
Toward an Algebraic Theory of Systems∗

Christian Matt†1, Ueli Maurer1, Christopher Portmann‡2,
Renato Renner2, and Björn Tackmann§3

1Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland.
cmatt@cs.ucsb.edu, maurer@inf.ethz.ch

2Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland.
chportma@inf.ethz.ch, renner@phys.ethz.ch

3Department of Computer Science and Engineering, University of California, San Diego,
La Jolla, CA 92093, USA.
bta@zurich.ibm.com

Abstract

We propose the concept of a system algebra with a parallel composition operation and an
interface connection operation, and formalize composition-order invariance, which postulates
that the order of composing and connecting systems is irrelevant, a generalized form of
associativity. Composition-order invariance explicitly captures a common property that is
implicit in any context where one can draw a figure (hiding the drawing order) of several
connected systems, which appears in many scientific contexts. This abstract algebra captures
settings where one is interested in the behavior of a composed system in an environment and
wants to abstract away anything internal not relevant for the behavior. This may include
physical systems, electronic circuits, or interacting distributed systems.

One specific such setting, of special interest in computer science, are functional system
algebras, which capture, in the most general sense, any type of system that takes inputs
and produces outputs depending on the inputs, and where the output of a system can be
the input to another system. The behavior of such a system is uniquely determined by the
function mapping inputs to outputs. We consider several instantiations of this very general
concept. In particular, we show that Kahn networks form a functional system algebra and
prove their composition-order invariance.

Moreover, we define a functional system algebra of causal systems, characterized by the
property that inputs can only influence future outputs, where an abstract partial order
relation captures the notion of “later”. This system algebra is also shown to be composition-
order invariant and appropriate instantiations thereof allow to model and analyze systems
that depend on time.

Keywords: Systems, composition, abstraction, order invariance, fixed points, causality.
∗ c© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://

creativecommons.org/licenses/by-nc-nd/4.0/. The version published in Theoretical Computer Science is
available at https://doi.org/10.1016/j.tcs.2018.06.001.
†Present address: Department of Computer Science, University of California, Santa Barbara, CA 93106, USA.
‡Present address: Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland.
§Present address: IBM Research – Zurich, 8803 Rüschlikon, Switzerland.

1

mailto:cmatt@cs.ucsb.edu
mailto:maurer@inf.ethz.ch
mailto:chportma@inf.ethz.ch
mailto:renner@phys.ethz.ch
mailto:bta@zurich.ibm.com
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.tcs.2018.06.001

1 Introduction

1.1 Motivation

A universal concept in many disciplines is to characterize the behavior of an object, often called
a module or a system, and thereby to intentionally ignore internal aspects considered irrelevant.
We will here use the term system. The purpose of a system is to be used or embedded in an
environment, which can for example consist of several other systems. A system’s behavior is the
exact characterization of the effect a system can have when embedded in an environment. In
such a consideration, anything internal, not affecting the behavior, is by definition considered
irrelevant, and two systems with the same behavior are considered to be equal. Which aspects
are considered irrelevant, and hence are not modeled as part of the behavior, depends strongly on
the concrete investigated question. For example, if for a software module computing a function,
one is only interested in the input-output behavior, then this function characterizes the behavior
of the software module, and aspects like the underlying computational model, the program, the
complexity, timing guarantees, etc., are irrelevant. In another consideration, for example, one
may want to include the timing aspects as part of the observable (and hence relevant) behavior.
In yet another consideration one may be interested in the memory requirements for the specific
computational model, etc.

One can think of a system as connecting to the environment via an interface. More generally,
if one wants to model a system composed of several (sub-)systems, then one can consider each
system to have several interfaces and that systems can be composed by connecting an interface
of one system with an interface of another system. The term “interface” is here used in the
sense of capturing the potential connection to another system; it is indeed used in some contexts
to refer to the specification of the behavior of an object, such as a software module, but here
we use the term in a more general and more abstract sense. Our notion of connected systems
corresponds to drawing a diagram with boxes, each having several lines (interfaces), and where
some interfaces of systems are connected (by lines) and some interfaces remain free, i.e., accessible
by the environment; see Figure 1. A composed system appears to the environment as having
only the free (not connected) interfaces and its behavior is observed only via these free interfaces;
the internal topology becomes irrelevant and is not part of the behavior.

In some applications, certain internal details of a system matter. One can then define the

s1 s2

s3 s4

i1

i2

j1

j2

j3

j4

k1 k2

k3 l1

Figure 1: A system composed of the four subsystems s1, s2, s3, and s4. Interfaces are labeled to
allow specifying connections, e.g., i1 and j1 are connected, and s4 is not connected to the other
systems. The resulting system has interfaces j2, j3, k3, and l1.

2

sa

r1

r2

b1

b2

(a) Correctness:
b1 = b2 = a.

e

r1

r2

b1

b2

(b) Dishonest s:
∀e (b1 = b2).

sa

e

r2 b2

(c) Dishonest r1:
∀e (b2 = a).

sa

r1

e

b1

(d) Dishonest r2:
∀e (b1 = a).

s0

s1

r1

r2

b1

b2

(e) Main proof figure.

Figure 2: The impossibility of broadcast for three parties with one dishonest party. Figures 2a
to 2d correspond to the requirements for a broadcast protocol. Figure 2e can be subdivided in
different ways and is used in the proof. Interface labels are omitted to increase readability.

relevant internal aspects as being part of the behavior, to make them, by definition, visible from
the outside. If too many internal details become relevant, our approach might be less suitable
than directly using a model of systems that considers these internals. Indeed, a majority of
existing work models systems by defining their internal operations, e.g., via states and transition
functions. In many cases, however, such a detailed description of the internal operations is
unnecessary and cumbersome, and our abstract approach would be beneficial. We now describe
two examples for which ignoring internal details appear particularly useful.

Distributed systems. In distributed systems, where systems are connected to other systems
with which they can communicate, one is often interested in certain properties of the composed
system. As an example, we present a simple impossibility proof of bit-broadcast for three parties
with one dishonest party. This famous result was first proven by Lamport et al. [LSP82; PSL80];
the proof we present here is in the spirit of that given by Fisher et al. [FLM86]. This proof
only requires that the involved systems can be connected and rearranged as described; the
communication between them and how they operate internally is irrelevant. Ignoring these
internal details not only simplifies the proof but also makes the result more general, e.g., it also
holds if the systems communicate via some sort of analog signals.

The goal of a bit-broadcast protocol is to allow a sender to send a bit such that all honest
receivers output the same bit (consistency) and if the sender is honest, they output the bit that
was sent (validity). Assume an honest sender uses the system sa for broadcasting a bit a ∈ {0, 1},
and honest receivers use systems r1 and r2 that decide on a bit b1, and b2, respectively. If
these systems implement a broadcast protocol with the required guarantees, each condition in
Figures 2a to 2d must hold for all systems e, which capture the possible behaviors of a dishonest
party. Assume toward a contradiction that this is the case and consider the system in Figure 2e.
We can view the system in the dotted box composed of s0 and s1 as a system e in Figure 2b
to obtain b1 = b2. We can also view the system in the densely dotted box composed of s0 and
r1 as a system e in Figure 2c to obtain b2 = 1. Finally, the system in the dashed box can be
viewed as a system e in Figure 2d, which implies b1 = 0, a contradiction. Hence, there are no
systems s0, s1, r1, and r2 that satisfy these constraints. In Section 3.2, we provide a more formal
proof within our theory.

Cryptography. Cryptographic schemes are often defined as some sort of efficient algorithms.
While efficiency is of course relevant in practice, one can separate the computational aspects
from the functionality to simplify the analysis. Constructive cryptography by Maurer and

3

Key

AuthChannel

enc dec

SecChannel

sim

Figure 3: The systems appearing in the construction of a secure channel from an authenticated
channel and a shared secret key via symmetric encryption. The construction notion requires the
two systems in the dashed boxes to be indistinguishable.

Renner [MR11; Mau12] allows one to model what cryptographic protocols achieve using a system
algebra that abstracts away cumbersome details. To this end, one considers so-called resource
systems, which provide a certain functionality to the parties connected to their interfaces, and
converter systems, which can be connected to resources to obtain a new resource. Typical resources
with interfaces for two honest parties and an adversary are a shared secret key, which provides
a randomly generated key at the interfaces for the honest parties and nothing at the interface
for the adversary,1 and different types of channels with different capabilities for the adversary.
The goal of a cryptographic protocol is then to construct a resource S from a resource R. Such
a protocol consists of a converter for each honest party, and it achieves the construction if the
system obtained from R by connecting the protocol converters to the interfaces of the honest
parties is indistinguishable from the system obtained from S by connecting some converter system,
called simulator, to the interface of the adversary. The notion of indistinguishability can be
defined in several ways leading to different types of security, e.g., as the systems being identical
or via a certain class of distinguishers.

A crucial property of this construction notion is that it is composable, i.e., if some protocol
constructs a resource S from a resource R and another protocol constructs a resource T from S,
these protocols can be composed to obtain a construction of T from R. Turned around, one can
also decompose the construction of T from R into two separate constructions. Since these two
constructions can be analyzed independently, this approach provides modularity and simplifies
the analysis of complex protocols by breaking them down into smaller parts.

An example of a construction is that of a secure channel, which leaks only the length of the
sent messages to the adversary and does not allow modifications of them, from the resource
consisting of a shared secret key and an authenticated channel, which leaks the sent messages
to the adversary but also does not allow modifications of them, by a symmetric encryption
scheme. See Figure 3 for an illustration of the involved systems. To achieve this construction,
the simulator must, knowing only the length of the sent messages, output bit-strings that are
indistinguishable from encryptions of these messages. If the used encryption scheme is, e.g., the
one-time pad, the two systems in Figure 3 are identical for an appropriate simulator, i.e., they
have the same input-output behavior [Mau12], which provides the strongest possible security
guarantee. Note that internally, these systems are very different, but this is intentionally ignored.

1One could also view a shared secret key as having no interface for the adversary, but as defined in constructive
cryptography, all resources involved in a construction have an interface for each party.

4

1.2 Contributions

We develop a theory of systems with different levels of abstraction. To achieve generality and to
strive for simplicity, theorems are proved at the highest level of abstraction at which they hold.
See Figure 4 for an overview of the types of systems we consider. This is not meant to be a
complete picture of all systems one can consider; systems we do not consider in this paper but
could be treated within our theory include probabilistic systems, physical systems, circuits, etc.

systems
(Section 3)

functional systems
(Section 4)

monotone systems
(Section 5.1)

continuous systems
(Section 5.2)

Kahn networks
(Section 5.4)

causal systems
(Section 6)

Figure 4: The hierarchy of the systems treated in this paper, where systems at lower levels are
special cases of their parents.

Abstract system algebras and composition-order invariance. At the highest level of
abstraction, we do not specify what systems are, but only postulate two operations ‖ and γ,
depicted in Figure 5; the former for combining two systems in parallel as in Figure 5a and the
latter for connecting interfaces as in Figure 5b. Using these operations one can build “graphs”
such as those depicted in Figure 1, by first taking the systems in parallel and then connecting the
interfaces. We call a set of systems together with these operations, and the specification which
interfaces a system has and which of them can be connected, a system algebra, see Section 3.

s1 s2

1 2 3

4 5

A B

C D E

(a) The system s1‖s2 obtained as the parallel
composition of s1 and s2.

s1

1 2 3

4 5

(b) The system γ{3,4}(s1) obtained by con-
necting the interfaces 3 and 4 of system s1.

Figure 5: Composition operations in a system algebra.

A natural property of such an algebra that can be specified at this level of abstraction is
composition-order invariance, that is, a composed system is completely described by its “graph”,
and the order in which the operations are applied to build the graph does not matter. This
property is not only very natural, but also necessary for many applications. For example, the

5

impossibility proof for broadcast sketched above relies on it since otherwise, rearranging and
subdividing systems as in Figure 2e would not be allowed. To illustrate this, we formalize
the systems occurring in that figure in an abstract system algebra and show how composition-
order invariance appears in the proof in Section 3.2. Composition-order invariance was also
used by Maurer and Renner to prove the composition theorem of constructive cryptography
[MR11]. While appearing natural and innocent, examples throughout our paper indicate that
composition-order invariance is actually a nontrivial property and requires a proof.

Functional system algebras. An important type of system in computer science takes inputs
and produces outputs depending on these inputs. The behavior of such a system can be fully
described by a function mapping inputs to outputs. We define a type of system algebra, called
functional system algebra, in Section 4.1 where the systems have input interfaces and output
interfaces and correspond to such functions. Connecting an input interface to an output interface
is understood as setting the value input at the former to be equal to the value output at the
latter. Determining the resulting system thus involves finding a fixed point of the underlying
function; if multiple fixed points exist, the system algebra has to specify which one to select. By
appropriately choosing the domains and functions, various types of systems can be modeled in
this way, including interactive systems that take many inputs in different rounds and systems
that depend on time.

We prove several basic results at this level of abstraction, i.e., without specifying which
functions are considered in Section 4.2. For example, we show that not all functional system
algebras are composition-order invariant, but if there are always unique fixed points for interface
connections and connections can be reordered, composition-order invariance holds.

While this paper focuses on the deterministic case, we point out that functional systems can
be used as a basis to model probabilistic systems. For example, one can consider systems that
take randomness as an explicit input at a dedicated interface, one can include random variables
in the domains of the functions, or one can consider probability distributions over deterministic
systems. Systematically understanding probabilistic systems in this way is future work.

Instantiations of functional system algebras. To instantiate the concept of a functional
system algebra, we need to specify the domains of the functions and the set of functions to
consider. To be able to define the interface connection, we have to ensure that all functions have
the required fixed points. One way to guarantee fixed points that is well-studied in mathematics,
especially domain theory, is to equip the domain with a partial order such that all chains have
a supremum and to consider monotone functions. A related concept are continuous functions,
which are defined as preserving these suprema. In both cases the functions have a least fixed point.
While continuity is a stronger requirement than monotonicity, a slightly weaker assumption on
the domains is sufficient to guarantee least fixed points. We show in Section 5.1 and Section 5.2
that if least fixed points are chosen for interface connections, monotone and continuous functions
form a functional system algebra, respectively. Under the additional assumption that nonempty
chains have an infimum, we show in Section 5.3 that these system algebras are composition-order
invariant.

Monotone and continuous functions are not only a mathematical convenience to obtain
fixed points, but they also encompass as a special case an intuitive and useful model known as
Kahn networks [Kah74] (or Kahn process networks ; in Kahn’s paper only defined for continuous
functions, but monotone functions can be used as well), which we consider in Section 5.4. Kahn

6

networks have been developed to provide a semantics for parallel programming languages [Kah74],
but they have also been used in other contexts, including embedded systems [SZT+04] and
signal processing [LP95]. The domains of the functions there consist of sequences of values and
the partial order is defined to be the initial segment (or prefix) relation. An interpretation of a
function is that it maps input histories to output histories. Such functions therefore correspond
to interactive systems that take one input after the other at each input interface and produce
outputs depending on the inputs. Monotonicity means that additional inputs can only yield
additional outputs, an output cannot be “taken back”. Even though it appears to be a very
natural question whether the order in which interfaces of Kahn networks are connected matters,
we are not aware of any result in this direction. Our proof of composition-order invariance, which
indeed turned out to be nontrivial, therefore also provides new insights into this well-studied
model.

