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ABSTRACT Three new trapdoor one-way functions are proposed that are based on
elliptic curves over the ring Z,. The first class of functions is a naive construction, which
can be used only in a digital signature scheme, and not in a public-key cryptosystem. The
second, preferred class of function, does not suffer from this problem and can be used for
the same applications as the RSA trapdoor one-way function, including zero-knowledge
identification protocols. The third class of functions has similar properties to the Rabin
trapdoor one-way functions. Although the security of these proposed schemes is based on
the difficulty of factoring n, like the RSA and Rabin schemes, these schemes seem to be
more secure than those schemes from the viewpoint of attacks without factoring such as low
multiplier attacks.

1 Introduction

In their seminal 1976 paper [3], Diffie and Hellman introduced the concept of a trapdoor
one-way function (TOF). A TOF is a function that is easy to evaluate but infeasible to
invert, unless a secret trapdoor is known, in which case the inversion is also easy. Although
no realisation of a TOF was proposed in [3], Diffie and Hellman observed that such a function
would allow the construction of digital signature schemes and public-key cryptosystems, two
concepts that they introduced.

The first implementation of a TOF was proposed by Rivest, Shamir and Adleman in
1978 [21]. Its security relies on the difficulty of factoring a composite number n. Some other
implementations [20, 4] of TOFs have been proposed based on the difficulty of factoring and
discrete logarithms. ;From another direction, one of the recent topics in the field of elliptic
curves is their applicability to cryptography. The points of an elliptic curve E over a finite
field form an abelian group. Hence the group E can be used to implement analogs of the
Diffie-Hellman key exchange scheme and the ElGamal public key cryptosystem, as explained
in [9]. The security of these analogous systems rests on the difficulty of the discrete logarithm
problem on an elliptic curve.

In this paper, we propose new TOFs (or public-key cryptographic schemes) based on
elliptic curves over a ring Z,, although an elliptic curve E over Z, does not form a group.
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The security of these TOF's depends on the difficulty of factoring n. Although these schemes
are less efficient than the RSA and Rabin schemes, our schemes seem to be more secure
from the viewpoint of some attacks that do not use factoring such as low multiplier attacks.
.From the same reason, even when the RSA system can be broken without factoring the
modulus, our schemes seem to remain secure.

We begin with a brief review of the basic definitions and facts about elliptic curves over
a finite field in Section 2. In Section 3, we show some properties of elliptic curves over a
ring, which are used in the succeeding sections. Section 4 proposes a naive construction of
the TOF (Type 0 scheme) which is based on elliptic curves over a ring, which can be used
only in a digital signature scheme, and not in a public-key cryptosystem. In Section 5, we
propose the Type 1 scheme which is based on the elliptic curve over a ring, and discuss its
properties. In Section 6, we propose the Type 2 scheme based on the elliptic curve over a
ring, and discuss its properties. Section 7 discusses the security of the proposed schemes,
and Section 8 discusses their performance.

2 Elliptic Curves over a Finite Field

Let K be a field of characteristic # 2,3, and let a,b € K be two parameters satisfying
4a® + 27b? # 0. An elliptic curve over K with parameters a and b is defined as the set of
points (z,y) with z,y € K satisfying the equation

v = 2 +az +0,

together with a special element denoted O and called the point at infinity. We will mainly be
interested in elliptic curves over the finite field F), with p elements, for some prime p. Such a
curve will be denoted E,(a,b). What makes elliptic curves interesting in cryptography is the
fact that an addition operation on the points of an elliptic curve can be defined that makes
it into an abelian group. This addition operation, which has but its name in common with
the ordinary addition of integers, is described in the following.

