
Complete Classification
of Bilinear Hard-Core Functions

Thomas Holenstein, Ueli Maurer, and Johan Sjödin

Department of Computer Science,
Swiss Federal Institute of Technology (ETH),

Zürich, Switzerland
{thomahol,maurer,sjoedin}@inf.ethz.ch

Abstract. Let f : {0, 1}n → {0, 1}l be a one-way function. A function
h : {0, 1}n → {0, 1}m is called a hard-core function for f if, when given
f(x) for a (secret) x drawn uniformly from {0, 1}n, it is computationally
infeasible to distinguish h(x) from a uniformly random m-bit string. A
(randomized) function h : {0, 1}n × {0, 1}k → {0, 1}m is a general hard-
core function if it is hard-core for every one-way function f : {0, 1}n →
{0, 1}l, where the second input to h is a k-bit uniform random string
r. Hard-core functions are a crucial tool in cryptography, in particular
for the construction of pseudo-random generators and pseudo-random
functions from any one-way function.
The first general hard-core predicate, proposed by Goldreich and Levin,
and several subsequently proposed hard-core functions, are bilinear func-
tions in the two arguments x and r. In this paper we introduce a param-
eter of bilinear functions h : {0, 1}n × {0, 1}k → {0, 1}m, called expo-
nential rank loss, and prove that it characterizes exactly whether or not
h is a general hard-core function. The security proofs for the previously
proposed bilinear hard-core functions follow as simple consequences. Our
results are obtained by extending the class of list-decodable codes and by
generalizing Hast’s list-decoding algorithm from the Reed-Muller code to
general codes.

Keywords: List-decoding, hard-core functions, Goldreich-Levin predi-
cate.

1 Introduction

Blum and Micali [BM84] showed a hard-core predicate1 for the exponentiation
function modulo a prime, which is widely conjectured to be one-way (except
for special primes). They also showed how to construct a pseudo-random gen-
erator based on it. Hard-core predicates are also known for some other specific
(conjectured) one-way functions.

In a seminal paper [GL89], Goldreich and Levin proved that for any one-
way function f : {0, 1}n → {0, 1}l, the XOR of a random subset of the n bits

1 The term predicate is used throughout to denote a function with range {0, 1}.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 73–91, 2004.
c© International Association for Cryptologic Research 2004

74 Thomas Holenstein, Ueli Maurer, and Johan Sjödin

of the input x constitutes a hard-core predicate. This function is randomized
(because of the choice of a random subset), and it is easy to see that any general
hard-core function must be randomized. An alternative view is to interpret the
randomizing input of the hard-core function as an extra input and output of a
modified one-way function f ′ : {0, 1}2n → {0, 1}l+n defined by

f ′(x, r) = (f(x), r)

which now has a deterministic hard-core function h(x, r) 2. The Goldreich-Levin
hard-core function is simply the inner product of x and r, which is a bilinear
function h : {0, 1}n × {0, 1}n → {0, 1}.

Any such bilinear map h is characterized by a binary n×n matrix M , where
h(x, r) = xT ·M · r. For the Goldreich-Levin predicate, M is simply the identity
matrix.

One can show (see [Lub96]) that m = O(log n) independent Goldreich-Levin
predicates are jointly hard-core, i.e., they form a hard-core function h : {0, 1}n×
{0, 1}mn → {0, 1}m. An important issue is to reduce the required amount of
randomness in a hard-core function. A construction presented in [GL89] (see
also [Gol01]) requires only n+m−1 instead of mn random bits for an m-bit hard-
core function. Goldreich, Rubinfeld, and Sudan [GRS00] reduced the number of
random bits down to n, as for the Goldreich-Levin function which produces only
one (rather than m) bits. While some of the proofs of these results as they appear
in the literature are non-trivial, they will all follow as simple consequences of
our main theorem.

More generally, one can consider bilinear functions for vector spaces over
any finite field IF, i.e., functions h : IFn × IFk → IFm. We are interested in
characterizing which of these functions are general hard-core functions. This
characterization turns out to be given by a quite simple parameter of such a
bilinear function. The characterization is complete in the sense that when the
parameter is below a certain threshold, then the function is hard-core, and other-
wise there exist one-way functions (under some reasonable complexity-theoretic
assumption) such that h is not a hard-core function for f .

Let us discuss this parameter. For any linear function � : IFm → IF, the
function � ◦ h is a bilinear function IFn × IFk → IF which can be characterized
by an n×k matrix over IF. The parameter of interest, which we call exponential
rank loss, is defined as the expected value of the exponentially weighted rank of
this matrix, when averaged over all non-zero functions �.

The main technical part of [GL89] consists in showing that an error-correcting
code has certain list-decoding properties, i.e., that it is possible to find a list of
all codewords in a Hamming ball of a certain size. In this paper we show how
to list-decode a larger class of codes. The stated characterization of hard-core
functions will then follow.

An application of one-way functions and hard-core predicates are pseudoran-
dom generators. It is easy to obtain a pseudorandom generator from any one-way
2 Yao’s method (implicit in [Yao82]) of using several copies of a one-way function and

computing the XOR of some of the inputs can also be seen in the same light.

Complete Classification of Bilinear Hard-Core Functions 75

permutation f by iterating f and after each iteration extracting a (the same)
hard-core predicate. It is much more complicated and less efficient to use any
one-way function (see [HILL99]).

The security of a cryptographic scheme that uses a pseudo-random generator
is proven by showing that an algorithm breaking the scheme could distinguish
the pseudo-randomness from real randomness. Hast [Has03] showed that in many
cryptographic applications, breaking the scheme is actually stronger than just
distinguishing the randomness from pseudorandomness with small probability,
in the sense that if an algorithm is given a pseudo-random or random input and
it breaks the scheme, then it is almost certain that the input was pseudo-random
rather than random. Hast then shows that this leads to an improved security
analysis for many constructions. The main technical tool is an extension of the
list-decoding algorithm to the case where erasures in the codewords are allowed.
We use this extension, and furthermore generalize Hast’s result by giving list-
decoding algorithms that are able to handle erasures for more general codes.

Section 2 introduces the notation and discusses bilinear functions and list-
decoding, the main technical tool of the paper. Previous work is also summarized
in this section. In Section 3, we analyze a special case of bilinear functions,
namely these for which all matrices mentioned above (i.e., for all non-zero linear
functions) have full rank. This special case already suffices to prove previous
results in the literature. We generalize the algorithm in Section 4 such that it
works with any bilinear code, where the running time and the produced list will
grow linearly with the exponential rank loss of the code. In Section 5 we discuss
the application to characterizing hard-core functions.

2 Preliminaries

We use calligraphic letters to denote sets. Capital letters denote random variables
over the corresponding sets; and lowercase letters denote specific values of these
random variables, i.e., values in the sets.

