , yj0j ]−) ≤ δD

k (F[xj , yj ], I[xj , yj ]). Without loss of gener-
ality, let us assume pF

Y j |Xj (yj , xj) ≥ pI
Y j |Xj (yj , xj), otherwise the proof would
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be symmetric. This assumption implies Î[xj , yj0j]− ≡ I[xj , yj ], hence it suffices
to prove

δD
k (F̂[xj , yj0j ]−, I[xj , yj ]) ≤ δD

k (F[xj , yj ], I[xj , yj ]).

Using (4) to express both sides of this inequality, we see that we only need to
prove that for all xk ∈ X k and yk ∈ Yk,

p
F̂[xj ,yj0j ]−

Y k|Xk (yk, xk) < p
I[xj ,yj ]

Y k|Xk (yk, xk) ⇒ p
F[xj ,yj ]

Y k|Xk (yk, xk) ≤ p
F̂[xj ,yj0j ]−

Y k|Xk (yk, xk).
(8)

In the systems I[xj , yj ], F[xj , yj ] and F̂[xj , yj0j]−, the conditional distributions
pY k|Xk(yk, xk) are given by the following expressions, respectively:

p
I[xj ,yj ]

Y k|Xk (yk, xk) =
pI

Y j+k|Xj+k(yjyk, xjxk)

pI
Y j |Xj (yj , xj)

(9)

p
F[xj ,yj ]

Y k|Xk (yk, xk) =
pF

Y j+k|Xj+k(yjyk, xjxk)

pF
Y j |Xj (yj , xj)

(10)

p
F̂[xj ,yj0j ]−

Y k|Xk (yk, xk) =
pF̂

Y j+kAj |Xj+k(yjyk, 0j , xjxk)

pF̂
Y jAj |Xj (yj, 0j , xj)

(11)

Informally, the conditional distributions pY k|Xk of the systems I[xj , yj ], F[xj , yj ]
and F̂[xj , yj0j]− are again related to the conditional distributions pY j+k|Xj+k of
the original systems (I, F, and F̂ with Aj = 0, respectively) by some scaling
factors (the denominators in the above equations). The factor turns out to be
the same for I[xj , yj ] and F̂[xj , yj0j ]−, however for F[xj , yj ] it may be different.
This results into a different scaling of the distributions for F̂[xj , yj0j]− and
F[xj , yj ] and allows us to show that (8) is indeed satisfied. A more detailed
argument follows.

Let us fix xk and yk such that p
F̂[xj ,yj0j ]−

Y k|Xk (yk, xk) < p
I[xj ,yj ]

Y k|Xk (yk, xk). By

the definition of Ai we have pI
Y j |Xj (yj , xj) = pF̂

Y jAj |Xj (yj , 0j, xj), hence by

comparing the equations (9) and (11) we get pF̂
Y j+kAj |Xj+k(yjyk, 0j, xjxk) <

pI
Y j+k|Xj+k(yjyk, xjxk). This in turn implies pF̂

Y j+kAj+k|Xj+k(yjyk, 0j+k, xjxk) <

pI
Y j+k|Xj+k(yjyk, xjxk). Now, recalling that the MBO Ai is defined to satisfy the

properties (5), we see that pF
Y j+k|Xj+k(yjyk, xjxk) < pI

Y j+k|Xj+k(yjyk, xjxk) and

therefore also pF̂
Y j+kAj+k|Xj+k(yjyk, 0j+k, xjxk) = pF

Y j+k|Xj+k(yjyk, xjxk). This

in turn implies pF̂
Y j+kAj |Xj+k(yjyk, 0j , xjxk) = pF

Y j+k|Xj+k(yjyk, xjxk), hence the
numerators in (10) and (11) are the same. The denominators are easy to com-
pare, it obviously holds pF

Y j |Xj (yj , xj) ≥ pF̂
Y jAj |Xj (yj , 0j , xj), hence from (10)

and (11) we obtain p
F[xj ,yj ]

Y k|Xk (yk, xk) ≤ p
F̂[xj ,yj0j ]−

Y k|Xk (yk, xk), completing the proof
of (8). ��
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Note that combining the technical Lemmas 4 and 5 gives us

λk(〈F̂/Î〉) = max
j,xj ,yj

Δk−j

(
F̂[xj , yj0j]−, Î[xj , yj0j]−

)
≤ Λk(F, I) (12)

for the systems described above.