Let E be an elliptic curve, and let P and () be two points on E. The point P + @) is
defined according to the following rules. If P = O, then —P = O, and P+ Q = Q (i.e., O is
the neutral element of E). Let P = (z1,y;) and Q = (z9,¥2). If x1 = 25 and y; = —ys, then
P+ @ = O (i.e., the negative of the point (x,y) is the point (z,—y)). In all other cases the
coordinates of P 4+ @ = (3, y3) are computed as follows. Let A\ be defined as

Y2~ Ui if X1 7&372
\ = T2 — 1
) 322+a
if 1 = z,.
2y,

(When P 4+ @ # O, then the denominator is always non-zero and thus the quotient is
defined.) The resulting point P + @ = (x3,y3) is defined by

Iry = )\2—371—.’1?2

Yys = )\(551 - 333) — Y1

Clearly, the first equation is equivalent to 3 = A\? — 2z, when P = . All computations
are in the field over which F is defined. In particular, when the field is F,, all computations
are modulo p. It is straightforward to verify that the defined addition operation satisfies the
axioms for a group, i.e., that E is closed under addition and that addition is commutative



and associative. (The existence of a neutral element and of inverse elements was mentioned
above.)

Let #E,(a,b) denote the order (i.e., the number of points) of the elliptic curve E,(a,b).
It is well-known that #E,(a,b) = p+ 1+t where [t| < 2,/p for every elliptic curve over
F,. Every value of ¢ within the given bounds is taken for some pair (a,b), but this fact will
not be used in this paper. There exists a polynomial-time algorithm due to Schoof [22] for
computing the order of an elliptic curve, but this algorithm is quite impractical for large p.
It is known that Ej,(a,b) is either cyclic or the product of two cyclic groups. In the latter
case, Ep(a,b) = Zy, X Zy, where Ny - Ny = #E,(a,b), where N, divides N; and where N,
also divides p — 1. We refer to [9] for a more detailed introduction to elliptic curves, and to
[8] for some further cryptographically useful properties of elliptic curves.

If the forms of elliptic curve E,(a,b) and prime p are restricted, the order #E,(a,b) and
the group structure are known as follows.

Lemma 1. Let p be an odd prime satisfying p = 2 (mod 3). Then for 0 <b < p E,(0,b) is
a cyclic group of order
#E,0,b) = p+ 1.

Lemma 2. Let p be a prime satisfying p = 3 (mod 4). Then for 0 < a < p we have
#Ep(a’a 0) =p + 1

Moreover, E,(a,0) is cyclic if a is a quadratic residue modulo p and else E,(a,0) = Zgi1)/2 X
Zs.

3 Elliptic Curves over a Ring

We now consider elliptic curves over the ring Z,, where n is an odd composite squarefree
integer. (An alternative notation for Z, used in the literature is Z/nZ.) Similar to the
definition of E,(a,b), an elliptic curve E,(a,b) can be defined as the set of pairs (z,y) € Z2
satisfying y*> = 23 + ax + b (mod n), together with a point O at infinity. An addition
operation on E,(a,b) can be defined in the same way as the addition operation on E,(a,b),
simply by replacing computations in F, by computations in Z,. However, two problems
occur. The first problem is that because the computation of A requires a division which in
a ring is defined only when the divisor is a unit, the addition operation on E,(a,b) is not
always defined. The second problem, which is related to the first is that E,(a,b) is not a
group. It seems therefore impossible to base a cryptographic system on E,(a,b). In the
following we present a natural solution to these problems.

For the sake of simplicity, let n = pg in the sequel be the product of only two primes as in
the RSA system. Moreover, the addition operation on F,(a,b) described above, whenever it
is defined, is equivalent to the (componentwise defined) group operation on E,(a, b) x E,(a, b).
By the Chinese Remainder Theorem, every element ¢ of Z, can be represented uniquely
as a pair [cp,c,] where ¢, € Z, and ¢, € Z,. Thus every point P = (z,y) on E,(a,b)
can be represented uniquely as a pair [P,, P] = [(2,Yp), (¥4, Yq)] Where P, € E,(a,b) and
P, € E,(a,b), with the convention that O is represented by [O,, O,], where O, and O, are
the points at infinity on E,(a,b) and E,(a, b), respectively. By this mapping, all elements of
E,(a,b) x E,(a,b) are exhausted except the pairs of points [P,, P,;] for which exactly one of
the points P, and P, is the point at infinity. Note that the addition operation on E,(a,b)
described above is undefined if and only if the resulting point, when interpreted as an element
of E,(a,b) x E4(a,b), is one of these special points.