The notation f : X → Y is used to denote a function f from the domain X
to the range Y. Sometimes, functions take additional randomness (i.e., for every
input x ∈ X the function only specifies a probability distribution over Y). In
this case we write f : X � Y, a notation which also will be used to denote
randomized algorithms with domain X and range Y. If an algorithm has access
to a randomized function, we use the term oracle for the randomized function.

2.1 Bilinear Functions

Let IF = GF(q) be the finite field with q elements and let IFn be the n-
dimensional vector space of n-tuples over IF. As a special case, we identify {0, 1}
with GF(2), and the bitstrings {0, 1}n of length n with the n-dimensional vector
space over GF(2).

A linear function � : IFn → IF can be specified by a vector w ∈ IFn such that
�(v) = 〈w, v〉 :=

∑
i viwi. We use Ln to denote the set of all linear functions

76 Thomas Holenstein, Ueli Maurer, and Johan Sjödin

� : IFn → IF. Furthermore, 0 will denote the zero function 0(v) ≡ 0 and we use
L ∗

n := Ln\{0} for the set of all linear functions excluding 0.
A bilinear map h : IFn × IFk → IF can be specified by a matrix M ∈ IFn×k

such that h(v, w) = vT Mw. The rank of a bilinear map is just the rank of this
matrix. A bilinear function h : IFn × IFk → IFm is a function where every entry
in the output vector is specified by a bilinear map. Note that for any function
� ∈ Lm the concatenation � ◦ h is a bilinear map. If L is a uniformly chosen
random linear function from L ∗

m, the exponential rank loss ρ(h) is defined as

ρ(h) := E[qn−rank(L◦h)].

We say that a bilinear function is full-rank, if rank(� ◦ h) = n for every � ∈ L ∗
m

(in which case ρ(h) = 1).

2.2 List-Decoding

The main tool in the construction of hard-core functions is the notion of a list-
decodable code. Such a code has the property that, given a noisy codeword, it
is possible to find a list of all codewords which have a certain agreement with
the noisy codeword.

Consider a code C given as a function C : X → Zk. Note that the input
to the function (usually the message) is an element of X while the output (the
codeword) is a k-tuple over Z. The Hamming distance of two words of Zk is
the number of coordinates in which the words differ. List-decoding is the task
of finding for a given zk ∈ Zk all the values x for which C(x) has a Hamming
distance from zk that is smaller than some predefined bound. This is in contrast
to usual error-correcting, where one aims to find the one codeword which is
closest to the received word. The most ambitious task is to list-decode close to
the noise barrier: given any ε > 0 one wants to find all values x for which C(x)
has a Hamming distance of at most (1 − 1

|Z| − ε)k from a given word. Since a
random word has expected distance (1− 1

|Z|)k from any codeword, this is clearly
the best one can expect to achieve.

Instead of considering the function C(x), one can equivalently consider a
function h : X × {1, . . . , k} → Z, such that h(x, i) is the value of C(x) at the
i-th position. More generally we consider functions h : X × Y → Z for any
domain Y. Analogous, we assume that we have oracle access to the noisy word
to be decoded: instead of reading the complete word it will be convenient to
assume that an oracle O : Y � Z, on input y, returns the symbol at position y.
This allows us to list-decode in sublinear time, i.e., without looking at every
position of the word, which in turn allows the codewords to be exponentially
large. The oracle is stateless, but may be randomized and is not required to
return the same symbol if queried twice with the same input. The agreement of
an oracle with a codeword is then expressed as Pr[h(x, Y) = O(Y)], where the
probability is over the choices of Y and the randomness of the oracle.

Additionally, we allow erasures in the word which will be denoted by ⊥. Thus,
the oracle is a randomized function O : Y � Z ∪ {⊥}. The rate δ of such an
oracle is the probability that a symbol in Z is returned,

Complete Classification of Bilinear Hard-Core Functions 77

δ := Pr[O(Y) 	= ⊥].

For a fixed word x, the advantage ε of O is defined as

ε := Pr[O(Y) = h(x, Y) | O(Y) 	= ⊥] − 1
|Z| .

This motivates the following definition:

Definition 1 (List-decodable code).3 The function h : X ×Y → Z is (δ, ε)-
list-decodable with κ oracle calls and list size λ if there exists an oracle algorithm
with running time λ · poly(log(|X |)) which, after at most κ oracle calls to an
oracle O : Y � Z ∪{⊥} with rate at least δ, generates a set Λ of size at most λ,
such that for every x with Pr[O(Y) = h(x, Y) | O(Y) 	= ⊥] ≥ 1

|Z| + ε the set
satisfies Pr[x ∈ Λ] ≥ 1/2.

2.3 Hard-Core Functions

Informally, a one-way function is a function which is easy to evaluate but hard
to invert.

Definition 2 (One-way function). An efficiently computable function fam-
ily f : {0, 1}n → {0, 1}p(n) with p(n) ∈ poly(n) is a one-way function if for
every probabilistic polynomial time (in n) algorithm A the inverting probability
Pr[f(A(f(X))) = f(X)] is negligible.

A hard-core function h : {0, 1}n × {0, 1}k → {0, 1}m can intuitively extract
bits from the input of a one-way function f such that these bits look random,
even given f(x). We can distinguish (strong) hard-core functions, where the
output is indistinguishable from a random string of length m (which we denote
by Um), and weak hard-core functions, where the output of the function is hard
to predict.

Definition 3 (Strong hard-core function). An efficiently computable family
h : {0, 1}n ×{0, 1}k(n) → {0, 1}m(n) of functions, with k(n), m(n) ∈ poly(n) is a
(strong) hard-core function if, for every one way function f : {0, 1}n → {0, 1}p(n)

and every probabilistic polynomial time algorithm A, the distinguishing advantage
given by Pr[A(f(X), R, h(X, R)) = 1] − Pr[A(f(X), R, Um) = 1], is negligible
in n.

Definition 4 (Weak hard-core function). An efficiently computable family
h : {0, 1}n × {0, 1}k(n) → {0, 1}m(n) with k(n), m(n) ∈ poly(n) of functions is a
weak hard-core function if, for every one-way function f : {0, 1}n → {0, 1}p(n)

and every probabilistic polynomial time algorithm A, the advantage of A in guess-
ing h(x, r) on input f(x) and r, defined as Pr[A(f(X), R) = h(X, R)] − 1

2m , is
negligible in n.
3 We require the list-decoding algorithm to work in time λ · poly(log(|X |)). Note that

in some cases, λ will be superpolynomial in the input size log(|X |) and log(|Y|).

78 Thomas Holenstein, Ueli Maurer, and Johan Sjödin

In general, weak hard-core functions are easier to construct than strong ones.
However, we will see that for small outputs the notions are equivalent.