In Section 6, we finally provide an instantiation of functional system algebras consisting of
causal systems in which inputs to the system can only influence “later” outputs. We formalize
this by considering a partially ordered set (where “less than” can be interpreted as “before”) and
letting the domains of the functions consist of subsets thereof. As an example, consider the
partially ordered set containing pairs (v, t), which can be interpreted as the value v being input
(or output) at time t, where the order is naturally defined as the one induced by the second
component. The domains are then sets of such pairs. This allows us, as for Kahn networks,
to model systems that take several inputs at each input interface and produce several outputs.
We define causality for such systems and prove that the corresponding functions have unique
fixed points. Therefore, we obtain a composition-order invariant functional system algebra. This
system algebra can in particular be used to model and analyze systems that depend on time,
such as clocks and channels with certain delays.

1.3 Related Work

There exists a large body of work on modeling certain types of systems mathematically. Some
models can be understood as special cases in our theory, but also very general theories and
models that do not fit in our theory exist. The work we are aware of, however, only captures
partial aspects of our theory. We now describe some of this work and compare it to ours.

Abstract models. The abstract concept of a system algebra in which complex systems are
built from components has been informally described in the context of cryptography by Maurer
and Renner [MR11]. They also, again informally, introduced composition-order independence,
which corresponds to our composition-order invariance. We provide in this paper a formalization
that matches their requirements.

Hardy has developed an abstract theory, in which composition-order invariance (there called
order independence) plays an important role [Har13]. That work, however, focuses on physical
systems. Lee and Sangiovanni-Vincentelli [LS98] also introduce an abstract system model, but it
is specific to systems that consider some form of time and does not follow an algebraic approach.

Closely related to our abstract system algebras are block algebras as introduced by de Alfaro
and Henzinger in the context of interface theories [dAH01b]. Our systems and interfaces are there
called blocks and ports, respectively, and they also define parallel composition and port connection
operations. A major difference compared to our system algebras is that port connections do
not hide the connected ports. Moreover, while de Alfaro and Henzinger require the parallel
composition to be commutative and associative, they do not define a notion that corresponds to

7

our composition-order invariance, i.e., their port connections not necessarily commute with other
port connections and parallel composition.

Process algebras allow the modeling of communicating concurrent processes [BBR09], which
correspond to our systems. Examples of process algebras include Milner’s Calculus of Communi-
cating Systems (CCS) [Mil80] and Hoare’s Communicating Sequential Processes (CSP) [Hoa78].
These theories are similar to ours in that they consider certain operations, including parallel
composition, on processes and postulate axioms they need to satisfy. These axioms also include
guarantees similar to our composition-order invariance. In contrast to our theory, CCS does
not have an explicit operation for connecting interfaces, there called ports. Rather, ports with
matching labels are implicitly connected when systems are taken in parallel. As in the work by
de Alfaro and Henzinger [dAH01b] discussed above, ports are not hidden by this connection;
hiding them is an explicit operation in CCS. In CSP, processes communicate via special input
and output commands. As opposed to our abstract level, these process algebras differentiate
between inputs and outputs and allow to specify the behavior of processes. Thus, with respect
to the level of abstraction, they belong somewhere between our abstract and functional levels, or
even below.

Milner’s Flowgraphs [Mil79] model composed systems as generalized graphs, in which the
nodes correspond to subsystems. This is considerably different from our theory since we abstract
away all internal details of a system, in particular the subsystems that compose a system.

Functional models. A line of work on system models based on functions has been initiated
by Kahn’s seminal paper [Kah74] on networks of autonomous computing systems. These systems
may be sensitive to the order in which messages arrive on one interface, but they are oblivious to
the relative order of incoming messages on different interfaces. He shows that least fixed points
exist, based on earlier work by Tarski [Tar55], Scott [Sco70], and Milner [Mil73],2 and therefore
connecting systems is well-defined. Tackmann [Tac14] considered the case where systems are fully
oblivious to the order of their incoming messages, which can be seen as a special case of Kahn
networks where each interface contains at most one message. Micciancio and Tessaro [MT13]
start from the same type as Kahn but extend it to tolerate certain types of order-dependent
behavior within complex systems.

Timed models. Several works have defined causal system models. Lee and Sangiovanni-
Vincentelli [LS98] define delta causality, which intuitively requires that each output must be
provoked by an input that occurred at least a δ-difference earlier. They show that fixed points
exist, based on Banach’s theorem. Cataldo et al. [CLL+06] generalize this to a notion of
“superdense” time where multiple events may occur simultaneously. Portmann et al. [PMM+17],
in the quantum scenario, describe a type of strict causality based on a causality function that
can be seen as a generalization of delta causality. Naundorf [Nau00] considers strict causality
without any minimal time distance, and proves that fixed points still exist. Matsikoudis and
Lee [ML15] then show a constructive fixed point theorem for the same notion, which they refer to
as strictly contracting. They show that it is implied by a more natural notion of (strict) causality
where outputs can be influenced only by inputs that occur strictly earlier, under the assumption
that the ordering of inputs is well-founded3. We show in Appendix A that the strict causality
notion of [ML15] is essentially equivalent to the definition we introduce in this work.

2Other sources attribute the original theorem to Kleene or Knaster, see [LNS82].
3A partial order on a set T is well-founded if every nonempty subset of T has one or more minimal elements.

8

Except for the work of Portmann et al., none of the previously mentioned definitions of
causal functions explicitly capture systems with multiple interfaces as the work of Kahn [Kah74]
or our work. Also, the mentioned papers investigating causal functions do not define how
to connect systems such that one obtains a system of the same type, and therefore they do
not provide a system algebra as we do. The model by Portmann et al. [PMM+17] captures
quantum information-processing systems and can be seen as a generalization of our causal systems.
Restricting that model to classical, deterministic inputs and outputs yields, however, a more
complex and less general model than our causal systems. For example, the causality definition in
that paper is more restrictive and in contrast to our causal systems, the systems there are not
allowed to produce infinitely many outputs in finite time.

Partial orders have also been used to model causal or temporal dependencies, for example in
Pratt’s theory of partially ordered multisets (pomsets) [Pra86; Pra85]. As in our causal systems,
there is a partial order on the possible events. In contrast to our causal systems, however, systems
in that theory are not necessarily functions and can exhibit nondeterminism. Our model is
therefore more specific, which allows a more accessible presentation.

Stateful models. Several models of systems have been proposed that model the systems as
objects that explicitly contain state. I/O automata initially discussed by Lynch and Tuttle [LT89]
and interface automata by de Alfaro and Henzinger [dAH01a] enhance stateful automata by
interactive communication. Timed automata by Alur and Dill [AD94] and timed I/O automata
by Kaynar et al. [KLSV10] extend them to include a notion of time as our causal systems.
Interactive Turing machines basically equip Turing machines with additional tapes that they
share with other machines and have been used widely in (complexity-theoretic) cryptography
[Gol01; Can01]. All these models are substantially different from ours since we want to hide all
internal details of systems, including their state.

2 Preliminaries

2.1 Functions and Notation for Sets and Tuples

A function f : X → Y is a subset of X ×Y such that for every x ∈ X, there is exactly one y ∈ Y
such that (x, y) ∈ f , where we will usually write f(x) = y instead of (x, y) ∈ f . For two setsX and
Y , the set of all functions X → Y is denoted by Y X . A partial function f : X → Y is a function
X ′ → Y for some X ′ ⊆ X. For a subset S ⊆ X, f(S) := {f(s) | s ∈ S} denotes the image of S
under f . For X ′ ⊆ X, we define the restriction of f to X ′ as f |X′ := {(x, y) ∈ f | x ∈ X ′} ∈ Y X′ .
Note that for z /∈ X and y ∈ Y , we have f∪{(z, y)} ∈ Y X∪{z}. An element in Y X can equivalently
be interpreted as a tuple of elements in Y indexed by elements in X. In case we interpret a
function as a tuple, we usually use a boldface symbol to denote it. For a tuple x ∈ XI with
x(i) = xi for all i ∈ I, we also write x = (xi)i∈I and if I = {i1, . . . , in}, we write x = (xi1 , . . . , xin).
The symmetric difference of two sets X and Y is defined as

X 4 Y := (X \ Y) ∪ (Y \X).

Finally, we denote the power set of a set X by P(X) := {S | S ⊆ X}.

2.2 Order Relations

We first recall some basic definitions about relations.

9

Definition 2.1. Let X be a set. A (binary) relation on X is a subset of X × X. We write
x R y for (x, y) ∈ R. A relation R ⊆ X ×X is called reflexive if x R x for all x ∈ X. It is called
symmetric if x R y =⇒ y R x for all x, y ∈ X and antisymmetric if (x R y ∧ y R x) =⇒ x = y.
A relation R ⊆ X ×X is called transitive if (x R y ∧ y R z) =⇒ x R z for all x, y, z ∈ X.

For sets X and I and a binary relation R on X, we define the relation R on XI as the
componentwise relation, i.e., for x,y ∈ XI ,

x R y ⇐⇒ ∀i ∈ I
(
x(i) R y(i)

)
.

Definition 2.2. A partial order on X is a binary relation on X that is reflexive, antisymmetric,
and transitive. A partially ordered set (poset) (X,�) is a set X together with a partial order �
on X.

We will typically denote partial orders by ≤, �, or v, and define the relation < by x <
y :⇐⇒ x ≤ y ∧ x 6= y, and analogously ≺ and @.

Definition 2.3. Let (X,�) be a poset. Two elements x, y ∈ X are comparable if x � y or y � x,
and incomparable otherwise. If all x, y ∈ X are comparable, X is totally ordered. A totally
ordered subset of a poset is called a chain.

Definition 2.4. Let (X,�) be a poset. An element x ∈ X is the least element of X if x � y for
all y ∈ X. Similarly, x ∈ X is the greatest element of X if y � x for all y ∈ X. The least element
and greatest element of X are denoted by minX and maxX, respectively. An element x ∈ X is
a minimal element of X if there is no y ∈ X with y ≺ x, and x is a maximal element if there is
no y ∈ X, y � x. For a subset S ⊆ X, x ∈ X is a lower bound of S if x � s for all s ∈ S and an
upper bound of S if x � s for all s ∈ S. If the set of lower bounds has a greatest element, it is
called the infimum of S, denoted inf S; the supremum of S, denoted supS, is the least upper
bound of S.

Definition 2.5. A poset (X,�) is well-ordered if every nonempty subset of X has a least
element.

Note that every well-ordered poset (X,�) is totally ordered because {x, y} has a least element.

Definition 2.6. Let (X,≤) and (Y,�) be posets. An order isomorphism is a bijection ψ : X → Y
such that ψ(x1) � ψ(x2) ⇐⇒ x1 ≤ x2 for all x1, x2 ∈ X. The posets (X,≤) and (Y,�) are
called order isomorphic if such order isomorphism exists.

2.3 Ordinals and Transfinite Induction

We briefly recall some basics of set theory, following Halbeisen [Hal12] and Jech [Jec03]. A class
is a collection of sets. More formally, a class C corresponds to a logical formula and we write
x ∈ C if x satisfies that formula. Every set is a class but not all classes are sets; for example,
the class of all sets and the class of all ordinals are not sets. A class that is not a set is called a
proper class.

Definition 2.7. An ordinal is a set α such that ∀x ∈ α (x ⊆ α), ∀x1, x2 ∈ α (x1 ∈ x2 ∨ x1 =
x2 ∨ x2 ∈ x1), and ∀S ⊆ α, S 6= ∅ ∃x ∈ S ∀y ∈ x (y /∈ S).

10

For ordinals α, β with α ∈ β, we write α < β. For all ordinals α 6= β, we have either α < β
or β < α (but not both) and α ≮ α. It can be shown that every nonempty class of ordinals has a
least element (according to the relation <) [Hal12, Theorem 3.12]. For an ordinal α, we define

α+ 1 := α ∪ {α}.

We have that α+ 1 is the least ordinal greater than α [Hal12, Corollary 3.13]. An ordinal α is
called successor ordinal if α = β + 1 for some ordinal β. A limit ordinal is an ordinal that is not
a successor ordinal.

Every well-ordered set X is order isomorphic to exactly one ordinal [Jec03, Theorem 2.12].
This ordinal is called the order type of X.

We define the natural numbers as 0 := ∅, 1 := 0 + 1 = {0}, 2 := 1 + 1 = {0, 1}, and so on.
That is, a number n ∈ N is the set of all numbers less than n. The set of natural numbers N is
also an ordinal, denoted by ω. Note that 0 and ω = N are limit ordinals and all nonzero natural
numbers are successor ordinals. A method for proving a statement about all ordinals is via the
transfinite induction theorem [Jec03, Theorem 2.14].

Theorem 2.8 (Transfinite Induction). Let C be a class of ordinals such that

(i) 0 ∈ C,
(ii) if α ∈ C, then α+ 1 ∈ C, and
(iii) if α is a nonzero limit ordinal and β ∈ C for all β < α, then α ∈ C.

Then, C is the class of all ordinals.

The following lemma will later be useful.

Lemma 2.9. Let (X,�) be a poset and assume that for every ordinal α, there is an xα ∈ X
such that xβ � xα for all β ≤ α.4 Then, there exists an ordinal α̂ such that xα̂ = xα̂+1.

Proof. A result by Hartogs implies that for any set S, there exists an ordinal η(S) such that
there is no injective function η(S)→ S [Joh87, Lemma 7.1]. Hence, there exist ordinals α̂ < β
such that xα̂ = xβ, since otherwise the function η(X) → X, γ 7→ xγ would be injective. Since
α̂ ≤ α̂+ 1 ≤ β, we have xα̂ � xα̂+1 � xβ . Thus, xα̂ = xβ implies that xα̂ = xα̂+1.

2.4 Complete Posets and Fixed Points of Monotone and Continuous Func-
tions

A natural requirement for functions between posets is that they preserve order. Order-preserving
functions are also called monotone and are defined below.

Definition 2.10. Let (X,≤) and (Y,�) be posets. A function f : X → Y is monotone if

∀x1, x2 ∈ X
(
x1 ≤ x2 → f(x1) � f(x2)

)
.

Note that a monotone bijection is not necessarily an order isomorphism: For X = {x0, x1}
with incomparable x0 and x1 and Y = {0, 1} with 0 � 1, the bijection f : X → Y, xi 7→ i is
trivially monotone but not an order isomorphism.

4More formally, we consider a class function F from the class of all ordinals to X, and write xα for F (α).