It is important to note that when all prime factors of n are large, it is extremely unlikely
that the sum of two points on E,(a, b) is undefined. In fact, if the probability of the addition
operation being undefined were non-negligible, then the very execution of a computation on
E,(a,b) would be a feasible factoring algorithm, which is assumed not to exist. Therefore,
the first problem can be solved by considering the occurence probability.

The second problem, that E,(a,b) is not a group, can be solved by the following lemma.
That is, although we cannot use the properties of a finite group directly, we can use a
property of E,(a,b) which is similar to that of a finite group. The following lemma can be
easily obtained from the Chinese Remainder Theorem.

Lemma 3. Let E,(a,b) be an elliptic curve such that ged(4a® + 276*,n) = 1 and n = pq
(p,q: prime). Let N, be lem(#E,(a,b),#E,(a,b)). Then, for any P € E,(a,b), and any
integer k,

(k-N,+1)-P=P.

4 Naive Construction of TOF Based on Elliptic Curves
over a Ring

In this section, we show a naive construction of TOFs (Type 0 scheme) which are based on
elliptic curves over a ring. These TOFs can be used only in a digital signature scheme, and
not in a public-key cryptosystem. The flaws of the TOFs of this section are elliminated in
the Type 1 and 2 schemes shown in following sections.

A digital signature scheme based on E,(a,b) can be set up as follows. The signer Alice
chooses two primes p and ¢ (or, more generally, a set of two or more distinct primes) and two
parameters a and b satisfying ged(4a® + 27b%,n) = 1, where n = pq. She then computes the
orders of the elliptic curves E,(a,b) and E,(a, b) (for example using Schoof’s algorithm [22]),
chooses a public encryption multiple e relatively prime to both #E,(a,b) and #E,(a,b), and
computes the secret decryption multiple d according to

d = e ' (mod lem(#E,(a,b), #E,(a,b))).

Alice releases as public parameters n,a,b and e. When she later wants to sign a message
M she associates a point P = (x,y) € E,(a,b) with M in a publicly-known way (see below)
and computes the point Q = (s,t) on E,(a,b) according to

Q= (s,t)=d-P.
The signature for the message M is the pair (s,t), which can be checked by computing

P=(ay)=c-Q

on E,(a,b) and extracting the message M from (z,y) (because (ed) - P = P from Lemma
3).

Here, given a message M, a point (z,y) on F,(a,b) can efficiently be associated with M.
M is first padded with sufficient redundancy, for instance by appending zero’s to M, resulting
in M'. z is defined as the smallest integer greater or equal to M’ such that x> + az + b is
a quadratic residue modulo n, and y is defined as one of the square roots modulo n of this
number.

The flaws of this scheme are as follows:



(1) Schoof’s algorithm [22] to compute E,(a,b) and E,(a,b) is infeasible for large p.

(2) The signature is roughly twice as long as the original message M.

(3) This scheme cannot be used for a public-key cryptosystem, since knowledge of the trap-
door is required to create a point on FE,(a,b), which corresponds to a plaintext.

5 Basic TOF Based on Elliptic Curves over a Ring

In this section, we propose a new TOF (Type 1 scheme) that is based on elliptic curves over
a ring. It overcomes the three flaws of the Type 0 scheme. For simplicity, we show a protocol
for a public-key cryptosystem in the case of Lemma 1. We can easily construct a public-key
cryptosystem in the case of Lemma 2, and digital signature schemes, although we omit a
description.

