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Abstract

The classical results in unconditional multi-party computa-
tion among a set of n players state that less than n/2 passive
or less than n/3 active adversaries can be tolerated; assum-
ing a broadcast channel the threshold for active adversaries
is n/2. Strictly generalizing these results we specify the set
of potentially misbehaving players as an arbitrary set of sub-
sets of the player set. We prove the necessary and sufficient
conditions for the existence of secure multi-party protocols
in terms of the potentially misbehaving player sets.

For every function there exists a protocol secure against
a set of potential passive collusions if and only if no two of
these collusions add up to the full player set. The same con-
dition applies for active adversaries when assuming a broad-
cast channel. Without broadcast channels, for every func-
tion there exists a protocol secure against a set of potential
active adverse player sets if and only if no three of these sets
add up to the full player set.

The complexities of the protocols not using a broadcast
channel are polynomial, that of the protocol with broadcast
is only slightly higher.

1 Introduction

1.1 Secure multi-party computation

Consider a set of players who do not trust each other. Never-
theless they want to compute some agreed function of their
inputs in a secure way. Security here means maintaining
correctness of the output while keeping the players’ inputs
private. This is the well-known secure multi-party compu-
tation problem (e.g. [29, 21]). For an excellent overview see
[17, 3, 16].

There exists a rich literature on the subject. These ap-
proaches can be classified according to a number of cri-
teria that are briefly discussed below. Some papers (e.g.
[29, 21, 19, 2, 7, 27]) describe protocol constructors which
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for any function generate a protocol for securely comput-
ing it, while other approaches are tailored to a particular
function like voting (e.g. [10]), auctioning [15], or collec-
tive signing [28]. The major reason for considering special
functions is the potential gain of efficiency compared to a
general solution. The communication models differ with
respect to whether or not broadcast channels and/or se-
cure communication channels are available, and whether the
communication channels are synchronous or asynchronous.
Adversaries are classified according to their computational
resources (limited, hence cryptographic security, e.g. [8, 21],
or unlimited, hence unconditional or information theoretic
security, e.g. [2, 7, 27]), and according to whether they cheat
actively or passively. A set of active adverse players is called
an adversary, a set of passive cheaters is called a (passive)
collusion.

In the information-theoretic model one can distinguish
between protocols with small (e.g. [7, 27]) or with zero
failure probability (e.g. [2]). We refer to the latter as
perfect multi-party computation. The types of tolera-
ble adversaries have recently been generalized in a num-
ber of directions (adaptive adversaries [4] and uncoercibil-
ity [5]), and some authors have investigated multi-party
computation for various minimality and complexity criteria
[12, 11, 18, 26, 27, 22].

All previous results in the literature specify the sets of
potential adverse players (passive or active) that can be tol-
erated by their cardinality, i.e. by a threshold. In a setting
with perfect security, Ben-Or, Goldwasser and Wigderson
[2] proved that with n players all passive collusions with less
than n/2 members or, alternatively, all active adversaries
with less than n/3 members can be tolerated. We refer
to these two models as the passive and the active model.
The same results were obtained independently by Chaum,
Crépeau and Damg̊ard [7] in an unconditional model with
exponentially small error probability. Rabin and Ben-Or
[27] proved that, in an unconditional (but not perfect) model
with a broadcast channel, active adversaries with less than
n/2 members can be tolerated. This model is referred to as
the active model with broadcast.

1



1.2 Contributions of this paper

This paper is concerned with protocol constructors for arbi-
trary functions that provide unconditional security against
passive or active adversaries with unbounded computing
power. The security of the protocols in the passive and
active models is perfect, the protocols in the active model
with broadcast offer unconditional security with exponen-
tially small error probability.

The main goal of this paper is to generalize in all three
stated models the threshold-type results to general struc-
tures of adverse players. An adversary structure is a mono-
tone set of subsets of players and corresponds to the notion
of an access structure in the area of secret sharing (or, more
precisely, the complement of it).

Our main contributions can be summarized as follows.
First, we provide a framework for player substitution and de-
rive the corresponding tolerated adversary structures (The-
orems 1 and 2). Second, we give the exact characterization
of which collusion structures and which adversary structures
can be tolerated:

1. As a strict generalization of the threshold-type results
of [2, 7], we prove that in the passive model, perfect
multi-party computation for any function is possible if
and only if no two potential passive collusions add up
to the full player set.

2. As a strict generalization of the threshold-type result of
[2, 7] we prove that in the active model, perfect multi-
party computation for any function is possible if and
only if no three potential active adversaries add up to
the full player set.

3. As a strict generalization of the threshold-type result of
[27] we prove that in the active model with broadcast,
unconditional multi-party computation for any func-
tion is possible if and only if no two potential active
adversaries add up to the full player set.

Third, our results can also be seen in the context of veri-
fiable secret sharing: we implicitly provide such schemes for
general access structures, thereby solving some open prob-
lems stated at the end of Chapter 3 in Gennaro’s Ph.D. the-
sis [20].

The emphasis of this paper is on the existence of proto-
cols. In addition, the presented protocols for the passive and
the active model have time and communication complexities
polynomial in the size of the description of the adversary
structures1. The protocols for the active model with broad-
cast have complexities slightly greater than polynomial. Due
to the exponential size of the description of a general adver-
sary structure, our protocols are in general not (and cannot
be) polynomial in the number of players. Note that there
exist polynomial (in the number of players) protocols for
specific adversary structures (e.g. for threshold structures
[2] and certain other types of structures).

