
Secure Computability of Functions in the IT setting with
Dishonest Majority and Applications to Long-Term

Security

Robin Künzler1, Jörn Müller-Quade2?, and Dominik Raub1??

1 ETH Zurich, Department of Computer Science, CH-8092 Zurich, Switzerland,
robink@student.ethz.ch, raubd@inf.ethz.ch

2 IKS/EISS, Fakultät für Informatik, Universität Karlsruhe (TH), Germany,
muellerq@ira.uka.de

Abstract. While general secure function evaluation (SFE) with information-the-
oretical (IT) security is infeasible in presence of a corrupted majority in the stan-
dard model, there are SFE protocols (Goldreich et al. [STOC’87]) that are compu-
tationally secure (without fairness) in presence of an actively corrupted majority
of the participants. Now, computational assumptions can usually be well justified
at the time of protocol execution. The concern is rather a potential violation of the
privacy of sensitive data by an attacker whose power increases over time. There-
fore, we ask which functions can be computed with long-term security, where we
admit computational assumptions for the duration of a computation, but require
IT security (privacy) once the computation is concluded.
Towards a combinatorial characterization of this class of functions, we also char-
acterize the classes of functions that can be computed IT securely in the authen-
ticated channels model in presence of passive, semi-honest, active, and quantum
adversaries.

Keywords: long-term security, information-theoretic security, corrupted major-
ity, secure function evaluation.

1 Introduction

In cryptography one distinguishes computational (CO) security which could in princi-
ple be broken by a very powerful adversary and information theoretical (IT) security
which withstands even an unlimited attacker. However, general IT secure protocols fail
in presence of an adversary that may corrupt a majority of the participants. On the other
hand, an unlimited attacker is not a realistic threat and the problem with CO assump-
tions is not so much that these could be unjustified right now, but that concrete CO as-
sumptions could eventually be broken by an attacker whose power increases over time.
With such a more realistic threat model in mind an interesting question arises: Which
cryptographic tasks can be realized with long-term (LT) security? I.e., which tasks
can be realized in presence of an attacker (potentially corrupting a majority of protocol

? Thanks for financial support from the European Commission (SECOQC).
?? Supported by the Swiss National Science Foundation (SNF), project no. 200020-113700/1.

participants) who is CO limited during the protocol execution, but becomes unlimited
afterwards?

In this work we study multi-party secure function evaluation (SFE). The main result
is a classification of the functions which can be computed with LT security over a net-
work of authenticated channels. Furthermore we give a classification of all the 2-party
functions which can securely be computed in presence of an adversary who is unlim-
ited from the start. This class is strictly contained in the class of functions which can
be computed with LT security and the notion of LT security hence lies strictly between
CO security and IT security.

Quantum cryptography can achieve tasks, like IT secure key distribution, which can-
not be achieved classically. For the task of secure function evaluation it is not known
if quantum cryptography can achieve anything beyond the classically possible3. How-
ever, in this work we show that the class of 2-party functions which can be realized with
quantum cryptography is strictly contained in the class of 2-party functions realizable
with LT security. From this inclusion novel impossibility results for quantum cryptog-
raphy arise that are no direct consequences of the results by Mayers [25] or Kitaev [1].

All results in this paper are constructive (whenever it is claimed that a class of func-
tions is securely computable a protocol is given) and proven in a stand-alone simulata-
bility based security model with a synchronous communication network (see e.g. [15]).

1.1 Contributions

To combinatorially characterize the class of functions which are computable with LT
security we first characterize the class of passively computable functions Faut

pas which can
securely be computed by parties connected by authenticated channels in presence of a
CO unlimited passive4 adversary who must behave according to the protocol. Next we
characterize the class of semi-honestly computable functions Faut

sh which are securely
computable in the same setting as above but in presence of a stronger, semi-honest5

adversary, that has to stick to the protocol, but may replace his inputs or lie about his
local output.

To prove a separation between the notion of LT security and IT security we charac-
terize the class F2act of all 2-party functions which are securely computable in presence
of an unlimited active adversary. We furthermore provide a necessary condition (which
we conjecture to be also sufficient) for membership in the class of actively computable
functions Faut

act that are securely computable in presence of an active adversary in the
authenticated channels model with broadcast (BC). Next we consider the class of 2-
party functions F2qu that can securely be computed where the parties may use quantum
cryptographic protocols and the attacker is an unlimited active quantum adversary. We
show that the class F2qu is strictly contained in the class F2sh of semi-honestly com-
putable 2-party functions which gives rise to novel impossibility results beyond those
of Mayers [25] or Kitaev [1].

3 However, quantum bit commitment is impossible [25] and hence no function implying bit
commitment is computable.

4 In the literature our notion of passive is also occasionally referred to as semi-honest.
5 In the literature our notion of semi-honest is also sometimes referred to as weakly semi-honest

or weakly passive.

To obtain the desired result on LT security we prove that the class of semi-honestly
computable functions Faut

sh equals the class Fbc
lts of functions which can LT securely be

computed given an authenticated BC channel. Furthermore, we show that the class of
LT securely computable functions remains unchanged if we replace the authenticated
BC channel by a network of authenticated channels or by a realistic communication
infrastructure consisting of a network of insecure channels with a given public-key
infrastructure (PKI). Hence our classification applies to a very practical internet-like
setting.

Unlike our IT secure protocols the LT secure protocols given in this work do not
achieve robustness or fairness. We show that this is optimal in the sense that generally
functions implementable with LT security cannot be implemented with fairness. How-
ever, we present protocols which guarantee that only a specific designated party can
abort the computation after learning the output. I.e. the fairness property can only be
violated by this designated party. Interestingly these protocols make use of CO secure
oblivious transfer (OT) protocols even though OT itself cannot be achieved with LT
security.

Summarizing our results and importing the treatment of complete two party func-
tions from [21] (i.e. functions which are cryptographically as powerful as oblivious
transfer) we arrive at a complete classification of two party functions. Interestingly,
there is a class of functions which cannot securely be computed but still are not com-
plete. This shows that for non-boolean functions there is no zero-one law for privacy [9].

1.2 Related Work

Secure computability of functions was first discussed by [9]. They characterize the sym-
metric boolean functions (all parties receive the same output y ∈ {0, 1}) that can be
computed with IT security in presence of passive adversaries in the private channels
model. In this scenario functions are either computable or complete (zero-one law for
privacy).