Step 0 (Key Generation) User U chooses large primes p and ¢ such that

p=qg=2 (mod 3).

U computes the product n = pg, and N,, =lem(#E,(0,b), #E,(0,b)) = lem(p+1, g+1).

U chooses an integer e which is coprime to N,,, and computes an integer d such that

ed=1 (mod N,).

Summarizing, U’s secret key is d, (p, q, #E,(0,b), #E,(0,b), N,), and U’s public
key is n, e.

Step 1 (Encryption) A plaintext M = (my,m,) is an integer pair, where m, € Z,,
my € Z,. Let M = (m,, m,) be a point on the elliptic curve E,(0,b).
Sender A encrypts the point M by encryption function E(-) with the receiver’s public

key e and n as
C=E(M)=ce-M over E,(0,b),

and sends a ciphertext pair C' = (¢, ¢,) to a receiver B.

Step 2 (Decryption) Receiver B decrypts a point C' by decryption function D(-) with
his secret key d and public key n as

M =D(C)=d-C over E,(0,b).

[Notes]

1. In the case of Lemma 1, the minimum possible value of e is 5 because 2|N,, and 3|N,.
In the case of Lemma 2, the minimum possible value of e is 3 because 2|N,,.

2. For elliptic curves, the addition formula is independent of a and b, and the doubling
formula is independent of b. Thus, the above protocol does not require computation
of the value b = y? — 23 mod n. If Lemma 2 is adopted, for the addition formula the
sender S must compute a such that a = (m? — m3)/m, mod n, and the receiver R

must compute a such that a = (¢} — ¢3)/c, mod n.



6 Rabin-type Generalization

6.1 Protocol

We propose another TOF (Type 2 Scheme) also based on elliptic curves over a ring, which
is the Rabin-type generalization of the basic TOF (Type 1 scheme). Type 2 scheme also
overcomes the three flaws of the Type 0 scheme. For simplicity, we also show a protocol for
a public-key cryptosystem in the case of Lemma 1.

Step 0 (Key Generation) User U chooses large primes p and ¢ such that
p=g=2 (mod 3).
U computes the product n = pg, and the orders N, = #FE,(0,b) = p+ 1 and N, =

#E,(0,b) =q+ 1.
Summarizing, U’s secret key is p, ¢, N,, N4, and U’s public key is n.

Step 1 (Encryption) A plaintext M = (my,m,) is an integer pair, where m, € Z,,
my € Zy. Let M = (my, my) be a point on the elliptic curve E, (0, b).

Sender A encrypts the point M by doubling on the elliptic curve E,, with the receiver’s

public key n as
C =2-M over E,(0,b),

and sends a ciphertext pair C = (¢, ¢y) to a receiver B.

Step 2 (Decryption) Receiver B computes M, € E,(0,b) and E,(0,b) € E,(0,b) from
Cp = (¢ mod p, ¢, mod p) € E,(0,b) and Cy = (¢; mod ¢, ¢, mod q) € E,(0,b) such
that

C, =2-M, over E,(0,b), C,=2-M,over E,|0,b),
by using a halving algorithm, which is described in Section 6.2.

B computes M = (mg,my) € E, from M, = (mp;,my,) € E,(0,b) and M, =
(Myga, Mgy) € E4(0,b) using the Chinese Remainder Theorem.
[Notes]
1. Since both IV, and N, are even, 2 is not coprime to IV,, Ny and N,,.

2. Type 2 scheme has the drawback that there is 4:1 ambiguity in the decrypted messages,
as is true for the original Rabin scheme.

3. In decryption based on a halving formula, the algorithm for finding a non-double point
requires an exact expression of the elliptic curve. Thus, the receiver B must compute
b such that b = ¢ — ¢} mod n.



