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Abstract. It was recently pointed out that there is a close connection between
information-theoretic key agreement and quantum entanglement purification.
This suggests that the concept of bound entanglement (entanglement which
cannot be purified) has a classical counterpart: bound information, which can-
not be used to generate a secret key by any protocol. We analyze a probability
distribution which results when a specific bound entangled quantum state is
measured. We show strong evidence for the fact that the corresponding mu-
tual information is indeed bound. The probable existence of such information
contrasts previous beliefs in classical information theory.

1. Information-Theoretic Key Agreement from Classical and
Quantum Information

Assume that two parties Alice and Bob, who are connected by an authentic but
otherwise completely insecure channel, are willing to generate a secret key (allow-
ing them to communicate securely). More precisely, Alice and Bob want to com-
pute, after some rounds of communication (where the random variable C' summa-
rizes the communication carried out over the public channel), strings S4 and Sg,
respectively, with the property that they are most likely both equal to a uniformly
distributed string S about which the adversary Eve has virtually no information.
More precisely,

Prob[Sa=Sp=5]>1-¢, H(S)=log,|S|, and I(S;C)<e (1)

(where S is the range of S and |S] is its cardinality) should hold for some small .
Note that the security condition in (1) is information-theoretic (sometimes also
called unconditional): Even an adversary with unlimited computer power must be
unable to obtain useful information. The Diffie-Hellman protocol [1] for instance
achieves the goal of key agreement by insecure communication only with respect
to computationally bounded adversaries.

It is a straight-forward generalization of Shannon’s well-known impossibil-
ity result [13] that information-theoretic secrecy cannot be generated in this set-
ting, i.e., from authenticity only: Public-key systems are never unconditionally
secure. Hence we have to assume some additional structure in the initial setting,
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for instance some pieces of information given to Alice and Bob (and also Eve),
respectively.

1.1. Classical Information

The general case where this information given to the three parties initially consists
of the outcomes of some random experiment has been studied intensively [9], [10],
[14]. Here, it is assumed that Alice, Bob, and Eve have access to realizations of
random variables X, Y, and Z, respectively, jointly distributed according to Pxy z.
A special case is when all the parties receive noisy versions of a (binary) signal
broadcast by some information source.

Tt was shown that if the setting is modified this way (where the secrecy
condition in (1) must be replaced by I(S;C'Z) < ¢), then secret-key agreement is
often possible. Shannon’s pessimistic result now generalizes to the statement that
the size of the resulting secret key S cannot (substantially) exceed the quantity

I(X;Y | Z):= min _I(X;Y|Z)
XY—=>Z—2Z
(where XY — Z — Z is a Markov chain) which was defined in [10] as the intrinsic
conditional information between X and Y, given Z.

In the special case where the parties’ initial information consists of the out-
comes of many independent repetitions of the same random experiment given by
Pxyz (i.e., Alice knows XV := [Xy, X5, ..., Xy], and similarly for Bob and Eve),
the secret-key rate S(X;Y||Z) was defined as the maximal key-generation rate
(measured with respect to the number of required realizations of Pxyz) that is
asymptotically achievable (for N — oc). The above-mentioned result then implies

S(X;Y|Z) <I(X3Y]Z)

and it was conjectured that intrinsic information can always be distilled into a
secret key, i.e., that I(X;Y ] Z) > 0 implies S(X;Y||Z) > 0 [10], [14]. This con-
jecture was supported by some evidence given in [10]; however, it is the objective
of this paper to give much stronger evidence for the opposite, i.e., that there exist
types of intrinsic information not allowing for secret-key agreement. The motiva-
tion for the corresponding considerations comes from quantum mechanics or, more
precisely, from the concept of bound entanglement in quantum information theory.

1.2. Quantum Information

When considering the model where certain pieces of information are given initially
to the involved parties, it is a natural question where this information comes from.
According to Landauer, information is always physical and hence ultimately quan-
tum mechanical [7], [8]. Thus the random variables could come from measuring a
certain quantum state |¥). In this case however it seems to be overly restrictive
to force Alice and Bob to measure their quantum systems right at the beginning
of the key-agreement process. It is possibly advantageous for them to carry out
a protocol first (using classical communication and local quantum operations on
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their systems) after which they end up with a number of quantum bits in a maxi-
mally entangled state. Measuring them finally leads to a (classical) secret key. The
first phase of this protocol is called quantum (entanglement) purification.