Kushilevitz [23, 24] and Beaver [2] presented the first results for non-boolean func-
tions describing the symmetric 2-party functions which can be computed with perfect
security in presence of an unbounded passive adversary. Our protocols and proof tech-
niques draw heavily upon [24]. Also, in the 2-party setting, [26] sketches a generaliza-
tion of [24] to the asymmetric, IT case, connections to LT security and discusses quan-
tum aspects, though without proper formalization or proofs. Our work goes beyond the
results of [9, 2, 24, 26] in that we consider IT secure computability of asymmetric, non-
boolean functions, in presence of passive, semi-honest, active, and quantum adversaries,
for the most part in the multi-party setting.

Gordon et al. [17] characterize the boolean functions computable with CO fairness
in the 2-party setting in presence of active adversaries. Our protocols for active ad-
versaries are robust (and hence fair) and being applicable to asymmetric, non-boolean
functions, pertain to a larger class of functions than those of [17], but in the IT scenario
instead of the CO setting.

Other works that deal with the computability of 2-party functions in the perfect or
IT setting are [19, 20, 3, 21]. However, these papers focus mostly on reducibility and

completeness, while we are more interested in computability in the authenticated chan-
nels model and implications for LT security. Computability of a few interesting special
functions in presence of dishonest majorities is discussed in [6].

Our impossibility result in the quantum case makes use of a result of Kitaev showing
the impossibility of quantum coin flipping which is published in [1].

Everlasting security from temporary assumptions has been investigated in crypto-
graphic research for some time. It was shown that a bound on the memory available to
the adversary allows key exchange and OT protocols [8, 7] which remain secure even if
the memory bound holds only during the execution of the protocol. This idea has been
pursued further to achieve everlasting security from a network of distributed servers
providing randomness [28]. In [13] it was shown that using a CO secure key exchange
in the bounded storage model need not yield everlasting security. For some time general
quantum cryptographic protocols were sought which obtain everlasting security from a
temporary assumption. Such protocols are now generally accepted to be impossible [5].
Additional assumptions, like a temporary bound on the quantum memory can again
provide everlasting security for secure computations [11].

In this paper we investigate the power of temporary CO assumptions in the standard
model. This is along the lines of [27]. However, in [27] strong composability require-
ments are imposed under which little is possible without additional setup assumptions,
like the temporary availability of secure hardware.

2 Security Definitions and Notation

In secure function evaluation (SFE) the goal is to compute a function f : X1 × . . . ×
Xn → Y1× . . .×Yn securely among n parties P = {P1, . . . , Pn}.6 Each party Pi ∈ P
(i ∈ [n] := {1, . . . , n}) holds an input xi ∈ Xi from a finite set Xi and is supposed
to receive output fi(x1, . . . , xn) := yi ∈ Yi, where (y1, . . . , yn) = f(x1, . . . , xn). We
extend this notation to sets M = {Pm1 , . . . , Pm|M|} ⊆ P and write fM (x1, . . . , xn) :=
yM := (ym1 , . . . , ym|M|) and xM := (xm1 , . . . , xm|M|). We call the set of all n-party
functions Fn and the set of multi-party functions F :=

⋃
n≥1 Fn.

In order to compute the function f the parties may execute a protocol π, utilizing
a set of resources7 (communication primitives) R. We designate by H ⊂ P the set of
honest parties, that execute their protocol machine πi as specified by protocol π, and by
E := P \ H the set of corrupted parties that may deviate from the protocol. We gener-
ally make the worst case assumption that corrupted parties are controlled by a central
adversary E. The adversary (if present, i.e. if at least one party is corrupted) acts for
the corrupted parties, sees messages sent over authenticated channels, and can manipu-
late messages sent over insecure channels. If no party is corrupted, we assume that no
adversary is present. External adversaries that can listen on authenticated channels and
manipulate insecure channels even when no party is corrupted are easily modelled by
adding an additional party, that has constant function output and whose input is ignored.

6 In the 2-party setting we will occasionally use A and B instead of P1 and P2.
7 In this work these are most often a complete network of authenticated channels or an authen-

ticated broadcast (BC) channel.

We define security using a simulation based stand-alone8 model (see e.g. [15]) with
synchronous message passing. The security of a protocol (the real model) is defined
with respect to an ideal model, where f is evaluated by a trusted third party or ideal
functionality I . A protocol π achieves security according to the simulation paradigm if
whatever an adversary E controlling a subset E ⊆ P of parties can do in the real model,
a simulator (or ideal adversary) S (connected to the interfaces of the corrupted parties
to the ideal functionality I) could replicate in the ideal model.

This is formalized by means of a distinguisher D which provides inputs xi (Pi ∈ H)
for the honest parties and xE for the adversary E. In the ideal setting the xi (Pi ∈ H) are
input to I , while xE is passed to the simulator S (which in turn computes inputs x′E to I
for the corrupted parties). In the real setting the protocol machines πi are run on input
xi (Pi ∈ H) with the adversary E on input xE and with resources R. Finally the outputs
yH of the honest parties and yE of the adversary or simulator are passed to D which then
has to guess if it is connected to the real system E ◦πH ◦R or the ideal system S(E) ◦ I .
To facilitate a unified treatment of different corruption models, we will wlog assume
that xE = (xE, x′E) and yE = (yE, y′E) where xE ∈ XE and yE ∈ YE are function
inputs and outputs respectively, x′E is an auxiliary input and y′E is the protocol transcript
observed by the adversary.9 If now for any adversaries E from a class E controlling a
set E of parties there is a simulator S from a class S such that the advantage of any
distinguisher D from a classD in distinguishing the real system E◦πH ◦R and the ideal
system S(E) ◦ I is bounded by an advantage function ε(κ), then we say that protocol
π securely implements the ideal functionality I . The type of security is dependent on
the choice of D, E , S, and ε(κ), and on the ideal functionality I . Denoting the class
of efficient10 algorithms by Poly, the class of arbitrary unbounded algorithms by Algo,
and negligibility in the security parameter κ as ε(κ) < negl we arrive at the security
paradigms listed in Table 1.

Paradigm Short D = E = S = ε(κ) Notation
Perfect security PF Algo Algo Algo ε(κ) = 0 π <PF I

Information-theoretical security IT Algo Algo Algo ε(κ) < negl π <IT I

PF security with efficient simulator PFE Algo Algo Poly ε(κ) = 0 π <PFE I

IT security with efficient simulator ITE Algo Algo Poly ε(κ) < negl π <ITE I

Computational security CO Poly Poly Poly ε(κ) < negl π <CO I

Long-term security LT Algo Poly Poly ε(κ) < negl π <LT I

Table 1. Basic Security Paradigms

We refine these further by defining adversarial models, i.e. restrictions that we can
impose on the adversaries and simulators for any of the above paradigms. We discuss ac-
tive (act) adversaries, where adversaries and simulators in the classes Eact, Sact are not
restricted further; semi-honest (sh) adversaries5, where adversaries in the class Esh are
restricted to generate messages according to the prescribed protocol π with the inputs

8 as opposed to a universally composable model
9 Arbitrary inputs can be passed to the adversary via x′

E and whatever the adversary might com-
pute from its observations can also be computed from the protocol transcript y′

E directly.
10 By efficient we mean polynomially bounded in the security parameter κ.

xE provided by the distinguisher D, and simulators in the class Ssh are not restricted
further; and passive (pas) adversaries4, where adversaries are in the class Epas = Esh
and simulators in the class Spas are restricted to forward the inputs xE provided by the
distinguisher D to the ideal functionality I .