11

Definition 2.11. Let X be a set and f : X → X be a function. Then, x ∈ X is called a fixed
point of f if f(x) = x.

Definition 2.12. A complete partially ordered set (CPO) is a poset in which every chain has a
supremum.

Note that the empty set is a chain and every element is an upper bound of ∅. Therefore, a
CPO contains a least element.

Theorem 2.13 ([Ési09, Theorem 2.5]). Let (X,�) be a CPO and f : X → X be monotone. Then,
f has a least fixed point, which equals xα̂ for some ordinal α̂, where x0 = min(X), xα+1 = f(xα)
for any ordinal α, and for nonzero limit ordinals α, xα = sup{xβ | β < α}. We further have
xα ≤ xβ for α ≤ β.

The above theorem is constructive in the sense that it not only guarantees the existence
of a least fixed point, but also provides a procedure to find it. However, this procedure might
only terminate after transfinitely many steps. The situation improves if the function is not only
monotone but also continuous in the sense that it preserves suprema. In this case, a weaker
requirement on the domain of the function is sufficient, namely only chains that correspond to
infinite sequences need to have a supremum.

Definition 2.14. Let (X,�) be a poset. An ω-chain in X is a sequence (xn)n∈ω such that
xi � xj for all i ≤ j. We say (X,�) is an ω-chain complete partially ordered set (ω-CPO) if it
has a least element and every ω-chain has a supremum.

Definition 2.15. Let (X,≤) and (Y,�) be ω-CPOs. A function f : X → Y is ω-continuous if
for every ω-chain C = (xn)n∈ω in X, sup f(C) exists and f(supC) = sup f(C).

The next lemma shows that ω-continuity implies monotonicity (the converse is not true).

Lemma 2.16. Let (X,≤) and (Y,�) be ω-CPOs and f : X → Y an ω-continuous function.
Then, f is monotone.

Proof. Let x1, x2 ∈ X such that x1 ≤ x2. Then, {x1, x2, x2, x2, . . .} is an ω-chain. Therefore,

f(x1) � sup f
(
{x1, x2, x2, . . .}

)
= f

(
sup{x1, x2, x2, . . .}

)
= f(x2).

Theorem 2.17 ([DP02, Theorem 8.15]). Let (X,�) be an ω-CPO and f : X → X be ω-
continuous. Then, f has a least fixed point, which equals sup{xn | n ∈ ω}, where x0 = min(X)
and xn+1 = f(xn) for n ∈ ω.

Remark. In the literature, CPOs and continuity are often defined in terms of so-called directed
subsets instead of chains [DP02; Ési09]. For our purposes, chains are more intuitive and directly
applicable in our proofs. This definitional inconsistency is not an issue since the two types of
definitions have been shown to be equivalent [Mar76].

3 Abstract System Algebras

We first define system algebras at an abstract level described, but not formalized, by Maurer
and Renner [MR11], where systems are objects with interfaces via which they can be connected
to other systems. Our motivation for defining system algebras at this level of abstraction is

12

twofold: First, we thereby introduce a common language and notation that can be used for more
concrete system algebras in later sections as well as in future papers. Secondly, one can already
make meaningful statements and prove theorems at this level of abstraction. As examples, we
provide a proof of broadcast impossibility in Section 3.2 and refer to the paper by Maurer and
Renner [MR11], where the composition theorem of constructive cryptography is proven based on
abstract systems. Whenever a proof is possible at this level of abstraction, it is clearly preferable
to proofs at lower levels due to increased generality and simplicity.

3.1 Definitions

A system algebra is a set of systems with certain operations that allow one to compose several
systems to obtain a new system. In this way, complex systems can be decomposed into independent
components. At this level of abstraction, we only specify how systems can be composed, but not
what systems are or how they interact with other systems. In the same sense as the elements
of an algebraic ring are abstract objects without concrete meaning, abstract systems have no
particular meaning attached, beyond how they can be composed. In a concrete instantiation,
systems could, e.g., communicate via discrete inputs and outputs at their interfaces or via analog
signals, et cetera. We define two operations; an operation ‖ for taking two systems in parallel, and
an operation γ for connecting two interfaces of a system. See Figure 5 for a depiction of these two
operations. Several systems can be connected by first taking them in parallel and then connecting
their interfaces. A similar definition has been given by Tackmann [Tac14, Definition 3.4].

Definition 3.1. Let Λ be a set (the set of interface labels). A Λ-system algebra (S, λ, ‖,Γ, γ)
consists of a set S (the set of systems), a function λ : S→ P(Λ) (assigning to each system its
set of interface labels), a partial function ‖ : S×S→ S (the parallel composition operation),
a function Γ: S→ P

({
{i, i′} | i, i′ ∈ Λ

})
(specifying for each system the set of interface-label

pairs that can be connected), and a partial function γ :
{
{i, i′} | i, i′ ∈ Λ

}
×S→ S (the interface

connection operation), such that

• for all s ∈ S, λ(s) is finite and for all {i, i′} ∈ Γ(s), we have i, i′ ∈ λ(s),

• for s1, s2 ∈ S, ‖(s1, s2), denoted s1 ‖ s2, is defined if and only if λ(s1) ∩ λ(s2) = ∅, and
in this case, λ(s1 ‖ s2) = λ(s1) ∪ λ(s2) and for j ∈ {1, 2} and for all i, i′ ∈ λ(sj), we have
{i, i′} ∈ Γ(s1 ‖ s2)⇐⇒ {i, i′} ∈ Γ(sj), and

• for i, i′ ∈ Λ and s ∈ S, γ({i, i′}, s), denoted by γ{i,i′}(s), is defined if and only if {i, i′} ∈
Γ(s), and in this case, λ

(
γ{i,i′}(s)

)
= λ(s) \ {i, i′}.

We will usually identify a system algebra with the set of systems S and use the same symbols
λ, ‖, Γ, and γ for different system algebras. The parallel composition of two system is only
allowed if they have disjoint interface sets. This means in particular that one cannot consider the
parallel composition of a system with itself. One can imagine that each system exists only once
and therefore cannot be used twice within another system. This is not an issue because S can
contain many “copies” of a system with different interface labels, and different systems can have
different interface labels. One could also introduce an interface-renaming operation, but we will
not formalize this because it is not needed here. The set Γ(s) determines which interfaces of a
system s are compatible, i.e., can be connected to each other. It might or might not be possible
to connect an interface to itself. Figuratively speaking, one could imagine that interfaces come
with different types of plugs and one can only connect interfaces with matching plugs, where

13

Γ(s) contains all unordered pairs of matching interfaces. For example, we will later consider
system algebras with separate interfaces for inputs and outputs, where one can only connect input
interfaces to output interfaces, but not two interfaces of the same type. Since the connection
operation is defined for unordered pairs of interfaces, one always connects two interfaces to each
other, without a direction. The condition on Γ for the parallel composition ensures that if one
can connect two interfaces of a system, one can still do so after taking another system in parallel
(i.e., {i, i′} ∈ Γ(sj) =⇒ {i, i′} ∈ Γ(s1 ‖ s2) for j ∈ {1, 2}), and additional connections are only
created between the two systems, not for a single system (i.e., for j ∈ {1, 2} and i, i′ ∈ λ(sj),
{i, i′} ∈ Γ(s1‖s2) =⇒ {i, i′} ∈ Γ(sj)). The intuition behind this condition is that the two systems
are independent and do not influence what is possible for the other system. After connecting
interfaces, however, it is possible that connections that were allowed before become disallowed.
For example, one might want to consider a system algebra in which one cannot create cycles
by connecting systems, e.g., when modeling systems that correspond to Boolean circuits. Then,
certain connections are only allowed as long as other interfaces are not connected.

We restrict ourselves to systems with finitely many interfaces because we are only interested
in systems that are composed of finitely many components. Therefore, we can define parallel
composition as a binary operation and interface connection for a single pair of interfaces, whereas
in general, one would define the parallel composition of potentially infinitely many systems and
the connection of potentially infinitely many pairs of interfaces. In our simplified setting, repeated
applications of the binary parallel composition and the connection of two interfaces are sufficient.

An important property system algebras can have is composition-order invariance (called
composition-order independence by Maurer and Renner [MR11]). Loosely speaking, it guarantees
that a system that is composed of several systems is independent of the order in which they have
been composed. Put differently, a figure in which several systems are connected by lines uniquely
determines the overall system; the order in which the figure was drawn is irrelevant.

Definition 3.2. For a Λ-system algebra (S, λ, ‖,Γ, γ), we say Γ permits reordering if for all
s ∈ S, {i, i′} ∈ Γ(s), and {j, j′} ∈ Γ

(
γ{i,i′}(s)

)
, we have {j, j′} ∈ Γ(s) and {i, i′} ∈ Γ

(
γ{j,j′}(s)

)
.

If additionally γ{j,j′}
(
γ{i,i′}(s)

)
= γ{i,i′}

(
γ{j,j′}(s)

)
, (S, λ, ‖,Γ, γ) is called connection-order

invariant. A connection-order invariant system algebra is called composition-order invariant if
the operation ‖ is associative and commutative and for all s1, s2 ∈ S and {i, i′} ∈ Γ(s1) such
that λ(s1) ∩ λ(s2) = ∅, we have γ{i,i′}(s1) ‖ s2 = γ{i,i′}(s1 ‖ s2).

All system algebras we consider in this paper have associative and commutative parallel
composition. Note however, that one can also imagine system algebras where this is not the case:
Consider a set of systems that correspond to software components that are compiled together
when two systems are composed in parallel. Depending on compiler optimizations, the efficiency
of the resulting program might depend on the order in which components are compiled together.

3.2 An Abstract Proof of Broadcast Impossibility

In this section, we provide a formal proof at the level of abstract systems of the impossibility of
bit-broadcast for three parties with one dishonest party, as sketched in the introduction. This
exemplifies how a proof that involves drawing figures can be justified at the level of abstract
systems and why composition-order invariance is crucial for doing so. Since there is no notion
of outputting a bit for abstract systems, one cannot directly formulate the requirements for
broadcast at this level. We therefore first prove a more abstract statement and afterwards argue
how this implies the impossibility for more concrete systems. We assume in the following that we

14

have a system algebra that allows to connect systems arbitrarily, i.e., two (different) interfaces of
a system can always be connected (formally, {i, i′} ∈ Γ(s) for all i, i′ ∈ λ(s) with i 6= i′). This is
a reasonable assumption, e.g., in a setting where the systems communicate with other systems
by sending messages over channels.

Theorem 3.3. Let (S, λ, ‖,Γ, γ) be a composition-order invariant Λ-system algebra such that
Γ(s) ⊇

{
{i, i′} | i, i′ ∈ λ(s) ∧ i 6= i′

}
for all s ∈ S. Let s0, s1, r1, r2 ∈ S such that λ(s0), λ(s1),

λ(r1), and λ(r2) are pairwise disjoint and s10, s
2
0 ∈ λ(s0), s11, s

2
1 ∈ λ(s1), r11, r

2
1 ∈ λ(r1), and

r12, r
2
2 ∈ λ(r2), where these eight interface labels are distinct. Further let

S0 :=
{
γ{r21 ,e2}(γ{s20,e1}(γ{s10,r11}(s0 ‖ r1 ‖ e))) | e ∈ S ∧ λ(e) ∩ λ(s0) = ∅ = λ(e) ∩ λ(r1)

∧ e1, e2 ∈ λ(e) ∧ e1 6= e2
}
,

S1 :=
{
γ{e2,r22}(γ{s21,r12}(γ{s11,e1}(s1 ‖ e ‖ r2))) | e ∈ S ∧ λ(e) ∩ λ(s1) = ∅ = λ(e) ∩ λ(r2)

∧ e1, e2 ∈ λ(e) ∧ e1 6= e2
}
,

S= :=
{
γ{r21 ,r22}(γ{e2,r12}(γ{e1,r11}(e ‖ r1 ‖ r2))) | e ∈ S ∧ λ(e) ∩ λ(r1) = ∅ = λ(e) ∩ λ(r2)

∧ e1, e2 ∈ λ(e) ∧ e1 6= e2
}
.

Then, S0 ∩ S1 ∩ S= 6= ∅.

Proof. Note that S0 corresponds to the set of systems for all possible e and a = 0 in Figure 2d,
S1 corresponds to Figure 2c for a = 1, and S= corresponds to the systems in Figure 2b. Let

t := γ{r21 ,r22}(γ{s21,r12}(γ{s10,r11}(γ{s20,s11}(s0 ‖ s1 ‖ r1 ‖ r2))))

be the system in Figure 2e. By composition-order invariance, we have for e = γ{s20,s11}(s0 ‖ s1),

e ‖ r1 ‖ r2 = γ{s20,s11}(s0 ‖ s1) ‖ r1 ‖ r2 = γ{s20,s11}(s0 ‖ s1 ‖ r1 ‖ r2).

Hence, we obtain for e1 = s10, and e2 = s21, that t = γ{r21 ,r22}(γ{e2,r12}(γ{e1,r11}(e ‖ r1 ‖ r2))) ∈ S=.
Again using composition-order invariance, we further have for ê = γ{s21,r12}(s1 ‖ r2), ê

1 = s11, and
ê2 = r22,

t = γ{r21 ,r22}(γ{s20,s11}(γ{s10,r11}(γ{s21,r12}(s1 ‖ r2 ‖ s0 ‖ r1))))

= γ{r21 ,ê2}(γ{s20,ê1}(γ{s10,r11}(ê ‖ s0 ‖ r1))) ∈ S0.

Finally, we have for ẽ = γ{s10,r11}(s0 ‖ r1), ẽ
1 = s20, and ẽ2 = r21,

t = γ{r21 ,r22}(γ{s21,r12}(γ{s20,s11}(γ{s10,r11}(s0 ‖ r1 ‖ s1 ‖ r2))))

= γ{ẽ2,r22}(γ{s21,r12}(γ{ẽ1,s11}(ẽ ‖ s1 ‖ r2))) ∈ S1.

Therefore, we have t ∈ S0 ∩ S1 ∩ S= 6= ∅.

To see why this implies the claimed impossibility, assume a protocol for broadcast exists and
let sa for a ∈ {0, 1} be a system that implements the protocol for the sender to broadcast the
bit a and let r1 and r2 be systems for the two receivers such that these systems have distinct
interface labels.5 The validity of the broadcast protocol implies that for all systems in S0, the

5Since interface labels are only used for connecting systems and typical protocols do not depend on them, it is
reasonable to assume that such systems with distinct interface labels exist.

15

subsystem r1 decides on the bit 0 (say with probability more than 2
3) and for all systems in S1,

the subsystem r2 decides on the bit 1 (with probability more than 2
3). The consistency condition

further implies that for all systems in S=, r1 and r2 decide on the same bit (with probability
more than 2

3). Now Theorem 3.3 says that there is a system that satisfies all three constraints,
which is impossible. Therefore no such protocol exists.