1.3 Motivation and outline

All protocols in the literature provide only security of a
threshold type. However, in a more general scenario the

1The constructions of polynomial protocols are based on joint work
with Matthias Fitzi [14].

set of tolerated dishonest players is not specified by a thres-
hold. As a first example, consider a set of five players,
P = {p1, p2, p3, p4, p5}, where the players of one of the sets
{p1, p2, p3}, {p1, p2, p4}, {p1, p5}, {p2, p4}, or {p3, p4} po-
tentially collude to try to obtain some information about
the other players’ inputs. Can the five players compute an
agreed function privately in the sense that none of the stated
potential collusions obtains any information about the other
players’ inputs beyond what is provided by the function out-
put? For this particular case, they can. By assigning an
integer valued weight wi to each player pi and having every
player act for wi players in the threshold-type protocol of
[2] they can tolerate the stated collusions. In the passive
model, privacy is guaranteed if and only if

∑
dishonest pi

wi <
1

2

∑
pi∈P

wi .

In the active model, security is guaranteed if and only if

∑
dishonest pi

wi <
1

3

∑
pi∈P

wi .

In the above example, p1 and p2 are assigned the
weights w1 = w2 = 1, p3 and p4 are assigned the weights
w3 = w4 = 2 and p5 is assigned the weight w5 = 3. This
results in a total weight of 9. The multi-party protocol of
[2] among 9 players for the passive model tolerates all col-
lusions with at most 4 members. One can easily verify that
all stated subsets have total weight at most 4.

This simple example shows that for some particular sets
of potential collusions it is possible to construct a protocol
that tolerates them. However, such generalized threshold-
type results are not sufficient for capturing general scenarios
of mutual trust and distrust. For example, assume that
a number of spy-masters wish to compute a list of dou-
ble agents [6], i.e., agents working for at least two different
countries, without revealing the agent lists to each other.
Because countries are often either allied or in a hostile rela-
tion, the above threshold argument does generally not cover
this type of problem2; hence it is necessary to exactly spec-
ify the sets of countries whose collective cheating must be
tolerable in the protocol. Solving this problem in its most
general form is the main contribution of this paper.

The outline of the paper is as follows. In Section 2 we for-
malize protocols and potential adversaries and describe the
three different models we consider. In Section 3 we show
what it means to replace a player by a subprotocol and we
derive the exact tolerated adversary structures for proto-
cols in which players are substituted by other multi-party
protocols involving a certain set of players. The exact char-
acterization of tolerable adversary sets for both models are
presented in Section 4. Some open problems are mentioned
in Section 5.

2For example for n = 7 players, this technique only applies to 19%
of the sets of collusions that can be tolerated with the constructions
of this paper, and for larger n the fraction decreases rapidly.
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2 Definitions and models

2.1 Players

There are three types of players in a multi-party computa-
tion protocol: Players providing inputs, players receiving
outputs, and players performing the actual computation.
The set of players performing the actual computation is de-
noted by P . The set of all players, including input, output
and computation players, is denoted by P̂ . P and P̂ are not
necessarily equal (but P ⊆ P̂ ). In the construction of proto-
cols we will also use virtual players. A virtual player is the
name of a player to which no real player is associated and
that is used only as an auxiliary notation. The name space
of all possible virtual players is denoted by V . Usually we
will refer to players by pi, where i is positive for real players
and negative for virtual players.

2.2 Variables

We consider a (global) variable space X containing all quan-
tities ever generated during a protocol, including inputs, lo-
cal data (e.g. shares) and outputs. For a particular protocol
execution each variable takes on only one particular value;
hence variables are not to be understood in the sense of an
imperative programming language but rather as labels for
values. The locality of variables, i.e. the fact that certain
variables are seen only by certain players or sets of players,
is modeled by associating a view ν(p) ⊆ X with every player
p. The view ν(B) of a set B of players is the union of the
views of the players in B. We distinguish between seeing a
variable and knowing a variable. Player p sees a variable x
if it is in his view and he knows (partially knows) x if he can
compute it (has information about it) from the variables in
his view.

2.3 Protocols

The function to be computed by a protocol is without loss of
generality specified by a circuit over a finite field (F , +, ∗).
The protocols in the previous literature often consider one
(global) function of |P | inputs, where every player learns the
function value. These protocols consist of three stages: the
input stage, the computation stage and the output stage.
In this paper, we consider a more general model in which
a multi-party computation is seen as the simulation of a
trusted party [21].

A protocol S among a player set P̂ involving variables
from the variable space X is a sequence s1, s2, . . . , sl of state-
ments (see below). The execution of a protocol corresponds
to a sequence of monotone extensions of the views of the
players. When referring to the view of a player set in a
protocol we will mean the view at the end of the protocol
execution. The concatenation of two protocols is the con-
catenation of the statement sequences.

There are two types of statements: A transmit(pi, pj , x)-

statement for pi, pj ∈ P̂ and x ∈ X means that the value of
the variable x is to be transmitted from the player pi to the
player pj (or, more precisely, the variable x is included in the
view of player pj). An exec(p, op, x, . . .)-statement means
that player p has to execute the operation op and assign the
result to the variable x. An operation is either an addition

(exec(p, +, x, x1, x2)), a multiplication (exec(p, ∗, x, x1, x2)),
or a random selection of a field element3 (exec(p, ran, x)),
specifying the operand variables (if any) and the result vari-
able.

In a transmit(pi, pj , x)-statement, we say that the send-
ing player pi reads the variable x and the receiving player
writes to the variable x. In an exec(p, op, x, x1, . . .)-state-
ment we say that the player p writes to the variable x and
reads the variables x1, . . . (if any).

