
Privacy-Preserving Outsourcing of Brute-Force
Key Searches

Ghassan O. Karame
Dept. of Computer Science

ETH Zurich, Switzerland
karameg@inf.ethz.ch

Srdjan Čapkun
Dept. of Computer Science

ETH Zurich, Switzerland
capkuns@inf.ethz.ch

Ueli Maurer
Dept. of Computer Science

ETH Zurich, Switzerland
maurer@inf.ethz.ch

ABSTRACT

In this work, we investigate the privacy-preserving prop-
erties of encryption algorithms in the special case where
encrypted data might be brute-force decrypted in a dis-
tributed setting. For that purpose, we consider a prob-
lem where a supervisor holds a ciphertext and wants to
search for the corresponding key assisted by a set of helper
nodes, without the nodes learning any information about
the plaintext or the decryption key. We call this a privacy-
preserving cryptographic key search. We provide a model
for privacy-preserving cryptographic searches and we intro-
duce two types of privacy-preserving key search problems:
plaintext-hiding and key-hiding cryptographic search. We
show that a number of private-key and public-key encryp-
tion schemes enable the construction of efficient privacy-
preserving solvers for plaintext hiding searches. We also
discuss possible constructions of privacy-preserving solvers
for key-hiding cryptographic searches.
Our results highlight the need to consider the property of

enabling efficient privacy-preserving solvers as an additional
criterion for choosing which cryptographic algorithm to use.

Categories and Subject Descriptors

C.2.0 [General]: Security and Protection

General Terms

Design, Security, Theory.

Keywords

Distributed Computing, Brute-Force Key Search, Privacy-
Preserving Solvers.

1. INTRODUCTION
The main premise of data encryption is to ensure the pri-

vacy and confidentiality of the data against passive and ac-
tive adversaries. As a result of ongoing cryptanalysis of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCSW’11, October 21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-1004-8/11/10 ...$10.00.

encryption schemes, the literature contains a large num-
ber of reported attacks on existing encryption schemes [11,
12]. These attacks commonly exploit the vulnerabilities
of encryption schemes (e.g., differential cryptanalysis, weak
password-based encryption, related-key attacks, etc.) and
reduce the search space to brute-force the keys. Examples
include attacks on DES [10], RC4 [40], small private RSA
exponents [12,21,34,36], etc..

Nowadays, the time, effort and cost of brute-force break-
ing encrypted messages is considerably reduced with the
emergence of distributed computing platforms [1–3] that rely
on the contribution of millions of volunteers. For example,
DES (16-round, 56-bit key) was broken in a record time of 22
hours and 15 minutes [4] with the help of EFF’s supercom-
puter “Deep Crack” [5] and approximately 100,000 volun-
teer nodes from the distributed.net platform [1]. Given that
the security offered by current encryption schemes is only
expected to decrease with the growth of computational re-
sources1, the messages—encrypted and stored in long-term
storages today—are likely to be successfully brute-forced in
the future.

In distributed computing platforms, the helper nodes that
brute-force search a given ciphertext (e.g., when the encryp-
tion function is weak due to cryptanalysis or when the secret
key is short) will typically acquire (and report) the corre-
sponding plaintext and the decryption key. This provides
the assurance/ability e.g., for platforms administrators and
governments to control the type of tasks and cryptographic
searches that are being executed in these platforms.

In this work, we show that distributed cryptographic sear-
ches can be performed without leaking information about
the sensitive search instances to the parties that are involved
in the search process. For that purpose, we consider a set-
ting where an entity, the supervisor, has access to a cipher-
text (and possibly its corresponding plaintext) and wants
to brute-force search for the corresponding decryption key
with the help of a set of helper nodes given the following
constraint: the helpers should not learn (parts of) the in-
put plaintext and/or the decryption key. We refer to the
outsourced key searches in which the helpers do not learn
the plaintext or the key by plaintext-hiding and key-hiding
searches, respectively. We precisely define these notions
and we show that a number of public-key cryptosystems en-
able a straightforward construction of plaintext-hiding and
key-hiding searches. We also show that privacy-preserving
solvers for plaintext-hiding searches can be efficiently con-

1NIST [6] deems that the current key length needs to be
increased after 2010.

structed in most block cipher modes, and can be directly
integrated in current distributed computing platforms. By
leveraging on these plaintext-hiding solvers, we propose con-
structions of privacy-preserving solvers for key-hiding cryp-
tographic searches in block ciphers.
Our results show that current cryptographic searches (e.g.,

the DES challenge [4], the WPA cracker [7]) can be effec-
tively used to conduct massive brute-force decryption of sen-
sitive ciphertexts (when such a search is feasible) while mak-
ing the nature and purpose of an outsourced cryptographic
search oblivious to the participating nodes.
The property of enabling efficient privacy-preserving solvers

therefore emerges as a relevant property of encryption schemes.
We argue that this property should be considered as an ad-
ditional criterion in the choice of cryptographic algorithms
and in the deployment of server-assisted decryption applica-
tions. In the special case when this property is required to
enable both key-hiding and plaintext-hiding searches with-
out the knowledge of any plaintext (e.g., in the case where
users wish to recover their lost disk decryption keys), we
show that plan-ahead encryption schemes can enable the ef-
ficient construction of the corresponding privacy-preserving
solvers.
The rest of the paper is organized as follows. In Section 2,

we introduce the notion of a privacy-preserving solver. In
Section 3, we propose constructions of privacy-preserving
solvers for plaintext-hiding searches based on public-key and
private-key encryption schemes. In Section 4, we discuss
variant constructions of private solvers for key-hiding prob-
lems. In Section 5, we propose plan-ahead encryption schemes
that enable, by design, the efficient construction of privacy-
preserving solvers. In Section 6, we survey the related work
and we conclude the paper in Section 7.

2. PRIVACY-PRESERVING SOLVERS
In this section, we introduce the notions and the model

that we will adopt throughout the paper. We first restate
some known definitions: the search problem and problem
solver.

Definition 1. (Search problem)
A search problem S is characterized by the instance space
X (and an implicit distribution over it), the solution space
Y, and the verification predicate PS : X × Y → {0, 1}, with
PS(x, y) = 1 if and only if y is a solution for instance x.

Definition 2. (Solver)
A solver for a search problem S is an algorithm that takes
as input an x ∈ X and returns a y ∈ Y if PS(x, y) = 1 and
⊥ if no solution exists.

We consider a setting where an entity wants to solve a
search problem with the help of a computationally powerful
server. Such a setting can be described as a pair (A,B) of
interacting algorithms where A is run by the entity and B is
run by the server (or a set of servers). Typically, A must be
efficient (i.e., polynomial-time in an asymptotic definition of
efficiency).
In the sequel, we assume C to be some super-polynomial

or even exponential class of algorithms. Informally, our as-
sumptions on the complexity class C capture the intuition
that while some encryption functions are not C-secure (and
therefore might be broken by a “powerful” algorithm B′ in

C), it is infeasible for any B′ ∈ C to break other hard prob-
lems (e.g., the one-time pad encryption). We now capture
the notion of computational independence relative to C.

Definition 3. (Computational Independence)
Two random variables U and V are called computationally
independent, relative to complexity class C, if there exists
a pair (U ′, V ′) of statistically independent random variables
such that every distinguisher in complexity class C has only
negligible advantage in distinguishing the pair (U ′, V ′) from
the pair (U, V).

We introduce the notion of a search problem with privacy
constraints.

Definition 4. (Search Problem with Privacy Con-
straints)
A search problem with privacy constraints is a search prob-
lem where the instances and/or solutions consist of two parts,
labeled public and secret (private). In other words, either
X = Xp ×Xs, or Y = Yp × Ys, or both.

That is, we assume that the instances x and/or the solu-
tions y are pairs2, denoted by x = (xp, xs) and y = (yp, ys),
respectively.