We briefly motivate our definition of sh adversaries. When CO tools are applied
to force active adversaries to behave passively, they can, in contrast to the pas set-
ting, still substitute inputs. The sh setting is intended to model this scenario. However,
for simplicity, the definition above only allows for simulators (and not adversaries) to
substitute inputs, as this is actually equivalent under the distinguisher classesD we con-
sider: For any D ∈ D we can find a distinguisher D′ = D ◦ σ ∈ D that incorporates
the input substitution of the adversary E = E′ ◦ σ. So we can find a passive adversary
E′ ∈ Esh = Epas and a distinguisher D′ that yield the same advantage as E and D.

Security paradigms and adversarial models as defined above are combined by in-
tersecting their defining sets, i.e. IT security against sh adversaries is described by
DIT

sh = DIT ∩ Dsh, S IT
sh = S IT ∩ Ssh, E IT

sh = E IT ∩ Esh, ε(κ) < negl and denoted
π <IT

sh I . By definition we have the following implications among security paradigms
and adversarial models respectively:

PFE

��

+3 ITE

��

+3 LT +3 CO

PF +3 IT

act +3 sh pasks

We can now formalize the computation of a function f with a specific set of se-
curity properties under each of the definitions above by providing an appropriate ideal
functionality. Let f ∈ Fn be a function11 and let E ⊂ P be a set of corrupted players.

Demanding privacy, correctness and agreement on abort only for the computation
of f is captured by the ideal functionality Iab

f , which operates as follows: Iab
f accepts

an input xi from each party Pi. If a party Pi provides no input, a default input xdef
i

is used. Iab
f then computes the outputs (y1, . . . , yn) = f(x1, . . . , xn) and outputs yE

to the adversary (simulator). If |E| > 0, the adversary may decide whether the other
parties also receive the output (output flag o = 1) or not (output flag o = 0). Finally,
Iab
f sends either the outputs yi or the empty value⊥ to the honest parties, depending on

the output flag received from the adversary.12

The ideal functionality I fair
f specifying privacy, correctness and fairness (which im-

plies agreement on abort) works like Iab
f but takes an output flag before making output

to the adversary. Then for output flag 1 the functionality I fair
f sends the result y to all

parties and for output flag 0 it sends ⊥ to all parties.

11 In this work we take the function f to be independent of the security parameter κ. As such
the efficiency of protocols is always discussed for a fixed function in terms of the security
parameter κ. This is the most relevant case for applications, however, our proofs still hold
for a family of functions fκ, where the input domain grows at most polynomially fast in the
security parameter κ.

12 We could relax the definition further by allowing the adversary to send one output flag for
each party, dropping agreement on abort. However, all our protocols will achieve agreement
on abort.

Computing function f with full security (including robustness), which implies all
the security notions mentioned above, is specified by means of the ideal functionality
If . The functionality If operates like I fair

f but takes no output flag and instead directly
delivers the output y to all parties.

Computing function f with a designated aborter (DA) is a slightly weaker notion
of security than fairness in that only the designated party P1 can abort the protocol after
receiving output. The corresponding ideal functionality Ides

f operates as follows: Ides
f

accepts an input xi from each party Pi. If a party Pi provides no input, a default input
xdef

i is used. Ides
f then computes the outputs (y1, . . . , yn) = f(x1, . . . , xn). If P1 ∈ E

the functionality Ides
f outputs yE to the adversary (simulator). If |E| > 0, the adversary

may decide whether the other parties also receive the output (output flag o = 1) or not
(output flag o = 0). Finally, Ides

f either delivers the remaining outputs yi or the empty
value ⊥, depending on the output flag received from the adversary.

In the 2-party setting (but not for n > 2 parties) given I fair
f we can implement If by

having Pi output fi(xi, x
def
2−i) when it receives⊥. Conversely, given If , we can directly

use it as implementation of I fair
f . Thus robustness and fairness amount to the same:

Lemma 1. In the 2-party setting, I fair
f and If are efficiently and PFE securely locally

mutually reducible, even in presence of active adversaries.

Finally we show that computability by public discussion (authenticated BC only
as resources R) and in the authenticated channels model (complete network of authen-
ticated channels as resources R) lead to identical results for semi-honest or passive
adversaries. In the authenticated channels model we can securely (against sh and pas
adversaries) implement BC by simply sending messages to all other parties. Conversely
in the authenticated BC model, authenticated channels can be implemented by broad-
casting messages and instructing parties other than the intended recipient to ignore the
messages. By the same argument computability by public discussion and in the authen-
ticated channels model with BC lead to identical results for active adversaries also.

Lemma 2. In presence of semi-honest or passive adversaries, a function f ∈ F is se-
curely computable in the authenticated channels model if and only if it is computable by
public discussion (authenticated BC only). In presence of passive, semi-honest, or ac-
tive adversaries, a function f ∈ F is securely computable in the authenticated channels
model with BC if and only if it is computable by public discussion.

3 The Class Faut
pas of Passively Computable Functions

We subsequently characterize the class Faut
pas of functions f ∈ F that are computable IT

securely in the authenticated channels model in presence of a passive adversary.

Definition 1 (Faut
pas: Passively Computable Functions). The class of passively com-

putable functions Faut
pas consists of the functions f ∈ F for which an efficient protocol

π ∈ Poly exists that implements If with IT security in presence of a passive adversary
in the authenticated channels model.

Note that by Lem. 2 we have Faut
pas = Fbc

pas, where Fbc
pas denotes the functions com-

putable by public discussion in the setting above. Hence we may, for the sake of sim-
plicity, assume an authenticated BC channel instead of authenticated channels as the
sole underlying resource in the following discussion.

An important subset Faut
pas is the set Floc of locally computable n-party functions.

Definition 2 (Floc: Locally Computable Functions). A function f ∈ F is called lo-
cally computable (f ∈ Floc) if each party Pi can compute its function value yi =
fi(x1, . . . , xn) locally, without interacting with a resource or another party.