The set of variables that a player reads before he writes
to it is the set of input variables of that player. A proto-
col is syntactically admissible if every player writes to every
variable at most once, never writes to input variables, and
the sets of input variables of the players are pairwise dis-
joint. In the following we only consider protocols that are
syntactically admissible.

A multi-party computation specification (S, τ) is a (syn-
tactically admissible) protocol S together with the name of
a virtual trusted party τ ∈ V , which is usually involved in S.
The idea behind a specification is that τ is a virtual trusted
party that can be used in the protocol and that acts like a
completely honest player. The trusted party τ is a virtual
player; the name τ appears only in the specification.

A protocol S′ among the player set P̂ ′ is a result-
equivalent derivation of a protocol S among the player set
P̂ if, after the execution of the protocol S the view of each
player in P̂ ∩ P̂ ′ is a subset of the view of this player after
the execution of the protocol S′ and the conditional prob-
ability distribution of the set of all variables that occur in
both protocols, given the values of the input variables of S,
is identical in both protocols.

Formally, this definition could be extended to include the
condition that the input and output players are the same
in both protocols. However, we avoid a formal definition
of input and output players in this extended abstract; the
above definition is sufficient for our purpose because this
additional condition is always satisfied in the context of this
paper.

2.4 Adversaries

A structure Z for the player set P is a monotone set of
subsets of P , i.e. Z ⊆ 2P , where all subsets of Z are in
Z if Z ∈ Z . For a structure Z , Z denotes the basis of the
structure, i.e. the set of the maximal sets in Z :

Z =
{
Z ∈ Z : 6 ∃Z ′ ∈ Z : Z ⊂ Z ′} .

To restrict a structure Z to the player set P means
that all sets in Z are intersected with P , e.g. Z|P =

{Z ∩ P : Z ∈ Z}. Note that a restricted monotone structure
is still monotone but a restricted basis is not necessarily a
basis. (However, we have Z|P ⊆ Z|P ). For simplicity we
will also use this operator to restrict elements of a structure
to a player set (i.e. Z|P stands for Z ∩ P ).

A collusion is a set of players that honestly follow the
protocol, but after the protocol execution pool their local
data and try to violate other players’ privacy. An adversary
is a set of dishonest players that jointly try to violate the
correctness of the protocol execution and/or violate other

3The selection of random bits can easily be realized by selecting a
random field element.
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players’ privacy. The computational power of the players in
a collusion or in an adversary is not assumed to be bounded.
We consider two special types of structures: A collusion
structure C ⊆ 2P is a set of potential passive collusions.
An adversary structure A ⊆ 2P is a set of potential active
adversaries.

A protocol is C-private if no collusion in the collusion
structure C obtains any information about other players’
inputs beyond what is provided by the protocol output for
the collusion members. More formally, let Xp, Yp, VC denote
the random variables corresponding to the input of player p,
the output for player p, and the view of the collusion C after
the protocol execution, respectively. A protocol is C-private
if and only if for every collusion C ∈ C, the random variables
VC and

⋃
p/∈C

{Xp, Yp} are statistically independent4 when

given
⋃

p∈C
{Xp, Yp}.

A protocol is A-resilient if no adversary in the adver-
sary structure A can falsify the outcome of the computa-
tion. More precisely, even if the players of one adversary
in A use an arbitrary joint strategy for cheating, then if
the protocol execution terminates5, for all inputs the joint
distribution of the output variables of the honest players is
equal to the corresponding distribution if no adversary is
present. An A-resilient protocol is A-fair if, once the proto-
col execution has started and the players of one adversary in
A have obtained some information about their outputs, the
players in the adversary cannot prevent the other players
from learning their correct outputs. An A-resilient proto-
col is A-robust if the players of one adversary in A cannot
prevent the other players from learning their outputs. Note
that A-robustness implies A-fairness. Our protocols are A-
resilient and A-robust, thus fairness need not and will not
be considered further.

2.5 Models

We distinguish between three models: The passive model
and the active model are the same as those of [2]: We assume
reliable synchronous secure channels between every pair of
two players but we do not assume a broadcast channel. The
basic protocols of [2] can be realized without broadcast or,
more precisely, by simulating it with a protocol among the
sender and the receivers of the broadcast [23, 13]. The active
model with broadcast is the same as that of [27]: We assume
reliable synchronous secure channels between every pair of
two players and a broadcast channel.

More formally, in the passive model we assume that all
players correctly follow the protocol. The protocol tolerates
a collusion structure C if it is C-private (under the assump-
tion that all players follow the protocol) and correct (more
precisely: {∅}-resilient, where ∅ denotes the empty set). In
the active model and in the active model with broadcast,
the protocol tolerates the adversary structure A if it is A-
resilient and A-robust (hence A-fair). If no active adversary
is present, the protocol also must be A-private. If an ac-
tive adversary is present, the protocol must be private only

4If X, Y and Z are random variables, then X and Y are statisti-
cally independent given Z if and only if PXY |Z(x, y, z) = PX|Z(x, z) ·
PY |Z(y, z) for all x, y and z.

5Correctness (A-resilience) does not imply that the protocol exe-
cution terminates — the execution could also be aborted.

against this adversary (or, equivalently, against each adver-
sary in the adversary structure that contains the actual ad-
versary).

The protocols in this paper achieve perfect privacy in
the passive model, perfect correctness and perfect robust-
ness in the active model (i.e. information-theoretic security
with zero failure probability), and unconditional security in
the active model with broadcast (i.e. information-theoretic
security with exponentially small failure probability).