In order to understand what happens in a purification protocol and for which
initial states such a protocol is at all possible, we recall some basic facts about
quantum (information) theory®. In contrast to a classical bit (Cbit for short) which
can take either of the values 0 or 1, a quantum bit (Qbit) can exist in a superpo-
sition of these two extremal states (with complex probability amplitudes a and b
satisfying |a|? + b2 = 1):

1) = al0) + b[1) .
When measuring this state with respect to the basis {|0}, |1)}, we obtain |0) with
probability |a|? and |1) otherwise. All (pure) states of one Qbit can be represented

as unit vectors in the Hilbert space C2.
A possible state of a system of two Qbits can be

[¥) = |1) @ [h2) =: [Y12) ,
which is simply the tensor product of the states |¢1) and |12} of the first and second
Qbit, respectively. Such a state is called a product state. However, (normalized)
linear combinations of quantum states lead to additional states; for instance,
%) = (101) - [10)) /V2

is also a possible state of the two-Qbit system. This state is called singlet state
and has the property that whenever the QQbits are measured with respect to the
same basis, the outcomes are opposite bits. There is no classical explanation for
this behavior which is called (mazimal) entanglement. We conclude that two Qbits
are not the same as “two times one Qbit.”

As described above, the objective of Alice and Bob doing quantum purifica-
tion is to generate two-Qbit systems in the state 1)~ ) (or in states very close to it)
by classical communication and local quantum operations. The states they start
with can for instance be their view of a pure state |¥) living in Alice’s, Bob’s, and
a possible adversary Eve’s (who is assumed to have total control over the entire
environment) Hilbert spaces:

|¥) € Hatice ® Hpob @ Hpye -
Then Alice and Bob’s perspective

v))

(the trace over Eve’s space Hpye) is generally a mized state. In contrast to a pure

paB = Trgg,, (

state, which can be represented by a vector in a Hilbert space, a mixed state is
described by a probability distribution over such a space?. A mixed state, such as
pAB, can be represented by a (dim H gjice) - (dim Hpep) X (dim H ajice) - (dim Hpep)

1For an introduction, see for example [11].
2Note that the notion of mixed state is actually rather information-theoretic than physical.
Roughly speaking, a mixed state is a pure state that is only partially known.
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matrix, namely the weighted sum (with respect to the probability distribution) of
the projectors to the subspaces generated by the corresponding pure states. This
matrix is called density matriz.

It is important to note that “purification,” which transforms the mixed state
pap into pure (singlet) states, actually means key agreement: Alice and Bob’s
final state is pure and hence not entangled with anything else, in particular not
with anything under Eve’s control. The adversary is out of the picture, whatever
operations and measurements she performs.

Let us consider some properties of mixed states. A state p4p which is separa-
ble, i.e., a mixture of product states, can be prepared remotely by purely classical
communication. States that are not separable are called entangled and cannot be
prepared this way. It is a natural question which states pap can be purified and
which cannot. Separable states cannot be purified because of the property just de-
scribed and because of the generalization of Shannon’s theorem mentioned at he
beginning of this paper: No information-theoretic key agreement is possible from
authentic but public (classical) communication. On the other hand, if Alice’s and
Bob’s subsystems are two-dimensional (i.e., Qbits) and entangled, then purifica-
tion is always possible [4]. However, the surprising fact was recently discovered
that the same is not true for higher-dimensional systems: There exist entangled
states which cannot be purified [5]. (This follows from the fact that the eigenval-
ues of the so-called partial transposition of certain entangled density matrices pap
are non-negative [12].) This type of entanglement is called bound (in contrast to
free entanglement, which can be purified). From the perspective of classical infor-
mation theory, the interesting point is that bound entanglement seems to have a
classical counterpart with unexpected properties.

2. Linking the two Models

It was shown in [2] that there exists a close connection between the classical- and
quantum-information-based secret-key-agreement scenarios, where the transition
from quantum to classical information corresponds to certain measurements.