4 Functional System Algebras

4.1 Definitions

We now introduce special system algebras for functional systems that take inputs at dedicated
input interfaces and produce outputs at their output interfaces, where the outputs are computed
as a function of the inputs. This not only allows us to model systems that take a single input at
each input interface and produce a single output at each output interface, but also much more
general systems. For example, to model interactive systems that successively take inputs and
produce outputs, one can consider the set of sequences of values as the domain of the functions.
The function corresponding to a system then maps an entire input history to the output history
and is a compact description of the system.

We define the parallel composition of two systems to be the function that evaluates both
systems independently. Interface connection is defined in a way such that after connecting an
input interface to an output interface, the input at the former equals the output at the latter.
This corresponds to having a fixed point of a certain function determined by the connected
interfaces and the system. One therefore has to choose Γ such that fixed points for all allowed
connections exist. Ideally, there is always a unique fixed point, because in this case, the interface
connection operation is uniquely determined by this condition. If there are several fixed points,
one has to be chosen in each case. A functional system algebra is therefore characterized by a set
of functions S, a function Γ determining the allowed interface connections, and an appropriate
choice of fixed points φ. We use boldface letters for functional systems to distinguish them from
abstract systems.

Definition 4.1. Let Λ and X be sets, let for all finite disjoint I,O ⊆ Λ, SI,O ⊆
(
XO
)XI be a

set of functions s : X I → XO, and let S be the union of all SI,O. For s ∈ SI,O, i ∈ I, o ∈ O,
and x ∈ X I\{i}, let

Φs
i,o,x :=

{
xi ∈ X | s

(
x ∪ {(i, xi)}

)
(o) = xi

}
be the set of fixed points of the function xi 7→ s

(
x∪{(i, xi)}

)
(o). Further let Γ: S→ P

({
{i, o} |

i, o ∈ Λ
})

such that for all s ∈ SI,O and {i, o} ∈ Γ(s), we have i ∈ I, o ∈ O (or i ∈ O, o ∈ I),6

and for all x ∈ X I\{i}, we have Φs
i,o,x 6= ∅. Finally let φsi,o : X I\{i} → X for s ∈ SI,O and

{i, o} ∈ Γ(s) be a function such that for all x ∈ X I\{i}, we have φsi,o(x) ∈ Φs
i,o,x. Then, we define

F(S,Γ, φ) := (S, λ, ‖,Γ, γ),

where φ is the set of all φsi,o and

• for s ∈ SI,O, we have λ(s) = I ∪ O,
6We formally cannot require i ∈ I and o ∈ O because {i, o} is unordered. To simplify the notation we will,

however, always assume that i ∈ I and o ∈ O when we write {i, o} ∈ Γ(s), and similarly for {i′, o′}, {i1, o1}, etc.

16

• for pairwise disjoint I1, I2,O1,O2 ⊆ Λ, s1 ∈ SI1,O1 , and s2 ∈ SI2,O2 , we have s1 ‖
s2 : X I1∪I2 → XO1∪O2 with

∀x ∈ X I1∪I2 ∀j ∈ {1, 2} ∀oj ∈ Oj (s1 ‖ s2)(x)(oj) = sj
(
x|Ij

)
(oj), (1)

• and for s ∈ SI,O and {i, o} ∈ Γ(s), we have γ{i,o}(s) : X I\{i} → XO\{o} with

∀x ∈ X I\{i} γ{i,o}(s)(x) = s
(
x ∪

{(
i, φsi,o(x)

)})
|O\{o}.

If S is closed under ‖ and γ,7 and if for all s1, s2 ∈ S with λ(s1) ∩ λ(s2) = ∅, for j ∈ {1, 2},
and for all i, o ∈ λ(sj), we have {i, o} ∈ Γ(s1 ‖ s2) ⇐⇒ {i, o} ∈ Γ(sj), then F(S,Γ, φ) is a
Λ-system algebra. In this case, we say F(S,Γ, φ) is a functional Λ-system algebra over X .

Remark. Our definition of interface connections via fixed points implies that the “line” connecting
two systems has no effect on the values. This means in particular that it does not introduce
delays or transmission errors. If, e.g., delays are required (and the domains and functions are
defined at a level such that delays can be specified, see Section 6), one can allow the connection
of systems only via dedicated channel systems that introduce the desired delays.

The choice of fixed points is crucial for obtaining a system algebra with desired properties.
For example, if the system algebra is supposed to model a class of real-world systems, the chosen
fixed point should correspond to the value generated by the real system. The choice of the fixed
point can also influence whether connection-order invariance holds. If fixed points are not unique,
a reasonable requirement is that they are consistently chosen in the sense that whenever two
systems have the same set of fixed points for a specific interface connection, the same fixed point
is chosen for both systems.

Definition 4.2. Let (S, λ, ‖,Γ, γ) be a functional Λ-system algebra over X . We say it has
unique fixed points if

∣∣Φs
i,o,x

∣∣ = 1 for all s ∈ SI,O, {i, o} ∈ Γ(s), and x ∈ X I\{i}. If there exists8

φ such that (S, λ, ‖,Γ, γ) = F(S,Γ, φ) and for all s ∈ SI,O, s
′ ∈ SI′,O′ , {i, o} ∈ Γ(s) ∩ Γ(s′),

x ∈ X I\{i}, and x′ ∈ X I′\{i},

Φs
i,o,x = Φs′

i,o,x′ =⇒ φsi,o(x) = φs
′
i,o(x

′),

we say (S, λ, ‖,Γ, γ) has consistently chosen fixed points.

4.2 Basic Properties

It is easy to find functional system algebras that are not connection-order invariant if fixed points
are not chosen consistently. Consider for example a system s with two fixed points x, x′ for
connecting interfaces i and o regardless of inputs at other interfaces. It is possible that x is
chosen for γ{i,o}(s) but for the system s′ := γ{i′,o′}(s), which has the same two fixed points for
connecting i and o, x′ is chosen. In this case, one can have γ{i′,o′}

(
γ{i,o}(s)

)
6= γ{i,o}

(
γ{i′,o′}(s)

)
.

As the following example shows, consistently chosen fixed points are, however, not sufficient to
guarantee connection-order invariance.

7That is, for s1, s2 ∈ S for which ‖ is defined, s1 ‖ s2 ∈ S, and for s ∈ S and {i, o} ∈ Γ(s), γ{i,o}(s) ∈ S.
8While φ uniquely determines γ, the converse is not true. For example, if s, i, and o are such that the input

at interface i does not influence the outputs of s at interfaces different from o, the choice of φs
i,o(·) is irrelevant.

Hence, we only require for consistently chosen fixed points that γ can be explained consistently.

17

Consistently chosen fixed points do not imply connection-order invariance. Let
X = {0, 1} and consider a system algebra where 0 is preferred to 1 as a fixed point, i.e.,
Φs
i,o,x = {0, 1} ⇒ φsi,o(x) = 0. This clearly guarantees consistently chosen fixed points. Now con-

sider the system s ∈ S{i1,i2},{o1,o2,o3}, s
(
{(i1, x1), (i2, x2)}

)
= {(o1, 1− x1), (o2, 1− x2), (o3, x1)}.

If we connect i2 and o1, there is exactly one fixed point for each input at i1 because we essen-
tially compose two functions, which both invert their input bit. Thus, γ{i2,o1}(s)

(
{(i1, x1)}

)
=

{(o2, x1), (o3, x1)}. If we now connect i1 and o2, both 0 and 1 are fixed points and 0 is
chosen, i.e., we get γ{i1,o2}

(
γ{i2,o1}(s)

)
(∅) = {(o3, 0)}. However, first connecting i1 and o2

yields γ{i1,o2}(s)
(
{(i2, x2)}

)
= {(o1, x2), (o3, 1 − x2)}. If we then connect i2 and o1, 0 is

again the preferred fixed point and therefore γ{i2,o1}
(
γ{i1,o2}(s)

)
(∅) = {(o3, 1)}, which implies

γ{i2,o1}
(
γ{i1,o2}(s)

)
6= γ{i1,o2}

(
γ{i2,o1}(s)

)
.

While consistently chosen fixed points are not sufficient, the next lemma shows that connection-
order invariance follows from unique fixed points if Γ permits reordering.

Lemma 4.3. Functional system algebras with unique fixed points and Γ that permits reordering
are connection-order invariant.

Proof. Let Λ and X be sets, and let (S, λ, ‖,Γ, γ) = F(S,Γ, φ) be a functional Λ-system algebra
over X with unique fixed points such that Γ permits reordering. Further let s ∈ S, {i, o} ∈ Γ(s),
and {i′, o′} ∈ Γ

(
γ{i,o}(s)

)
. We have to show that γ{i′,o′}

(
γ{i,o}(s)

)
= γ{i,o}

(
γ{i′,o′}(s)

)
. To this

end, let x ∈ X I\{i,i′}. By Definition 4.1, there exist xi, xi′ , x′i, x
′
i′ ∈ X such that

γ{i′,o′}
(
γ{i,o}(s)

)
(x) = s

(
x ∪

{(
i, xi

)
,
(
i′, xi′

)})
|O\{o,o′},

γ{i,o}
(
γ{i′,o′}(s)

)
(x) = s

(
x ∪

{(
i, x′i

)
,
(
i′, x′i′

)})
|O\{o,o′}.

We further have xi ∈ Φs
i,o,x∪{(i′,xi′)}

and since fixed points are unique, xi is chosen for connecting

i and o on input x ∪ {(i′, xi′)}. This implies xi′ ∈ Φ
γ{i,o}(s)

i′,o′,x . Moreover, x′i ∈ Φs
i,o,x∪{(i′,x′

i′)}
and

thus x′i′ ∈ Φ
γ{i,o}(s)

i′,o′,x . Because
∣∣∣Φγ{i,o}(s)

i′,o′,x

∣∣∣ = 1, this implies xi′ = x′i′ . Therefore, Φs
i,o,x∪{(i′,xi′)}

=

Φs
i,o,x∪{(i′,x′

i′)}
and we obtain xi = x′i. We conclude γ{i′,o′}

(
γ{i,o}(s)

)
(x) = γ{i,o}

(
γ{i′,o′}(s)

)
(x).

We next prove that the parallel composition operation of functional system algebras is always
associative and commutative.

Lemma 4.4. For any functional system algebra, parallel composition is associative and commu-
tative.

Proof. Let Λ and X be sets, and let (S, λ, ‖,Γ, γ) = F(S,Γ, φ) be a functional Λ-system algebra
over X . Further let I1, I2, I3,O1,O2,O3 ⊆ Λ be pairwise disjoint, let sj ∈ SIj ,Oj for j ∈ {1, 2, 3},
and let x ∈ X I1∪I2∪I3 and o ∈ Ok for some k ∈ {1, 2, 3}. If k = 3, we have by equation (1),(
(s1‖s2)‖s3

)
(x)(o) = s3

(
x|I3

)
(o). If k 6= 3, we have

(
(s1‖s2)‖s3

)
(x)(o) = (s1‖s2)

(
x|I1∪I2

)
(o) =

sk
(
x|Ik

)
(o). Similarly,

(
s1 ‖ (s2 ‖ s3)

)
(x)(o) = sk

(
x|Ik

)
(o). Hence, (s1 ‖ s2) ‖ s3 = s1 ‖ (s2 ‖ s3),

i.e., ‖ is associative. Commutativity follows directly from equation (1): for x ∈ X I1∪I2 and
o ∈ Ok for some k ∈ {1, 2}, we have (s1 ‖ s2)(x)(o) = sk

(
x|Ik

)
(o) = (s2 ‖ s1)(x)(o).

We further show that connection-order invariance implies composition-order invariance for
functional system algebras with consistently chosen fixed points.

18

Lemma 4.5. A functional system algebra with consistently chosen fixed points is composition-
order invariant if and only if it is connection-order invariant.

Proof. By definition, a functional system algebra that is not connection-order invariant is
not composition-order invariant. For the other direction, let (S, λ, ‖,Γ, γ) = F(S,Γ, φ) be a
connection-order invariant functional Λ-system algebra over X with consistently chosen fixed
points. Associativity and commutativity of ‖ follows from Lemma 4.4. It remains to show that
γ{i,o}(s1) ‖ s2 = γ{i,o}(s1 ‖ s2) for all s1 ∈ SI1,O1 , s2 ∈ SI2,O2 , and {i, o} ∈ Γ(s1) such that
λ(s1) ∩ λ(s2) = ∅. To this end, let x ∈ X (I1∪I2)\{i}, o1 ∈ O1 \ {o}, and o2 ∈ O2. Because inputs
to s1 do not affect the outputs of s2, we have(

γ{i,o}(s1) ‖ s2
)
(x)(o2) = s2(x|I2)(o2) =

(
γ{i,o}(s1 ‖ s2)

)
(x)(o2).

By the same reasoning, the set of fixed points for connecting interfaces i and o is not influenced
by s2, i.e., Φ

s1‖s2
i,o,x = Φs1

i,o,x|I1
. Consistently chosen fixed points imply φs1‖s2i,o (x) = φs1i,o(x|I1) and

hence (
γ{i,o}(s1) ‖ s2

)
(x)(o1) = γ{i,o}(s1)(x|I1)(o1) = s1

(
x|I1 ∪

{(
i, φs1i,o(x|I1)

)})
(o1)

= s1

(
x|I1 ∪

{(
i, φ

s1‖s2
i,o (x)

)})
(o1)

= (s1 ‖ s2)
(
x ∪

{(
i, φ

s1‖s2
i,o (x)

)})
(o1)

=
(
γ{i,o}(s1 ‖ s2)

)
(x)(o1).

Therefore, γ{i,o}(s1) ‖ s2 = γ{i,o}(s1 ‖ s2) and hence composition-order invariance holds.

Since unique fixed points imply consistently chosen fixed points, we can combine Lemma 4.3
and Lemma 4.5 to obtain the following result.

Theorem 4.6. Functional system algebras with unique fixed points and Γ that permits reordering
are composition-order invariant.

4.3 Merging Input and Output Interfaces

It is often desirable to have a system algebra that allows arbitrary interface connections, as we
have assumed in Section 3.2. A functional system algebra does not provide this because one can
only connect input interfaces to output interfaces. A single interface connection in a functional
system algebra also allows only communication in one direction, while one might prefer to connect
systems to each other such that they can communicate in both directions. These drawbacks can be
mitigated easily by considering an interface as a pair of an input interface and an output interface
and by defining interface connection as connecting both interfaces of the corresponding pair: Let
(S, λ, ‖,Γ, γ) be a functional (Λ× {0, 1})-system algebra that allows connecting arbitrary input
interface to arbitrary output interfaces (i.e., Γ(s) =

{
{i, o} | i ∈ I, o ∈ O

}
for s ∈ SI,O). We then

define the Λ-system algebra (S′, λ′, ‖′,Γ′, γ′) via S′ := {s ∈ SL×{1},L×{0} | L ⊆ Λ}, λ′(s) = L for
s ∈ SL×{1},L×{0}, ‖′ = ‖, Γ(s) =

{
{i, i′} | i, i′ ∈ λ(s)

}
, γ′{i,i′}(s) = γ{(i′,1),(i,0)}

(
γ{(i,1),(i′,0)}(s)

)
.