2.6 Multi-party protocol generators

A multi-party protocol generator is a function that takes as
input a multi-party computation specification (S, τ) involv-

ing players from a player set P̂ and a list6 (p1, . . . , pk) of

players, and returns a protocol for the player set (P̂ \{τ}) ∪
{p1, . . . , pk}. The intuition is that the protocol generator
replaces the virtual trusted player τ by a multi-party com-
putation among the players p1, . . . , pk.

In our construction we use a protocol generator for each
model. Let Gp3 denote the three-party protocol generator
of [2] in the passive model (see below), tolerating all collu-

sions containing one single player, and let Ga4 denote the
four-party protocol generator of [2] in the active model, tol-
erating one arbitrary adversary containing a single player.
Furthermore, let Ga3b denote the three-party protocol gen-
erator of [27] in the active model with broadcast, tolerating
one arbitrary adversary with a single player.

In order to explicitly construct the protocol generators
Gp3, Ga4, and Ga3b using the results of [2] and [27], we
scan the multi-party computation specification statement by
statement. Let (S, τ) be the multi-party computation spec-
ification, where S is a statement sequence s1, . . . , sl among
the player set P̂ and where τ is the trusted party to be
simulated. The protocol generator scans the statement se-
quence and syntactically replaces some statements by pro-
tocols. The resulting protocol is the output of the protocol
generator.

In the passive model, Gp3 for the player set {p1, p2, p3} is
defined as follows: Every statement transmit(p, τ, x) (for any

p ∈ P̂ ) is replaced by a secret sharing protocol, in which p is
the dealer who shares the variable x among the players p1,
p2, and p3 such that two of them are needed to reconstruct
the secret. Every statement transmit(τ, p, x) (for any p ∈ P̂ )
is replaced by the protocol to reconstruct the secret, in which
the players p1, p2, and p3 send their shares to p who then
interpolates the secret. Every statement exec(τ, +, x, x1, x2)
is replaced by the three statements that instruct the players
p1, p2, and p3 to add their shares of x1 and of x2 and to
assign the result to the variable of their share of x7. Every
statement exec(τ, ∗, x, x1, x2) is replaced by the multiplica-
tion protocol that multiplies the shared variables x1 and x2

and assigns the resulting shares to the variables of the shares
of x. Every statement exec(τ, ran, x) is replaced by a proto-
col that instructs the players to jointly select a random field
element and to assign the shares of it to the variables of the
shares of x. This can be done by having every player p1, p2,

6When the ordering is clear from the context or does not matter,
we will also use sets instead of lists.

7Assigning a value to a variable means to define its (global) value
and to include it in the player’s view. Here the variable corresponds
to a share and will not be included in another player’s view.
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and p3 randomly select a field element, sharing it and adding
the shares of the three variables. All other statements of S
are left unchanged.

In the active model, Ga4 is constructed similarly. In-
stead of the secret sharing protocol, a verifiable secret shar-
ing protocol is used. Moreover, reconstruction involves error
correction. As multiplication protocol we use the protocol
that robustly multiplies two shared values, as described in
[2]. The protocol to jointly select a random field element (as
described above) uses verifiable secret sharing.

In the active model with broadcast the protocol genera-
tor Ga3b can be constructed along the same lines, applying
the tools of [27].

3 Substituting players

The basic tool for achieving security in non-threshold sce-
narios is to replace players by subprotocols8 . Each player
in the subprotocol can again be replaced by a subprotocol,
and so on.

3.1 Example

In this example we illustrate the adversary structure
that is tolerated by a protocol among the player set
{p1, p2, p3, p4, p5, p6}. The protocol is constructed with the

protocol generator Ga4 for the active model. First, a proto-
col among the players p1, p3 and the virtual players p−1 and
p−2 is constructed. Then p−1 and p−2 are replaced by sub-
protocols generated by the protocol generator Ga4 using the
player sets {p1, p2, p3, p4} and {p1, p2, p5, p6}, respectively
(see Figure 1).

p1

p3

p1
p2

p3p4

p1
p2

p5p6

Figure 1: Example of a player substitution.

The construction in Figure 1 tolerates the adversary
structure A = {{p1}, {p2, p4}, {p2, p5, p6}, {p3, p5}, {p3, p6},
{p4, p5}, {p4, p6}}. This is a strict extension of the adver-
sary structure tolerated by the 6-player protocol of [2], which
consists of all adversaries containing a single player.

3.2 Definitions

Consider a multi-party protocol S among the player set P̂ .
To replace a player p ∈ P̂ in S by a subprotocol among a set9

P ′ of players (the players in P ′ can be members of P̂ and
also need not be distinct) applying a protocol generator G′

8The idea of replacing a single player by a subprotocol was used
in [6] for a different purpose.

9Formally, this is a list of players. For simplicity we assume that
the ordering is clear from the context.

means to consider this player as a trusted party and to have
this party be simulated by a subprotocol among the given
players in P ′ according to G′. More precisely, the protocol
S is considered as a specification (S, p), and then used as
input for the protocol generator G′ together with the player
set P ′.

Let S be a multi-party computation protocol among
the player set P̂ . To simultaneously replace the play-
ers pr1 , . . . , prk by subprotocols among the player sets

P1, . . . , Pk (the players in the sets can be members of P̂
and also need not be distinct), applying the protocol gen-
erators G1, . . . , Gk, respectively, is a two-step process. In a
first step, for each 1 ≤ i ≤ k the player pri is replaced by
a subprotocol among a set of (for each i newly allocated)
virtual players Vi = {pi1 , . . . , pi|Pi|}, applying the corre-

sponding protocol generator Gi. More formally, the sets
V1, . . . , Vk are chosen arbitrarily as pairwise disjoint sets
with elements in V \ P̂ . Then, the players pr1 , . . . , prk are
replaced one by one by subprotocols among the player sets
V1, . . . , Vk , applying the protocol generator G1, . . . , Gk, re-
spectively. (This leads to the protocol Sk , where S0 = S and
Si = Gi((Si−1, pri ), Vi−1) for i = 1, . . . , k.) In the second
step, every virtual player in the sets V1, . . . , Vk is replaced by
the corresponding player in the sets P1, . . . , Pk, respectively.
(This is a purely syntactic replacement.)