Definition 5. (Privacy-preserving Solver)
A pair (A,B) of interacting algorithms, where A is efficient,
is a (computationally) privacy-preserving solver for a search
problem S with privacy constraints if two conditions hold:
(i) The pair (A,B) is a solver for S, and (ii) For every
algorithm B′ in complexity class C, the transcript between
A and B′ is (computationally) independent relative to C of
all the private parts of the instance and solution.

The goal of the privacy-preserving solver is to solve a
search problem with privacy constraints such that an en-
tity running algorithm A learns the input instance and the
solution to the problem, whereas a malicious entity running
algorithm B (that assists in solving the problem) or any al-
gorithm B′ in C does not learn any information about the
secret part of the instance (xs) or of the solution (ys). The
notion of “learning nothing” is captured by the requirement
that the transcript of interaction between A and B must be
independent (or at least computationally independent rela-
tive to C) of (xs, ys).

We now introduce two notions: plaintext-hiding and key-
hiding key search problems.

Definition 6. (Plaintext-Hiding and Key-Hiding
Key Search Problems)
For a private-key encryption scheme, Enc, with message
space P, key space K, and ciphertext space C, the key search
problem K

Enc is defined by X = C × P, Y = K, and the
predicate P , with P ((c, p), k) = 1 if and only if c is the ci-
phertext for p created using Enc under key k. One can derive
two key search problems with privacy constraints, as follows.

• The plaintext-hiding key search problem K
Enc
p is de-

fined as the key search problem where Xs = P and
Yp = Y = K.

• The key-hiding key search problem K
Enc
k is defined as

the key search problem where Xs = P and Ys = Y = K.

Figure 1: System model: the supervisor runs al-
gorithm A that interfaces with the helper nodes.
The supervisor distributes the key space among
the nodes and gathers their results. In a privacy-
preserving solver, the sensitive search instances
and/or outputs are not revealed to the helpers.

We envision two possible use-cases for plaintext-hiding
key search problems: (i) the supervisor possesses a cipher-
text/plaintext pair and would like to acquire the decryption
key without the helpers learning the plaintext and (ii) the
supervisor only possesses a ciphertext and would like to ac-
quire the key (and therefore to acquire the plaintext) with-
out the nodes learning the corresponding plaintext, even if
they acquire the correct decryption key (Section 5).
On the other hand, in key-hiding searches, the supervisor

possesses a ciphertext/plaintext pair and would like to ac-
quire the corresponding key without the helpers learning it.
In these searches, the helpers cannot therefore be given the
ciphertext unless they are not able to identify the output
plaintext; we show that solvers for key-hiding searches can
be constructed based on their plaintext-hiding counterparts.

2.1 System and Attacker Model
The cryptographic search that we consider is inherently

parallelizable and its natural implementation is that each
helper gets a share of the key space through which it searches.
However, since a subset of the helper nodes might collude,
the supervisor must ensure with high probability that no
node can learn the sensitive parts of the search problem
(i.e., the plaintext or the key).
To solve a cryptographic search problem, the helper nodes

execute the solver algorithm B, whereas the supervisor ex-
ecutes algorithm A (Figure 1). We assume that algorithm
A divides the key space among the helper nodes and, later
on, gathers their individual results. We point out that the
functionality and load of algorithm A are equivalent to that
pertaining to the central server of existing distributed plat-
forms (e.g., distributed.net [1]).
Each helper node runs algorithm B given the same in-

put instances; their search is however performed on different

2In this case, X and Y refer to the sets of all possible pairs
(xp, xs) and (yp, ys), respectively.

shares of the key space. We assume that the helper nodes do
not know any additional information about the outsourced
ciphertexts besides the information that is meant to be re-
leased by the supervisor3 (i.e., the inputs of the search prob-
lem). We further assume that the helper nodes can collude
and execute any algorithm B′ to acquire information about
the instances that are meant to be kept secret during the
search process. We assume that B′ is in the complexity class
C. We further assume that there exist a C-secure pseudo-
random generator G and a C-secure pseudorandom function
F .

We assume that—except for the original plaintext and
the resulting ciphertext—no intermediate results of the en-
cryption/decryption algorithms are available to the super-
visor. We denote by C the set of possible ciphertexts, by P
the set of possible plaintexts, and by K the set of possible
keys. Throughout this paper, we consider encryption func-
tions (e.g., DES, AES) as a “black-box” that behaves as a
pseudorandom permutation.

We focus on the case where the disclosure of non-sensitive
parts of the plaintext is insufficient to identify the key4. We
consider the scenarios where it is feasible to retrieve the
key, e.g., when the key search space is reduced following
cryptanalysis of an encryption algorithm, when the keys are
short, or when the password of a password-based encryption
scheme is weak.

In our privacy-preserving schemes, we assume that the
outsourced search instances are public and therefore not only
available to the helper nodes but also to other entities (e.g.,
the helpers are not trusted to keep the search instances con-
fidential). Here, the advantage of any other entity, running
an algorithm in C, to acquire sensitive information from the
search instances is, in the worst case, similar to that of the
helper nodes (given that they at most have the same infor-
mation at their disposal and they both run algorithms in
complexity class C). In analyzing the security of privacy-
preserving solvers, we therefore do not treat this case sepa-
rately, but we rather focus on the ability of the helper nodes
to acquire the sensitive information from the search process.
We point out, however, that both cases are captured by the
requirement that the private search instances and solutions
should not be acquired by any algorithm B′ in C.

In Section 4.3, we assume that up to N helper nodes can
collude or share the search instances/solutions with an ex-
ternal attacker. In this case, we assume that the communi-
cation between the supervisor and the helpers is performed
over a confidential channel.

3. PRIVACY-PRESERVING SOLVERS FOR

PLAINTEXT-HIDING KEY SEARCHES
In this section, we describe constructions of privacy-pres-

erving solvers for plaintext-hiding searches. First, we outline
straightforward examples of privacy-preserving solvers for
plaintext-hiding searches based on public key systems and
additive stream ciphers. We then show how to construct

3Nevertheless, we assume that the helper nodes know some
redundancy information about the plaintext (e.g., the plain-
text is an English text).
4Otherwise, if the supervisor has access to a second ci-
phertext/plaintext pair in which the plaintext is not sen-
sitive, the supervisor can then simply give the second ci-
phertext/plaintext pair to the helpers to find the key.

privacy-preserving solvers for plaintext-hiding searches in
the CBC (and CFB, PCBC) mode encryption.

3.1 Examples of Plaintext-Hiding Searches
We start by outlining straightforward examples of solvers

for plaintext-hiding searches.

The Case of Public-Key Cryptosystems.
Solving key searches in public-key cryptosystems can be

achieved independently of the plaintext and/or the cipher-
text that the supervisor possesses (when such a search is
feasible5).
A supervisor interested in finding a private key to decrypt

a given ciphertext can simply send the public key to the
helpers that search for the corresponding private key; the
helpers would have no information about the original plain-
text. As a special case, the malleability property of some
public-key cryptosystems could also be exploited to enable
plaintext-hiding searches. Consider a malleable encryption
scheme Enc that enables the construction of a transformed
pair (c2, p2) ∈ C × P from any known ciphertext/plaintext
pair (c1, p1) ∈ C ×P such that (i) c2 is the encryption of p2
using the same unknown key that encrypts p1 into c1 and
(ii) (c1, p1) and (c2, p2) are (computationally) independent.
Following from Definitions 5 and 6, it is easy to construct a
privacy-preserving solver for KEnc

p .