See Figure 6 for a depiction of a system and the connection operation in (S′, λ′, ‖′,Γ′, γ′). Note
that the system algebra (S′, λ′, ‖′,Γ′, γ′) is composition-order invariant if (S, λ, ‖,Γ, γ) is.

By doing this, one can use functional system algebras as the ones we develop in later sections
to instantiate system algebras with undirected interfaces.

19

s

(i1, 1) (i1, 0)

i1

(i2, 1) (i2, 0)

i2

(i3, 1)

(i3, 0)
i3

Figure 6: The system γ′{i1,i2}(s) in the system algebra with merged input and output interfaces.

Remark. As defined above, Γ′ allows connecting an interface to itself. While this is well-defined,
one might want to exclude it since it is typically not needed.

5 The System Algebras of Monotone and Continuous Systems

By Theorem 2.13 and Theorem 2.17, monotone functions on CPOs and ω-continuous functions on
ω-CPOs have least fixed points. We can use this to define a functional system algebra consisting
of such functions. While fixed points of monotone functions are well-studied in domain theory, we
still need to show that choosing the least fixed point yields a functional system algebra with the
desired properties. To obtain a system algebra, we need to prove that the set of system is closed
under interface connections defined via choosing the least fixed point. We prove that this is the
case both for monotone and continuous functions. Furthermore, we show that composition-order
invariance holds for both system algebras under the additional assumption on the CPO that
every nonempty chain has an infimum. Finally, we describe Kahn networks as a special case of
the system algebra of continuous systems.

5.1 Monotone Systems

Let (X ,�) be a CPO. Recall that for a set I, we also write � for the partial order on X I where
for x,y ∈ X I , x � y if x(i) � y(i) for all i ∈ I. Monotonicity is therefore also defined for
functions on such tuples. Let Λ be a set and define for finite disjoint I,O ⊆ Λ,

MI,O :=
{
s : X I → XO | s is monotone

}
.

We can use the existence of least fixed points to define a system algebra. Before we do so, we
need the following simple lemma.

Lemma 5.1. Let I,O ⊆ Λ be finite disjoint sets, let s ∈MI,O, and let i ∈ I, o ∈ O. Then, for
all x ∈ X I\{i}, there exists a least xi ∈ X such that s

(
x ∪ {(i, xi)}

)
(o) = xi.

Proof. For x ∈ X I\{i}, let f : X → X , xi 7→ s(x∪{(i, xi)})(o) and note that the fixed points of f
precisely correspond to the values xi ∈ X such that s

(
x∪ {(i, xi)}

)
(o) = xi. Since s is monotone,

so is f , and therefore f has a least fixed point by Theorem 2.13.

Definition 5.2. We define F(M,Γ, φ), the Λ-system algebra of monotone systems over X , as
follows: For s ∈MI,O, Γ(s) :=

{
{i, o} | i ∈ I, o ∈ O

}
and φsi,o(x) is the least element of Φs

i,o,x

for all i ∈ I, o ∈ O, and x ∈ X I\{i}.

20

For this to actually be a functional system algebra, we need that the parallel composition of
systems and connecting interfaces of a system again yield a system in our algebra, i.e., a monotone
function. While this is straightforward for parallel composition, it is nontrivial for interface
connections. The essence of the proof we provide below is showing that φsi,o(x1) � φsi,o(x2)
whenever x1 � x2. To this end, we exploit the constructive nature of Theorem 2.13 that can be
used to find the fixed points φsi,o(x1) and φsi,o(x2).

Theorem 5.3. (M, λ, ‖,Γ, γ) = F(M,Γ, φ) is a functional Λ-system algebra over X .

Proof. Since the relation � is defined componentwise, it is clear from the definition of parallel
composition by equation (1) that M is closed under ‖. It remains to show that M is also
closed under connecting interfaces. To this end, let I,O ⊆ Λ be finite disjoint sets and
let s ∈ MI,O. Further let i ∈ I, o ∈ O. We have to show that γ{i,o}(s) ∈ MI\{i},O\{o}.
To show that γ{i,o}(s) is monotone, let x1,x2 ∈ X I\{i}, such that x1 � x2. We then have
γ{i,o}(s)(xk) = s

(
xk ∪

{(
i, φsi,o(xk)

)})
|O\{o} for k ∈ {1, 2}, where φsi,o(xk) is the least fixed point

of the function xi 7→ s(xk ∪ {(i, xi)})(o). Let xαk for ordinals α be as in Theorem 2.13 such that
φsi,o(xk) = xα̂kk for some ordinal α̂k. We show by transfinite induction over α that xα1 � xα2 for
all ordinals α.

(i) For α = 0, we have xα1 = min(X) = xα2 .

(ii) Assume xα1 � xα2 for some ordinal α. We then have x1 ∪ {(i, xα1)} � x2 ∪ {(i, xα2)} and
since s is monotone,

xα+1
1 = s

(
x1 ∪ {(i, xα1)}

)
(o) � s

(
x2 ∪ {(i, xα2)}

)
(o) = xα+1

2 .

(iii) Let α be a nonzero limit ordinal and assume xβ1 � x
β
2 for all β < α. We then have

xα1 = sup
{
xβ1
∣∣ β < α

}
� sup

{
xβ2
∣∣ β < α

}
= xα2 .

Thus, xα1 � xα2 for all ordinals α. It is easy to see (by transfinite induction) that xα1 = xα̂1
1

for all α ≥ α̂1, and xα2 = xα̂2
2 for all α ≥ α̂2. We can therefore conclude

φsi,o(x1) = xα̂1
1 = x

max{α̂1,α̂2}
1 � xmax{α̂1,α̂2}

2 = xα̂2
2 = φsi,o(x2).

Using monotonicity of s, this implies

γ{i,o}(s)(x1) = s
(
x1 ∪

{(
i, φsi,o(x1)

)})
|O\{o} � s

(
x2 ∪

{(
i, φsi,o(x2)

)})
|O\{o} = γ{i,o}(s)(x2).

Hence, γ{i,o}(s) is monotone and therefore γ{i,o}(s) ∈MI\{i},O\{o}.

5.2 Continuous Systems

Let Λ be a set and let (X ,�) be an ω-CPO. It is easily verified that X I is again an ω-CPO for
I ⊆ Λ, and the supremum of an ω-chain in X I corresponds to the tuple of the component-wise
suprema. We define for finite disjoint I,O ⊆ Λ,

NI,O :=
{
s : X I → XO | s is ω-continuous

}
.9

The following lemma can be proven analogously to Lemma 5.1.
9We use the symbol N because continuity is stronger than monotonicity and C will be used for the system

algebra of causal systems in Section 6.

21

Lemma 5.4. Let I,O ⊆ Λ be finite disjoint sets, let s ∈ NI,O, and let i ∈ I, o ∈ O. Then, for
all x ∈ X I\{i}, there exists a least xi ∈ X such that s

(
x ∪ {(i, xi)}

)
(o) = xi.

Definition 5.5. We define F(N,Γ, φ), the Λ-system algebra of continuous systems over X , as
follows: For s ∈ NI,O, Γ(s) :=

{
{i, o} | i ∈ I, o ∈ O

}
and φsi,o(x) is the least element of Φs

i,o,x for
all i ∈ I, o ∈ O, and x ∈ X I\{i}.

We again need to show that connecting interfaces of a system yields a system in our algebra,
i.e., in this case an ω-continuous function. We do so by proving that for an ω-chain (xn)n∈ω,
{φsi,o(xn) | n ∈ ω} is an ω-chain as well, and φsi,o(sup{xn | n ∈ ω}) = sup{φsi,o(xn) | n ∈ ω}. We
then use ω-continuity of s to conclude that γ{i,o}(s) is ω-continuous.

Theorem 5.6. (N, λ, ‖,Γ, γ) = F(N,Γ, φ) is a functional Λ-system algebra over X .

Proof. As in the proof of Theorem 5.3, it is straightforward to verify that N is closed under
parallel composition. To show that N is closed under connecting interfaces, let I,O ⊆ Λ be finite
disjoint sets and let s ∈ NI,O. Further let i ∈ I, o ∈ O. To show that γ{i,o}(s) ∈ NI\{i},O\{o},
let (xn)n∈ω be an ω-chain in X I\{i}. We then have γ{i,o}(s)(xn) = s

(
xn ∪

{(
i, φsi,o(xn)

)})
|O\{o}

for all n ∈ ω, where φsi,o(xn) is the least fixed point of the function xi 7→ s(xn ∪ {(i, xi)})(o).
Let x̂ := sup{xn | n ∈ ω}. Since s is monotone by Lemma 2.16, one can show as in the proof of
Theorem 5.3 that φsi,o(x) � φsi,o(x′) for all x,x′ ∈ X I\{i} with x � x′. Thus, {φsi,o(xn) | n ∈ ω}
is an ω-chain. Because we also have φsi,o(xn) � φsi,o(x̂) for all n ∈ ω, we obtain sup{φsi,o(xn) |
n ∈ ω} � φsi,o(x̂). Using ω-continuity of s, we further have

s
(
x̂ ∪

{(
i, sup

{
φsi,o(xn)

∣∣ n ∈ ω})})(o) = s
(

sup
{
xn ∪

{(
i, φsi,o(xn)

)} ∣∣∣ n ∈ ω})(o)

= sup
{
s
(
xn ∪

{(
i, φsi,o(xn)

)})
(o)
∣∣∣ n ∈ ω}

= sup{φsi,o(xn) | n ∈ ω}.

This implies that sup{φsi,o(xn) | n ∈ ω} is a fixed point of xi 7→ s
(
x̂ ∪ {(i, xi)}

)
(o). Since φsi,o(x̂)

is the least fixed point of that function, we have φsi,o(x̂) � sup{φsi,o(xn) | n ∈ ω}, and thus
φsi,o(x̂) = sup{φsi,o(xn) | n ∈ ω}. Together with ω-continuity of s, this implies

γ{i,o}(s)(sup{xn | n ∈ ω}) = γ{i,o}(s)
(
x̂
)

= s
(
x̂ ∪

{(
i, φsi,o(x̂)

)})
|O\{o}

= s
(

sup
{
xn ∪

{(
i, φsi,o(xn)

)} ∣∣∣ n ∈ ω})|O\{o}
= sup

{
s
(
xn ∪

{(
i, φsi,o(xn)

)})
|O\{o}

∣∣∣ n ∈ ω}
= sup

{
γ{i,o}(s)(xn)

∣∣ n ∈ ω}.
We conclude that γ{i,o}(s) is ω-continuous and therefore γ{i,o}(s) ∈ NI\{i},O\{o}.

5.3 Composition-Order Invariance of Monotone and Continuous Systems

We want to show that the system algebras of monotone and continuous systems are composition-
order invariant. We can do so if we additionally require that all nonempty chains in X have an
infimum. Before we prove the main result of this section, we need the following lemma about
fixed points (cf. [GD03, (A.6) in Chapter I, §2.6]).

22

Lemma 5.7. Let (X ,�) be a poset such that every nonempty chain in X has an infimum. Let
f : X → X be a monotone function and let x ∈ X such that f(x) � x. Then there exists x̂ ∈ X
such that f(x̂) = x̂ � x.

Proof. Let x0 := x, xα+1 := f(xα) for any ordinal α, and xα := inf{xβ | β < α} for nonzero
limit ordinals α (where we show below that this infimum exists). We claim that we have for all
ordinals α

∀β ≤ α f(xα) � xα � xβ.

We prove this claim by transfinite induction over α. For α = 0, the claim follows since f(x) � x.
Assume the claim is true for some ordinal α. We then have xα+1 = f(xα) � xα. For β ≤ α,
we therefore have by assumption xα+1 � xα � xβ. For β = α+ 1, we trivially have xα+1 � xβ.
Since f is monotone, we thus have for all β ≤ α+ 1,

f(xα+1) � f(xα) = xα+1 � xβ.

Now let α be a nonzero limit ordinal and assume that for all α′ < α, we have f(xα′) � xα′ � xβ
for all β ≤ α′. This implies that {xβ | β < α} is a chain and therefore the infimum exists. We
then have by definition of xα that xα � xβ for all β ≤ α. By monotonicity of f , we further have
for all α′ < α,

f(xα) = f(inf{xβ | β < α}) � f(xα′) � xα′ .

Hence, f(xα) is a lower bound of {xβ | β < α}, and therefore f(xα) � inf{xβ | β < α} = xα � xβ
for all β ≤ α. Thus, the claim holds for all ordinals α.

Our claim and Lemma 2.9 applied to the poset (X ,�) yield that there exists an ordinal α̂
such that xα̂ = xα̂+1. This implies f(xα̂) = xα̂+1 = xα̂ � x0 = x.

We now use this lemma to prove composition-order invariance. For showing connection-order
invariance, we consider a system s and connecting interfaces i to o, and i′ to o′. For an input x
at the remaining interfaces, consider the function f : X 2 → X 2 that maps (x0, x1) to the outputs
of s at interfaces o and o′ on input x ∪

{(
i, x0

)
,
(
i′, x1

)}
. When we first connect i to o, and then

i′ to o′, the system algebra chooses fixed points xi and xi′ for the two connections, where (xi, xi′)
is a fixed point of f . We show that it is the least fixed point, and that the same is true for
connecting the interfaces in the other order, which implies that the two resulting systems are
equal.

Note that (xi, xi′) being the least fixed point of f is not trivial: We know by definition of the
connection operation that xi is the least fixed point of f(·, xi′)(0), but for some x1 ≺ xi′ , the
function f(·, x1)(0) could have a fixed point x0 ≺ xi such that (x0, x1) is a fixed point of f that
does not get chosen for the connections since x0 is not the least fixed point of f(·, x1)(0). Our
proof proceeds as follows: For the least fixed point

(
x̂0, x̂1

)
of f , we prove that x̂0 is the least

fixed point of f(·, x̂1)(0) by showing that if there were a fixed point less than x̂0, we could use
the lemma above to obtain a fixed point of f less than

(
x̂0, x̂1

)
. We then use this to conclude

that (xi, xi′) = (x̂0, x̂1).

Theorem 5.8. Let Λ be a set, let (X ,�) be a CPO and let (S, λ, ‖,Γ, γ) = F(M,Γ, φ) be the
Λ-system algebra of monotone systems over X , or let (X ,�) be an ω-CPO and let (S, λ, ‖,Γ, γ) =
F(N,Γ, φ) be the Λ-system algebra of continuous systems over X . If every nonempty chain in X
has an infimum, the system algebra is composition-order invariant.