As shown in [Sud00], any list-decodable code h : {0, 1}n × {0, 1}k → {0, 1}m

as defined above yields a weak hard-core function. To prove this, one assumes for
the sake of contradiction that an algorithm B is given which on input f(x) and r
predicts h(x, r) with probability higher than 1

2m + ε, for some non-negligible4 ε.
After arguing that B needs to have a reasonable success probability for a sig-
nificant subset of the possible values for x, one then uses B as the oracle in the
list-decoding algorithm. The resulting list, which is small, then contains x with
non-negligible probability, and one can find a preimage of f(x) by applying f to
all values in the list.

In such a reduction, the running time of the resulting algorithm is dominated
by the running time of B. Thus, one is interested in the exact number κ of oracle
calls, while the exponent in the running time of the (polynomial) algorithm
is of minor importance. In this application, the second input (from {0, 1}k)
corresponds to a random string. As randomness is an expensive resource, one
wants k to be as small as possible. We show how to achieve k = n for any n.

2.4 Previous Work

The fundamental result on bilinear list-decodable codes implicitly appears in
[GL89], stating that the Reed-Muller code of first order, defined as h : {0, 1}n ×
{0, 1}n → {0, 1}, h(x, y) = 〈x, y〉 =

∑
i xiyi, has an algorithm which efficiently

list-decodes it up to an error rate of 1/2 + ε, for any ε > 0.
The standard proof used today was found independently by Levin and Rack-

off and is given in [Gol01] (see also [Lev87]). In [Has03], Hast introduces the
extension of list-decoding algorithms for oracles with erasures. The existence of
the resulting algorithm is asserted in the following theorem:

Theorem 5 (Goldreich-Levin, cf. [Has03]). For any ε, δ > 0, the function
h : {0, 1}n×{0, 1}n → {0, 1}, h(x, r) = 〈x, r〉 is (δ, ε)-list-decodable with list size
O(1

δε2) and Θ(n 1
δε2) oracle calls. The list-decoding algorithm needs δε2 as input.

This theorem is slightly stronger than the original version in [Has03], where
an additional factor n appears in the number of oracle calls and the list size.
The version as stated here can be obtained by applying a trick that appears in
[Gol01, Section 2.5.2.4]5.

It is natural to generalize this theorem to vector spaces over any finite field.
For this, the best known result is given in [GRS00].

Theorem 6. For any δ, ε > 0, the function h : IFn × IFn → IF, h(x, r) = 〈x, r〉
is (δ, ε)-list-decodable with list size poly(n, δ−1ε−1) and poly(n, δ−1ε−1) oracle
calls. The list-decoding algorithm needs δε as input.

4 We use non-negligible to denote a function which is not negligible.
5 Basically, one uses a linear, asymptotically optimal error-correcting code to find x

instead of finding the bits one by one.

Complete Classification of Bilinear Hard-Core Functions 79

The algorithm which is used to prove Theorem 6 is similar to the original
algorithm given in [GL89]. The exponents in poly(n, δ−1ε−1) are rather high, so
we refrain from stating them explicitly.

Näslund shows in [Näs95] that for any one-way function f(x), a hard-core
predicate can be obtained if one interprets x as a value in GF(2n), and outputs
any bit of ax + b for randomly chosen a and b; a result which also follows from
the characterization in this paper. Furthermore, he proves that for randomly
chosen a, b and prime p the least significant bit of ax + b mod p is a hard-core
predicate. More generally, in [Näs96] he shows that all bits of ax + b mod p are
hard-core.

In a different line of research, in [STV01] Sudan et al. give very strong list-
decodable codes which are not bilinear, based on Reed-Muller codes. These codes
can also be used to obtain hard-core functions for any one-way function.

In [AGS03], Akavia et al. show that list-decoding can also be used to prove
specific hard-core results. For example, they give a proof based on list-decodable
codes that the least significant bit of RSA is hard-core (which was first shown
in [ACGS88]).

3 Full-Rank Bilinear Functions

The main technical goal of this paper is to give a list-decoding procedure for
any bilinear function h : IFn × IFk → IFm. In this section, we will first consider
a simple, but very general subset of bilinear functions, namely full-rank bilinear
functions h (i.e., rank(� ◦ h) = n for every � 	= 0). We show that these functions
have very good list-decoding algorithms.

In a second step we will construct full-rank bilinear functions h : IFn × IFk →
IFm which are optimal in the sense that for fixed n the dimension k is made as
small as possible, while for m every value 0 < m ≤ k is possible. This allows us
to give a very large class of strong hard-core functions.

3.1 List-Decoding of Full-Rank Functions

In this section, we give a list-decoding algorithm for every full-rank bilinear
function h : IFn × IFk → IFk. In particular, for the case IF = GF(2), we will show
that there exists a list-decoding algorithm for h which is as strong as the one
guaranteed in Theorem 5.

Theorem 7. Let h : {0, 1}n×{0, 1}k → {0, 1}m be a full rank bilinear function.
For any δ, ε > 0, the function h(x, y) is (δ, ε)-list-decodable with list size O(1

δε2)
and Θ(n 1

δε2) oracle calls. The list-decoding algorithm needs δε2 as input.

For general finite fields, analogously to Theorem 6, the following holds.

Theorem 8. Let h : IFn × IFk → IFm be a full-rank bilinear function. For any
δ, ε > 0, the function h(x, y) is (δ, ε)-list-decodable with list size poly(n, δ−1ε−1)
and poly(n, δ−1ε−1) oracle calls. The list-decoding algorithm needs δε as input.

80 Thomas Holenstein, Ueli Maurer, and Johan Sjödin

To prove Theorems 7 and 8, we describe an algorithm which, on access to an
oracle O with rate δ, outputs a list of all x ∈ IFn which satisfy

Pr[O(Y) = h(x, Y) | O(Y) 	= ⊥] ≥ 1
qm

+ ε. (1)

For this purpose we convert O to an oracle O′ with the same rate and related
advantage, but for a different code. Namely, O′ will have advantage ε/2 on 〈x, r〉
for any x which satisfies (1), i.e., Pr[O′(R) = 〈x, R〉 | O′(R) 	= ⊥] ≥ 1

q + ε
2 .

Applying Theorems 5 and 6, respectively, then yields the result.
In the following, let L be a uniform random function from L ∗

m, i.e., L is a
random variable taking as values functions from L ∗

m. We show that if a value z
returned by the oracle is better than a random guess for h(x, y), then L(z) is
better than a random guess for L(h(x, y)) as well. To see why this holds, we first
compute the probability that L(a) equals L(b) for two distinct values a and b;
this probability is close to 1/q.

Lemma 9. For any distinct a, b ∈ IFm, Pr[L(a) = L(b)] =
qm−1 − 1
qm − 1

.