Obviously, for f to be locally computable, fi cannot depend on the inputs of parties
other then Pi:

Lemma 3 (Characterization of Floc). A function f ∈ F is locally computable (f ∈
Floc) iff for every i ∈ [n], xi ∈ Xi the restriction fi |X1×...×Xi−1×{xi}×Xi+1×...×Xn

of
f is constant.

Towards a characterization of Faut
pas, we give a combinatorial definition of a set F′pas

of functions that we call passively decomposable. Passive decomposability captures the
fact that a party can send a message about its input such that no adversary can learn
anything that is not implied by its own input and function output.

Definition 3 (F′pas: Passively Decomposable Functions). A function f ∈ Fn is called
passively decomposable, denoted f ∈ F′pas, if for any restriction f | eX1×...× eXn

of f to

subsets X̃j ⊆ Xj (j ∈ [n]) we have:

1. f | eX1×...× eXn
is locally computable (f | eX1×...× eXn

∈ Floc) or

2. there is an i ∈ [n] and a partition (K-Cut) of X̃i into non-empty sets X ′
i ∪̇X ′′

i = X̃i

such that for all Pe ∈ P \ {Pi} and all xe ∈ X̃e (E := {Pe}, H′ := H \ {Pi}):
fe(xe, X̃H′ ,X ′

i) ∩ fe(xe, X̃H′ ,X ′′
i) = ∅.

The above definition only discusses adversary sets E of cardinality |E| = 1. As we
show next this is actually equivalent to quantifying over all sets E ⊆ P.

Lemma 4 (An Equivalent Characterization of F′pas). A function f ∈ Fn is passively
decomposable if and only if for any restriction f | eX1×...× eXn

of f to subsets X̃j ⊆ Xj

(j ∈ [n]) we have:

1. f | eX1×...× eXn
is locally computable (f | eX1×...× eXn

∈ Floc) or

2. there is an i ∈ [n] and a partition (K-Cut) of X̃i into non-empty sets X ′
i ∪̇X ′′

i =
X̃i such that for all ∅ 6= E ⊆ P \ {Pi} and all xE ∈ X̃E (H′ := H \ {Pi}):
fE(xE, X̃H′ ,X ′

i) ∩ fE(xE, X̃H′ ,X ′′
i) = ∅.

The proof of Lemma 4 is by induction over the size of the adversary set E and can be
found in the full version [22].

We now show that passive decomposability as defined above indeed characterizes
the passively computable n-party functions:

Theorem 1. A function f ∈ F is passively computable if and only if it is passively de-
composable. In short Faut

pas = F′pas. Furthermore, any function f ∈ Faut
pas can efficiently

(in the security parameter κ) be computed with PFE security.

The full proof of Thm. 1 can be found in [22]. Faut
pas ⊆ F′pas is shown by demon-

strating that in absence of a K-cut no protocol participant can send a message that bears
any information about his input without losing security. The proof of Faut

pas ⊇ F′pas is
constructive in the sense that it inductively describes an efficient passively PFE secure
protocol πf to compute a function f ∈ F′pas. The protocol πf generalizes the approach
of [24] to asymmetric n-party functions:

Wlog assume that there is a partition of Xi = X (1)
i ∪̇X (2)

i as described in Definition
3. The protocol πf then proceeds as follows: The party Pi determines the message
m1 ∈ {0, 1} such that for the input xi ∈ Xi of Pi we have xi ∈ X (m1)

i and broadcasts
m1. The parties P then restrict the function f to f |X1×X2×...×X (m1)

i ×...×Xn
and proceed

with a partition for the restricted function in the same fashion. The process is iterated
until the parties arrive at a locally computable restriction of f , at which point they can
determine the output locally.

We conjecture that the above protocol achieves the optimal round complexity if it is
refined to use the finest possible decomposition (according to [24]) of the input domains
in every round.

4 The Class Faut
sh of Semi-Honestly Computable Functions

Next we characterize the class Faut
sh of n-party functions that are IT securely computable

in the authenticated channels model in presence of a semi-honest adversary. Here, in
order to obtain extra information, the corrupted parties are allowed to exchange their
inputs for different ones, but must still behave according to the prescribed protocol.
The results in this chapter will later help us to characterize LT secure functions in a
very practical setting.

Definition 4 (Faut
sh : Semi-Honestly Computable Functions). The class of semi-hon-

estly computable functions Faut
sh consists of the functions f ∈ F for which an efficient

protocol π ∈ Poly exists that implements If with IT security in presence of a semi-
honest adversary in the authenticated channels model.

Note that by Lem. 2 we have Faut
sh = Fbc

sh, where Fbc
sh denotes the functions computable

by public discussion in the setting above. Hence we may, for the sake of simplicity,
assume an authenticated BC channel instead of authenticated channels as the sole un-
derlying resource in the following discussion.

We intend to characterize the class Faut
sh combinatorially. To this end we introduce

the concept of redundancy-freeness for n-party functions, generalizing the 2-party def-
initions of [21]. For a party Pi, two of its possible inputs xi and x′i to f may be com-
pletely indistinguishable to the other parties (by their output from f), while the input
xi may yield a more informative output from f for Pi than x′i. We then say the input
xi yielding more information dominates the input x′i giving less information. As semi-
honest (and active) adversaries can select their inputs, generally with the goal to obtain

as much information as possible, the dominated input x′i giving less information is not
useful to a corrupted Pi. Along the same lines an ideal adversary (simulator) can al-
ways use the dominating input xi instead x′i of for simulation. As such the input x′i is
redundant, irrelevant in terms of security, and we can eliminate it from the function f
under consideration. This procedure yields a redundancy-free version f̂ of f , with new,
smaller, dominating input sets.

Definition 5 (Domination and Redundancy-Freeness). Given an n-party function
f ∈ Fn we say xi ∈ Xi dominates x′i ∈ Xi iff for all xP′ ∈ XP′ : fP′(xi, xP′) =
fP′(x′i, xP′) and for all xP′ , x′P′ ∈ XP′ (where P′ := P \ {Pi}): fi(x′i, xP′) 6=
fi(x′i, x

′
P′) =⇒ fi(xi, xP′) 6= fi(xi, x

′
P′).

We define sets of dominating inputs X̃j := {X ⊆ Xj | ∀x′ ∈ Xj∃x ∈ X :
x dominates x′} (j ∈ [n]). Take the dominating set X̂j as (some) element of minimal
cardinality in X̃j . We then call f̂ := f |X̂1×...×X̂n

the redundancy-free version of f .
Furthermore, for xj ∈ Xj let x̂j ∈ X̂j be the (unique) element that dominates xj .