23

Proof. Since the least fixed points are chosen, F(M,Γ, φ) and F(N,Γ, φ) have consistently chosen
fixed points. Hence, Lemma 4.5 implies that we only have to prove connection-order invariance.
Let I,O ⊆ Λ be finite disjoint sets and let s ∈ SI,O. Further let i, i′ ∈ I and o, o′ ∈ O be
distinct elements. We have to show that γ{i′,o′}

(
γ{i,o}(s)

)
= γ{i,o}

(
γ{i′,o′}(s)

)
. To this end, let

x ∈ X I\{i,i′}. By Definition 4.1, there exist xi, xi′ , x′i, x
′
i′ ∈ X such that

γ{i′,o′}
(
γ{i,o}(s)

)
(x) = s

(
x ∪

{(
i, xi

)
,
(
i′, xi′

)})
|O\{o,o′},

γ{i,o}
(
γ{i′,o′}(s)

)
(x) = s

(
x ∪

{(
i, x′i

)
,
(
i′, x′i′

)})
|O\{o,o′}.

Let f : X 2 → X 2 be the function with

f(x0, x1) =
(
s
(
x ∪

{(
i, x0

)
,
(
i′, x1

)})
(o), s

(
x ∪

{(
i, x0

)
,
(
i′, x1

)})
(o′)
)
.

We then have by definition of φ and γ that xi is the least fixed point of f(·, xi′)(0) and that x′i′
is the least fixed point of f(x′i, ·)(1). We further have that (xi, xi′) and (x′i, x

′
i′) are fixed points

of f . We will show that (xi, xi′) and (x′i, x
′
i′) are the least fixed point of f and therefore equal.

Note that if (X ,�) is a CPO or an ω-CPO, then (X 2,�) is a CPO or an ω-CPO, respectively.
Moreover, if s is monotone, so is f , and if s is ω-continuous, so is f ; in both cases, f is monotone
by Lemma 2.16. Hence, f has a least fixed point

(
x̂0, x̂1

)
by Theorem 2.13 and Theorem 2.17.

This implies that x̂0 is a fixed point of f(·, x̂1)(0). We claim that it is the least fixed point of
that function. Assume toward a contradiction that x̃0 ≺ x̂0 is the least fixed point of f(·, x̂1)(0).
We then have by monotonicity of f for some y1 ∈ X ,

(x̃0, y1) = f(x̃0, x̂1) � f(x̂0, x̂1) = (x̂0, x̂1).

Therefore, f(x̃0, x̂1) = (x̃0, y1) � (x̃0, x̂1). Thus, Lemma 5.7 implies that f has a fixed
point (x̄0, x̄1) � (x̃0, x̂1) ≺ (x̂0, x̂1), which contradicts (x̂0, x̂1) being the least fixed point
of f .

Since x̂0 is the least fixed point of f(·, x̂1)(0) and (x̂0, x̂1) is a fixed point of f , we have
x̂1 ∈ Φ

γ{i,o}(s)

i′,o′,x . We also have that xi′ is the least element of Φ
γ{i,o}(s)

i′,o′,x and x̂1 � xi′ . This
implies x̂1 = xi′ . As we have seen before, xi is the least fixed point of f(·, xi′)(0) and x̂0
is the least fixed point of f(·, x̂1)(0). Thus, xi = x̂0. An analogous argument shows that
(x′i, x

′
i′) = (x̂0, x̂1) = (xi, xi′). We therefore have γ{i′,o′}

(
γ{i,o}(s)

)
(x) = γ{i,o}

(
γ{i′,o′}(s)

)
(x).

5.4 Kahn Networks

Kahn networks [Kah74] are an instantiation of the system algebra of continuous systems. There,
the set X consists of sequences over some set of values V. The interpretation is that the
systems successively take inputs from V at each interface and produce outputs in V. An input
(v1, v2, v3) ∈ X to an interface then corresponds to the input history where v1 was input first,
then v2, and finally v3. Hence, in this model the order of inputs at each interface is relevant, but
the order of inputs at different interfaces is not modeled.

More formally, let V be some nonempty set of values, let

X :=
{

(vα)α∈β ∈ Vβ | β ≤ ω
}
,

and let v be the initial segment relation on X , i.e,(
v1α
)
α∈β1 v

(
v2α
)
α∈β2

:⇐⇒ β1 ≤ β2 ∧ ∀α ∈ β1
(
v1α = v2α

)
.

24

It is straightforward to verify that (X ,v) is a CPO: For a chain C ⊆ X , the supremum of C is
the sequence v in which for α ≤ ω, vα is defined if and only if there is a sequence v′ in C in
which v′α is defined, and in this case, vα = v′α. This is well-defined since all elements in C are
comparable and thus, if two sequences in C define v′α and ṽα, we have v′α = ṽα. One can therefore
consider the system algebra of continuous systems over X . Such systems correspond to Kahn
networks [Kah74]. By Theorem 5.8, the system algebra is composition-order invariant since every
chain also has an infimum (replace “there is a sequence in C” by “for all sequences in C” in the
argument for the supremum).

Example. As a simple example of a system in this model, consider the system s with input
interface i and output interfaces o1, o2 that forwards all inputs to both o1 and o2. Formally, the
system is described by the function s : X {i} → X {o1,o2} with

s(x)(o1) = s(x)(o2) = x(i).

This function is clearly ω-continuous and therefore s is a Kahn network. We can now connect
interfaces i and o1 to obtain the system γ{i,o1}(s) with no input interfaces and a single output
interface o2. To determine the output at that interface, we have to find the least fixed point of
the function xi 7→ s({(i, xi)})(o1) = xi. Since all x ∈ X are fixed points of this function, the least
fixed point is minX , i.e., the empty sequence. This also matches the intuition that γ{i,o1}(s)
should not output anything because every other output would have to be caused by itself.

Generalizations. Kahn only considered ω-continuous systems and argued that continuity in
contrast to monotonicity prevents a system from only outputting a value after receiving infinitely
many inputs [Kah74]. Note, however, that allowing all monotone systems also yields a valid
composition-order invariant system algebra.

Another generalization is to not only consider finite and infinite sequences, but also include
transfinite sequences of inputs and outputs. By doing so, one can model systems that output
something after infinitely many other outputs. This makes sense if one considers systems that can
produce infinitely many outputs in finite time. Conversely, one can also place a finite upper bound
on the number of inputs and outputs per interface, i.e., X :=

{
(vα)α∈β ∈ Vβ | β ≤ n

}
for some

n ∈ N. The special case n = 1 has been considered by Tackmann [Tac14]. Note, however, that it
is not possible in this model to allow arbitrarily many but only finitely many inputs and outputs,
because this does not yield an ω-CPO: The supremum of an ω-chain C0 v C1 v C2 v . . ., where
Cn contains n elements, is infinite.

6 The System Algebra of Causal Systems

6.1 Causal Systems

We now develop a system algebra where the inputs and outputs of systems are (partially) ordered,
i.e., a single input or output of a system is an element of some poset (P,�). An input or output
history at some interface is then a subset of P . We interpret p1 ≺ p2 as p2 could causally depend
on p1, but not vice versa. This can (but does not need to) mean that p1 occurred at an earlier
time than p2. For the ease of presentation, we will say that p1 is before p2 and p2 is after p1 if
p1 ≺ p2, keeping in mind that � does not necessarily correspond to a relation on time. As a

25

natural instantiation in which time is made explicit and ≺ does mean at an earlier time, consider
P = V × T for some set V and a poset (T ,≤) and let

(v1, t1) � (v2, t2) :⇐⇒ t1 < t2 ∨ (v1, t1) = (v2, t2). (2)

We can then interpret (v, t) as the value v being input or output at time t.
We again fix some arbitrary set Λ of interface labels and define a functional system algebra

where a system is a function that for each input interface takes an input history as an input
and outputs the output history for each output interface. That is, we define a functional system
algebra over X , where X consists of subsets of P . We only allow well-ordered subsets, which
means that at each input interface, if there are inputs, there is a first one, and one input is given
after another. Inputs at different interfaces (which can be connected to different systems) can
however be incomparable (e.g., occur at the same time). Only considering well-ordered inputs per
interface seems to be a reasonable restriction if systems in computer science are to be modeled,
because such systems are typically discrete and are started at some point, i.e., there is a first
output. This restriction is discussed further below. Formally, we define

X := {X ⊆ P | (X,�) is well-ordered}.

The systems we consider respect causality, i.e., an output can only depend on inputs that are
given before that output. We formalize this by requiring that for every change in the output
history, there is an earlier change in the input history.

Definition 6.1. For finite disjoint I,O ⊆ Λ, a causal (I,O)-system over X is a function
s : X I → XO such that

∀X,X′ ∈ X I ∀o ∈ O ∀y ∈
(
s(X)(o)4 s(X′)(o)

)
∃i ∈ I ∃x ∈

(
X(i)4X′(i)

)
x ≺ y.

We denote the set of causal (I,O)-systems over X by CI,O.

As we show in Appendix A, our definition corresponds to a generalization of strict causality
as considered by Matsikoudis and Lee [ML15] to systems with several interfaces.

We define the relation v on X such that X1 v X2 if X1 is an initial segment of X2, i.e., X2

contains all elements from X1 and all additional elements are greater than all elements in X1:

X1 v X2 :⇐⇒ X1 ⊆ X2 ∧ ∀x1 ∈ X1 ∀x2 ∈ X2 \X1 (x1 ≺ x2).

It is easy to verify that (X ,v) is a poset.

Examples and comparison to Kahn networks. In this paragraph, we consider the intuitive
special case P = V ×R with the partial order as defined in (2). In contrast to Kahn networks,
causal systems for this choice of P directly allow modeling systems that produce outputs
depending on the precise time of the inputs. As we will see below, there are also more subtle
differences.

If we ignore the concrete times and only keep the order of the elements in an input or output
X ∈ X , we obtain a sequence of values in V, i.e., an element of the domain of Kahn networks.
Moreover, the relation v on X then corresponds to the relation v on sequences we defined for

26

Kahn networks. However, causality does not imply that the function is monotone with respect
to v. To see this, consider the function s : X {i} → X {o} with

s(X)(o) =

{
{(1, 1)}, (1, 0) ∈ X(i),

{(0, 1)}, (1, 0) /∈ X(i).

This function corresponds to a system with one input interface i and one output interface o
that outputs at time 1 a bit indicating whether 1 has been input at time 0. This is a causal
system with respect to Definition 6.1 because outputs can only change at time 1, and if they do,
the inputs must have changed at time 0, which is before time 1. On the other hand, s is not
monotone with respect to v: We have ∅ v {(1, 0)}, but on input ∅, the system outputs {(0, 1)},
and on input {(1, 0)}, the system outputs {(1, 1)}, where {(0, 1)} 6v {(1, 1)}.

Note that our definition of causality requires that for every change in the outputs, there is a
change in the inputs strictly before that. Including systems that produce outputs without any
delay makes it impossible to allow arbitrary connections: Consider a system that at one interface
takes as input a bit b and outputs 1− b at another interface at the same time, and outputs there
the bit 0 at time 1 if no inputs are given at that time. If we now connect these two interfaces,
one cannot consistently assign a value to that interface.

This restriction means in particular that the function X {i} → X {o1,o2} that maps the input
to itself at both output interface is not a causal system, because changing an input at some
point in time results in a change of the outputs at the same time. To model a causal system that
corresponds to the Kahn network we gave as an example in Section 5.4, which forwards all inputs
to both output interfaces, we therefore need to add some delay to the inputs. For the sake of
simplicity, we here add a fixed delay δ > 0 to all inputs. We obtain the function s : X {i} → X {o1,o2}
with

s(X)(o1) = s(X)(o2) = {(v, t+ δ) | (v, t) ∈ X(i)}.

One can easily verify that this function does satisfy Definition 6.1. For connecting interfaces i and
o1, ∅ is the unique fixed point: It clearly is a fixed point, and there is no other fixed point since if
there is some input, the output is delayed by δ and hence different from the input. Therefore, the
resulting system produces no output, which is consistent with our analysis of the corresponding
Kahn network. Note, however, that in contrast to the Kahn network, we here have a unique
fixed point, so the output ∅ is not only intuitive, but also formally the only option. We show in
Section 6.2 that causality always guarantees unique fixed points.

On the restriction to well-ordered subsets. One cannot in general define a consistent
system algebra of causal systems for X = P(P). To see this, let P = Q and let � be the
usual order on Q. For this poset, an output t ∈ Q can be interpreted as an output from a
unary set at time t. Consider a system s with input interface i and output interfaces o and
o′ that for all n ∈ N \ {0} generates an output at time 1/n at both output interfaces if and
only if it did not receive an input before time 1/n. Formally, s({(i,X)}) = {(o, Y), (o′, Y)} with
Y = {1/n | n ∈ N \ {0}∧ ∀t ∈ X (t ≥ 1/n)}. This system clearly respects causality, but, e.g., for
X = ∅, the output is not well-ordered because for each output, there is another output before.
When we connect interfaces i and o, the resulting system does not have a well-defined behavior:
If it outputs something at time 1/n at interface o′, it did not receive any input before, i.e., it
did not output anything at interface o before. In particular, it did not output anything before
time 1/2n. But then, it would output something at time 1/2n, a contradiction. Hence, the

27

system cannot output anything at all. But then, it would output something at time 1, also a
contradiction.

This example shows that we at least have to exclude infinite descending chains, i.e., X
can only contain subsets of P on which the ordering is well-founded. This is implied by only
considering well-ordered subsets as we do. One could generalize X to include non-well-ordered
sets that contain no infinite descending chains, as done by Matsikoudis and Lee [ML15]. A
nonempty subset of such sets contains minimal elements, but not necessarily a unique minimum,
allowing for incomparable or concurrent inputs and outputs. Since our systems, in contrast to
the functions considered by Matsikoudis and Lee, can have multiple interfaces, we do not lose
much generality by restricting ourselves to well-ordered sets: At different interfaces, we can still
have inputs or outputs at incomparable or equal times. We also find it natural to have several
interfaces for potentially simultaneous inputs or outputs because this makes the assumptions
on the concurrency explicit. Moreover, well-ordered sets are easier to handle and allow more
intuitive proofs.

6.2 Fixed Points of Causal Functions

To define interface connection for causal systems, we need to prove a result about fixed points.
We show that causal functions, which correspond to a single-interface variant of Definition 6.1,
have a unique fixed point. We also show how this fixed point can be obtained, i.e., we provide
a constructive proof. A similar result was proven non-constructively by Naundorf [Nau00];
Matsikoudis and Lee have provided a constructive proof of a related result [ML15]. However, we
find that our construction is simpler and better applicable in our setting.