The following result was shown in [2]. Let |¥) be a pure quantum state of
Alice, Bob, and Eve’s systems, and let pap be the corresponding mixed state of
Alice and Bob (obtained by tracing over Eve’s space). Then the distribution Pxy z,
resulting from optimal measurement of |¥) by all the parties, has positive intrin-
sic conditional information, I(X;Y | Z) > 0, if and only if p4p is an entangled
state. By assuming “optimal measurement” we mean here the following statement.
Whenever pap is entangled, but only then, there exist, for all possible measure-
ments Eve can do (i.e., for all bases or, more generally, generating sets {|z)} she
can choose to measure with respect to), measurement bases {|z)} and {|y)} for
Alice and Bob, respectively, such that I(X;Y | Z) > 0 holds for the distribution
Pxyz(z,y,2) = {z,y, 2| )%
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Given this result, it is natural to assume that the same is true also on the pro-
tocol level, i.e., that pap can be purified if and only if the corresponding distribu-
tion Pxyz (again with respect to optimal measurements) satisfies S(X;Y||7Z) > 0.
However, this correspondence could not be generally proven so far. An interesting
consequence of such a proof would be that bound entanglement has a classical
counterpart, namely classical information which cannot be used for generating a
secret key. We will call such information bound. The existence of bound information
would contrast previous beliefs in classical information theory.

Although the connection between classical key agreement and quantum pu-
rification has not been proven in generality, we give, in the next section, new inde-
pendent evidence that bound information does exist. The arguments are based on
the analysis of a distribution coming from the “translation” of a bound entangled
state described in [6].

3. Bound Information and Binarizations

We analyze a distribution that results from measuring a bound entangled quantum
state, described in [6], with respect to the standard bases. Without even having
a closer look at the state or the optimality of the measurements performed, we
give direct evidence for the fact that this distribution yields an example of bound
intrinsic information.

The distribution we consider is the following. Let 0 < o < 3.

X 1 2 3

Y (%)
1 0)2/21 | (1) 6—a)/21] (2) a/21
2 (3) /21 0)2/21 | (@) b—a)/21
3 [6G) G-a)/2L| (6) a/21 (0) 2/21

(This table reads as follows: We have for instance Pxyz(1,1,0) = 2/21 and
Pxyz(1,1,z) = 0 for z # 0.) The corresponding quantum state |¥,) is known
to be free entangled for a € [0, 1), bound entangled for a € [1,2), and separable
for @ € [2, 3]. Not surprisingly, the above distribution satisfies I(X;Y]Z) > 0 for
a € [0,2), but a secret-key agreement protocol is known only for « € [0, 1). In the
following, we give evidence for the fact that there does not exist such a protocol
for @ € [1,2). More precisely, we show the following facts for this case.

First, we prove that whenever the random variable Y is “binarized,” i.e., sent
through a binary-output channel P_'IY (or a ternary-output channel but where only
two symbols are actually considered in the computation of the mutual informa-
tion), then the intrinsic information vanishes (Proposition 1).

Proposition 2 on the other hand suggests that intrinsic information which
does not resist any binarization must be bound: Whenever secret-key agreement
is possible with X and Y and with respect to Z, then there exist binarizations of
a certain number of repetitions of X and Y such that the intrinsic information
remains positive.
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These two propositions together suggest that the given distribution is indeed
bound entangled. (However, note that they do not prove this.)

Proposition 1. Assume the above distribution with a € [1,2). Let PVIY be an ar-

bitrary conditional distribution with Y = {0,1,A}, and let E be the event that
Y €{0,1}. Then I(X;Y | Z| E) = 0.

Proof. We only have to consider the case a = 1. This implies the statement for all
a € [1,2). Let the following channel Py be given (where Y = {0,1, A}):
P7|Y(0’ 1) = =z, P?|Y(Ov 2y =y, P}—,ly(O,S) =z,

Pry(L1) = u, Ppy(L,2) = v, Pyy(1,3) w .

Here, we have z,y, z, u,v,w,z+ u,y + v,z + w € [0, 1]. We get the following dis-
tribution Pyy 5 (to be normalized).

X 1 2 3
Y (2)
(0) 2z | (0) 2y | (0) 2z
0 By | (H4dz | (2) =
(5) 4z | (6) z | (4) 4y
(0) 2u | (0) 2v | (0) 2w
1 3o | (H)4du]| (2)u
(5) 4w | (6) w | (4) 4v

Furthermore, P7|Z(6’ 1) = ¢ and P7|Z(T7 1) = 1 — ¢, and analogously for 7 =
2,3,4,5, and 6 with transition probabilities e, a, f, b, and d, respectively. Then we
get for the column vectors of the Pyy7_g matrix:

2(0) () + o () ae(Z) 2 (0) +a5) () + oo (2) +2(5)]