The redundancy-free version f̂ of f is uniquely defined up to a renaming of input
and output values (also see Sec. 8 or [22]). Domination is a reflexive and transitive
relation. Furthermore it is antisymmetric up to renaming of input and output symbols.
Hence two different dominating sets X̂i and X̂ ′

i are sets of maximal elements under the
domination relation and equal up to renaming of input and output values.

Since corrupted parties can cooperate to choose their inputs to obtain as much infor-
mation as possible, it is important to note that the above Def. 5 generalizes to the com-
bined input of the corrupted parties E as stated in Lem. 5 below. So if each corrupted
party Pej chooses an input xej dominating input x′ej

, then the combined adversarial
input xE actually dominates x′E.

Lemma 5. Let xE = (xe1 , . . . , xe|E|), x′E = (x′e1
, . . . , x′e|E|

) such that each xej dom-
inates x′ej

(j ∈ [|E|]). Then we have for all xH ∈ XH: fH(xE, xH) = fH(x′E, xH) and
for all xH, x′H ∈ XH: fE(x′E, xH) 6= fE(x′E, x′H) =⇒ fE(xE, xH) 6= fE(xE, x′H).
Again we say that xE dominates x′E.

The proof of Lem. 5 is by induction on |E| and can be found in [22].
The following lemma states that the functions f and f̂ are locally13 and efficiently

mutually reducible. This means that it does not matter in terms of security which of the
two functions is used and redundant inputs can safely be eliminated.

Lemma 6. The functions f and f̂ are efficiently and PFE securely locally mutually
reducible, even in presence of active adversaries.

The proof of Lem. 6 is fairly straightforward, by showing how to implement If̂
when If is given and vice versa. It can be found in [22]. One essentially replaces inputs
xi with dominating inputs x̂i.

As PFE security in presence of active adversaries implies IT security in presence of
semi-honest adversaries, we can derive the following simple corollary:

13 without using any communication resources

Corollary 1. For any function f ∈ F we have: f ∈ Faut
sh ⇐⇒ f̂ ∈ Faut

sh .

An n-party function f is then sh computable if and only if its redundancy-free
version f̂ is pas computable.

Theorem 2. For a function f ∈ F we have: f ∈ Faut
sh ⇐⇒ f̂ ∈ Faut

pas.

The full proof of Thm. 2 can be found in [22], we only give a sketch here. By Cor. 1 we
know that f ∈ Faut

sh ⇐⇒ f̂ ∈ Faut
sh . Therefore it suffices to show for redundancy-free

functions f where f = f̂ that we have f ∈ Faut
sh ⇐⇒ f ∈ Faut

pas. The implication
f ∈ Faut

pas =⇒ f ∈ Faut
sh is then clear by definition. The implication f ∈ Faut

sh =⇒
f ∈ Faut

pas is shown along the lines of the proof of Thm. 1, demonstrating that f ∈
Faut

sh =⇒ f ∈ F′pas. The proof exploits the redundancy-freeness of f due to which a
(working) simulator in the sh setting cannot actually substitute inputs.

The functions f (5) and f (6) in Fig. 1 are examples of not sh computable func-
tions taken from [24]. The function f (6) is of particular interest as it is of strictly less
cryptographic strength than oblivious transfer. Function f (9) is sh computable: After
eliminating the redundant input x3, the function is pas computable (as indicated by the
horizontal and vertical lines).

f (1) 0 1

0 0/0 0/0
1 0/0 1/0

f (2) 0 1

0 0 1
1 0 2
2 3 2

f (3) 0 1 2

0 0/0 1/1 1/0
1 0/0 2/2 2/0
2 3/3 2/2 2/0

f (4) 0 1 2 3

0 1/1 1/1 2/2 2/0
1 4/4 5/5 2/2 2/0
2 4/4 3/3 3/3 3/0

f (5) 0 1

0 0 0
1 0 1

f (6) 0 1 2

0 1 1 2
1 4 5 2
2 4 3 3

f (7) 4 2 0

3 4 3 3
1 4 2 1
0 4 2 0

f (8) 0 1

0 0 1
1 0 2
2 3 2
3 3 1

f (9) z1 z2 z3

x1 5/d 5/e 6/e
x2 8/a 5/b 9/c
x3 8/a 9/b 8/c

Fig. 1. Examples. Inputs for A are shown to the right, inputs for B on top. For asymmetric func-
tions, outputs are denoted yA/yB ; for symmetric functions only the common output of both
parties is listed.

5 The Class Faut
act of Actively Computable Functions

We give a sufficient criterion for a function f to be in the class Fbc
act of functions which

can securely be computed by public discussion in presence of an unlimited active adver-
sary. We conjecture that this criterion is also necessary and prove this fact for the 2-party
case. As such we only obtain a full characterization of the class F2act of actively com-
putable 2-party functions, but this suffices to see that F2act is strictly contained in F2sh
and hence the notion of LT security lies strictly between IT security and CO security.

Definition 6 (Faut
act: Actively Computable Functions). The class of actively compu-

table functions Faut
act consists of the functions f ∈ F for which an efficient protocol

π ∈ Poly exists that implements If with IT security in presence of an active adversary
in the authenticated channels model with broadcast.

Note that by Lem. 2 we have Faut
act = Fbc

act, where Fbc
act denotes the functions computable

by public discussion in the setting above. Hence we may in the following assume an
authenticated BC channel as the sole underlying resource.

Interestingly there are some useful functions in the class Faut
act , e.g. f (7) in Fig. 1

which is a formalization of a Dutch flower auction, where the price is lowered in every
round until a party decides to buy.

We next give a combinatorial characterization of actively computable functions,
which essentially states that a party Pi must be able to send a message about its input
such that the corrupted parties E reacting to this new information by changing their
input from x′E to x′′E could have achieved the same effect on the output by selecting a
third input xE a priori:

Definition 7 (F′act: Actively Decomposable Functions). A function f ∈ F is called
actively decomposable, denoted f ∈ F′act, if and only if f̂ ∈ F̂act. We have f ∈ F̂act if
one of the following holds:

1. f is locally computable (f ∈ Floc);
2. there is an i ∈ [n] and a partition (T-Cut) of Xi into non-empty sets X ′

i ∪̇X ′′
i = Xi

such that
(i) f |X1×...×X ′

i×...×Xn
, f |X1×...×X ′′

i ×...×Xn
∈ F̂act and

(ii) for all E ⊆ P \ {Pi} and H′ := H \ {Pi} we have

∀x̄E ∈ XE : fE(x̄E,XH′ ,X ′
i) ∩ fE(x̄E,XH′ ,X ′′

i) = ∅ (K-cut) and

∀x′E, x′′E ∈ XE ∃xE ∈ XE ∀xH′ ∈ XH′

∀x′i ∈ X ′
i : fH(x′E, xH′ , x′i) = fH(xE, xH′ , x′i) ∧

∀x′′i ∈ X ′′
i : fH(x′′E, xH′ , x′′i) = fH(xE, xH′ , x′′i)

Active decomposability indeed characterizes the actively computable functions:

Theorem 3. A function f ∈ F is actively computable if it is actively decomposable. In
short Faut

act ⊇ F′act. In the 2-party case14 we even have F2act ⊆ F′2act, i.e. F2act = F′2act.
Furthermore, any function f ∈ F′act can be computed efficiently with PFE security.