The Case of Stream Ciphers, CTR and OFB Mode En-
cryption.
We now consider the case of an additive stream cipher en-

cryption scheme. Recall that, for such schemes, the plaintext
p for a ciphertext c is computed as p = c⊕G(k), where G(.)
is a pseudorandom generator. In what follows, we show that
there exist efficient privacy-preserving solvers for plaintext-
hiding searches based on additive stream ciphers.
The plaintext-hiding key search problem based on stream

ciphersKStream
p is defined by the predicate P with P ((c, p), k)

= 1 if (c, p) ∈ C × P is a matching ciphertext-plaintext pair
created using the stream-cipher encryption scheme with key
k ∈ K. We construct a solver (A,B) for KStream

p as follows:
(i) A computes c⊕ p and sends it to B. (ii) On input c⊕ p,

B searches for the key k̂ such that G(k̂) = c ⊕ p. If found,

B sends k̂ to A. (iii) A checks whether P ((c, p), k̂)
?
= 1. If

so, it outputs y = k = k̂, otherwise it outputs ⊥.
The transcript T of the interaction betweenA andB solely

contains the values c ⊕ p and k̂. Since c ⊕ p = G(k), T

only depends on k and is thus independent of p (hence also
computationally independent of p irrespective of any algo-
rithm B′ in C running on the helpers). (A,B) is therefore a
privacy-preserving solver for KStream

p .
Note that since the Counter (CTR) and the Output Feed-

back (OFB) mode encryption are instances of additive stream
ciphers, plaintext-hiding search problems based on CTR and
OFB modes also have efficient privacy-preserving solvers.

3.2 Plaintext-Hiding Searches in the Cipher
Block-Chaining (CBC) Mode Encryption

We show that plaintext-hiding key-searches based on the
CBC mode encryption can also be solved using a privacy-
preserving solver.

5This could be the case for instance when the private RSA
exponents are small [12, 21,34,36].

Recall that in a CBC encryption scheme: pi = Dk(ci) ⊕
c(i−1), where Dk denotes the block-cipher decryption func-
tion (e.g., DES, AES) using key k, pi and ci denote the ith
block of plaintext and ciphertext, respectively.

Now, consider the plaintext-hiding search problem K
CBC
p .

Recall that K
CBC
p is defined by X = C × P, Y = K and by

the predicate P with P ((c, p), k) = 1 if (c, p) is a match-
ing ciphertext-plaintext pair created using the CBC mode
encryption with key k.

Lemma 1. If G is a C-secure pseudorandom generator,
and M ∈ {0, 1}n, then C = G(s) ⊕ M , where s is cho-
sen uniformly at random from {0, 1}n, is computationally
independent of M relative to complexity class C (refer to
Appendix A for the proof).

Theorem 3.1. For any CBC encryption scheme, there
exists an efficient privacy-preserving solver for the plaintext-
hiding key search problem K

CBC
p .

Proof: We prove that KCBC
p has an efficient privacy-preser-

ving solver by construction; let (A,B) refer to the solver of
K

CBC
p . A takes as input x = (c, p) and divides c and p

into blocks of equal length conforming with the operation of
block-ciphers. A interacts with algorithm B in the following
way:

1. A computes c0 ⊕ p1 and sends it to B.

2. On input c1 and c0⊕p1, B searches for k̂ ∈ K such that
c0 ⊕ p1 = D

k̂
(c1), where D is the decryption function

in block-ciphers (e.g., DES, AES). If found, B sends k̂
to A.

3. Given k̂, A checks whether P ((c, p), k̂)
?
= 1. In the case

where more than one candidate k̂ satisfies the predicate
function P (i.e., if a collision occurs), A checks the va-
lidity of each candidate on other (ciphertext/plaintext)

blocks it possesses. Once a unique solution k̂ is found,

A outputs y = k = k̂, otherwise it outputs ⊥.

The transcript T of the interaction betweenA andB solely

contains the values c1, c0⊕p1 and k̂. Note that only c1 is sent
to B; all the remaining blocks in c (including c0 = IV) are
kept secret. In what follows, we show that T is independent
of p. Here, two main cases emerge:

1. IV is chosen uniformly at random: Since IV is kept
secret from B, IV⊕ p1 acts as a one-time pad encryp-
tion of p1. Hence, IV⊕ p1 is independent of p1 (and of
p), even in the case when B (or B′) is computationally
unbounded.

2. IV is a pseudorandom string: Let IV = G(s), where
G is a C-secure pseudorandom number generator and
s is chosen uniformly at random, then IV⊕ p1 is com-
putationally independent of p1 relative to C, given
Lemma 1.

Given this, c1 is (computationally) independent of p1; this
is the case since c1 encrypts IV⊕p1 using key k, and IV⊕p1
is (computationally) independent of p1. Thus, T is (compu-
tationally) independent of p. (A,B) is therefore a privacy-
preserving solver for KCBC

p . 2

We point out that A is efficient in the sense that it has
only to perform a single decryption and one XOR operation
to solve KCBC

p . Similar solvers can be constructed for search
problems based on the PCBC and CFB mode encryption.

Remark 1. Note that a privacy-preserving solver for
K

CBC
p can be constructed given the knowledge of any two

consecutive ciphertext blocks. This is the case since the
randomness (or pseudorandomness) of the IV is propagated
through the block encryption function to the subsequent blocks.
That is, similar to the above analysis, it can be shown that
any transcript T that contains ci, c(i−1) ⊕ pi (i ≥ 1), and

k̂ is computationally independent relative to C of pj where
j ∈ [1..i] given a random (or pseudorandom) IV. This can
be useful in the case where the supervisor only possesses part
of ciphertext.

Remark 2. The above privacy-preserving solver can be
easily integrated in existing distributed computing platforms
since current cryptographic searches are often performed us-
ing a single pair of ciphertext/plaintext blocks6. That is, in
our solver, B searches for the key that encrypts c(i−1) ⊕ pi
into ci, while in existing platforms it searches for the key
that encrypts pi into ci. Clearly, both search problems re-
quire similar functionality and computational capability.

Remark 3. Note that the supervisor can detect malicious
nodes that return incorrect results in a subset of their as-
signed tasks by embedding indistinguishable pre-computed
tasks within the search tasks of the nodes [28, 35, 46]. Since
the supervisor already knows the solutions of these embedded
tasks, he can then ensure, with high probability, that mali-
cious nodes are detected. Here, the probability of detecting
misbehavior is given by 1 − (1− p)n, where p is the proba-
bility that a node misbehaves per task and n is the number
of pre-computed tasks assigned to each node.

Large Key Space.
We now proceed to analyze the security of our scheme in

the case when the key size is larger than the plaintext/cipher-
text size (i.e., |K| > |P|). In this case, algorithm A might
need to invoke several instantiations of the same search prob-
lem using multiple ciphertext/plaintext blocks that were en-
crypted using the same unknown key (and the same IV).
Recall that given the propagation of the (pseudo)rando-

mness of IV through the chaining of block ciphers, it is in-
feasible for the helpers to acquire any information about p

in a single instantiation of KCBC
p . However, when multiple

different instantiations of the same K
CBC
p —using the same

IV—are invoked (Figure 2), the secrecy of p might be com-
promised. This is due to the fact that if the helpers have
access to different (not necessarily consecutive) ciphertext
blocks, then this reveals relations between their correspond-
ing plaintexts (due to block-chaining); in the worst case, the
helpers might be able to acquire these plaintexts.
We illustrate this by means of an example and we con-

sider two different instantiations of KCBC
p where the input

to algorithm B consists of the pairs: (c(i−1) ⊕ pi, ci) and
(c(j−1) ⊕ pj , cj), such that i, j ≥ 1, j 6= i, (j − 1) 6= i and

j 6= (i− 1).7

6E.g., the DES distributed.net client v. 20000229 takes as
input a single block of ciphertext/plaintext pair.
7Otherwise, if (j − 1) = i, the helpers can extract pj =
c(j−1) ⊕ pj ⊕ ci. A similar case occurs when j = (i− 1).

Figure 2: Outsourcing multiple instances of the
same plaintext-hiding CBC-based search problem.
The circled instances are the inputs to algorithm B.
After recovering the key, the helpers might be able
to acquire all the plaintext-blocks whose indexes fall
between [i+ 1, j].