6.2 Halving Algorithm

In general, points on E,(a,b) : y? = 2 + az + b mod p can be separated into 2 classes, as
integers in Z, are classified into quadratic residue and quadratic non-residue modulo p.

Definition If P =2-X over E,(a,b) for some point X on the curve E,(a,b), then we call
point P a double point, denoted by P € DP,. If P # 2- X over E,(a,b) for any point X,
then we call point P a non-double point, denoted by P € NDP,,. 0

Double point and non-double point are distinguishable by using the following three lemmas,
when the group structure of E, (a,b) is known.

Lemma 4. Assume that E’ be a cyclic subgroup of E,(a,b) with the maximum order of
N'. Let P be in E', and N’ be even. Then

P e DP, if and only if N'/2-P = O over E,(a,b),

Lemma 5. Assume that E' be a cyclic subgroup of E,(a,b) with the maximum order of
N'. Let o be the number of the points € DF, in E'. Then

N'/2, if N'is even;
N, if N'is odd.

Lemma 6. Assume that E,(a, b) has the group structure Z1)/2 X Zy. Let E' be a cyclic
subgroup of Ej,(a,b) with the maximum order of (p + 1)/2 which includes point ). Then

PeDP, N PeE' if and only if epyi1)2(P,Q)=1 A (p+1)/4- P = O over Ey(a,b),

where e, 1)/2 is the Weil pairing function [8, 19]. Note that (p + 1)/2 is always even from
the property of the finite Abelian group.

Next, consider a halving algorithm on elliptic curve E,(a,b) which outputs a half point
of a given point over E,(a,b).

A halving algorithm on FE,(a,b) can be constructed based on the Adleman-Manders-
Miller algorithm [1, 11] for computing a square root mod p. Thus, we have the following
theorem.

Theorem 7. There exists an expected polynomial time algorithm which, given an odd
prime p, an elliptic curve E,(a, b) in the case of Lemma 1 or 2, N,, and a point Q € DP, as
inputs, will output a half point of Q over E,(a, b).

The proof of Theorem 7 can be described explicitly in the following algorithm based on the
Adleman-Manders-Miller algorithm.

Halving Algorithm on Elliptic Curve for Type 2 scheme

Input: p (prime), E,(a,b), Ny, Q (=2 H) € Ey(a,b).

Step 1. Compute an odd ¢, and h such that N, = 2"c.

Step 2. Choose random point T" such that 7" € NDP, and T is in the maximum cyclic
subgroup including Q).

Step 3. Set Y =Q, H=(c+1)/2-Q over E,(a,b).

Step 4. Find the least & such that (2%c) - Y = O over E,(a,b).

Step 5. If £ = 0 then output H; else set

Y=Y -2"%.T over E,(a,b), H=H-2"%"1.c.T over E,(a,b)



and go to step 4.
Output: H.

An algorithm for finding a non-double point 7 is derived from Lemmas 4 and 6 as follows:

Algorithm 1 for Finding a Non-Double Point (E,(a,b): cyclic)
Input: p (prime), E,(a,b), N,.
Step 1. Choose a random point T = (t,,%,) on the curve.
Step 2. If T is a non-double point, that is, N,/2-T # O over E,(a,b),
then output 7'; else go to step 1.
Output: T = (t,,t,) € NDP,.

Algorithm 2 for Finding a Non-Double Point (E,(a,0) = Z,1y/2 X Z2)
Input: p (prime), E,(a,0), Ny, Q € E,y(a,0).
Step 1. Choose a random point T = (t,, t,) on the curve E,(a, 0) such that e,(Q,T) = 1.
Step 2. If T is a non-double point, that is, (p+1)/4-T # O over Ey(a,0),
then output 7’; else go to step 1.
Output: T such that T = (¢,,t,) € NDP,, and T € E’, where E' is a cyclic subgroup
of E,(a,0) with the maximum order of (p + 1)/2 which includes point Q).