Proof. First note that Pr[L(a) = L(b)] = Pr[L(a − b) = 0] = Pr[L(v) = 0] for
some v 	= 0. If L′ is chosen uniformly at random from all functions in Lm (not
excluding 0), then Pr[L′(v) = 0] = 1

q , and since 0(v) = 0 for every v, we can
write

1
q

= Pr[L′(v) = 0] =
1

qm

︸︷︷︸
Pr[L′=0]

+
qm − 1

qm

︸ ︷︷ ︸
Pr[L′ �=0]

Pr[L(v) = 0],

which implies the lemma. �

Now we can estimate the probability that L(Z1) equals L(Z2) for two random

variables Z1 and Z2. Later, Z2 will be h(x, Y) and Z1 a guess of an oracle
for h(x, Y).

Lemma 10. Let Z1 be a random variable over IFm ∪ {⊥} and Z2 a random
variable over IFm. If, for any ε > 0,

Pr[Z1 = Z2 | Z1 	= ⊥] =
1

qm
+ ε,

then

Pr[L(Z1) = L(Z2) | Z1 	= ⊥] ≥ 1
q

+
ε

2
.

Proof. Obviously, if Z1 = Z2 we also have �(Z1) = �(Z2) for every � ∈ L ∗
m.

Using Lemma 9 we obtain

Pr[L(Z1) = L(Z2) | Z1 	= ⊥] =
1

qm
+ ε

︸ ︷︷ ︸
Pr[Z1=Z2|Z1 �=⊥]

+
(qm − 1

qm
− ε

)

︸ ︷︷ ︸
Pr[Z1 �=Z2|Z1 �=⊥]

qm−1 − 1
qm − 1

=
1

qm
+ ε +

(1
q
− 1

qm

)
− ε

qm−1 − 1
qm − 1

≥ 1
q

+
ε

2
. �

Complete Classification of Bilinear Hard-Core Functions 81

Next, we translate a uniform query r into a uniform pair (�, y) ∈ L ∗×{0, 1}k,
such that 〈x, r〉 = �(h(x, y)). We will be able to use this by giving y to the
oracle O which predicts h(x, y) and then apply � to get a prediction for 〈x, r〉.
Since y is uniform we will know the advantage of the oracle in predicting h(x, y),
and since � is uniform, we can apply Lemma 10.

Lemma 11. Let h : IFn × IFk → IFm be a full-rank bilinear function. There
exists an efficiently computable random mapping Gh : IFn � IFk × L ∗

m, which,
for a uniformly chosen input r outputs a uniform random pair (�, y) such that
�(h(x, y)) = 〈x, r〉 for every x.

Proof. The algorithm implementing Gh first chooses an � ∈ L ∗
m uniformly at

random. For a fixed �, let M be the matrix for which �(h(x, y)) = xT My; note
that rank(M) = n. As a second step, the algorithm chooses y as a uniform
random solution of My = r, and returns the pair (�, y). For every fixed � if r is
uniformly distributed; the vector y will be uniformly distributed. Furthermore,
�(h(x, y)) = xT My = xT r = 〈x, r〉. �

The next lemma proves the claimed conversion; i.e., given an oracle which
predicts h(x, y) we implement an oracle which predicts 〈x, r〉. For this, on input r
the algorithm first gets a pair (�, y) using Lemma 11. Then, it queries the given
oracle O with y, applies � to the output and returns the result.

Lemma 12. Let h : IFn × IFk → IFm be a full-rank bilinear function. There is
an efficient oracle algorithm A such that for any ε > 0, every x ∈ IFn and any
oracle O : IFk � IFm which satisfies

Pr[O(Y) = h(x, Y) | O(Y) 	= ⊥] ≥ 1
qm

+ ε

algorithm AO satisfies

Pr[AO(R) = 〈x, R〉 | AO(R) 	= ⊥] ≥ 1
q

+
ε

2

and Pr[AO(R) 	= ⊥] = Pr[O(Y) 	= ⊥]. Algorithm A makes one oracle call to O.

Proof. Given a uniformly chosen r, the algorithm first evaluates the function
Gh(r) as guaranteed by Lemma 11, to get a uniform pair (�, y) with �(h(x, y)) =
〈x, r〉. It then queries the oracle with y. In case the answer z is not ⊥ it returns
�(z); otherwise it returns ⊥.

Let x be fixed such that

Pr[O(Y) = h(x, Y) | O(Y) 	= ⊥] ≥ 1
qm

+ ε.

Lemma 10 implies that

Pr[L(O(Y)) = L(h(x, Y)) | O(Y) 	= ⊥] ≥ 1
q

+
ε

2
.

Since (�, y) is uniformly distributed this together with �(h(x, y)) = 〈x, r〉 con-
cludes the proof. �

82 Thomas Holenstein, Ueli Maurer, and Johan Sjödin

Lemma 12 can be seen as a reduction of a code to another one, in the sense
that given a noisy codeword of one code we can generate a noisy codeword of a
related code such that the Hamming distances to codewords are related in some
sense. The proofs of Theorems 7 and 8 are now obvious.

Proof (of Theorems 7 and 8). Use Lemma 12, and apply Theorems 5 and 6,
respectively. �

3.2 Construction of Full-Rank Functions

As mentioned before, a list-decodable code can be used to obtain a hard-core
function, which means that a family of full-rank bilinear functions can be used
as a hard-core function. This is stated in the following proposition (a more exact
version will be given in Theorem 25, Section 5).

Proposition 13. Any efficiently computable family of full-rank bilinear func-
tions h : {0, 1}n × {0, 1}k → {0, 1}m, where k ∈ poly(n) and m ∈ O(log n) is a
strong hard-core function.

The proposition implies that in order to give a hard-core function it is suf-
ficient to construct a full-rank bilinear function family. In this section, we will
present constructions which appear in the literature as hard-core functions, and
show that they satisfy rank(� ◦ h) = n for every � 	= 0.

As usual in the context of hard-core functions, we will explain the construc-
tions for vector spaces over {0, 1}. However, all constructions immediately gen-
eralize to vector spaces over any finite field.

Recall that any bilinear function h : {0, 1}n × {0, 1}k → {0, 1}m can be de-
scribed by a sequence M1, . . . , Mm of n × k matrices over GF(2) as h(x, r) =(
xT M1r, . . . , x

T Mmr
)
. It follows that for every � there exists a non-empty sub-

set I ⊆ {1, . . . , m} such that the function � ◦ h can be written as �(h(x, r)) =
xT

(∑
i∈I Mi

)
r.

In order to get a full-rank bilinear function it is therefore sufficient to give
matrices M1, . . . , Mm which satisfy

rank
(∑

i∈I

Mi

)
= n for every I 	= ∅. (2)

Example 14. In [Lub96] it is shown that O(log n) independent inner product
bits give a hard-core function. This function h : {0, 1}n × {0, 1}nm → {0, 1}m is
defined by matrices M1, . . . , Mm such that Mi consists of all zeros, except that
from column n(i − 1) + 1 to ni it contains a n × n identity matrix. Here it is
obvious that (2) is satisfied.