Once the key k is found by B, the helpers can solve the
(non-private) search problem S

CBC for the plaintext blocks
that are located between pi and pj , given k, cj and ci. Note
that if the helpers are able to solve K

CBC
p to acquire the

correct key k, then they might be able to solve8 S
CBC (if

|K| ≥ |P |j−i||).
In general, ∀i, j ≥ 1 such that j 6= i, (j − 1) 6= i and

j 6= (i − 1), the helpers might acquire the plaintext under
different multiple instantiations of KCBC

p if it is feasible to

search in |P |j−i||. This is the case if the helpers can execute
an unbounded algorithm or if the search for a solution in a
set of size |P |j−i|| is feasible in C.

This analysis also applies for plaintext-hiding search prob-
lems based on the PCBC and CFB mode encryption.

In the case of the CTR and OFB mode encryption (Sec-
tion 3.1), A can safely invoke several instantiations of the
same search problem based on these modes when |K| > |P|.
In fact, in these modes, the transcript of interaction between
A and B is independent of both c and p even if the helpers
execute an unbounded algorithm.

Additional Properties: Deniability.
The aforementioned privacy-preserving solvers rely on the

(computational) independence between p and its “one-time
pad encryption” (with an unrevealed ciphertext block). It
is well known that one-time pad encryption constitutes a
shared-key deniable encryption scheme [17]9. Therefore, al-
gorithm A could conduct brute-force searches on sensitive
ciphertexts while claiming to perform “legitimate” crypto-
graphic searches (e.g., for academic purposes) when coerced.

As a simple example, algorithm A—equipped with a ci-
phertext/plaintext (c, p) pair created in the CBC mode en-
cryption using a secret key k—can pick a “non-suspicious”
string, str (e.g., str ← “INNOCENT”), and sets p1 ← str.
A then computes IV = IV ⊕ p1 ⊕ p1 using the first genuine

8Recall that P refers to the set of all possible plaintexts.
Given some “redundancy” information (e.g., p is English
text, or p comprises of ASCII characters), |P| is not nec-
essarily exponentional with respect to the length of p.
9An encryption scheme is deniable if the ciphertext can ap-
pear as an encryption of another plaintext [17].

plaintext block, p1, of p and asks the helpers to search for
the key k that encrypts the plaintext p1 into c = (IV, c1).
It is easy to see that k also encrypts the original plaintext p
into c. We point out that this solver is a privacy-preserving
solver for K

CBC
p , since p1 and p1 are independent. This

privacy-preserving search will not also raise suspicion due
to the fact that p1 is a plausible English block. This anal-
ysis also applies for plaintext-hiding search problems based
on the CTR, OFB, CFB and PCBC mode encryption.
This deniability property could be prevented by requir-

ing that the input of each outsourced search problem con-
sists of several (> 3) consecutive blocks in the CBC, PCBC
and CFB mode encryption. In this case, it is very hard
for the supervisor to conceal all the consecutive sensitive
plaintext-blocks from the helpers (see the related discussion
in Section 3). This countermeasure is, however, ineffective
in searches based on the CTR and OFB mode encryption.

4. ENABLING KEY-HIDING SEARCHES
In this section, we propose a number of constructions of

privacy-preserving solvers for key-hiding searches. Namely,
we show that key-hiding searches can be achieved by con-
structing Private Information Retrieval (PIR) solvers for
plaintext-hiding searches. We also propose a privacy-preser-
ving solver, that offers probabilistic guarantees, to enable
key-hiding searches in symmetric encryption algorithms.

4.1 Exemplary Key-Hiding Searches in Public-
Key Cryptosystems

Some public-key cryptosystems enable a straightforward
construction of privacy-preserving solvers for key-hiding sea-
rches. For example, consider the case where the supervisor
has the public key c = gx and would like to know the secret
key x ∈ Z

∗
p without revealing it to the helpers (e.g., ElGamal

cryptosystem [24]). The supervisor chooses a random y ∈
Z
∗
p, sends c×gy to the helpers and asks them to compute its

discrete logarithm r to the base g. The helpers perform the
search and send r to the supervisor. Since the latter knows
y, it can simply extract x = r − y modulo the group order;
the helpers, however, cannot learn x from r (gy is a random
group element and therefore c× gy is independent of c)10.

4.2 Key-Hiding Searches using PIR Schemes
Key-hiding cryptographic searches can be achieved in the-

ory by combining privacy-preserving solvers for the corre-
sponding plaintext-hiding searches along with private infor-
mation retrieval (PIR) schemes [16, 20, 26]. PIR schemes
enable the supervisor to retrieve the key and the plaintext
(that is known to the supervisor) relative to a ciphertext
without revealing the retrieved values to the helpers.
PIR key-hiding solvers provide computational secrecy of

the key and the plaintext; they, however, incur a large com-
putational complexity on algorithm A.
PIR schemes can be used to solve the key-hiding problem

in the following way: (i) A outsources a plaintext-hiding
search problem11 to B, (ii) B performs the search using all

10Similar approaches are used in private signature computa-
tions [43] and in zero-knowledge proofs of knowledge proto-
cols [27].

11Here, we assume that there exists an efficient solver for the
variant plaintext-hiding search problem (e.g., in the CBC
mode encryption).

candidate keys in K, (iii) A then uses a (computational) PIR
scheme to query B for the decryption key that corresponds
to the desired private input. In this case, (A,B) is a privacy-
preserving solver for the above key-hiding (and plaintext-
hiding) problem. Note that the computational complexity
of A and the communication complexity between A and B

correspond to those of the PIR protocol in use.

Example 1. We consider the private block retrieval pro-
tocol of [26] as an example. This protocol is an extension
of the PIR protocol in [16] and enables a user to retrieve
the ith block of an n-bit database, without revealing to the
database the value of i nor the content of the block that is
being retrieved. The main intuition behind [26] is to di-
vide the database into blocks of bits and associate each block
with a distinct small prime. The database uses the Chinese
Remainder Theorem to encode each database chunk mod-
ulo its corresponding prime power. Given an n-bit database
divided into blocks of size l-bits, the communication com-
plexity between the user and the database is O(log(n)) and
the computational complexity of the user is no more than
4
√
nl group operations. When used as a privacy-preserving

solver for a key-hiding problem, n = |K| and l = |k|; the

computational complexity of algorithm A is O(
√
|K|) group

operations and the communication complexity between A and
B is O(log(|K|)) = O(|k|).

4.3 N-Private Solvers for (Symmetric) Key-
Hiding Searches

Privacy-preserving solvers for key-hiding searches in sym-
metric cryptography are more challenging to construct when
compared to their plaintext-hiding counterparts; if algorithm
B is given a ciphertext c and can perform exhaustive search
over the key space K, then it can simply search for the key
that results in a plausible decryption of c (e.g., an english
plaintext). Therefore, B should not be able to identify the
output plaintext in these searches. This also suggests that
a privacy-preserving solver for a key-hiding search in sym-
metric cryptography will also be a privacy-preserving solver
for the corresponding plaintext-hiding search problem. As
shown in Section 4.2, these solvers are typically not effi-
cient when dealing with an attacker that controls all the
nodes in the network. In the sequel, we show that, if an
adversary in class C can compromise at most N nodes in
the network, then efficient privacy-preserving solvers—N -
private solvers—for key-hiding searches can be constructed.
We start by defining an N -private solver.

Definition 7. (N-Private Solver)
A pair (A,B) of interacting algorithms is an N -private solver
for a search problem S with privacy constraints if two condi-
tions hold: (i) The pair (A,B) is a solver for S, and (ii) For
every adversary M in C that controls up to N helper nodes,
the probability that it acquires any meaningful information
about the private parts of the instances and/or solutions is
negligible.