5 Connection to Indistinguishability Amplification

We are now ready to prove our main theorem. First we define some intuitive no-
tation: by DC(·,J) we denote the class of distinguishers obtained by connecting
any distinguisher to C(·,J) and placing the system to be distinguished as the
first subsystem. The class of distinguishers DC(I, ·) is defined analogously.

Theorem 1. Let C(·, ·) be a neutralizing construction for the pairs (F, I) and
(G,J) of systems. Let Q denote the system C(I,J). Then, for all k,

Δk(C(F,G),Q) ≤ 2
(
δ
DC(·,J)
k′ (F, I) · Λk′′ (G,J) + δ

DC(I,·)
k′′ (G,J) · Λk′(F, I)

)
.

Proof. We use the technique from the proof of Theorem 1 in [6] to transform
the task of distinguishing C(F,G) from Q to the task of provoking the MBO of
the system S := Ĉ(〈F̂/Î〉Z1 , 〈Ĝ/Ĵ〉Z2 ), where F̂, Î and Ĝ, Ĵ are obtained using
Lemma 2 from F, I and G, J, respectively; and Ĉ is the same construction as C
except that it also has an MBO, which is defined as the AND of the two internal
MBOs. Then we use a different approach to bound the value νk(S), exploiting
the concept of free-start distinguishing.

First, by Lemma 1 (ii) we have Δk(C(F,G),Q) = 2 · Δk(〈C(F,G)/Q〉Z ,Q)
and by Lemma 1 (i) Δk(〈C(F,G)/Q〉Z ,Q) is the optimal advantage in guess-
ing the uniform random bit Z ′ in the system 〈〈C(F,G)/Q〉Z/Q〉Z′ . However,
thanks to the neutralizing property of C(·, ·). it can be easily verified that
〈〈C(F,G)/Q〉Z/Q〉Z′ ≡ C(〈F/I〉Z1 , 〈G/J〉Z2) for independent uniformly ran-
dom bits Z1 := Z and Z2 := Z ⊕ Z ′. Hence, Δk(〈C(F,G)/Q〉Z ,Q) is also the
optimal advantage in guessing the bit Z ′ = Z1 ⊕ Z2 in C(〈F/I〉Z1 , 〈G/J〉Z2).

We can now extend the systems F and I by adding MBOs satisfying the
equations (5) to obtain the systems F̂ and Î with the properties guaranteed by
Lemma 2. Similarly, we can extend G and J and obtain the systems Ĝ and Ĵ.
Since the MBO in S can always be ignored, the task of guessing Z1⊕Z2 can only
be easier in S compared to C(〈F/I〉Z1 , 〈G/J〉Z2). However, as long as one of the
MBOs in the subsystems of S is 0, the advantage in guessing the corresponding
bit Zi is 0 and hence also the advantage in guessing Z1 ⊕Z2 is 0. Therefore the
latter advantage can be upper-bounded by νk(S).

Using Lemma 3, for any distinguisher D we have

νD
k (S) ≤ PDS(F 1

k ) · λk′′ (〈Ĝ/Ĵ〉) + PDS(F 2
k ) · λk′ (〈F̂/Î〉).

Let us first bound the term PDS(F 1
k ). Since 〈F̂/Î〉� ≡ F̂� and 〈Ĝ/Ĵ〉� ≡ Ĵ�,

we have PDS(F 1
k ) = PDĈ(F̂,Ĵ)(F 1

k ). Moreover, PDĈ(F̂,Ĵ)(F 1
k ) ≤ νD

k (C(F̂,J))
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since on the left side, we only consider the MBO of F̂ being provoked first,
while on the right side is the probability of it being provoked at any time.
Obviously νD

k (C(F̂,J)) ≤ ν
DC(·,J)
k′ (F̂) and by Lemma 2 we have ν

DC(·,J)
k′ (F̂) =

δ
DC(·,J)
k′ (F, I). By a symmetric reasoning we obtain PDS(F 2

k ) ≤ δ
DC(I,·)
k′′ (G,J).