3.3 Tolerated adversary structures

Theorem 1 (passive model) Let G1, . . . , Gk be multi-
party protocol generators among the player sets P1, . . . , Pk,
tolerating the collusion structures C1, . . . , Ck, respectively.
Assume that in a multi-party computation protocol S among
the player set P tolerating all collusions in the collusion
structure C the k players in R := {pr1 , . . . , prk} ⊆ P are re-
placed by subprotocols among the player sets P1, . . . , Pk, ap-
plying the protocol generators G1, . . . , Gk , respectively. Then
the resulting multi-party protocol S∗ among the player set

P ∗ = (P\R)∪⋃k

i=1
Pi is result-equivalent to S and tolerates

the collusion structure

C∗ :=
{

C ⊆ P ∗ :
(

C|P \R∪
{

pri ∈ R : C|Pi
/∈ Ci

})
∈ C

}
.

Proof (sketch): In order to prove that the resulting pro-
tocol S∗ is result-equivalent to S, we show that this is the
case for both steps of a simultaneous replacement. More
precisely, if after the substitution by virtual players all the
virtual players are considered as real players and assumed
to correctly follow the protocol (i.e., to be at most passive
adversaries), then this protocol is a result-equivalent deriva-
tion of the original protocol. Clearly, now (in the second
step) letting these virtual players be played by (also cor-
rectly playing) players in R again yields a result-equivalent
derivation.

In order to prove that all collusions in C∗ are tolerated
by the protocol S∗ we consider each collusion C ∈ C∗ sepa-
rately. We must show that the view ν(C) of the players in C
is statistically independent of the input and output variables
of the other players, given the input and output variables of
the players in C. First consider all i for which C|Pi

∈ Ci. For

every such i the collusion C is tolerated by protocols gener-
ated by Gi. This means that whatever variables would be in
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the view of the player pri in the protocol S, the simulating
players in Pi belonging to C obtain no (zero) information by
the simulation about these variables. In other words, from
the viewpoint of the collusion C, the data shared in this sub-
protocol is unconditionally unknown. In contrast, for those
i for which C|Pi

/∈ Ci, the collusion may have information

about (and in fact knows) the variables in the views that the
players pri would have in the protocol S. However, the to-
tal view of the collusion C in the main protocol S would be

ν
(

C|P \R ∪
{

pri : C|Pi
/∈ Ci

})
which is equal to the view of

a tolerated collusion in S, thus (by assumption) statistically
independent of other players’ inputs and outputs.

The following corollary is a special case of Theorem 1:

Corollary 1 (passive model) Let k = |P |, R = P and
Pi = P ∗ for 1 ≤ i ≤ k in Theorem 1. Then the resulting
multi-party protocol S∗ among the player set P ∗ is result-
equivalent to S and tolerates the collusion structure

C∗ := {C ⊆ P ∗ : {pi ∈ P : C /∈ Ci} ∈ C} .

Theorem 2 (active model) In the active model or in the
active model with broadcast, let G1, . . . , Gk be multi-party
protocol generators among the player sets P1, . . . , Pk, toler-
ating the adversary structures A1, . . . ,Ak, respectively. As-
sume that in a multi-party computation protocol S among the
player set P tolerating one adversary in the adversary struc-
ture A the k players in R := {pr1 , . . . , prk} ⊆ P are replaced
by the subprotocols among the player sets P1, . . . , Pk, apply-
ing the protocol generators G1, . . . , Gk, respectively. Then
the resulting multi-party protocol S∗ among the player set

P ∗ = (P\R)∪⋃k

i=1
Pi is result-equivalent to S and tolerates

the adversary structure

A∗ :=
{

A ⊆ P ∗ :
(

A|P \R ∪
{

pri ∈ R : A|Pi
/∈ Ai

})
∈ A

}
.

Proof (sketch): In order to prove that all adversaries in A∗

are tolerated by the protocol S∗ it is sufficient to show that
for every adversary A ∈ A∗ and for every strategy of A, there
exists an adversary A′ ∈ A and a strategy for A′ such that
for all inputs, all variables in the protocol S (in particular
all output variables of the protocol S∗) have the same joint
distribution in S and in S∗. In other words, whatever the
adversary A can do in S∗ to modify the joint distribution
of the variables in the view of the set of honest players, the
same could be done in protocol S by the adversary A′. Since
A′ is tolerated in S, so is A in S∗.

Let A ∈ A∗ be an arbitrary adversary, and let A′ =

A|P \R
∪

{
pri ∈ R : A|Pi

/∈ Ai

}
. By definition of A∗ we have

A′ ∈ A. For all players pri ∈ R with A|Pi
∈ Ai the fact that

all protocols generated by Gi are Ai-resilient implies that for
all input values, the joint distribution of all variables that
are transmitted in S by pri is equal in S (assuming that pri

plays honestly) and in S∗.
For all players pri ∈ R with A|Pi

/∈ Ai we have pri ∈ A′.