Given this definition, we present in what follows a con-
struction for an efficient N -private solver for KCBC

k based on
the previously proposed privacy-preserving solver for KCBC

p .
We point out, however, that variant N -private solvers can
be also constructed to enable key-hiding searches in CTR,
OFB, CFB and the PCBC mode encryptions; where appro-
priate, we will point to the differences between these solvers.

Figure 3: H = R · n key intervals are assigned to the
helpers. These key intervals contain the n intervals
that comprise the reduced key set KS. The remain-
ing (H−n) intervals are chosen uniformly at random
from {K−KS}. In an N-private solver, the probabil-
ity that an adversary derives any information about
the key should be negligible if it acquires a maximum
of N key samples. Here, we depict the worst-case
scenario where the intervals of KS are contiguous;
our analysis however applies to any other distribu-
tion of these key intervals within K.

Similar to Section 2.1, we consider a setting where the su-
pervisor possesses a ciphertext-plaintext pair (c, p) created
using an unknown key k ∈ K. However, we assume that
(i) |K| is too large to be brute-force searched by any algo-
rithm B′ in C, but (ii) the supervisor possesses additional
information by which it can reduce the key search space to
a key interval KS ⊂ K in which it is feasible for B′ ∈ C

to brute-force search for that key (i.e., K ≫ KS). For ex-
ample, although the key k could be 192 bits, the supervisor
might recall the first 120 bits of k and would like to pri-
vately brute-force search for the remaining 72 bits, without
the helpers learning any meaningful information about all
the bits of k. Note that we do not consider any specific dis-
tribution of the bits of k that are known to the supervisor.
That is, the supervisor could recall consecutive bits (e.g., a
string) or even random bits of k. This setting also mimics
well that of password-based schemes (e.g., for disk encryp-
tion purposes) where the encryption key is derived from a
password by means of a one-way pseudorandom key deriva-
tion function. Here, although the output space of the key
derivation function is large, additional knowledge about the
password can significantly reduce the key space. We fur-
ther assume that there is a confidential channel between the
helpers and the supervisor (e.g., the helpers could establish
a session key with the supervisor using his public key).

Our N-Private Solver.
The main intuition behind an N -private solver is that any

adversary M in C that controls up to N helper nodes can-
not acquire information about the “additional” knowledge
that is in the possession of the supervisor (i.e., the set KS).
Given that |K| is too large to be brute-force searched by M ,
this suggests that M cannot acquire, with high probability,
any meaningful information (e.g., range, bound) about the
correct decryption key k.

Our N -private solver unfolds as follows. Let (A,B) be a
solver for K

CBC
k and let ǫ and r be security parameters. A

and B interact as follows:

• Similar to the privacy-preserving solver for K
CBC
p , A

computes c0 ⊕ p1.

• Given ǫ, A also computes R = ⌊ 2
ǫ
⌋. Let K denote the

key space and KS refer to the reduced key space in pos-
session of A. A divides KS into n subspaces {K1

S ..Kn
S}

(such that R · n >
|K|
|KS |

). Furthermore, A randomly

chooses (R−1) ·n key subspaces from {K−KS}; these
subspaces have the same size of the n intervals of KS .
These subspaces could also be used by the supervi-
sor to create ringer problems—and therefore to verify
the integrity of the outsourced search—as described in
Section 3.2. In total, A therefore constructs H = R ·n
equal-sized key subspaces (Figure 3).

• Assuming that there are H = R · n helpers in the
network (that run algorithm B), A assigns uniformly
at random one of the H key subspaces to each helper
and asks the helpers to search in their assigned space
for the keys that encrypt c1 into {c0 ⊕ p1}(log |P|−r)

(i.e., into the first (log |P| − r) bits of c0 ⊕ p1)
12.

• B returns all the keys k̄ that satisfy the search condi-
tions.

• A aggregates the output of B and extracts the correct
decryption key k.

Security Analysis.
We show that the solver that we presented in the previous

paragraph is a 0.59
√

H|K|

ǫ3|KS |
-private solver for K

CBC
k . For

that purpose, we have to show that the probability that an

attacker—that can compromise a maximum of 0.59
√

H|K|

ǫ3|KS |

nodes—acquires any information about the key is negligible,
even if the key is within the allocated search space of the
compromised nodes.

We first note that since the communication between the
helpers and the supervisor is performed over a confidential
channel, then the only information available to M consists of
the public protocol parameters and the inputs/outputs that
are revealed to the N helper nodes that are compromised
by M (Figure 4). This is an essential requirement to ensure
the security of our scheme. In fact, if the communication

12The inputs and outputs of the private solver depend on
the encryption mode in use. For instance, in the CTR
mode encryption and similar to its plaintext-hiding privacy-
preserving solver, helpers search in the assigned space for
the keys k̄ such that G(k̄) = {c0 ⊕ p0}(log |P|−r), where G(.)
is C-secure pseudorandom generator.

between A and B is not confidential, then M can monitor
the interface of A and acquire a set of candidate keys from
which it is feasible for M to acquire the key k.
Our analysis relies on a recent uniformity hypothesis test-

ing result [41]: Paninski et al. lower-bounded the number of
independent samples N that are required to decide that a
discrete distribution d—supported on m points—is ǫ-distant
from a uniform distribution. More formally, Paninski et al.
proved the following theorem.

Theorem 4.1. Let H0 : di ≡ 1
m

and consider the non-

parametric alternative HA :
∑m

i=1 |d(i) − 1
m
| > ǫ. Further-

more, let N denote the number of independent and identi-
cally distributed samples that are required to distinguish H0

from HA. If N2ǫ4 < m log 5, then no test can reliably dis-
tinguish H0 from HA [41].

In analyzing the advantage of an adversaryM in acquiring
information about k given our aforementioned private solver,
the main observations are as follows:

• There are a total of n|K|
|KS |

sets in K of the same size

as the n sets in KS . Therefore, the distribution D

supporting the aforementioned allocation of these key
sets to nodes is given by:

D(i) =

{ 1
R·n

if i ∈ KS ,
R−1

R

(
n|K|
|KS |

−n

) otherwise

• Given this, it follows that:

n|K|
|KS |∑

i=1

∣∣∣∣D(i)− 1

m

∣∣∣∣ = n

∣∣∣∣
1

R.n
− |KS |

n|K|

∣∣∣∣+
(
n|K|
|KS |

− n

)

×
∣∣∣∣
R− 1

R

1
n|K|
|KS |
− n
− |KS |

n|K|

∣∣∣∣

=

∣∣∣∣
|KS |
|K| −

1

R

∣∣∣∣+
∣∣∣∣
R− 1

R
− |K| − |KS |

|K|

∣∣∣∣

Given that |K| ≫ |KS |, then:
n|K|
|KS |∑

i=1

∣∣∣∣D(i)− 1

m

∣∣∣∣ ≈
1

R
+ 1− R− 1

R
≈ 2

R
≥ ǫ.

This means that D and the uniform distribution are ǫ-
distant.
Following from Theorem 4.1, if M acquires at most N <√
n|K| log 5

ǫ2
√

KS

≈
√

H|K| log 5

ǫ
3
2

√
2|KS |

≈ 0.59
√

H|K|

ǫ3|KS |
key interval sam-

ples chosen uniformly at random, then it cannot distinguish
D from the uniform distribution supported on the key in-
tervals of K. This also means that M cannot acquire any
information about KS—the reduced set of candidate keys—
from D; that is, even if M compromises N helpers, it will
not learn any additional information about the parts of the
key that the supervisor can recall nor any C-feasible bound
on an interval where the decryption key is located.
We further note that little can be done by M to verify

any guess that it makes. In fact, given that A only reveals c
and the first (log |P| − r) bits of c0 ⊕ p1, this suggests that:

• Assuming that the encryption function in question be-
haves as a pseudorandom permutation, then there are

Figure 4: Sketch of an N-private solver for K
CBC
k .