The intuition is similar to that of other constructive fixed point theorems: Start with X0 = ∅
and then apply the function f over and over again until a fixed point is reached. In contrast to
monotone functions (see Theorem 2.13 and Theorem 2.17), simply setting Xα+1 = f(Xα) does
not work because an input can prevent future outputs; consider for example a function f that on
input ∅ outputs {x0, x1} with x0 ≺ x1, and on input {x0} outputs {x0}. This does not contradict
causality but the fixed point {x0} is not reached if we set Xα+1 = f(Xα) and f({x0, x1}) 6= {x0}.
We therefore only add the least new element in f(Xα) to Xα to obtain Xα+1. This means for
the example above that X1 = X0 ∪ {min(f(X0) \X0)} = {x0}. For nonzero limit ordinals α, we
set Xα =

⋃
β<αXβ .

Theorem 6.2. Let X be as above and f : X → X such that

∀X,X ′ ∈ X ∀y ∈
(
f(X)4 f

(
X ′
))
∃x ∈

(
X 4X ′

)
x ≺ y. (3)

Then, f has a unique fixed point. This fixed point equals Xα̂ for some ordinal α̂, where

X0 = ∅,

for any ordinal α, Xα+1 =

{
Xα, f(Xα) \Xα = ∅,
Xα ∪ {min(f(Xα) \Xα)}, otherwise,

and for nonzero limit ordinals α, Xα =
⋃
β<α

Xβ.

Proof. Note that Xα+1 is well-defined if Xα is well-ordered, which is implied by the following
claim.

28

Claim 1. For all ordinals α, Xα is well-ordered, we have Xβ v Xα for all β ≤ α, and

∀x1 ∈ Xα ∀x2 ∈ f(Xα) \Xα (x1 ≺ x2).

Proof of claim. The proof is by transfinite induction over α.

(i) For α = 0, there is nothing to show since Xα = ∅.

(ii) Assume the claim holds for some ordinal α. If Xα+1 = Xα, the claim also holds for
α+ 1. Otherwise, Xα+1 = Xα ∪ {min(f(Xα) \Xα)}. To see that Xα+1 is well-ordered, let
S ⊆ Xα+1, S 6= ∅. If S ∩Xα = ∅, S contains only one element, which is then the least
element. Otherwise, the least element of S is min(S∩Xα) because Xα+1 \Xα only contains
the element min(f(Xα) \Xα), and since the claim holds for α, this element is greater than
all elements in Xα.

Since the claim holds for α, we have ∀x1 ∈ Xα ∀x2 ∈ f(Xα) \Xα (x1 ≺ x2). This implies
Xα v Xα+1. Since Xβ v Xα for all β ≤ α, we also have Xβ v Xα+1 for all β ≤ α+ 1.

Let x1 ∈ Xα+1 and x2 ∈ f(Xα+1) \ Xα+1. We then have x1 � min(f(Xα) \ Xα). If
x2 ∈ f(Xα), then x2 ∈ (f(Xα) \ Xα) \ {min(f(Xα) \ Xα)}; hence, x1 ≺ x2. Otherwise,
x2 ∈ f(Xα+1) \ f(Xα). By (3), we then have min(f(Xα) \ Xα) ≺ x2, and since x1 �
min(f(Xα) \Xα), we also have x1 ≺ x2. Thus, the claim holds for α+ 1.

(iii) Now let α be a nonzero limit ordinal and assume the claim holds for all β < α. To show
that Xα is well-ordered, let S ⊆ Xα, S 6= ∅. Let β be the least ordinal such that S∩Xβ 6= ∅.
By definition of Xα, we have β < α and therefore, s := min(S ∩Xβ) exists. To see that s
is the least element of S, let x ∈ S \Xβ. Then, x ∈ Xγ for some γ with β < γ < α. This
implies Xβ v Xγ , and therefore s ≺ x. Hence, Xα is well-ordered.

To show that Xβ v Xα for all β ≤ α, note that Xβ ⊆ Xα and let x1 ∈ Xβ, x2 ∈ Xα \Xβ.
Then, there exists some ordinal γ such that x2 ∈ Xγ \Xβ and β < γ < α. Because we
assume that the claim holds for all ordinals less than α, we obtain Xβ v Xγ . Hence,
x1 ≺ x2 and thus Xβ v Xα.

Let x1 ∈ Xα and x2 ∈ f(Xα) \Xα. By definition of Xα, there exists some β < α such that
x1 ∈ Xβ . As shown above, we have Xβ v Xα. Therefore, x2 ∈ f(Xα) \Xβ . If x2 ∈ f(Xβ),
we have x1 ≺ x2 since x2 ∈ f(Xβ) \Xβ and the claim holds for β. Otherwise, we have
x2 ∈ f(Xα) \ f(Xβ). By (3), this implies min(Xα \Xβ) ≺ x2. Because x1 ∈ Xβ v Xα, we
conclude x1 ≺ min(Xα \Xβ) ≺ x2. Altogether, the claim holds for Xα.

By Theorem 2.8, the claim holds for all ordinals α. ♦

We now have by Claim 1 and Lemma 2.9 that there exists an ordinal α̂ such that Xα̂ = Xα̂+1.
Therefore, f(Xα̂)\Xα̂ = ∅. To conclude that Xα̂ is a fixed point of f , we show that Xα̂ ⊆ f(Xα̂),
and hence f(Xα̂) = Xα̂.

Claim 2. For all ordinals α, Xα ⊆ f(Xα).

Proof of claim. We prove the claim by transfinite induction over α.

(i) For α = 0, the claim trivially holds.

29

(ii) Assume the claim holds for some ordinal α and let x ∈ Xα+1. Then, x ∈ f(Xα) because
either x ∈ Xα ⊆ f(Xα) or x = min(f(Xα) \Xα) ∈ f(Xα). Assume toward a contradiction
that x /∈ f(Xα+1). We then have x ∈ f(Xα) \ f(Xα+1). By (3) and the definition of Xα+1,
this implies min(f(Xα) \Xα) ≺ x. Since x ∈ Xα+1, we either have x = min(f(Xα) \Xα)
or x ∈ Xα and therefore x ≺ min(f(Xα) \ Xα) by Claim 1. In both cases, we obtain
x � min(f(Xα) \Xα) ≺ x, a contradiction. Hence, x ∈ f(Xα+1).

(iii) Let α be a nonzero limit ordinal and assume Xβ ⊆ f(Xβ) for all β < α. Let x ∈ Xα.
Then, x ∈ Xβ ⊆ f(Xβ) for some β < α. By Claim 1, we have Xβ v Xα. Assume toward
a contradiction that x /∈ f(Xα). Then, (3) implies min(Xα \ Xβ) ≺ x. However, since
x ∈ Xβ v Xα, we also have x ≺ min(Xα \Xβ), a contradiction. Thus, Xα ⊆ f(Xα). ♦

To prove uniqueness, let Y1 and Y2 be fixed points of f . If Y1 6= Y2, we can assume without
loss of generality that Y1 \ Y2 6= ∅ and

∀y ∈ Y2 \ Y1
(
y 6≺ min(Y1 \ Y2)

)
(4)

(otherwise, swap the roles of Y1 and Y2). Since min(Y1 \ Y2) ∈ Y1 \ Y2 = f(Y1) \ f(Y2), we have
by (3) that there exists some y ∈ Y1 4 Y2 such that y ≺ min(Y1 \ Y2). Then, y ∈ Y1 \ Y2 implies
y ≺ y, and y ∈ Y2 \ Y1 contradicts (4). Therefore, we must have Y1 = Y2. This concludes the
proof.

While for some functions, α̂ will be a small finite number, using ordinals beyond ω cannot be
avoided in general. To illustrate this, and to show that the iteration can still be carried out in
this case, consider the following example. Again let P = Q and let � be the usual order on Q.
Let f be the function that on the empty input outputs N, and for each input x ∈ Q, additionally
outputs (x+ bx+ 1c)/2 � x. That is

f(X) = N ∪ {(x+ bx+ 1c)/2 | x ∈ X}.

We then have

X0 = ∅, X1 =
{

min f(∅)
}

= {0}, X2 =
{

0, 12
}
, X3 =

{
0, 12 ,

3
4

}
, . . . , Xn =

{
0, 12 , . . . ,

2n−1−1
2n−1

}
, . . .

Taking the first limit, we obtain Xω =
⋃
β<ωXβ =

{
2n−1
2n

∣∣ n ∈ N}. We then continue as before:

Xω+1 = Xω ∪ {1}, Xω+2 = Xω ∪ {1, 1 + 1
2}, . . . , Xω+n = Xω ∪

{
1, 1 + 1

2 , . . . , 1 + 2n−1−1
2n−1

}
, . . .

For the next limit we have Xω+ω = Xω·2 =
{
m + 2n−1

2n

∣∣ m ∈ {0, 1}, n ∈ N}. Continuing this
process, we arrive at

Xω·ω =
{
m+ 2n−1

2n

∣∣ m,n ∈ N}.
It is easy to see that Xω·ω is a fixed point of f and therefore α̂ = ω · ω.

If we again interpret an output t ∈ Q as an output from a unary set at time t, the system
corresponding to the function f after connecting interfaces generates infinitely many outputs in a
finite time. This is often called Zeno behavior, named after Zeno’s paradoxes. Such behavior can
be avoided by requiring delta causality instead of just causality, which places a lower bound δ on
the reaction time of a system [LS98; ML15]. While this seems to be a reasonable restriction in
practice, it makes the definitions more cumbersome. Also, the system described above does have
a well-defined behavior, and the fixed point is what one expects. Having less restrictions on the
type of system can also improve mathematical convenience when modeling systems.

30

6.3 Defining the System Algebra

We can apply Theorem 6.2 to show that causal systems have a unique fixed point for arbitrary
interface connections.

Corollary 6.3. Let I,O ⊆ Λ be finite disjoint sets, let s ∈ CI,O, and let i ∈ I, o ∈ O. Then,
for all X ∈ X I\{i}, there exists a unique Xi ∈ X such that s

(
X ∪ {(i,Xi)}

)
(o) = Xi.

Proof. For X ∈ X I\{i}, let f : X → X , X 7→ s(X ∪ {(i,X)})(o) and note that the fixed points
of f precisely correspond to the values Xi ∈ X such that s

(
X∪{(i,Xi)}

)
(o) = Xi. It is therefore

sufficient to show that f has a unique fixed point. To verify that f satisfies the condition of
Theorem 6.2, let X,X ′ ∈ X and let y ∈

(
f(X)4 f(X ′)

)
. Then, y ∈

(
s(X∪{(i,X)})(o)4 s(X∪

{(i,X ′)})(o)
)
. We therefore have by Definition 6.1 that there exists x ∈ X4X ′ such that x ≺ y.

Hence, Theorem 6.2 implies that f has a unique fixed point.

Definition 6.4. We define F(C,Γ, φ), the Λ-system algebra of causal systems over X , as follows:
For s ∈ CI,O, Γ(s) :=

{
{i, o} | i ∈ I, o ∈ O

}
and φsi,o(X) is the unique element of Φs

i,o,X for all
i ∈ I, o ∈ O, and X ∈ X I\{i}.

To show that causal systems form a functional system algebra, we have to prove that
connecting interfaces of a causal system again yields a causal system. To this end, we first show
that changing an input X can only change the fixed point after that change in X.

Lemma 6.5. Let I,O ⊆ Λ be finite disjoint sets, let s ∈ CI,O, and let i ∈ I, o ∈ O. Further let
X,X′ ∈ X I\{i}. We then have

∀y ∈ φsi,o(X)4 φsi,o(X
′) ∃i′ ∈ I \ {i} ∃x ∈ X(i′)4X′(i′) (x ≺ y).

Proof. Let

E :=
{
y ∈ φsi,o(X)4 φsi,o(X

′) | ∀i′ ∈ I \ {i} ∀x ∈ X(i′)4X′(i′) (x 6≺ y)
}

and assume toward a contradiction that E 6= ∅. Then, there exists y0 ∈ E such that ∀y ∈
E (y 6≺ y0) because φsi,o(X) and φsi,o(X

′) are well-ordered and E ⊆ φsi,o(X) ∪ φsi,o(X′). Since
φsi,o(X) = s

(
X∪{(i, φsi,o(X))}

)
(o) and φsi,o(X

′) = s
(
X′∪{(i, φsi,o(X′))}

)
(o), Definition 6.1 implies

that there exists i′ ∈ I and x ∈
(
X ∪ {(i, φsi,o(X))}

)
(i′)4

(
X′ ∪ {(i, φsi,o(X′))}

)
(i′) such that

x ≺ y0. Because y0 ∈ E, we have i′ = i, i.e., x ∈ φsi,o(X)4 φsi,o(X
′). We further have x /∈ E

since x ≺ y0 and ∀y ∈ E (y 6≺ y0). Thus, there exist i′′ ∈ I \ {i} and x′ ∈ X(i′′)4X′(i′′) such
that x′ ≺ x. This implies x′ ≺ y0, contradicting y0 ∈ E. Hence, we have E = ∅.

Theorem 6.6. (C, λ, ‖,Γ, γ) = F(C,Γ, φ) is a composition-order invariant functional Λ-system
algebra over X .

Proof. Note that C is closed under parallel composition since the causality condition in Defi-
nition 6.1 is placed on each output interface separately. To show that C is also closed under
connecting interfaces, let I,O ⊆ Λ be finite disjoint sets, let s ∈ CI,O, i ∈ I, and let o ∈ O.
Further let X,X′ ∈ X I\{i}, o′ ∈ O \ {o}, and y ∈

(
γ{i,o}(s)(X)(o′) 4 γ{i,o}(s)(X

′)(o′)
)
. We

have to show that ∃i′ ∈ I \ {i} ∃x ∈ (X(i′)4X′(i′)) x ≺ y. By the definition of γ{i,o}(s) and
Definition 6.1, we have

∃i′ ∈ I ∃x ∈
(
(X ∪ {(i, φsi,o(X))})(i′)4 (X′ ∪ {(i, φsi,o(X′))})(i′)

)
x ≺ y.

31

If i′ 6= i, we are done. Otherwise, let x ∈ φsi,o(X)4 φsi,o(X
′) such that x ≺ y. Lemma 6.5 then

implies that ∃i′′ ∈ I \ {i} ∃x′ ∈
(
X(i′′)4X′(i′′)

)
x′ ≺ x ≺ y. Hence, we have γ{i,o}(s) ∈ C. This

shows that F(C,Γ, φ) is a functional system algebra. Using Corollary 6.3 and Theorem 4.6, we
conclude that it is composition-order invariant.

7 Conclusion and Future Work

We have introduced the concept of a system algebra, which captures the composition of systems
as algebraic operations, and identified composition-order invariance as an important property of
a system algebra. We have then introduced functional system algebras, which consist of systems
that correspond to functions mapping inputs to outputs. As instantiations of functional system
algebras, we have considered monotone and continuous systems, where Kahn networks are an
important special case of them. We have shown their composition-order invariance, providing
further insights into these well-studied systems. We have finally introduced the system algebra
of causal systems, which allows to model systems that depend on time.