Example 15. In order to keep the dimension k small, one can obtain a full-rank
bilinear function h : {0, 1}n × {0, 1}n+m−1 → {0, 1}m with the construction
given in [Gol01] and [GL89]. There, Mi is a matrix of size n× (n+m− 1) which
contains only zeros with the exception of an n × n identity matrix starting at
column i. Again, it is obvious that (2) holds.

Complete Classification of Bilinear Hard-Core Functions 83

Note that since rank(� ◦ h) cannot be larger than k for any �, it is necessary
to have k ≥ n. If m is small enough this is indeed sufficient:

Theorem 16. Let vector spaces {0, 1}n, {0, 1}k and {0, 1}m over {0, 1} be given.
If n ≤ k and m ≤ k, then there exists a full-rank bilinear function h : {0, 1}n ×
{0, 1}k → {0, 1}m.

Proof. We first note that it is sufficient to give a full-rank bilinear function
{0, 1}k × {0, 1}k → {0, 1}k for every k, since one can first obtain a bilinear
function {0, 1}k×{0, 1}k → {0, 1}m by ignoring some of the output coordinates,
and in a second step one can get a full-rank bilinear function {0, 1}n×{0, 1}k →
{0, 1}m by setting some of the inputs to the first arguments to zero.

To construct a full-rank bilinear function h : {0, 1}k × {0, 1}k → {0, 1}k we
observe that the finite field GF(2k) is a vector space over {0, 1} of dimension k,
and for every x ∈ GF(2k) the map gx(r) = x ·r is linear. Let z1, . . . , zk be a basis
of GF(2k) and let Mi be the matrix which describes the linear mapping gzi in
this basis. Since for any I 	= ∅ the matrix

∑
i∈I Mi describes the linear mapping

gz for some non-zero z ∈ GF(2k), this map is invertible and thus has rank k. �

The bilinear function used in this proof is strongly related to the hard-core
function given at the end of [GRS00], and indeed the function given there also
satisfies the rank condition needed for Theorem 86.

4 General Bilinear Functions

In this section we give a list-decoding algorithm for every (possibly non full-
rank) bilinear function. Using the same technique as in Section 3.1 we prove the
following analogue of Theorem 7 (recall that ρ(h) = E[qn−rank(L◦h)]).

Theorem 17. Let h : {0, 1}n×{0, 1}k → {0, 1}m be any bilinear function. After
a preprocessing phase taking time 2m · poly(k, n), the function h(x, y) is (δ, ε)-
list-decodable with list size O(ρ(h)

δε2) and an expected number Θ(n 1
δε2) of oracle

calls. The algorithm needs δε2 as input.

Note that Θ(n
δε2) is the expected number of queries. For general finite fields

Theorem 18 holds.

Theorem 18. Let h : IFn × IFk → IFm be any bilinear function over IF. After
a preprocessing phase taking time qm · poly(n, k), the function h(x, y) is (δ, ε)-
list-decodable with list size ρ(h) · poly(n, k, δ−1ε−1) and an expected number of
poly(n, k, δ−1ε−1) oracle calls. The list-decoding algorithm needs δε as input.

6 The functions are not identical, but if one considers the “cube” given by stacking
the matrices for different linear maps �, then the functions are obtained from each
other by a rotation of this cube. It is possible to show that for any two cubes which
are obtained by rotation from each other, the corresponding function satisfies the
full-rank condition if and only if the same holds for the other cube.

84 Thomas Holenstein, Ueli Maurer, and Johan Sjödin

As before we prove these theorems by converting a given oracle O which on
input y predicts h(x, y) to an oracle O′ which on input r predicts 〈x, r〉. We use
Lemma 10 again (and thus Lemma 9), but we modify Lemmas 11 and 12.

A problem is that for some r it may be impossible to choose a pair (�, y)
with �(h(x, y)) = 〈x, r〉 for every x. This will force our reduction to return ⊥ on
input r, since there is no way to get a reasonable guess for 〈x, r〉 from O. Further-
more, the pair (�, y) must be uniformly distributed which makes the conversion
return ⊥ more often. We get the following generalization of Lemma 11:

Lemma 19. Let h : IFn × IFk → IFm be a bilinear function. There exists an
efficiently computable mapping Gh : IFn � (IFk×L ∗

m)∪{⊥} which, on uniformly
distributed input r outputs ⊥ with probability 1 − 1

ρ(h) , and otherwise a uniform
random pair (�, y), satisfying �(h(x, y)) = 〈x, r〉 for all x. The algorithm uses a
precomputation with time complexity qm · poly(n, k).

Proof. First, as a precomputation, for every � ∈ L ∗
m the algorithm calculates

qrank(�◦h), and stores it in such a way that later it is possible to efficiently
draw an element � ∈ L ∗

m with probability qn−rank(�◦h)/ ρ̂(h), where ρ̂(h) =∑
� �=0 qn−rank(�◦h) = (qm − 1) ρ(h).
After the precomputation, on input r, the algorithm chooses � according to

this probability distribution and obtains the matrix M with �(h(x, y)) = xT My.
If the system My = r is solvable, it chooses a solution y uniformly at random
and returns (�, y); otherwise it returns ⊥.

Note that the precomputation can obviously be done in time qm · poly(n, k)
and every returned pair (�, y) satisfies �(h(x, y)) = 〈x, r〉.

For a fixed � and uniformly chosen r, the probability that there exists a y
such that My = r is qrank(M)−n = qrank(�◦h)−n. Furthermore, conditioned on the
event that the system above is solvable, every vector y has the same probability.
This implies that the probability that a fixed pair (�, y) is returned is

Pr[Gh(R) = (�, y)] =
qn−rank(�◦h)

ρ̂(h)
· qrank(�◦h)−n · 1

qk
=

1
qk ρ̂(h)

,

which is independent of the pair (�, y). Summing over all possible pairs (�, y) we
get Pr[Gh(R) 	= ⊥] = 1/ρ(h). �

We point out that the probability of Gh not returning ⊥ cannot be made any
higher. To see why, first note that a pair (�, y) can only be the answer for one
specific input r. Furthermore, there are qk ρ̂(h) possible pairs (�, y), which can
only be output for y = 0; implying that every pair can occur with probability at
most q−k ρ̂−1(h).

Along the same line of reasoning as in Section 3, we can now prove the
generalized version of Lemma 12.

Lemma 20. Let h : IFn× IFk → IFm be a bilinear function. There is an efficient
oracle algorithm A such that for any ε > 0, every x ∈ IFn and any oracle O :
IFk � IFm which satisfies

Pr[O(Y) = h(x, Y) | O(Y) 	= ⊥] ≥ 1
qm

+ ε,

Complete Classification of Bilinear Hard-Core Functions 85

algorithm AO satisfies

Pr[AO(R) = 〈x, R〉 | AO(R) 	= ⊥] ≥ 1
q

+
ε

2

and Pr[AO(R) 	= ⊥] = 1
ρ(h) Pr[O(R) 	= ⊥]. The algorithm makes one query

to O with probability 1
ρ(h) . It uses a preprocessing phase with time complexity

qm · poly(n, k).