Subscripts refer to the index of each block. The
communication between the helpers and the super-
visor is performed over a confidential channel.

2r·|K|
|P|

candidate solutions to this search problem. Since

there areH helpers in the network, these helpers would

output a set S comprising of 2r·R·|KS |
|P|

≈ 2r+1·|KS |
ǫ|P|

can-

didate solutions—among which is the correct decryp-
tion key k (since it is easy to see that (A,B) solves
K

CBC
p)13. Each helper node then outputs a set com-

prising of 2r+1·|KS |
ǫ|P|H

candidates. The probability that

the correct decryption key is among those solution is
bounded by 1

H
.

• Similarly, the probability that the correct decryption
key k is among the candidate keys returned by the N

helpers compromised by M is bounded by N
H
. These

N helpers output a set comprising of 2r+1N·|KS |
ǫ|P|H

ele-

ments. Note, here, that 2r+1 · |KS | ≫ ǫ|P|. Otherwise,
the helper node that finds a candidate solution can be
certain—with considerable probability— that it holds
the correct decryption key.

Recall that no algorithm B′ ∈ C can acquire p1 or p from
the transcript of interaction between A and B (refer to Sec-
tion 3.2). This therefore suggests that the attacker cannot
verify which candidate key corresponds to the actual decryp-
tion key k.

We conclude that (A,B) is a 0.59
√

H|K|

ǫ3|KS |
-private solver

for K
CBC
k . Here, assuming that

(
2r+1 · |KS |

)
≫ ǫ|P|, the

probability that the correct decryption key can be acquired
by M is bounded by O

(
N
H

)
, which is negligible if H · |KS | ≫

|K|. Note that since H = R · n >
|K|
|KS |

, then N < H.

Example 2. As an example, consider the case where |K| =
296, |P| = 264, |KS | = 272, ǫ = 1, r = 21 and the network
contains H = 228 helpers. In this case, the advantage of any
attacker M in C in acquiring the correct decryption key is

negligible if it controls a maximum of N = 0.59
√

H|K|

ǫ3|KS |
≈

225 helper nodes. In this example, the probability that the
correct decryption key k is among the 22 candidate keys re-
turned by any helper node is 2−28. Similarly, the probability

13Therefore, the computational complexity of algorithm A
run by the supervisor is O(|S|). This complexity approaches

O(H) if the number of candidate keys per node 2r+1·|KS |
ǫ|P|H

is
set to a constant.

that the key k is among the 227 keys returned by the N nodes
controlled by M correctly is approximately 2−4. Neverthe-
less, since p is never revealed to any helper, we point out
that no helper node can verify its guess. Note that, in this
case, the helpers report a total of 230 candidate solutions to
the supervisor14.

5. PLAN-AHEAD SCHEMES FOR KEY-

HIDING SEARCHES
Plan-ahead key-hiding cryptographic schemes are encryp-

tion schemes that enable by design efficient (computational)
key-hiding cryptographic searches. Although restrictive, since
these schemes are “planned” at the time of encryption to ex-
hibit such privacy-preserving properties, this notion can be
useful, e.g., to users when encrypting their disks15; at any
point in time, these users can recover their keys with the help
of distributed nodes, without these nodes learning (in the
computational sense) any information about the key and/or
the plaintext—even if they all collude. In this section, we de-
scribe possible constructions for plan-ahead schemes that en-
able efficient key-hiding and plaintext-hiding searches based
on block ciphers given (i) a known ciphertext/plaintext pair
and (ii) given the sole knowledge of the ciphertext (i.e., the
corresponding plaintext is not known to the supervisor).

5.1 Known Ciphertext/Plaintext Pairs
Our block-cipher plan-ahead scheme that enables the con-

struction of efficient privacy-preserving solvers for key-hiding
and plaintext-hiding search problems unfolds as follows.
We propose to encrypt each plaintext block at index i ≥ 1

using the key k“new“i = k⊕FIV(i), where k is the genuine se-
cret key, FIV(i) is the output of the C-secure pseudorandom
function F (.) for block index i given the input IV = c0. Note
that this construction does not compromise the security of
the block-cipher encryption process.
Let (A,B) be a privacy-preserving solver for the plaintext-

hiding problem based on the above plan-ahead block-cipher
encryption. A and B interact as described in Section 3.16

At the end of their interaction, A verifies the validity of k̂

reported by the helpers and extracts the key k = k̂⊕FIV(i)
(recall that IV is kept secret).
Note that the construction of this plan-ahead key-hiding

scheme ensures forward and backward security. That is, the
sole knowledge of k“new“i does not leak information about
k“new“j , k, nor about IV, ∀j 6= i. Therefore, no entity can
make use of the obtained key to decrypt any other ciphertext
that was created using the same secret key k.
This plan-ahead key-hiding encryption scheme enables, by

14For comparison purposes, the collective computing power
harnessed in the RSA DES project [4] enabled testing of
approximately 238 keys per second.

15Given the large amount of data stored on disks, users
would typically rely on symmetric encryption to encrypt
their disks. This motivates the need for efficient privacy-
preserving solvers for key-hiding searches based on block ci-
phers.

16The described plan-ahead block-cipher encryption does
not impact how block encryption is performed. Therefore,
the privacy-preserving solvers for plaintext-hiding problems
based on the CTR, OFB, CBC, PCBC, CFB block cipher
mode encryption (Section 3) can be used to solve plaintext-
hiding problems based on this variant plan-ahead encryption
scheme.

Figure 5: Example of a plan-ahead key-hiding and
plaintext-hiding cryptographic scheme (with un-
known plaintext) based on the CBC encryption
scheme. At the time of encryption, (i) a new
plaintext-block at index j, p“new“j , is inserted such
that p“new“j = FIV(0) and (ii) all plaintext-blocks are
encrypted using the key k“new“i = k ⊕ FIV(i), where
k is the genuine secret key, i is the block index and
F (.) is a pseudorandom function.

design, the release of information that allows the brute-force
search of a message key (i.e., the session key k ⊕ FIV(i)),
without revealing the information required to acquire the
long term key k nor the plaintext p.

It can be shown that (A,B) is a privacy-preserving solver
for both plaintext-hiding and key-hiding search problems
based on the proposed cryptographic construction.

5.2 Known Ciphertext Only (Unknown Plain-
text)

So far, the privacy-preserving (andN -private) solvers that
we proposed in this paper rely on the a priori knowledge of
the plaintext. Here, we propose a plan-ahead encryption
scheme that enables the construction of privacy-preserving
solvers for plaintext-hiding and key-hiding block-cipher search
problems without requiring the knowledge of the original plain-
text.

The main intuition behind our construction is to embed,
at the time of encryption, a plaintext block that is known to
algorithm A, but cannot be acquired by any algorithm B′

in C; otherwise, B′ can use the plaintext to search for the
corresponding key.

Our scheme is a variant of the plan-ahead key-hiding con-
struction that we described in Section 5.1. Let ci and pi be
the ciphertext and plaintext blocks at index i ≥ 1, respec-
tively. At the time of encryption, (i) each plaintext block at
index i ≥ 1 is encrypted using the key k“new“i = k ⊕ FIV(i)
and (ii) a new block p“new“j = FIV(0) is embedded within

the plaintext-blocks to encrypt17. Note that the index value
j could be pre-defined and made public; for example, in a

17Recall that F (.) is a C-secure pseudorandom function.

Computational Complexity Communication Complexity
of algorithm A of algorithm B

Privacy-preserving solver for Kp
O(1) O(|k|)

(known plaintext)
PIR-based solver for Kk & Kp

O
(
2

|k|
2

)
O(|k|)

(known plaintext)
N -private solver for Kk & Kp

O(H)(∗) O(|k|)
(known plaintext)
Plan-ahead solver for Kk & Kp

O(1) O(|k|)
(known or unknown plaintext)

Table 1: Performance comparison of privacy-preserving solvers for plaintext-hiding and key-hiding searches
based on block-ciphers (in the CTR, OFB, CBC, CFB, PCBC mode encryption). |k| refers to the size (in
bits) of the key and H denotes the number of helper nodes in the network. Kk and Kp refer to key-hiding

and plaintext-hiding search problems, respectively. (∗) for the reasoning why, refer to Section 4.3.

plan-ahead CBC encryption scheme, the second plaintext-
block can be always set to FIV(0).