There exists a polynomial time general algorithm for finding a point on the elliptic curve
[9]. In case 1, for any y € Z,, the point ((y? — b)'/3,y) is on the curve. Since 3 [p — 1, the
value of (y? — b)'/? can be easily computed by (y? — b)? mod p, where 33 =1 mod (p — 1).
In case 2, for any = € Z,, the point (z, (#* + ax)'/?) is on the curve. Since p = 4k +3 (k :
integer), the value of (z° 4 az)'/? can be easily computed by (23 + az)**! mod p.

7 Security

The security of the proposed Type 1 scheme and Type 2 scheme over elliptic curves is based
on the difficulty of factoring n. In this section, we discuss the security of these schemes from
various viewpoints.

7.1 Solving the Order

In the original RSA and Rabin schemes in multiplicative groups, it is known that solving the
order ¢(n) = (p—1)(¢— 1) is computationally equivalent to factoring n. That is, the former
is polynomially reducible to the latter, and vice versa. Similarly, in our proposed schemes
(Types 1 and 2 in the cases of Lemmas 1 and 2), we have a similar relationship as follows.

Theorem 8. Let N, be lem(#E,(a,b),#E,(a,b)) = lem(p + 1,q + 1). Solving N, is
computationally equivalent to factoring a composite number n.

7.2 Solving the Secret Key

The security of the original RSA scheme is also based on the difficulty of solving the secret
exponent key. The security of the Type 1 scheme is also based on the difficulty of solving
the secret multiplier key d. We have the following similar relationship.

Theorem 9. Let N, be lem(#E,(a,b), #E,(a,b)) =lem(p+1,q+ 1). Solving a secret key
d from public keys e and n is computationally equivalent to factoring a composite number
n.



7.3 Complete Breakage

Completely breaking Type 1 and 2 schemes means to recover both m, and m, from any
ciphertext pair (cg,c,) and the public keys. It is well known that completely breaking the
original Rabin cryptosystem is as hard as factoring the composite n used as the modulus.
For the Type 2 scheme, we have the following theorem.

Theorem 10. Completely breaking Type 2 scheme is computationally equivalent to factoring
n.

Proof: It is clear that if once the factors of n are known, plaintext (m,, m,) can easily be
computed from ciphertext (cz, ¢,) and public keys (a,n). Conversely, if there is an Algorithm
A1, given P on E,(a,b) (E,(0,b) or E,(a,0)), to output @ satisfying P = 2 - Q with non-
negligible probablity, then we can construct an expected polynomial-time algorithm B to
factor n, using Al as an oracle. First, B chooses a random point R = (14, 7y) (75,7 € Zy),
and multiplies it by 2, asks A1 to halve this point, and B obtains R’ satisfying P = 2- R’ with
non-negligible probablity. Then B computes Ry = R — R'. Since 2- Ry = O, and R, over
E,(a,b) (Ry over E,(a,b)) is O, (O,), then Ry is an undefined point with probability 1/2. If
Ry is undefined, B can compute a non-trivial factor of n by the extended Euclidean algorithm
used for the division modulo n. Clearly, the expected running time of B is polynomial-time
in logn. O

In the Type 1 scheme, the equivalence between completely breaking this scheme and
factoring n is not known. This situation is the same as the original RSA scheme.

7.4 Homomorphism Attacks and Their Countermeasures

The encryption-decryption functions E(-) and D(-) for Type 1 and 2 schemes are homomor-
phic for addition as

E(M1 + MQ) = E(Ml) + E(MQ) and D(M1 + MQ) = D(Ml) + D(MQ),

for any points M; and M; on the same elliptic curve. This kind of homomorphic property
is the basis for some attacking methods proposed [7] against the original RSA and Rabin
schemes.

The probability that randomly chosen integer pairs M; and M, are on the same ellip-
tic curve is as negligiblly small as 1/n for large number n. Thus, passive attacks using
homomorphism seem to be ineffective against Type 1 and 2 schemes.