Clearly, the three vectors are linearly dependent. We can assume that

() =2 ()+()

holds for some Ay, A2 € [0,00). (The other cases are analogous.)
Let §:= (Y) and = (). We then get for the above matrix
[(a 4 2X1)5 + (4b+ 2X2)1, (2 4 4eX1)5 + (d + 4eA)T, (4F + eXr)5+ (2 + eg)t ] .
The corresponding distribution satisfies I(X;Y|Z =0, E) = 0 if
Cl—|—2)\1 _ 2—}-40)\1 _ 4f—|—6A1
4b+2)\2 a d+4c)\z o 2+6)\2
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holds. This is equivalent to
A1(2d — 16be) + Az(dac—4) = 8b—ad,
A1(4 — 4be) + Az(ae —8f) = 16bf —2a .
We show that this system is solvable, with (a, b, ¢, d, e, f) € [0, 1]5, for all A1, Ay €
[0, 00). For this, we prove that for all sufficiently large numbers R > 0, the equa-
tions are solvable for all pairs (A1, A2) on the path (0, 0)-(R,0)-(R, R)-(0, R)-(0,0),
and that the corresponding path in [0, 1] is homeomorphic to S1. Then the claim
follows by a simple topological argument.
We only sketch the remainder of the proof. For (A1, Az) = (0, 0), the equations
are solvable by setting
d=f=1 and 8 =d. (2)
For (A1, A2) = (R,0), where we assume R to be sufficiently large, a solution is
given by
bren 1l and d= 8¢
(where additionally both equations of (2) should not be satisfied nor approximately
satisfied). For (A1, A2) = (R, R), the equalities are
R(2d — 16bc + 4ac —4) = 8b—ad
R(4 —4be + ae — 8f) = 16bf —2a
with a possible approximate solution
brem~0, crndrl, an fr1/2.
Finally, the case (A1, Az) = (0, R) can be solved by
arncr ]l and en 8f .

When combining the solutions for the different cases, it is not difficult to see that
there exists a path v in [0, 1]® that, mapped to the (A1, A2) plane, exactly corre-
sponds to the square (0, 0)-(R, 0)-(R, R)-(0, R)-(0, 0). This is true for all sufficiently
large R, and thus the argument is finished. a

Proposition 2. Let X, Y, and 7 satisfy S(X;Y||Z) > 0. Then there exist a number
N and ternary-output channels Py xn and Pgyn (with ranges X =Y = {0,1, A}
of X andY , respectively) such that the event E defined by X # A # Y has positive
probability and I(X;Y | ZN | E) > 0 holds.

Proof sketch. Let £ > 0 to be determined later. Then, according to the definition of
the secret-key rate S(X;Y||Z), there exist N and a protocol that allows Alice and
Bob for computing K-bit keys Sa and Sp for some K > 1 such that Sy = Sp =S
holds with probability at least 1—¢, where S is a uniformly distributed K-bit string
with H(S|CZN) > K — ¢ if C is the communication exchanged over the public
channel. We construct new random variables X’ := [X" R ] and Y’ := [YV, Rp],
where R4 and Rp are random strings independent from each other and from all



8 N. Gisin, R. Renner, and S. Wolf

the rest, in such a way that we can assume the protocol to take X’ and Y/ as inputs
and to be deterministic. Then there must exist a communication string ¢ which
occurs with positive probability and is such that Prob[S4 = Sp =S|C=¢] =1
and H(S|ZN,C = ¢) > K—¢/(1—¢) hold. Let us consider the following mappings
of the ranges X' and Y’ of X’ and Y’ respectively, to {0, 1, A}. If the communi-
cation c is possible from a particular value z’ € X', then z’ is mapped to the first
bit of the resulting secret key S4; otherwise, z’ is mapped to A. The map from
Y’ to {0,1, A} is defined analogously. Then the event E corresponds to the event
that the communication C' actually equals ¢, and has hence positive probability.
Since R4 and Rp are independent of each other and of all the rest, these mappings
are (probabilistic) binarizations X and Y of XV and Y, respectively, satisfying
I(X;Y | ZN | E) > 0/if ¢ is small enough. O

4. Concluding Remarks

We have given evidence that a certain specific probability distribution has so-called
bound intrinsic information, i.e., information that cannot be used for generating a
secret key by any protocol. Although the motivation for considering this particular
distribution is that it results from measuring a bound entangled quantum state,
our arguments are purely classical.

The existence of bound information would contrast previous beliefs in the
context of unconditionally secure key agreement and be additional support for
the close connection between information-theoretic key agreement and quantum
purification conjectured in [2]. It should be pointed out that bound information
represents one of the very few examples where quantum information theory initi-
ates a new concept in classical information theory.
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