A possible strategy for A′ to achieve the same effect in S as
A in S∗ is as follows. Every player pi ∈ A′|P \R uses exactly

the same strategy in S as it does in S∗. A player pri ∈ A′|R
simulates the players in Pi, using the corresponding strategy.

The above arguments also imply that S∗ is a result-
equivalent derivation of S.

If no active adversary is present, the resulting protocol
is A-private. This can be shown along the lines of the proof
to Theorem 1.

It can be shown that if in Theorem 1 (Theorem 2) the
collusion (adversary) structures for the protocols S and for
the protocol generators G1, . . . , Gk are maximal in the sense
that no other collusion (adversary) can be tolerated, then
the collusion (adversary) structure of the resulting protocol
is maximal in the same sense.

The following corollary is a special case of Theorem 2:

Corollary 2 (active model) Let k = |P | and R = P and
Pi = P ∗ for 1 ≤ i ≤ k in Theorem 2. Then the resulting
multi-party protocol S∗ among the player set P ∗ is result-
equivalent to S and tolerates the adversary structure

A∗ := {A ⊆ P ∗ : {pri ∈ P : A /∈ Ai} ∈ A} .

4 Completeness results

In the passive model, the only basic protocol generator we
use in the constructions is Gp3, the protocol generator of
Ben-Or, Goldwasser, and Wigderson [2] with three players
for the passive model that tolerates all single-player collu-
sions. In the active model, the only basic protocol generator
we use in the constructions is Ga4, the protocol generator of
[2] with four players for the active model that tolerates all
single-player adversaries. In the active model with broad-
cast, the only basic protocol generator we use is Ga3b, the
protocol generator of [27] with three players that tolerates
all single-player adversaries.

In this section we show for which adversary structures
it is possible to find a substitution strategy such that the
adversary structure is tolerated. The derived conditions are
shown to be necessary and sufficient.

4.1 Definitions

Let P be a player set and let Z be a structure for P . Then

Q(2)(P,Z) is the predicate that is satisfied if and only if no
two sets in Z add up to the full player set P , i.e.

Q(2)(P,Z) ⇐⇒ ∀Z1, Z2 ∈ Z : Z1 ∪ Z2 6= P .

Similarly, Q(3)(P,Z) is the predicate that is satisfied if and
only if no three sets in Z add up to the full player set P , i.e.

Q(3)(P,Z) ⇐⇒ ∀Z1, Z2, Z3 ∈ Z : Z1 ∪ Z2 ∪ Z3 6= P .

4.2 Characterization of tolerable adversaries

Theorem 3 In the passive model, a player set P can com-
pute every function (perfectly) C-privately if no two collu-
sions in the collusion structure C add up to the full player

set P (i.e. if Q(2)(P,C) is satisfied). The computation is
polynomial in |C|. This bound is tight: if two collusions add
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up to the full player set, there are10 functions that cannot be
computed C-privately.

Proof: (⇐=) In order to prove that every function can be

computed privately if Q(2)(P,C) is satisfied we give a proto-
col construction and prove its correctness and its efficiency.

If some player p ∈ P does not occur in any collusion of C
then we can simply replace the trusted party τ in the specifi-
cation by this player. Consider the case where every player
in P occurs in at least one collusion in C. Let C1, C2, C3

by a three-partition of C with b|C|/3c ≤ |Ci| ≤ d|C|/3e (i =
1, 2, 3). Assume that protocol generators G1, G2, and G3,
each among the player set P , tolerating C2 ∪C3, C1 ∪C3, and
C1 ∪C2, respectively, have been constructed by recursion. A
protocol generator G∗ that tolerates C can be constructed as
follows: Remember that Gp3 is the standard 1-private proto-
col generator of [2] for the three-player set P̃ = {p̃1, p̃2, p̃3},
tolerating the collusion structure C̃ = {{p̃1}, {p̃2}, {p̃3}}.
First, the protocol generator applies Gp3 among the three
virtual players p̃1, p̃2, and p̃3 to the multi-party computa-
tion specification. Then, it simultaneously replaces all three
players by subprotocols applying the protocol generators G1,
G2, and G3, respectively, all among the player set P . Ap-
plying Corollary 1 yields the tolerated collusion structure C∗

of the protocol generated by G∗:

C∗ :=
{

C ⊆ P :
{

p̃i ∈ P̃ : C /∈ Ci

}
∈ C̃

}

=
{

C ⊆ P :
∣∣{p̃i ∈ P̃ : C /∈ Ci

}∣∣ ≤ 1
}

=
{

C ⊆ P :
∣∣{p̃i ∈ P̃ : C ∈ Ci

}∣∣ ≥ 2
}

= {C ⊆ P : C ∈ C} = C .

The correctness of this construction can be proved by in-

duction. First, for every collusion structure satisfying Q(2)

with at most two collusions there exists a player that does
not occur in any collusion of C (induction basis). Assume
that we can construct a protocol generator for every col-
lusion structure with 2m of the collusions in C (induction
hypothesis). Then, with the construction above, we can
construct a protocol generator for every collusion structure
with up to 3m of the collusions in C (induction step).

In order to prove the efficiency of the protocols, we have
to study more precisely what happens when a set of play-
ers is substituted simultaneously. The protocol generator
Gp3 applied to a multi-party computation specification (S, p)
translates every statement in S that involves p to a state-
ment sequence of length at most b, where b is a constant pa-
rameter of Gp3. Thus, simultaneously replacing some play-
ers by protocols among pairwise distinct player sets blows
up every statement by at most a constant factor b2 (every
statements involves at most two players).