Consider an active attack (a chosen-plaintext attack) using homomorphism. Suppose an
attacker A wants to make a victim B sign a plaintext M = (my, m,), which B may refuse to
sign. A generates another message M’ with B’s public keys (e, ng) and random integer r,

M =M+eg-(r-M)over E,,
and sends M' to B. B makes a signature S’ for M’ with his secret key dp:
S'=dp-M =dg-(M+ep-(r-M))over E,,,.
Then, A computes a signature S for M from S’ by
S=S8"—r-Mover E,,.

Using this technique, A can forge B’s signatures without B’s secret key. To counter this
attack, a randomization of a plaintext with a hashing function h should be applied before the
application of the function D, which is a technique similar to that for the original RSA-like
schemes can be applied.



7.5 Isomorphism Attacks and Their Countermeasures

The following isomorphic property of the elliptic curves is known.

Lemma 11. Let Ej, and FE5, be elliptic curves such that
Ein: y¥’=2+az+b modn, Es: y? =2+ ax+ by, mod n.

Let M, = (mlxamly)a C, = (Clzacly) € Ey, and M, = (m2$:m2y): Cy = (6227023/) € Ey,
where
Cl =€- M1 over Elna CQ =e€- M2 over Egn.

Then the following statements are equivalent:
(i) Ey, and E,, are isomorphic.

(ii) ao = u'a; mod n, by =ub modn Juc€Z,. (1)
(iii) cop = u?c, mod n, Coy = u3cly modn Jue€Z,. (2)
(iv) mg, = u*my, mod n,  my, = umy, modn Ju € Z,. (3)

Proof: It is obvious from the proposition in [23] (pp.50-52) that two elliptic curves are
isomorphic if and only if they have the same j-invariant. O

If C1, Cy and M; satisfying congruence (2) are given, then M, can be easily found by
computing congruence (3). Notice that it is easy to check whether or not congruence (2)
holds. If M; and M, are randomly chosen, then the probability that there exists u satisfying
congruence (2) is a negligibly small 1/n for large n. Thus, passive attacks using isomorphism
seem to be difficult for Types 1 and 2 schemes.

Consider an active attack (a chosen-plaintext attack) based on the isomorphic property
of the elliptic curves. Suppose an attacker A wants to make a victim B sign a plaintext
M = (mg,my), which B may refuse to sign. A generates another message M’ with B’s
public key np and random integer u:

3

M' = (u*m, mod ng, u*m, mod ng),

and sends M' to B. B makes a signature S’ = (s;, s,) for M’ with his secret key dp:
S'=dp- M over E] .
Then, A computes a signature S = (s;, s,) for M from S’ by

S = (84, 8y) = (u%s, mod ng, u*

s, mod np).
Note that the curve E,, containing points (M, S) and the curve E; _ containing points
(M',S") are different, but isomorphic. Using this technique, A can forge B’s signatures
without B’s secret key. To counter this attack, the same technique described in Section 7.4
can be applied.

An attacker may try to forge a signature by using both homomorphism and isomorphism
shown above. However, such combined attacks can also be prevented by randomization with
the hash function h.