Furthermore, we conjecture:

Conjecture 1. Faut
act = F′act.

The full proof of Thm. 3 can be found in [22]. The implication f ∈ F′act =⇒ f ∈
Faut

act is proven by showing the protocol for the semi-honest scenario secure against ac-
tive adversaries, when applied to the T-cuts of a function f ∈ F′act instead of the K-cuts
of a function in Faut

sh . To obtain f ∈ F2act =⇒ f ∈ F′2act we observe that for f 6∈ F′2act
the adversary can in any protocol induce an output distribution that is impossible to
achieve in the ideal setting. The adversary does this by extracting information on the in-
puts of other participants from the protocol messages and adjusting his input according
to that information.

The functions f (7) and f (8) in Fig. 1 are examples of actively computable functions.
Especially compare f (8) with f (2) ∈ F2sh which is not actively computable. The lines
in the tables for f (7) and f (8) represent messages which are to be sent in the protocol.
14 For a function class Fchan

name we denote the 2-party subclass Fchan
name ∩ F2 by F2name. We drop the

communication model specification chan as it is irrelevant for the 2-party setting.

6 Quantum Protocols

In this section we will relate the class F2sh of sh computable 2-party functions with
the class of 2-party functions computable with quantum cryptography in presence of an
active adversary. A similar result has been obtained by Louis Salvail, but is not pub-
lished yet. Naturally, we have to adapt our model of security to the quantum case. All
machines except for the distinguisher D will be quantum machines able to exchange
quantum messages. Furthermore, all inputs and outputs must be classical and the dis-
tinguisher must try to distinguish the real and the ideal model based on this classical
information.

Let F2qu denote the set of functions f ∈ F2 which can, with the help of a quan-
tum channel, securely and efficiently be computed in presence of an unbounded active
adversary. Then the following result holds.

Theorem 4. The class F2qu of quantum computable functions is strictly contained in
the class of sh computable functions F2sh.

A proof of this theorem is sketched in [22]. The strict inclusion F2qu (F2sh gives
rise to new impossibility results. For instance, the function f (6) 6∈ F2sh in Fig. 1 cannot
be computed by means of quantum cryptography. An interesting still open question is
the power of temporary CO assumptions together with a quantum channel. It is known
that this does not suffice to securely implement any function which could in turn be
used to implement an IT secure bit commitment. However, a secure implementation of
the function f (6) in Fig. 1 is not precluded by this impossibility result.

7 Long-Term Security

Subsequently we characterize the n-party functions that can be computed LT securely
(without fairness) in presence of active adversaries. LT security means we are willing
to make CO assumptions, but only for the duration of the protocol interaction. Once
the protocol has terminated we demand IT security. We look at different classes of LT
securely computable functions, defined by different channel models. The most practi-
cal model, corresponding to the class F

ins, pki
lts , is an internet-like setting, where inse-

cure channels and a PKI are available to the parties. Furthermore we also discuss the
classes Faut

lts where authenticated channels and Fbc
lts where an authenticated BC channel

are given. We find that all these classes F
ins, pki
lts = Fbc

lts = Faut
lts are equal to the class Faut

sh
of sh computable functions.

Definition 8 (Fbc
lts , F

ins, pki
lts , Faut

lts : LT Computable Functions). The classes of LT com-
putable functions (i) Fbc

lts , (ii) F
ins, pki
lts , (iii) Faut

lts consists of the functions f ∈ F for which
an efficient protocol π ∈ Poly exists that implements Iab

f with LT security in presence
of an active adversary from (i) an authenticated broadcast channel; (ii) a complete net-
work of insecure channels and a PKI; (iii) a complete network of authenticated chan-
nels; respectively.

We now show that the classes defined in the previous section are all equivalent to Faut
sh .

First, we observe that once we allow CO assumptions during the protocol execution,
we can force semi-honest behavior (i.e. that the adversary behaves according to the pro-
tocol) using an unconditionally hiding commitment scheme [18] and zero-knowledge
arguments of knowledge:

Theorem 5. If one-way functions (OWF) exist, we have Faut
sh = Fbc

lts .

A full proof of Thm. 5 can be found in [22]. We show that the semi-honest to active
protocol compiler of [16] can be applied to a semi-honestly secure protocol in such a
way that it becomes CO secure against active adversaries, while maintaining IT security
against semi-honest adversaries. Furthermore we claim:

Theorem 6. We have F
ins, pki
lts = Fbc

lts = Faut
lts = Faut

sh .

We prove this by showing Fbc
lts ⊆ F

ins, pki
lts , F

ins, pki
lts ⊆ Faut

lts , Faut
lts ⊆ Fbc

lts . First, Fbc
lts ⊆

F
ins, pki
lts holds as we can use the Dolev-Strong-Protocol [12] to obtain authenticated BC

in the PKI setting. Fins, pki
lts ⊆ Faut

lts holds as using detectable precomputation [14] we can
establish a PKI in the authenticated channels model.15 Faut

lts ⊆ Fbc
lts follows from Lem. 2.

Thm. 6 is optimal in the sense that we cannot hope to implement all functions
f ∈ F

ins, pki
lts with robustness or even fairness. Of course we have (by definition) ro-

bust LT (even IT) secure protocols for the functions f ∈ Faut
act . But e.g. the symmet-

ric XOR function fXOR(x1, x2) := (x1 XOR x2, x1 XOR x2) is by the combinatorial
characterizations of the previous sections fXOR ∈ F2sh \ Fact ⊂ Fbc

lts \ Faut
act . Now a fair

implementation of fXOR would clearly imply a fair cointoss, which by [10] cannot be
implemented in the model under consideration. As such the security without fairness as
guaranteed by Thm. 6 is indeed the best we can hope for.