Proof. The preprocessing is the one needed for Gh of Lemma 19. On input r,
the algorithm first uses Gh to obtain either a pair (�, y) or ⊥. In the second
case, the algorithm returns ⊥ and does not make an oracle query; this happens
with probability 1 − 1

ρ(h) . If a pair (�, y) is returned, the algorithm makes one
query z = O(y). If z 	= ⊥ the algorithm returns �(z), otherwise it returns ⊥.

We fix ε and x such that Pr[O(Y) = h(x, Y) | O(Y) 	= ⊥] ≥ 1
qm +ε. Lemma 10

implies that Pr[L(O(Y)) = L(h(x, Y)) | O(Y) 	= ⊥] ≥ 1
q + ε

2 . Conditioned on
the event that A makes a query to O the pair (�, y) is uniformly distributed
and satisfies �(h(x, y)) = 〈x, r〉. Also, when A does not make a query to O it
returns ⊥. This implies

Pr[L(O(Y)) = L(h(x, Y)) | O(Y) 	= ⊥] = Pr[AO(R) = 〈x, R〉 | AO(R) 	= ⊥] .

Finally, we see that A does not return ⊥ if both Gh of Lemma 19 and O do not
return ⊥, which happens with probability 1

ρ(h) Pr[O(Y) 	= ⊥]. �

Using this conversion, the proofs of Theorems 17 and 18 are now straightforward.

Proof (of Theorems 17 and 18). Use Lemma 20 and apply Theorems 5 and 6,
respectively.

5 Implications for Hard-Core Functions

The results of the previous sections have implications in cryptography, namely
for one-way functions. In particular, under a reasonable complexity-theoretic
assumption the results allow us to classify basically every bilinear function family
h : {0, 1}n × {0, 1}k → {0, 1}m according to whether it is a strong hard-core
function or not.

We formulate our results in the context of uniform algorithms, but they
immediately generalize to a non-uniform context.

5.1 Weak vs. Strong Hard-Core Functions

In general, it is easier to construct weak hard-core functions than to construct
strong ones. For example the identity function h(x) = x is a weak hard-core
function for any one-way function f (predicting x given f(x) is the same as
inverting f), but not a strong hard-core function (given f(x) it is easy to distin-
guish x from a random value).

86 Thomas Holenstein, Ueli Maurer, and Johan Sjödin

For small output values the two notions are equivalent: every weak hard-core
function h : {0, 1}n×{0, 1}k → {0, 1}m for m ∈ O(log n) is also a strong one. This
follows from the fact that any distinguisher for such a function can be converted
to a predictor. More concretely, assume that an oracle O has advantage ε in
distinguishing h(x, y) from a random value. It is well known that one can get a
predictor with advantage 2−mε from O (see for example [Lub96]). The following
lemma improves this fact by following the idea of Hast that, in cryptographic
applications, a distinguisher often comes from an algorithm which tries to break
a scheme; if it succeeds then it is almost certain that the input was not random.
This can be used to obtain a predictor with lower rate but higher advantage. In
the following lemma we use this idea since the probability p0 that a distinguisher
answers 1 on random input can be very small. By replacing ⊥ with a uniform
random output one obtains the well-known version mentioned above.

Lemma 21. There exists a randomized oracle algorithm A such that for any
z ∈ {0, 1}m, oracle O with

p0 := Pr[O(Um) = 1]

and ε defined by
p0(1 + ε) = Pr[O(z) = 1],

algorithm A queries O once and outputs a value from {0, 1}m ∪ {⊥} such that

Pr[AO 	= ⊥] = p0

and

Pr[AO = z | AO 	= ⊥] =
1

2m
+ 2−mε.

Proof. Algorithm A chooses a uniform random value z′ ∈ {0, 1}m. It then queries
O(z′) and outputs z′ if the oracle outputs 1. Otherwise, it outputs ⊥.

The probability that A outputs ⊥ is 1−p0. The probability that A outputs z
is 1

2m (p0(1 + ε)) and thus the probability that A outputs z conditioned on the
event that it does not output ⊥ is 1+ε

2m . �

As a corollary we obtain the following result:

Corollary 22. Let h : {0, 1}n ×{0, 1}k → {0, 1}m be a weak hard-core function
and m ∈ O(log n). Then, h is a strong hard-core function.

Proof. Assume that h is not a strong hard-core function. Then, there exists an
algorithm A which on input (f(x), r) can distinguish h(x, r) from a uniform
random string with non-negligible advantage ε. According to Lemma 21 we can
use this algorithm to obtain an algorithm which predicts the same string with
success probability at least 1

2m + ε
2m , and thus h is not a weak hard-core function.

�

Complete Classification of Bilinear Hard-Core Functions 87

5.2 List-Decodable Codes and Weak Hard-Core Functions

Every list-decodable code can be used as a weak hard-core function. The idea to
prove this is to assume that the function h is not a weak hard-core function, and
to use the algorithm A which predicts h(x, r) given f(x) and r together with
the list-decoding algorithm to find a list which contains x with probability at
least 1/2. Applying f to each element of the list and comparing the input we are
guaranteed to find a preimage of f(x) with high probability.

In our case, we would like to use the algorithm guaranteed in Theorem 17.
This algorithm requires to know the product δε2, and works as long as the correct
value is at least as large as the value given to the algorithm.

Note that the value of x is fixed during a run of algorithm A. Consequently
such an algorithm can only be successful if the rate δx and advantage εx for
a fixed x is large enough. However, typically only the rate δ and advantage ε
averaged over all x is guaranteed to have a certain value. In order to show that
this is sufficient we first prove that E[δXε2

X] ≥ δε2. In the following lemma, it is
useful to think of Z as an indicator variable which is 1 if the predictor guesses
correctly; 0 on a wrong guess and ⊥ if the predictor refuses to produce a guess.
The random variable X corresponds to the value of x.

Lemma 23. Let X be a uniformly distributed random variable over X and let Z
be some random variable in {0, 1,⊥}. Let δ := Pr[Z 	= ⊥] and δx := Pr[Z 	= ⊥ |
X = x]. Fix any constant c and let ε := Pr[Z = 1 | Z 	= ⊥] − c and εx :=
Pr[Z = 1 | X = x ∧ Z 	= ⊥] − c. Then,

E[δXε2
X] ≥ δε2.