18

Let (A,B) be a privacy-preserving solver corresponding
to the plaintext-hiding search problem based on this plan-
ahead encryption scheme. Here, A only reveals p“new“j and
c“new“j to the helpers. It is easy to see that (A,B) is also
a privacy-preserving solver for the variant key-hiding search
problem. In particular, similar to the analysis in Section 3,
it can be shown that there exist efficient privacy-preserving
solvers for this plan-ahead scheme based on the CTR, OFB,
CBC, PCBC, CFB block cipher mode encryption.
In Figure 5, we sketch an example of this plan-ahead en-

cryption scheme based on the CBC encryption scheme; we
refer to this encryption scheme by CBC. Here, the privacy-

preserving solver (A,B) for KCBC
k and K

CBC
p unfolds as fol-

lows: (i) A sends cj+1 and cj⊕p“new“j to B, (ii) B searches

for the key k̂ that encrypts cj+1 into cj ⊕ p“new“j and sends

it to A and (iii) A extracts the key k = k̂⊕FIV(j). Note that
this privacy-preserving solver only requires the knowledge of
the ciphertext c.

6. RELATEDWORK
Our work shares similarities with the notion of “deniable

encryption” [17, 23, 37]. An encryption scheme is “deniable”
if the ciphertext can be seen as an encryption of another
plaintext, thus keeping the real plaintext private. Our work
differs from deniable encryption in the fact that the super-
visor does not possess the secret key, and wishes to retrieve
it while keeping it, along with the plaintext hidden from any
third-party.
Canetti et al. [18] describe possible constructions for non-

committing encryptions. In these constructions, only a“sim-
ulator”can generate“dummy ciphertexts”that could be used
as encryptions for more than one value. Artzi et al. [9]
present a scheme that enables encrypted keyword search over
a set of encrypted documents.
Gennaro et al. [25] introduce the notion of a “verifiable

computation scheme” and present a protocol that enables
privacy-preserving outsourcing of computations to untrusted
workers. The main intuition behind their scheme is to com-
bine Yao’s Garbled Circuit with a fully homomorphic en-

18If |F (.)| ≤ |P|, then p“new“j is padded with additional zeros
to match |P|; otherwise, the last few bits of F (.) can be
truncated.

cryption system to ensure the privacy of the input and out-
put of the outsourced computations.

Hohenberger et al. [30] describe a scheme to outsource
modular exponentiations to a set of untrusted helper nodes.
Besides the basic differences in the properties of the out-
sourced tasks—which require different solution spaces—our
approach ensures the privacy of the sensitive instances and/or
solutions of the outsourced search problem even in the case
when the helpers are malicious and collude.

Shaneck et al. [44] propose a scheme that enables privacy-
preserving nearest neighbor search in the context of data
mining applications. Other proposals include protocols for
oblivious transfer [15, 42], privacy-preserving genomic com-
putation [47]; proposals for other privacy-preserving or obliv-
ious problems can be found in [8,13,14,19,31,32,38,39,45].

Other contributions in the literature addressed the in-
tegrity of outsourced computations. Jakobsson et al. [33]
propose a scheme that enables secure outsourcing of a batch
of signatures to a remote server. Golle et al. [28] propose to
secure a specific class of parallel problems that are run on
remote servers: inverse one-way functions (IOWF), where
the helper nodes are required to compute the pre-images
of several one-way functions. These correspond to the pre-
computed images of randomly chosen elements, ringers, in
each task. This solution has been extended to secure se-
quential problems [29,35,46].

Similarly, Du et al. [22] discuss a scheme that uses sam-
pling techniques along with a Merkle-tree based commit-
ment technique to secure non-sequential distributed prob-
lems in grid computing.

7. CONCLUDING REMARKS
In this work, we considered the problem of enabling privacy-

preserving distributed searches of cryptographic keys with-
out leaking sensitive information in the search process.

For this purpose, we introduced the notion of a “privacy-
preserving solver” as a building block for solving “plaintext-
hiding” and “key-hiding” cryptographic search problems. In
these problems, a supervisor that holds a ciphertext (and
possibly the corresponding plaintext) asks remote helper
nodes to assist him in the search for the corresponding de-
cryption key without the nodes learning any information
about the plaintext or the secret key.

Our results show that, for most public-key and private-key
encryption algorithms, privacy-preserving solvers for plaint-
ext-hiding searches can be efficiently constructed. By lever-

aging on these solvers, we also showed how to construct
privacy-preserving solvers for key-hiding searches. While
the latter solvers are typically not efficient in private-key
encryption, we showed that efficient private solvers for key-
hiding searches based on block-ciphers can be constructed
in the practical case where the adversary does not control
the entire network. In the special case when (computa-
tional) privacy-preserving properties are required to enable
both key-hiding and plaintext-hiding searches, plan-ahead
encryption schemes can enable the efficient construction of
the corresponding privacy-preserving solvers (even without
the knowledge of the plaintext). Our findings are summa-
rized in Table 1.
Given that our proposed solvers can be directly integrated

in existing distributed computing platforms, our work high-
lights the need to consider these privacy-preserving prop-
erties and their implications in the design and deployment
of cryptographic searches. In this respect, we argue that
the property of enabling efficient privacy-preserving solvers
should be considered as an additional criterion for choosing
which cryptographic algorithm to use; for example, while
this property is present in most block-cipher mode encryp-
tion, we believe that it is not a feature of the (insecure) ECB
block cipher mode. We plan to investigate a potential re-
lationship between the security of an encryption algorithm
and its “privacy-preserving”properties; more specifically, we
are interested in investigating whether an encryption algo-
rithm that supports classes of privacy-preserving solvers be-
yond what is presented in this work should be insecure (with
respect to the ciphertext indistinguishability property).

8. ACKNOWLEDGMENTS
The authors would like to acknowledge the anonymous re-

viewers for their helpful feedback and comments. The work
presented in this paper was supported (in part) by the Swiss
National Science Foundation under Grant 200021-127294.

9. REFERENCES
[1] Distributed.Net, Available from:

http://distributed.net/.

[2] Electronic Frontier Foundation, Available from:
http://www.eff.org.

[3] M4 Project, Available from:
http://www.bytereef.org/m4_project.html.

[4] RSA’s DES Challenge III, Available from:
http://www.rsa.com/rsalabs/node.asp?id=2108.

[5] DES Cracker, Available from:
http://w2.eff.org/Privacy/Crypto/Crypto_misc/

DESCracker/HTML/19980716_eff_des_faq.html.

[6] NIST Report on Cryptographic Key Length and
CryptoPeriod, Available from:
http://www.keylength.com/en/4/.

[7] WPA Cracker, Available from:
http://www.wpacracker.com/index.html.

[8] Applebaum, B., Ringberg, H., Freedman, M. J.,

Caesar, M., and Rexford, J. Collaborative,
Privacy-Preserving Data Aggregation at Scale. In
Proceedings of PETS (2010).

[9] Artzi, S., Kiezun, A., Newport, C., and Schultz,

D. Encrypted Keyword Search in a Distributed
Storage System. MIT CSAIL Tech Report
MIT-CSAIL-TR-2006-010, 2006.

[10] Biham, E., and Shamir, A. Differential
Cryptanalysis of the Full 16-Round DES. In
Proceedings of CRYPTO (1992).

[11] Biryukov, A., Dunkelman, O., Keller, N.,

Khovratovich, D., and Shamir, A. Key Recovery
Attacks of Practical Complexity on AES Variants
With Up To 10 Rounds. In Proceedings of
EUROCRYPT (2010).