7.1 Long Term Security with designated Aborter

As mentioned above we cannot generally guarantee robustness or even fairness for a LT
secure protocol πf computing f ∈ F2lts. However, under stronger CO assumptions, we
can guarantee that only a specific designated party can abort the protocol after obtain-
ing output and before the honest parties can generate output. This may be of practical
relevance where a specific party is not trusted, but can be relied upon not to abort the
protocol. For instance a party may have a vested interest in the successful termination
of the protocol regardless of the outcome. One may think of an auctioneer that gets paid
only if the auction terminates successfully. Or a party may act in an official capacity
and cannot abort the protocol for legal reasons.

We will show that stronger guarantees of this type are obtainable if the underly-
ing CO assumption allows for an oblivious transfer (OT) protocol which is LT secure
against one of the participants. Enhanced trapdoor one-way permutations are an exam-
ple of such an assumption [15]. It is generally believed that OT is not implied by OWFs,
meaning that LT security with designated aborter appears to require strictly stronger as-
sumptions than plain LT security.
15 Note that robustness is not required here: The establishment of the PKI may fail, but then the

protocol simply aborts.

Lemma 7. Any sh computable function f ∈ Faut
sh = F

ins, pki
lts can be computed using a

protocol π which is LTS-DA, i.e. implements Ides
f with CO security and simultaneously

Iab
f with LT security in the insecure channels model with PKI iff CO oblivious transfer

LT-secure against one party (CO-OT+) exists.

A proof of this lemma is sketched in [22]. Essentially we apply the protocol com-
piler of [16] to the distributed circuit of the sh secure protocol for f in such a fashion
that gates owned by a specific party Pi are computed with CO primitives that IT protect
Pi. Reconstruction is in the end done toward the designated party P1, which then en-
sures that the remaining parties can reconstruct. As a result the protocol is CO correct,
and IT no one learns more than in the sh secure protocol for f .

8 Classification of 2-party Functions

Combining the results of this work and of [21], we can derive a complete combinatorial
classification of the 2-party functions F2 by completeness and computability.

We first define an equivalence relation renaming on F2 by f (1) ≡ f (2) iff f (2) is
obtained from f (1) by locally renaming input and output values. A formal definition can
be found in [21] or [22]. It is easy to see that renamings are locally mutually reducible
under all security paradigms considered in this work. In particular f (1) ≡ f (2) implies
If(1) <PFE

act If(2) <PFE
act If(1) and If(1) <PFE

pas If(2) <PFE
pas If(1) .

Next we define an equivalence relation matching on the set of classes F2/ ≡ (and
thereby on F2) by isolating inputs that lead to identical behavior and regarding functions
as matching if, after eliminating such trivially redundant inputs, they are renamings:

Definition 9. Given a 2-party function f ∈ F2 we say xA matches x′A for inputs
xA, x′A ∈ XA, iff xA dominates x′A and x′A dominates xA. The matching relation is
an equivalence relation on XA. By X̄A we designate a set of representatives. X̄B is
defined analogously.

We then call f̄ := f |X̄A×X̄B
the weakly redundancy-free version of f and for

f (1), f (2) ∈ F2 we write f (1) ∼= f (2) if f̄ (1) ≡ f̄ (2) Furthermore for xA ∈ XA

and xB ∈ XB let x̄A ∈ X̄A and x̄B ∈ X̄B be the (unique) elements that match xA

respectively xB .

Like the redundancy-free version f̂ of f , the weakly redundancy-free version f̄ of f is
well defined up to renaming. Before we can state the actual classification, we have to
reiterate another result of [21]:

Theorem 7 (Complete Functions [21]). The classes C2act, C2sh and C2pas of actively,
semi-honestly, and passively complete 2-party functions are the classes of functions
f ∈ F2 to which all other 2-party functions can be securely reduced in presence of an
active, semi-honest or passive adversary respectively. The classes C2act = C2sh consist
of exactly the functions f ∈ F2 where f̂ ∈ C2pas. The class C2pas consists of exactly the
functions f ∈ F2 where ∃ a1, a2 ∈ XA, b1, b2 ∈ XB :

∃ a1, a2 ∈ XA, b1, b2 ∈ XB : fA(a1, b1) = fA(a1, b2) ∧ fB(a1, b1) = fB(a2, b1)
∧ (fA(a2, b1) 6= fA(a2, b2) ∨ fB(a1, b2) 6= fB(a2, b2)).

We refer to this combinatorial structure as minimal OT.

Note that f ∈ C2pas iff f ∈ C2act or f̂ 6≡ f̄ . This is clear from Kraschewski’s result as
stated above and from the observation that f̂ 6≡ f̄ implies a minimal OT. We then arrive
at the following

Theorem 8 (Classification). The class of 2-party functions is a disjoint union of three
sets F2 = C2act∪F2act∪Fnct

2act or F2 = C2sh∪F2sh∪Fnct
2sh or F2 = C2pas∪F2pas∪Fnct

2pas
where nct stand for “neither complete nor computable”. Now

∅ 6= F2act,F2pas (F2act ∪ F2pas (F2sh

∅ 6= Fnct
2pas (Fnct

2sh (Fnct
2act

∅ 6= C2act = C2sh (C2pas

The above results are directly derived from the combinatorial descriptions of the func-
tion classes that can be found in the preceding sections and, as far as complete functions
are concerned, in [21]. Additional details and examples can be found in [22].

9 Conclusions

We defined the notion of long-term (LT) security, where we assume that the adversary is
CO bounded during the execution of the protocol only. That is, we rely on CO assump-
tions, but only for the duration of the protocol execution; thereafter, a failure of the CO
assumptions must not compromise security. We then gave a combinatorial description
of the class F

ins, pki
lts of functions that can be computed LT securely in an internet-like set-

ting, where a complete network of insecure channels and a PKI are available. Towards
this goal, we characterized the classes Faut

pas, Faut
sh and Faut

act of functions that can be com-
puted with information theoretic (IT) security in the authenticated channels model (with
broadcast) in presence of passive, semi-honest and active adversaries. Our results are
constructive in that, for every function proven computable in a given setting, one can
deduce a secure protocol.