Proof. First we observe that δ = 1
|X |

∑
x∈X δx. Furthermore we have

c + ε =
Pr[Z = 1]
Pr[Z 	= ⊥]

=
1

|X |
∑

x∈X Pr[Z = 1 | X = x]
1

|X |
∑

x∈X δx

=
∑

x∈X δx(c + εx)
∑

x∈X δx
= c +

∑
x∈X δxεx

∑
x∈X δx

and thus ε =
(∑

x δxεx

)
/
(∑

x δx

)
. To show that

E[δXε2
X] =

1
|X |

∑

x∈X
δxε2

x ≥
(1
|X |

∑

x∈X
δx

)(∑
x∈X δxεx

∑
x∈X δx

)2

= δε2 ,

we note that this is equivalent to

(∑

x∈X
δx

)(∑

x∈X
δxε2

x

)
≥

(∑

x∈X
δxεx

)2

,

which follows directly from the Cauchy-Schwarz inequality. �

88 Thomas Holenstein, Ueli Maurer, and Johan Sjödin

We now show how to use the list-decoding algorithm to invert a function f .
The following lemma is usually used when f is a one-way function, m ∈ O(log n)
and ρ(h) ∈ poly(n), in which case it states that h is a weak hard-core function.

Lemma 24. Let f : {0, 1}n → {0, 1}p be any efficiently computable function
family. Let h : {0, 1}n × {0, 1}k → {0, 1}m be any efficiently computable bilinear
function with k ∈ poly(n). There exists an oracle algorithm A such that for any
O : {0, 1}p × {0, 1}k � {0, 1}m ∪ {⊥} which satisfies Pr[O(f(X), Y) 	= ⊥] = δ,
and Pr

[O(f(X), Y) = h(X, Y)
∣
∣ O(f(X), Y) 	= ⊥]

= 1
2m + ε, algorithm AO is

running in time ρ(h)
δε2 · poly(n) + 2m · poly(n) and satisfies

Pr
[
f
(
AO(f(X))

)
= f(X)

] ≥ δε2

4
,

while making an expected number Θ(n 1
δε2) of oracle calls to O. Algorithm A

needs δε2 as an input.

If h is a full-rank bilinear function, the term 2m · poly(n) in the running time
can be omitted.

Proof. For any fixed x ∈ {0, 1}n, let δx := Pr[O(f(x), Y) 	= ⊥] and εx :=
Pr[O(f(x), Y) = h(x, Y) | O(f(x), Y) 	= ⊥] − 1

2m . Using Lemma 23 we obtain
E[δXε2

X] ≥ δε2. Since 0 ≤ δxε2
x ≤ 1 for any x, we can apply Markov’s inequality

to obtain Pr[δXε2
X > 1

2δε2] > 1
2δε2. A run of the algorithm guaranteed in Theo-

rem 17 with input δε2/2 thus gives a set Λ of size at most O(ρ(h)2n

δε2) containing x
with probability at least 1

4δε2, while doing an expected number Θ(n 1
δε2) of ora-

cle calls. Applying f to each x ∈ Λ and testing if it is correct yields the claimed
result. �

5.3 Bilinear Hard-Core Functions

Lemma 21 converts a distinguisher to a predictor, while Lemma 24 uses a pre-
dictor to invert a function. Combining these two lemmas gives the following
theorem:

Theorem 25. Let f : {0, 1}n → {0, 1}p be any efficiently computable function.
Let h : {0, 1}n×{0, 1}k → {0, 1}m be any efficiently computable bilinear function
with k ∈ poly(n). There exists an oracle algorithm A such that for ε, δ > 0 and
any O : {0, 1}p × {0, 1}k � {0, 1} which satisfies

Pr
[O(

f(X), R, h(X, R)
)]

= δ, and Pr
[O(

f(X), R, Um
)]

= δ(1 + ε),

algorithm A satisfies

Pr
[
f(AO(f(X))) = f(X)] ≥ δε2

4 · 22m

and makes an expected number of

κ = Θ
(
n

22m

δε2

)

Complete Classification of Bilinear Hard-Core Functions 89

oracle queries to O. Algorithm A runs in time ρ(h)22m

δε2 poly(n)+ 2m poly(n) and
needs δε2 as input.

Proof. Combine Lemma 21 with Lemma 24. �

This theorem implies that any bilinear function h : {0, 1}n × {0, 1}k → {0, 1}m

with m ∈ O(log n) and ρ(h) ∈ poly(n) can be used as a hard-core function.

Corollary 26. Let h : {0, 1}n × {0, 1}k → {0, 1}m be a bilinear function with
m ∈ O(log n) and ρ(h) ∈ poly(n). Then h is a strong hard-core function.

Proof. Assume otherwise and use Theorem 25 to arrive at a contradiction. �

5.4 Bilinear Functions not Suitable as Hard-Core Functions

In this section we also consider bilinear functions h : {0, 1}n×{0, 1}k → {0, 1}m

for which m /∈ O(log n) or ρ(h) /∈ poly(n). One can show that m /∈ O(log n)
implies the existence of a function m̃ ∈ ω(log n) which is infinitely often smaller
than m. Analogously, ρ(h) /∈ poly(n) implies the existence of a function ρ̃ which
is strictly superpolynomial (i.e., log(ρ̃) ∈ ω(log n)) and infinitely often smaller
than ρ(h). We say that a hard-core function is regular if m ∈ O(log n) or a
polynomial time computable function m̃ as above exists; and ρ ∈ poly(n) or a
polynomial time computable ρ̃ as above exists.

We show that any regular bilinear function not satisfying the conditions of
Corollary 26 is not a hard-core function if some reasonable complexity-theoretic
assumption holds, namely the existence of a one-way permutation with expo-
nential security.

Definition 27 (Very strong one-way permutation).7 A family of polyno-
mial time computable functions f : {0, 1}n → {0, 1}n is a very strong one-way
permutation if there exists a constant c > 0, such that for every algorithm A
with running time at most 2cn, the inverting probability Pr[f(A(f(X))) = f(X)]
is at most 2−cn for all but finitely many n.

Proving that no such functions exist would be a breakthrough in complexity
theory. Furthermore, Gennaro and Trevisan show in [GT00] that in relativized
worlds such functions exist, and thus our results exclude a relativizing hard-
core result for any bilinear function which does not satisfy the conditions of
Corollary 26 unconditionally.

As a first step, we show that it is impossible to use a bilinear function to
extract ω(log n) hard bits from x. Such a lemma was already hinted at in [GL89].

Lemma 28. Let h : {0, 1}n × {0, 1}k → {0, 1}m be a regular bilinear function
with m /∈ O(log n). If a very strong one-way permutation exists, then h is not a
strong hard-core function.
7 We use permutations for the sake of simplicity. It is easy to see that arbitrary one-way

functions with exponential security suffice to prove Theorem 30.

90 Thomas Holenstein, Ueli Maurer, and Johan Sjödin

Proof. Since m /∈ O(log n) and h is regular, there exists a polynomial-time com-
putable function m̃ ∈ ω(log n) with m̃(n) < m(n) for infinitely many n.