[12] Boneh, D. Twenty Years of Attacks on the RSA
Cryptosystem. In Notices of the American
Mathematical Society (AMS) (1999).

[13] Brickell, J., Porter, D., Shmatikov, V., and

Witchel, E. Privacy-Preserving Remote Diagnostics.
In Proceedings of ACM CCS (2007).

[14] Brickell, J., and Shmatikov, V.

Privacy-Preserving Classifier Learning. In Financial
Crypto (2009).

[15] Cachin, C. On the Foundations of Oblivious
Transfer. In Proceedings of EUROCRYPT (1998).

[16] Cachin, C., Micali, S., and Stadler, M.

Computationally Private Information Retrieval with
Polylogarithmic Communication. In Proceedings of
EUROCRYPT (1999).

[17] Canetti, R., Dwork, C., Naor, M., and

Ostrovsky, R. Deniable Encryption. In Proceedings
of CRYPTO (1997).

[18] Canetti, R., Feige, U., Goldreich, O., and

Naor, M. Adaptively Secure Multi-party
Computation. In Proceedings of the twenty-eighth
annual ACM symposium on Theory of Computing
(STOC) (1996).

[19] Chaum, D. Blind Signatures for Untraceable
Payments. In Proceedings of CRYPTO (1982).

[20] Chor, B., Kushilevitz, E., Goldreich, O., and

Sudan, M. Private Information Retrieval. In Journal
of the ACM (1998).

[21] Coppersmith, D., Franklin, M., Patarin, J., and

Reiter, M. Low-exponent RSA with related
messages. In Proceedings of EUROCRYPT (1996).

[22] Du, W., Jia, J., Mangal, M., and Murugesan, M.

Uncheatable Grid Computing. In Proceedings of
ICDCS (2004).

[23] Duermuth, M., and Freeman, D. M. Deniable
Encryption with Negligible Detection Probability: An
Interactive Construction. To Appear in
EUROCRYPT, 2011. Available from
http://eprint.iacr.org/2011/066.pdf.

[24] ElGamal, T. A Public-Key Cryptosystem and a
Signature Scheme Based on Discrete Logarithms. In
IEEE Transactions on Information Theory (1985).

[25] Gennaro, R., Gentry, C., and Parno, B.

Non-Interactive Verifiable Computing: Outsourcing
Computation to Untrusted Workers. In Proceedings of
CRYPTO (2010).

[26] Gentry, C., and Ramzan, Z. Single-Database
Private Information Retrieval with Constant
Communication Rate. In Automata, Languages and
Programming (2005).

[27] Goldwasser, S., Micali, S., and Rackoff, C. The
Knowledge Complexity of Interactive Proof-Systems.

In Proceedings of 17th Symposium on the Theory of
Computation (1985).

[28] Golle, P., and Mironov, I. Uncheatable
Distributed Computations. In Proceedings of the RSA
Conference (2001).

[29] Goodrich, M. T. Pipelined Algorithms to Detect
Cheating in Long-Term Grid Computations. In
Theoretical Computer Science, LNCS, Springer
(2008).

[30] Hohenberger, S., and Lysyanskaya, A. How To
Securely Outsource Cryptographic Computations. In
Theory of Cryptography Conference, LNCS, Springer
(2005).

[31] Huang, Q., Wang, H. J., and Borisov, N.

Privacy-Preserving Friends Troubleshooting Network.
In Proceedings of NDSS (2005).

[32] Huanga, Y., Malka, L., Evans, D., and Katz, J.

Efficient Privacy-Preserving Biometric Identification.
In Proceedings of NDSS (2011).

[33] Jakobsson, M., and Wetzel, S. Secure
Server-Aided Signature Generation. In Proceedings of
the 4th International Workshop on Public Key
Cryptography (PKC), LNCS, Springer (2001).

[34] Jochemsz, E., and May, A. A Polynomial Time
Attack on RSA with Private CRT-Exponents Smaller
Than N0.073. In Proceedings of CRYPTO (2007).

[35] Karame, G., Strasser, M., and Capkun, S. Secure
Remote Execution of Sequential Computations. In
Proceedings of ICICS (2009).

[36] Katzenbeisser, S. Recent Advances in RSA
Cryptography. Volume 3 of Advances in Information
Security, Springer, 2001.

[37] Klonowski, M., Kubiak, P., and Kutylowski, M.

Practical Deniable Encryption. In Proceedings of
SOFSEM: Theory and Practice of Computer Science
(2008).

[38] Lincoln, P., Porras, P., and Shmatikov, V.

Privacy-Preserving Sharing and Correlation of
Security Alerts. In Proceedings of USENIX Security
(2004).

[39] Lindqvist, J., Aura, T., Danezis, G., Koponen,

T., Myllyniemi, A., Maki, J., and Roe, M.

Privacy-Preserving 802.11 Access-Point Discovery. In
Proceedings of ACM WiSec (2009).

[40] Mantin, I., and Shamir, A. A Practical Attack on
Broadcast RC4. In Proceedings of FSE (2001).

[41] Paninski, L. A Coincidence-based Test for Uniformity
given very Sparsely-Sampled Discrete Data. In IEEE
Transactions on Information Theory (2008).

[42] Rabin, M. O. How to Exchange Secrets by Oblivious
Transfers. Technical Report, Harvard University, 1981.

[43] Schnorr, C. Efficient Identification and Signatures
for Smart Cards. In Proceedings of CRYPTO (1990).

[44] Shaneck, M., Kim, Y., and Kumar, V. Privacy
Preserving Nearest Neighbor Search. In Proceedings of
the International Conference on Data Mining (2006).

[45] Sion, R. Towards Secure Data Outsourcing. M. Gertz
and S. Jajodia (editors), Springer Verlag, ISBN:
978-0-387-48532-4, 2008.

[46] Szajda, D., Lawson, B., and Owen, J. Hardening
Functions for Large Scale Distributed Computations.
In Proceedings of the IEEE Symposium on Security
and Privacy (2003).

[47] Wang, R., Wang, X., Li, Z., Tang, H., Reiter,

M., and Dong, Z. Privacy-Preserving Genomic
Computation Through Program Specialization. In
Proceedings of ACM CCS (2009).

APPENDIX

Appendix A: Proof of Lemma 1

In this appendix, we restate and prove Lemma 1.

Lemma: If G is a C-secure pseudorandom generator, and
M ∈ {0, 1}n, then C = G(s) ⊕M , where s is chosen uni-
formly at random from {0, 1}n, is computationally indepen-
dent of M relative to complexity class C.

Proof: Let G be a C-secure pseudorandom generator. That
is, G is an efficient deterministic algorithm that, when given
a randomly chosen input s ∈ {0, 1}n, it outputs a pseudoran-
dom string G(s) of length l(n) ≥ n such that the advantage
of any distinguisher D in C in distinguishing G(s) from a
randomly chosen r ∈ {0, 1}n is negligible.

To prove that M and G(s)⊕M are computationally inde-
pendent (relative to C), according to Definition 3, we need to
exhibit a pair (U ′, V ′) of statistically independent random
variables such that the pairs (M,G(s) ⊕ M) and (U ′, V ′)
are computationally indistinguishable. This is achieved by
defining U ′ to be distributed according to the distribution
of M and defining V ′ to be an independent uniform n-bit
string. In other words, we claim that (M,G(s) ⊕M) and
(M,V ′) are computationally indistinguishable.

To prove this, note that a distinguisher D for (M,G(s)⊕
M) and (M,V ′) can be used to distinguish G(s) from a uni-
form random n-bit string U , simply by choosing a random
variable M (according to the right distribution) and feeding
the pairs (M,G(s)⊕M) and (M,U) to the distinguisher D.
The advantage is the same, thus concluding the proof. 2