7.6 Security for Low Multiplier Attack

Hastad [6] showed a low exponent attack on the original RSA and Rabin schemes when
the same message is encrypted with distinct plural moduli. He considered a problem of
solving systems of congruences P;(m) = 0 (mod n;) i = 1,...,k, where P; are polynomial
of degree e and the n; are distinct relatively prime numbers and m < min n;. He proved
that if £ > @, then m can be recovered in polynomial time. Thus, he pointed out that
enciphering linearly related messages with the RSA scheme with low exponent or the Rabin
scheme is insecure. For the original RSA scheme, let ¢ = m® mod n, ¢; = m{ mod n;,
and n = ng - nyg - --ng. In Hastad’s algorithm, ¢ is first obtained from ¢; using the Chinese
Remainder Theorem. Next, m is solved from a polynomial ¢ = m® neglecting modulus n.
For our proposed Types 1 and 2 schemes, let C =€’ - M over E,(a,b), C; =¢€' - M over E,_,
where C' = (¢, ¢y), M = (mg, my), Ci = (Ciz, Ciy). The value of (¢, ¢,) is also obtained
from (c;q, ciy). However, it is difficult to solve (mg, m,) from (c,,c,) because ¢, and ¢, are
expressed by rational equations in m, and m,. Note that they cannot be expressed by
polynomials. Since the rational equations include divisions modulo n, it seems impossible
to compute by neglecting modulus n. Thus, even if the multiplier ¢’ is small, a Hastad-like
attack does not seem to work against the elliptic curve cryptosystems.

8 Performance

An elliptic curve addition P, + P, on E,(a, b) requires one division, one squaring operation
and one general multiplication in Z, when P, # P,, and an extra squaring when P, = Ps.
(The much faster additions and subtractions in Z,, are neglected for the sake of simplicity).
Surprisingly, as opposed to Z, where squaring can be performed faster than a general mul-
tiplication, doubling a point on an elliptic curve is computationally more costly than adding
two different points. This means that in order to compute a multiple ¢ - P of a point P, an
irregular addition chain for ¢ avoiding doubling operations should be used. When neglecting
the fact that squaring in Z, can be implemented somewhat faster than a general multiplica-
tion, elliptic curve addition and doubling operations require about 2 and 3 multiplications
in Z,, and one division in Z,, respectively.

Division in Z, can be implemented by the generalized Euclidean algorithm for comput-
ing greatest common divisors. The most efficient algorithm for computing multiplicative
inverses, however, is that invented by Massey [17], which is a generalization of Stein’s al-
gorithm [25]. However, a division in Z, seems to be less efficient than a multiplication in
Z,.

On the other hand, if we calculate the addition on E,(a,b) in homogeneous coordinates,
we can avoid the division in Z, (except the final stage of the addition chain), although we
must perform more multiplications instead.

Let P, = (z1,y1,21) € Ey(a,b), Po = (x2,Y2,22) € E,(a,b), and suppose that Py, P, #
O, P, # P and P, # —P,. The addition formula [9] for E,(a,b) to find P; = P, + P, =
(x3,ys, 23) is given by

3 = v{z(u?z — 2v%1;) — v} mod p,
ys = 22(3uv’zy — v3y; —udz1) + uv® mod p,
23 = 132129 mod p,

where u = Y921 — Y120 mod p, v = X921 — £129 mod p.



The doubling formula [9] for E,(a,b) to find Py =2 - P, is given by

T3 = 2y12(w? — 811y?2) mod p,

3

ys = 4y?z1(Bwz; — 2y?21) — w® mod p,

23 = &Ui’z? mod p,

where w = 3z% + az? mod p.

Then, one addition and doubling over E,(a,b) require 18 multiplications in Z,, if a = 0.

Therefore, in the affine coordinates, the computation amount for our scheme (Scheme
1) is about (2 + ¢) times as much as that for the RSA scheme, where ¢ is the ratio of the
computation amount of division in Z, to that of multiplication in Z,. On the other hand,
in the homogeneous coordinates, the computation amount for encryption with our scheme
is about 18 times as much as that for the RSA scheme. Since in our elliptic curve system
a message consists of two elements of Z, compared to only one in the RSA system, the
computation speed of our scheme is about 2/(2 + ¢) or 1/9 of the speed of RSA.

9 Conclusions

We have proposed new public key cryptosystems based on elliptic curves modulo n, where n
is a product of two large primes. Furthermore, we have clarified the security of these systems.
For the proposed Type 1 scheme, the master key concept [10] and the blind signature concept
[2] are similarly applicable (using the combined techniques of Sections 7.4 and 7.5).
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