We define a one-way function f : {0, 1}n → {0, 1}n for which it is easy to
give a distinguisher for h(x, r). For this purpose, let g : {0, 1}m̃/2 → {0, 1}m̃/2 be
a very strong one-way permutation. On input x ∈ {0, 1}n, split the input x into
two parts, x1 ∈ {0, 1}m̃/2 and x2 ∈ {0, 1}n−m̃/2. The output of f is then g(x1)
concatenated with x2. We see that f is a one-way function, since an algorithm A
which inverts f in poly(n)-time with non-negligible success probability can be
used to invert g in time 2o(m̃(n)) with probability 2−o(m̃(n)) for infinitely many n.

Furthermore, for any n with m̃(n) < m(n) it is easy to distinguish h(x, r)
from a random string, given f(x) and r. First, we find x2 from f(x). Since
h(x, r) = xT Mr we see that for fixed x2 and r only a subspace of dimension at
most m̃/2 is possible as output value for h(x, r). Also, it is easy to check whether
a given value is within this subspace or not. Since a random value will be in the
subspace with probability at most 2−m̃/2, h cannot be a hard-core function. �

Using basically the same technique, we can now show that only functions
with nearly full rank can be used as hard-core functions.

Lemma 29. Let h : {0, 1}n × {0, 1}p → {0, 1}m be a regular bilinear function
with m ∈ O(log n) and ρ(h) /∈ poly(n). If a very strong one-way permutation
exists, then h is not a strong hard-core function.

Proof. Since h is regular and ρ(h) /∈ poly(n), there exists a function ρ̃ such that
log(ρ̃) ∈ ω(log n) and ρ̃(n) < ρ(h)(n) for infinitely many n.

As in the proof of Lemma 28, we construct a one-way function f : {0, 1}n →
{0, 1}n by embedding a preimage of size {0, 1}log(ρ̃(n))/2 to a very strong one-
way permutation g. Consider an n for which ρ̃(n) < ρ(h)(n). For such an n it
is easy to find a linear map to embed the preimage to g such that for some
� ∈ L ∗

m the value of �(h(x, y)) does not depend on the input to g. As in the
proof of Lemma 28 it follows immediately that f is a one-way function, and
since �(h(x, y)) only depends on a part of x which can be found by a linear
transformation of the output, h cannot be a hard-core function. �

Together, this implies the following theorem.
Theorem 30. Let h : {0, 1}n×{0, 1}k → {0, 1}m be a regular bilinear function,
and assume the existence of a very strong one-way permutation. Then h is a
strong hard-core function if and only if ρ(h) ∈ poly(n) and m ∈ O(log n).

Proof. If ρ(h) ∈ poly(n) and m ∈ O(log n), then h is a hard-core function
according to Corollary 26. If m ∈ O(log n) and ρ(h) /∈ poly(n), then h is not
a hard-core function according to Lemma 29. If m /∈ O(log n) then h is not a
hard-core function according to Lemma 28. �

Acknowledgments

We would like to thank Gustav Hast and Johan H̊astad for helpful discussions.
This research was supported by the Swiss National Science Foundation, project
no. 2000-066716.01/1.

Complete Classification of Bilinear Hard-Core Functions 91

References

[ACGS88] Werner Alexi, Benny Chor, Oded Golreich, and Claus P. Schnorr. RSA
and Rabin functions: Certain parts are as hard as the whole. Siam Journal
on Computation, 17(2):194–209, 1988.

[AGS03] Adi Akavia, Shafi Goldwasser, and Samuel Safra. Proving hard-core pred-
icates using list decoding. In The 44th Annual Symposium on Foundations
of Computer Science, pages 146–157, 2003.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically
strong sequences of pseudo-random bits. Siam Journal on Computation,
13(4):850–864, 1984.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In Proceedings of the Twenty First Annual ACM Symposium on
Theory of Computing, pages 25–32, 1989.

[Gol01] Oded Goldreich. Basic Tools. Foundations of Cryptography. Cambridge
University Press, first edition, 2001. ISBN 0-521-79172-3.

[GRS00] Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan. Learning polyno-
mials with queries: The highly noisy case. Siam Journal on Discrete Math-
ematics, 13(4):535–570, 2000.

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of
generic cryptographic constructions. In The 41st Annual Symposium on
Foundations of Computer Science, pages 305–313, 2000.

[Has03] Gustav Hast. Nearly one-sided tests and the Goldreich-Levin predicate. In
Eli Biham, editor, Advances in Cryptology — EUROCRYPT 2003, volume
2656 of Lecture Notes in Computer Science, pages 195–210, 2003. Extended
version to appear in Journal of Cryptology.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function. Siam Journal on
Computation, 28(4):1364–1396, 1999.

[Lev87] Leonid A. Levin. One-way functions and pseudorandom generators. Com-
binatorica, 7(4):357–363, 1987.

[Lub96] Michael Luby. Pseudorandomness and Cryptographic Applications. Prince-
ton University Press, first edition, 1996. ISBN 0-691-02546-0.

[Näs95] Mats Näslund. Universal hash functions & hard core bits. In Louis C. Guil-
lou and Jean-Jacques Quisquater, editors, Advances in Cryptology — EU-
ROCRYPT ’95, volume 921 of Lecture Notes in Computer Science, pages
356–366, 1995.

[Näs96] Mats Näslund. All bits in ax + b mod p are hard. In Neal Koblitz, editor,
Advances in Cryptology — CRYPTO ’96, volume 1109 of Lecture Notes in
Computer Science, pages 114–128, 1996. Extended Abstract.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom genera-
tors without the XOR lemma. Journal of Computer and System Sciences,
62(2):236–266, 2001.

[Sud00] Madhu Sudan. List decoding: Algorithms and applications. SIGACTN:
SIGACT News (ACM Special Interest Group on Automata and Computabil-
ity Theory), 31(1):16–27, 2000.

[Yao82] Andrew C. Yao. Theory and applications of trapdoor functions (extended
abstract). In The 23rd Annual Symposium on Foundations of Computer
Science, pages 80–91, 1982.

	1 Introduction
	2 Preliminaries
	2.1 Bilinear Functions
	2.2 List-Decoding
	2.3 Hard-Core Functions
	2.4 Previous Work

	3 Full-Rank Bilinear Functions
	3.1 List-Decoding of Full-Rank Functions
	3.2 Construction of Full-Rank Functions

	4 General Bilinear Functions
	5 Implications for Hard-Core Functions
	5.1 Weak vs. Strong Hard-Core Functions
	5.2 List-Decodable Codes and Weak Hard-Core Functions
	5.3 Bilinear Hard-Core Functions
	5.4 Bilinear Functions not Suitable as Hard-Core Functions

	Acknowledgments
	References