As explained above, every collusion structure with ba-
sis of size two can be tolerated by a protocol constructible
without simultaneous replacements. If the size of the ba-
sis is three one generally needs one simultaneous replace-
ment. More generally, let ti be defined as the basis size
guaranteed to be achievable using a sequence of i simulta-
neous replacements. The sequence ti is hence defined by

10If the two sets in C add up to the full player set, almost every non-
trivial function cannot be computed securely. A similar statement
hold for the active case (Theorems 4 and 5). For a more precise
analysis see [9, 22].

t0 = 2, t1 = 3, and ti+1 = ti + bti/2c. One can show
that (3/2)i ≤ ti ≤ (3/2)i+2. Thus, in order to construct
a protocol that tolerates the collusion structure C, at most
dlog 3

2
|C|e simultaneous replacements are necessary, so the

length of the constructed protocol tolerating C is at most

|S| · (b2)dlog 3
2

|C|e
= |S| · |C|O(1), hence polynomial in |C|.

(=⇒) Suppose there is a protocol that tolerates a collusion

structure not satisfying Q(2), i.e. there are two potential
collusions C1 and C2 with C1 ∪ C2 = P . Without loss of
generality we assume C1 ∩ C2 = ∅. Then we can construct
a protocol with two players A and B, where A simulates
all players in C1 and B simulates all players in C2, and we
obtain a protocol for two players that tolerates both collu-
sions with a single player. Such a protocol does not exist for
most functions (for example for the binary OR-function), as
stated in [2], thus resulting in a contradiction.

Theorem 4 In the active model without broadcast, a player
set P can compute every function (perfectly) A-privately,
A-resiliently and A-robustly if no three adversaries in the
adversary structure A add up to the full player set P (i.e.

if Q(3)(P,A) is satisfied). The computation is polynomial in
|A|. This bound is tight: if three adversaries add up to the
full player set, there are functions that cannot be computed
A-privately and A-resiliently.

Proof (sketch): The construction in the active model is
along the lines of the construction in the passive model. A
four-partition of the adversary structure A is selected and,
by recursion, a protocol is constructed for each of the four
unions of three partitions. First, the protocol generator ap-
plies Ga4 in order to substitute the trusted party τ in the
specification by a protocol among four virtual players, then
simultaneously replaces the four virtual players by the above
subprotocols. Applying Theorem 2 shows that the tolerated
adversary structure A∗ is equal to A.

The correctness of this protocol can be proven along the
lines of the proof for the correctness of Theorem 3.

In order to prove the efficiency, let b be the constant
blow-up parameter of Ga4, and let ti be defined as the
minimal size of the basis of the adversary structures guar-
anteed to be achievable using a sequence of i simultane-
ous replacements. The sequence ti is hence defined by
t0 = 3, t1 = 4, and ti+1 = ti + bti/3c. One can show that
(4/3)i ≤ ti ≤ (4/3)i+3. Thus, a protocol tolerating A can be
constructed in at most dlog 4

3
|A|e steps, and the length of the

resulting protocol is at most |S| ·(b2)dlog 4
3

|A|e
= |S| · |A|O(1).

In order to prove that the condition is necessary, sup-
pose that there exists a protocol generator for an adversary

structure not satisfying Q(3), i.e. there are three potential
adversaries that add up to the full player set. Then we
can construct a protocol among three players, where each of
them simulates the players in one adversary, and we obtain
a protocol among three players perfectly tolerating active
cheating of one of them. Such a protocol does not exist for
most functions (for example for the broadcast function, as
proven in [25, 23]), thus resulting in a contradiction.
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Theorem 5 In the active model with broadcast, a player set
P can compute every function unconditionally A-privately,
A-resiliently and A-robustly if no two adversaries in the ad-
versary structure A add up to the full player set P (i.e. if

Q(2)(P,A) is satisfied). The complexity of the protocol is

in |A|O(log log |A|) and is linear in the length of the specifica-
tion. This bound is tight: if two adversaries add up to the
full player set, there are functions that cannot be computed
unconditionally A-privately and A-resiliently.

Proof (sketch): The proof in the active model with broad-
cast is along the lines of the proof in the passive model. In
the construction, a three-partition of the adversary structure
A is selected and, by recursion, a protocol is constructed for
each of the three unions of two partitions. First, the proto-
col generator applies Ga3b in order to substitute the trusted
party τ in the specification by a protocol among three vir-
tual players, and then simultaneously replaces them by the
above subprotocols. Applying Theorem 2 shows that the
tolerated adversary structure A∗ is equal to A.

Concerning efficiency one must take into account the er-
ror probability of the basic protocol. The error probability ε
of the resulting protocol is at most the sum of the error prob-
abilities of all involved basic protocols. There are at most

3
d| log 3

2
|A|e

basic protocols involved, thus the error proba-
bility of the basic protocol must be chosen as ε′ ≤ ε

|A|O(1) .

Therefore, the size of the field in [27] must be increased ac-
cordingly. This results in a slightly slower basic protocol.
Hence the communication complexity of the resulting pro-

tocol is in |S| ·
(
b2 · log |A|

)O(log |A)
= |S| · |A|O(log log |A|),

hence slightly greater than polynomial in |A|. The round
complexity remains polynomial.

In order to prove that the condition is necessary, sup-
pose that there exists a protocol generator for an adversary

structure not satisfying Q(2), i.e. there are two potential
adversaries that add up to the full player set. Theorem 3
shows that not even privacy can be guaranteed, and broad-
cast does not help.

4.3 Example

We apply Theorem 3 to construct a protocol among the
player set P = {p1, p2, p3, p4, p5, p6} that tolerates the collu-
sion structure C = {{p1, p2, p3, p4}, {p1, p2, p5}, {p1, p2, p6},
{p1, p3, p5}, {p1, p4, p6}, {p2, p3, p6}, {p2, p4, p5}}.