More precisely, we showed that semi-honest computability and LT secure com-
putability amount to the same, i.e. Faut

sh = Fbc
lts = Faut

lts = F
ins, pki
lts , where the classes Faut

lts

and Fbc
lts are defined analogously to F

ins, pki
lts , but rely on a network of authenticated chan-

nels or authenticated broadcast respectively as communication resources. We then char-
acterized the class F2act of actively computable 2-party functions in order to offset IT
secure computability against LT secure computability. Indeed, we found Faut

act (F
ins, pki
lts ,

meaning that in presence of corrupted majorities strictly more functions are computable
with LT security than with IT security. We furthermore gave a necessary condition (that
we conjecture also to be sufficient) for an n-party function to be in Faut

act . As the functions
in Faut

act are robustly (and therefore fairly) computable, these results can be interpreted
along the lines Gordon et al. [17], who discuss the fair computability of binary 2-party
functions in the CO setting. Our results apply to the IT scenario instead of the CO
setting, there however, our results are much more general in that they pertain to arbi-
trary n-party functions. We showed that for the functions F

ins, pki
lts fairness is generally

not achievable. However, for the functions F
ins, pki
lts we can guarantee LT security with

designated aborter, where only a specific designated party can prematurely abort the
protocol after having learned the output. Astonishingly, CO secure oblivious transfer
(OT) is used in our construction, even though OT itself cannot be realized with full LT
security.

We remark, that from a practical point of view, LT security is a useful notion if
we deal with sensitive data that has to remain private beyond a limited time frame in a
setting where a majority of the parties may be corrupted. In such a setting general IT
secure SFE protocols like [4] fail, as they do not tolerate corrupted majorities. CO pro-
tocols can tolerate corrupted majorities (if fairness is not required) but, as time passes,
progress in hardware or algorithms may invalidate our CO assumptions and jeopardize
the privacy of our computation. As the problem with CO assumptions is not so much
that these could be unjustified right now, but rather their possible future invalidation,
LT security is a viable alternative to IT security in this case. And indeed we could show
that Faut

act (F
ins, pki
lts , i.e. there are functions that cannot be computed with IT security in

presence of dishonest majorities, but can be computed with LT security.
Furthermore, we found that quantum cryptography is not helpful in our context,

i.e. the class F2qu of 2-party functions which can be implemented with quantum cryp-
tography is strictly contained in F2sh. This inclusion implies novel impossibility results
beyond those of Mayers [25] or Kitaev [1]. However, quantum cryptography can solve
classically impossible problems in other models of security, like achieving a certain
robustness to abort in a model with guaranteed message delivery or implementing de-
niable key exchange.

Finally, collecting results from the literature, especially [24, 21], and adding the re-
sults of this work, we obtain a complete taxonomy of 2-party functions by computability
and completeness in the IT setting.

10 Acknowledgments

The authors wish to thank Daniel Kraschewski for helpful comments and discussions,
and Ueli Maurer for encouragement and insightful comments on security models.

References

1. A. Ambainis, H. Buhrman, Y. Dodis, and H. Röhrig. Multiparty quantum coin flipping. In
IEEE Conference on Computational Complexity, pages 250–259. IEEE, 2004.

2. D. Beaver. Perfect privacy for two-party protocols. In Proceedings of the DIMACS Workshop
on Distributed Computing and Cryptography, 1989.

3. A. Beimel, T. Malkin, and S. Micali. The all-or-nothing nature of two-party secure compu-
tation. In CRYPTO ’99, volume 1666 of LNCS, pages 80–97. Springer, 1999.

4. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In STOC ’88, pages 1–10, 1988.

5. G. Brassard, C. Crépeau, D. Mayers, and L. Salvail. Defeating classical bit commitments
with a quantum computer. Los Alamos preprint archive quant-ph/9806031, May 1999.

6. A. Broadbent and A. Tapp. Information-theoretic security without an honest majority. In
ASIACRYPT ’07, pages 410–426, 2007.

7. C. Cachin, C. Crépeau, and J. Marcil. Oblivious transfer with a memory-bounded receiver.
In STOC ’02, pages 493–502. ACM Press, 2002.

8. C. Cachin and U. Maurer. Unconditional security against memory-bounded adversaries. In
CRYPTO ’97, volume 1294 of LNCS, pages 292–306. Springer, 1997.

9. B. Chor and E. Kushilevitz. A zero-one law for boolean privacy. In STOC ’89, 1989.
10. R. Cleve. Limits on the security of coin flips when half the processors are faulty. In

STOC ’86, pages 364–369. ACM, 1986.
11. I. Damgård, S. Fehr, L. Salvail, and C. Schaffner. Cryptography in the bounded quantum-

storage model. In FOCS ’05, pages 449–458. IEEE, 2005.
12. D. Dolev and R. Strong. Authenticated algorithms for byzantine agreement. SICOMP: SIAM

Journal on Computing, 12, 1983.
13. S. Dziembowski and U. Maurer. On generating the initial key in the bounded-storage model.

In EUROCRYPT ’04, volume 3027 of LNCS, pages 126–137. Springer, 2004.
14. M. Fitzi, M. Hirt, T. Holenstein, and J. Wullschleger. Two-threshold broadcast and detectable

multi-party computation. In E. Biham, editor, EUROCRYPT ’03, volume 265 of LNCS, pages
51–67. Springer, 2003.

15. O. Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge
University Press, 2004.

16. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game — a completeness
theorem for protocols with honest majority. In STOC ’87, pages 218–229, 1987.

17. S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party
computation. In STOC ’08, pages 413–422. ACM, 2008.

18. I. Haitner and O. Reingold. Statistically-hiding commitment from any one-way function. In
STOC ’07, pages 1–10. ACM, 2007.

19. J. Kilian. A general completeness theorem for two-party games. In STOC ’91, pages 553–
560, New York, 1991. ACM.

20. J. Kilian. More general completeness theorems for secure two-party computation. In
STOC ’00, pages 316–324, New York, 2000. ACM.

21. D. Kraschewski and J. Müller-Quade. Completeness theorems with constructive proofs for
symmetric, asymmetric and general 2-party-functions. Unpublished Manuscript, 2008.

22. R. Künzler, J. Müller-Quade, and D. Raub. Secure computability of functions in the IT
setting with dishonest majority and applications to long-term security. Cryptology ePrint
Archive, Report 2008/264, 2008. http://eprint.iacr.org/2008/264.

23. E. Kushilevitz. Privacy and communication complexity. In FOCS ’89, pages 416–421. IEEE,
1989.

24. E. Kushilevitz. Privacy and communication complexity. SIAM Journal on Discrete Mathe-
matics, 5(2):273–284, 1992.

25. D. Mayers. Unconditionally secure bit commitment is impossible. Phys. Rev. Letters,
78:3414–3417, 1997.

26. J. Müller-Quade. Temporary assumptions—quantum and classical. In The 2005 IEEE Infor-
mation Theory Workshop on Theory and Practice in Information-Theoretic Security, pages
31–33, 2005.

27. J. Müller-Quade and D. Unruh. Long-term security and universal composability. In TCC ’07,
LNCS. Springer, 2007.

28. M. Rabin. Hyper-encryption by virtual satellite. Science Center Research Lecture Series,
2003.