Finally, using (12) we obtain the bounds λk′′ (〈Ĝ/Ĵ〉) ≤ Λk′′(G,J) and λk′ (〈F̂/

Î〉) ≤ Λk′(F, I), which together conclude the proof. ��
For the two particular neutralizing constructions that motivate our analysis, we
obtain the following corollaries.

Corollary 1. Let F and G be (X ,Y)-random functions, let � be a quasi-group
operation on Y. Then, for all k,

Δk(F � G,R) ≤ 2
(
ΔNA

k (F,R) · Λk(G,R) + ΔNA
k (G,R) · Λk(F,R)

)
.

Proof. Applying Theorem 1 to the neutralizing construction F � G, it only
remains to prove that D(· � R) corresponds to the class of non-adaptive dis-
tinguishers. This is indeed the case, since any distinguisher will only receive
random outputs from F � R. It could simulate these outputs itself, ignoring the
actual outputs, thus operating non-adaptively. The same holds for the class of
distinguishers D(R � ·). Recalling that δNA

k (S,T) = ΔNA
k (S,T) for any systems

S, T completes the proof. ��
Corollary 2. Let F and G be (X ,X )-random permutations, let G be cc-stateless.
Then, for all k,

Δk(F � G,P) ≤ 2
(
ΔNA

k (F,P) · Λk(G,P) + ΔRI
k (G,P) · Λk(F,P)

)
.

Proof. Again, when applying Theorem 1 to the neutralizing construction F �G,
we need to justify that the distinguisher classes D(·�P) and D(P� ·) correspond
to NA and RI, respectively. In the first case, the distinguisher only receives ran-
dom outputs, so it can again simulate them itself and hence corresponds to a
non-adaptive distinguisher. In the second case, the distinguisher D(P � ·) can
only provide random inputs to the distinguished system, with the possibility of
repeating an input. However, since both G and P are cc-stateless permutations,
repeated inputs will only produce repeated outputs and hence cannot help the
distinguisher. ��

6 Conclusion and Further Research

Our main theorem unifies the claims of both Theorem 1 and Theorem 2 in [6]
under reasonable assumptions. To see this, let us focus for example on the natural
case of random functions, assuming F ≡ G and I ≡ J ≡ R. Our theorem gives a
better bound than Theorem 2 in [6] as long as Λk(F,R) < 1/2. It also improves
the bound from Theorem 1 in [6] as long as

Λk(F,R)
Δk(F,R)

<
1
2
· Δk(F,R)
ΔNA

k (F,R)
.
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This means, loosely speaking, that the improvement occurs as long as the ratio
of advantage gained from the free choice of state is smaller than the ratio of
advantage gained from extending the distinguisher class.

This improvement is significant for any random function F that satisfies the
conditions

ΔNA
k (F,R) � Δk(F,R) ≈ Λk(F,R) � 1.

As an example, consider the simple cc-stateless random function F : {0, 1}n →
{0, 1}n that behaves as follows: with probability 2−n/2 it satisfies the (adaptively
verifiable) condition F(F(0)) = 0 and the remaining values (including F(0)) are
chosen uniformly at random, in the rest of the cases (with probability 1−2−n/2)
F behaves exactly like R.

In general, a small Δk(F,R) does not necessarily imply a small Λk(F,R), since
it is easy to construct a counterexample where some specific initial transcript
leads to a behavior that is easy to distinguish from the ideal system. However,
a small value of Λk(F,R) may be considered a desirable requirement for a good
quasi-random function.

Although it is not difficult to define the concept of free-start distinguishing
in the computational setting, our main result does not translate to this setting.
This is because such a translation would imply that for example composition of
non-adaptively secure pseudo-random permutations is adaptively secure, which
would contradict the results in [10] under standard assumptions. Therefore, the
implications of our result for the computational setting remain an open question.

Acknowledgements. This research was partially supported by the Swiss Na-
tional Science Foundation (SNF) project no. 200020-113700/1 and by the grants
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