As a simple notation we write [p1, p2, p3] for the pro-

tocol generator Gp3 with the three players p1, p2, and p3,
and [p1, p2, [p1, p4, p5]] for the protocol generator among the
players p1, p2 and a virtual player simulated by a protocol
generated by the protocol generator Gp3 among the players
p1, p4, and p5. As a special case, [p] refers to the protocol
generator that simply replaces the name of the trusted party
in the multi-party computation specification by p.

Step 1: Divide C into three partitions, for example:
C1 = {{p1, p2, p3, p4}, {p1, p3, p5}},
C2 = {{p2, p4, p5}, {p1, p2, p5}},
C3 = {{p1, p2, p6}, {p2, p3, p6}, {p1, p4, p6}}.

Step 2: Construct a protocol generator tolerating C2 ∪ C3.

Step 2.1: Divide C2∪C3 into three partitions, for exam-
ple:
C11 = {{p2, p4, p5}, {p1, p2, p5}},
C12 = {{p1, p2, p6}, {p2, p3, p6}},
C13 = {{p1, p4, p6}}.

Step 2.2: Construct a protocol tolerating C12∪C13. This
is achieved by [p5].

Step 2.3: Construct a protocol tolerating C11∪C13. This
is achieved by [p3].

Step 2.4: Construct a protocol tolerating C11 ∪ C12.

Step 2.4.1: Divide C11 ∪C12 into three partitions, for
example:
C131 = {{p2, p4, p5}},
C132 = {{p1, p2, p5}, {p1, p2, p6}},
C133 = {{p2, p3, p6}}.

Step 2.4.2: Construct a protocol tolerating C132 ∪
C133. This is achieved by [p4].

Step 2.4.3: Construct a protocol tolerating C131 ∪
C133. This is achieved by [p1].

Step 2.4.4: Construct a protocol tolerating C131 ∪
C132. This is achieved by [p3].

Step 2.4.5: The collusion structure C11 ∪C12 is toler-
ated by the subprotocol [p1, p3, p4].

Step 2.5: The collusion structure C2 ∪C3 is tolerated by
the subprotocol [p3, p5, [p1, p3, p4]].

Step 3: Construct a protocols generator tolerating C1∪C3.

Step 3.1: Divide C1∪C3 into three partitions, for exam-
ple:
C21 = {{p1, p2, p3, p4}, {p1, p3, p5}},
C22 = {{p1, p2, p6}, {p2, p3, p6}},
C23 = {{p1, p4, p6}}.

Step 3.2: Construct a protocol tolerating C22∪C23. This
is achieved by [p5].

Step 3.3: Construct a protocol tolerating C21 ∪ C23.

Step 3.3.1: Divide C21 ∪ C23 into three partitions:
C221 = {{p1, p2, p3, p4}},
C222 = {{p1, p3, p5}},
C223 = {{p1, p4, p6}}.

Step 3.3.2: Construct a protocol tolerating C222 ∪
C223. This is achieved by [p2].

Step 3.3.3: Construct a protocol tolerating C221 ∪
C223. This is achieved by [p5].

Step 3.3.4: Construct a protocol tolerating C221 ∪
C222. This is achieved by [p6].

Step 3.3.5: The collusion structure C21 ∪C23 is toler-
ated by the subprotocol [p2, p5, p6].

Step 3.4 Construct a protocol tolerating C21 ∪ C22.

Step 3.4.1: Divide C21 ∪ C22 into three partitions:
C231 = {{p1, p2, p3, p4}},
C232 = {{p1, p3, p5}},
C233 = {{p1, p2, p6}, {p2, p3, p6}}.

Step 3.4.2: Construct a protocol tolerating C232 ∪
C233. This is achieved by [p4].

Step 3.4.3: Construct a protocol tolerating C231 ∪
C233. This is achieved by [p5].

Step 3.4.4: Construct a protocol tolerating C231 ∪
C232. This is achieved by [p6].

Step 3.4.5: The collusion structure C21 ∪C22 is toler-
ated by the subprotocol [p4, p5, p6].
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Step 3.5: The collusion structure C1∪C3 is tolerated by
the subprotocol [p5, [p2, p5, p6], [p4, p5, p6].

Step 4: Construct a protocols generator tolerating C1∪C2.
This is achieved by [p6].

Step 5: The stated collusion structure C is tolerated by
[p3, p5, [p1, p3, p4]], [p5, [p2, p5, p6], [p4, p5, p6]], p6].

This leads to the construction illustrated in Figure 2.
Remember that pi for i < 0 refers to virtual players.

p−2

p6

p−1

⇓

p6

p5 p−3

p−4p3 p5

p−5

⇓

p6

p5

p2

p5

p6

p4

p5

p6

p3
p5

p1 p3

p4

Figure 2: Example of iterated player substitution.

5 Conclusions and open problems

We have given a complete characterization of adversaries
tolerable in unconditional multi-party computation. The
protocols in the passive and the active model offer perfect
security (as those of [2]) and have complexities polynomial
in the size of the description of the adversary structure. The
protocols in the active model with broadcast offer uncondi-
tional security. The achieved efficiency is slightly greater
than polynomial. It remains an open problem to construct
such protocols that are strictly polynomial.

The presented techniques are general in the sense that
they can be applied to any multi-party protocols. The player
substitution techniques can also be applied in the computa-
tional model of multi-party computation, but the security
of such composite protocols remains to be proven [1, 24].
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