Future work includes using the system algebra of causal systems to analyze protocols that
deal with time such as clock synchronization protocols. We are further developing a theory of
probabilistic system algebras that can be used to describe and study cryptographic protocols.

Acknowledgments. Ueli Maurer was supported by the Swiss National Science Foundation
(SNF), project No. 200020-132794. Christopher Portmann and Renato Renner are supported by
the European Commission FP7 Project RAQUEL (grant No. 323970), US Air Force Office of
Scientific Research (AFOSR) via grant FA9550-16-1-0245, the Swiss National Science Foundation
(via the National Centre of Competence in Research ‘Quantum Science and Technology’), and
the European Research Council – ERC (grant No. 258932). Björn Tackmann was supported by
the Swiss National Science Foundation (SNF) via Fellowship No. P2EZP2_155566 and in part
by the NSF grants CNS-1228890 and CNS-1116800.

A Comparison with Strict Causality by Matsikoudis and Lee

We show below that the definition of strict causality by Matsikoudis and Lee [ML15] and our
definition of causality are equivalent up to syntactical differences for functions that are compatible
with both formalisms. Beforehand, we recall the relevant definitions from [ML15]. The domains of
the functions considered there consist of so-called signals. A signal is a partial function σ : T̃ → V ,
for some poset (T̃ ,�) and some set V [ML15, Definition 2.2]. We denote the set of all signals
by Σ. Strict causality is then defined as follows.

Definition A.1. Let F : Σ → Σ be a partial function. Then, F is strictly causal if there is a
partial function f : Σ× T̃ → Σ such that for all σ in the domain of F and for all τ ∈ T̃ ,

F (σ)(τ) = f
(
σ|{τ ′∈T̃ |τ ′≺τ}, τ

)
,

where equality here means that either both terms are undefined, or they are both defined and
equal.

To be compatible with these definitions, we only consider the special case of our system
algebra where X = {X ⊆ P | (X,�) is well-ordered} for a poset (P,�) with P = V × T for

32

some set V and a poset (T ,≤), and (v1, t1) � (v2, t2) if and only if t1 < t2 or (v1, t1) = (v2, t2).
Let Λ be a set and consider the poset

(
T̃ ,�

)
, where T̃ := Λ × T and (i1, t1) � (i2, t2) if and

only if t1 < t2 or (i1, t1) = (i2, t2). This means that, intuitively, the interface identifier i ∈ Λ in
our model becomes part of the “time” τ ∈ T̃ during the translation to the model of [ML15]. For
I ⊆ Λ, a tuple X ∈ X I can then be viewed as a signal via the injection

ϕI : X I → Σ, X 7→
{(

(i, t), v
)
∈ (I × T)× V | i ∈ I ∧ (v, t) ∈ X(i)

}
.

Note that ϕI(X) is indeed a partial function T̃ → V because for each (i, t) ∈ I × T , there is at
most one v ∈ V such that (v, t) ∈ X(i) since X(i) is well-ordered.

The following lemma shows that the Definitions 6.1 and A.1 are essentially equivalent for the
functions considered here.

Lemma A.2. Let I and O be finite disjoint sets and let s : X I → XO. Then, s is a causal
(I,O)-system over X in the sense of Definition 6.1 if and only if ϕO ◦ s ◦ ϕ−1I is strictly causal
in the sense of Definition A.1.10

Proof. First assume that s is a causal (I,O)-system over X and consider the partial func-
tion f : Σ× T → Σ defined by

f(σ, τ) := ϕO ◦ s ◦ ϕ−1I (σ)(τ).

Now let σ ∈ Σ and X ∈ X I such that ϕI(X) = σ. Further let τ = (o, t) ∈ O × T . We then have
by Definition 6.1 for X′ := ϕ−1I

(
σ|{τ ′∈T̃ |τ ′≺τ}

)
,

∀y ∈
(
s(X)(o)4 s(X′)(o)

)
∃i ∈ I ∃x ∈

(
X(i)4X′(i)

)
x ≺ y.

By definition of X′, there are no i ∈ I and (v′, t′) ∈
(
X(i)4X′(i)

)
with t′ < t. This implies that

there is no v ∈ V with (v, t) ∈
(
s(X)(o)4 s(X′)(o)

)
, and therefore

ϕO ◦ s ◦ ϕ−1I (σ)(τ) = ϕO ◦ s(X)(τ) = ϕO ◦ s(X′)(τ) = ϕO ◦ s ◦ ϕ−1I
(
σ|{τ ′∈T̃ |τ ′≺τ}

)
(τ)

= f
(
σ|{τ ′∈T̃ |τ ′≺τ}, τ

)
.

Hence, ϕO ◦ s ◦ ϕ−1I is strictly causal.
To prove the opposite direction, assume ϕO ◦ s ◦ ϕ−1I is strictly causal and let f : Σ× T → Σ

be a partial function such that for all σ in the domain of ϕO ◦ s ◦ ϕ−1I and for all τ ∈ T̃ , we
have ϕO ◦ s ◦ ϕ−1I (σ)(τ) = f

(
σ|{τ ′∈T̃ |τ ′≺τ}, τ

)
. Now let X,X′ ∈ X I , o ∈ O, and (v, t) = y ∈(

s(X)(o)4 s(X′)(o)
)
. We then have ϕO(s(X))(o, t) 6= ϕO(s(X′))(o, t) and thus for τ := (o, t),

f
(
ϕI(X)|{τ ′∈T̃ |τ ′≺τ}, τ

)
= ϕO ◦ s(X)(τ) 6= ϕO ◦ s(X′)(τ) = f

(
ϕI(X

′)|{τ ′∈T̃ |τ ′≺τ}, τ
)
.

Hence, ϕI(X)|{τ ′∈T̃ |τ ′≺τ} 6= ϕI(X
′)|{τ ′∈T̃ |τ ′≺τ}. Therefore, there exist i ∈ I and x ∈

(
X(i)4

X′(i)
)
with x ≺ y. This shows that s satisfies Definition 6.1 and concludes the proof.

Note that for all finite I ⊆ Λ and for all X ∈ X I , the relation ≺ is well-founded on the
domain of ϕI(X): If it contained an infinite descending chain, then there would also be an infinite
descending chain in X(i) for some i ∈ I (since I is finite), contradicting that X(i) is well-ordered.
Thus, [ML15, Theorem 4.10] can be applied, which together with Lemma A.2 implies that for all
causal (I,O)-systems s over X , the partial function ϕO ◦ s ◦ ϕ−1I is strictly contracting. Hence,
all results in [ML15] about strictly contracting partial functions can be used.

10The domain of ϕO ◦ s ◦ ϕ−1
I is the set of all σ ∈ Σ such that there exists X ∈ X I with ϕI(X) = σ.

33

References

[AD94] R. Alur and D. Dill, “A theory of timed automata”, Theoretical Computer Science,
vol. 126, no. 2, pp. 183–235, 1994. doi: 10.1016/0304-3975(94)90010-8.

[BBR09] J. C. M. Baeten, T. Basten, and M. A. Reniers, Process Algebra: Equational Theories
of Communicating Processes. Cambridge University Press, 2009, Cambridge Books
Online. doi: 10.1017/CBO9781139195003.

[Can01] R. Canetti, “Universally composable security: A new paradigm for cryptographic
protocols”, in Foundations of Computer Science, 2001. Proceedings. 42nd IEEE
Symposium on, Oct. 2001, pp. 136–145. doi: 10.1109/SFCS.2001.959888.

[CLL+06] A. Cataldo, E. Lee, X. Liu, E. D. Matsikoudis, and H. Zheng, “A constructive
fixed-point theorem and the feedback semantics of timed systems”, in Discrete
Event Systems, 2006 8th International Workshop on, Jul. 2006, pp. 27–32. doi:
10.1109/WODES.2006.1678403.

[DP02] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Second.
Cambridge University Press, 2002. doi: 10.1017/CBO9780511809088.

[dAH01a] L. de Alfaro and T. A. Henzinger, “Interface automata”, in Proceedings of the 8th
European Software Engineering Conference Held Jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser. ESEC/FSE-
9, Vienna, Austria: ACM, 2001, pp. 109–120. doi: 10.1145/503209.503226.

[dAH01b] ——, “Interface theories for component-based design”, in Embedded Software: First
International Workshop, EMSOFT 2001 Tahoe City, CA, USA, October 8–10, 2001
Proceedings, T. A. Henzinger and C. M. Kirsch, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2001, pp. 148–165. doi: 10.1007/3-540-45449-7_11.

[Ési09] Z. Ésik, “Fixed point theory”, in Handbook of Weighted Automata, M. Droste, W.
Kuich, and H. Vogler, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 29–65. doi: 10.1007/978-3-642-01492-5_2.

[FLM86] M. J. Fischer, N. A. Lynch, and M. Merritt, “Easy impossibility proofs for distributed
consensus problems”, Distributed Computing, vol. 1, no. 1, pp. 26–39, 1986. doi:
10.1007/BF01843568.

[Gol01] O. Goldreich, Foundations of Cryptography: Basic Tools. Cambridge University
Press, 2001, vol. 1. doi: 10.1017/CBO9780511546891.

[GD03] A. Granas and J. Dugundji, Fixed Point Theory. Springer New York, 2003. doi:
10.1007/978-0-387-21593-8.

[Hal12] L. J. Halbeisen, Combinatorial Set Theory: With a Gentle Introduction to Forcing,
ser. Springer Monographs in Mathematics. Springer London, 2012. doi: 10.1007/
978-1-4471-2173-2.

[Har13] L. Hardy, “On the theory of composition in physics”, in Computation, Logic, Games,
and Quantum Foundations. The Many Facets of Samson Abramsky: Essays Dedicated
to Samson Abramsky on the Occasion of His 60th Birthday, B. Coecke, L. Ong,
and P. Panangaden, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 83–106. doi: 10.1007/978-3-642-38164-5_7.

34

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1017/CBO9781139195003
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/WODES.2006.1678403
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1145/503209.503226
https://doi.org/10.1007/3-540-45449-7_11
https://doi.org/10.1007/978-3-642-01492-5_2
https://doi.org/10.1007/BF01843568
https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1007/978-0-387-21593-8
https://doi.org/10.1007/978-1-4471-2173-2
https://doi.org/10.1007/978-1-4471-2173-2
https://doi.org/10.1007/978-3-642-38164-5_7

[Hoa78] C. A. R. Hoare, “Communicating sequential processes”, Commun. ACM, vol. 21,
no. 8, pp. 666–677, Aug. 1978. doi: 10.1145/359576.359585.

[Jec03] T. Jech, Set Theory, Third Millennium, ser. Springer Monographs in Mathematics.
Springer Berlin Heidelberg, 2003. doi: 10.1007/3-540-44761-X.

[Joh87] P. T. Johnstone, Notes on Logic and Set Theory. Cambridge University Press, 1987.
doi: 10.1017/CBO9781139172066.

[Kah74] G. Kahn, “The semantics of a simple language for parallel programming”, in
Information Processing 74, J. L. Rosenfeld, Ed., North-Holland, 1974, pp. 471–475.

[KLSV10] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, “The theory of timed I/O
automata, second edition”, Synthesis Lectures on Distributed Computing Theory,
vol. 1, no. 1, pp. 1–137, 2010. doi: 10.2200/S00310ED1V01Y201011DCT005.

[LSP82] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem”, ACM
Transactions on Programming Languages and Systems, vol. 4, no. 3, pp. 382–401,
Jul. 1982. doi: 10.1145/357172.357176.

[LNS82] J.-L. Lassez, V. L. Nguyen, and E. A. Sonenberg, “Fixed point theorems and
semantics: A folk tale”, Information Processing Letters, vol. 14, no. 3, pp. 112–116,
May 1982. doi: 10.1016/0020-0190(82)90065-5.

[LP95] E. A. Lee and T. M. Parks, “Dataflow process networks”, Proceedings of the IEEE,
vol. 83, no. 5, pp. 773–801, May 1995. doi: 10.1109/5.381846.

[LS98] E. A. Lee and A. Sangiovanni-Vincentelli, “A framework for comparing models of
computation”, IEEE Transactions on Computer-Aided Design or Integrated Circuits
and Systems, vol. 17, no. 12, pp. 1217–1229, Dec. 1998. doi: 10.1109/43.736561.

[LT89] N. A. Lynch and M. R. Tuttle, “An introduction to input/output automata”, CWI
Quaterly, vol. 2, no. 3, pp. 219–246, Sep. 1989.

[Mar76] G. Markowsky, “Chain-complete posets and directed sets with applications”, algebra
universalis, vol. 6, no. 1, pp. 53–68, Dec. 1976. doi: 10.1007/BF02485815.

[ML15] E. Matsikoudis and E. A. Lee, “The fixed-point theory of strictly causal functions”,
Theoretical Computer Science, vol. 574, pp. 39–77, 2015. doi: 10.1016/j.tcs.2015.
01.036.

[Mau12] U. Maurer, “Constructive cryptography – a new paradigm for security definitions
and proofs”, in Theory of Security and Applications: Joint Workshop, TOSCA 2011,
Saarbrücken, Germany, March 31 - April 1, 2011, Revised Selected Papers, S. Möder-
sheim and C. Palamidessi, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 33–56. doi: 10.1007/978-3-642-27375-9_3.

[MR11] U. Maurer and R. Renner, “Abstract cryptography”, in The Second Symposium on
Innovations in Computer Science, ICS 2011, B. Chazelle, Ed., Tsinghua University
Press, Jan. 2011, pp. 1–21.

[MT13] D. Micciancio and S. Tessaro, “An equational approach to secure multi-party
computation”, in The Fourth Symposium on Innovations in Theoretical Computer
Science, ITCS 2013, R. Kleinberg, Ed., ACM Press, Jan. 2013, pp. 355–372. doi:
10.1145/2422436.2422478.

35

https://doi.org/10.1145/359576.359585
https://doi.org/10.1007/3-540-44761-X
https://doi.org/10.1017/CBO9781139172066
https://doi.org/10.2200/S00310ED1V01Y201011DCT005
https://doi.org/10.1145/357172.357176
https://doi.org/10.1016/0020-0190(82)90065-5
https://doi.org/10.1109/5.381846
https://doi.org/10.1109/43.736561
https://doi.org/10.1007/BF02485815
https://doi.org/10.1016/j.tcs.2015.01.036
https://doi.org/10.1016/j.tcs.2015.01.036
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1145/2422436.2422478

[Mil73] R. Milner, “Models for LCF”, Stanford Artificial Intelligence Laboratory, Tech. Rep.
STAN-CS-73-332, Jan. 1973, pp. 1–10.

[Mil79] ——, “Flowgraphs and flow algebras”, J. ACM, vol. 26, no. 4, pp. 794–818, Oct.
1979. doi: 10.1145/322154.322167.

[Mil80] ——, A Calculus of Communicating Systems. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1980. doi: 10.1007/3-540-10235-3.

[Nau00] H. Naundorf, “Strictly causal functions have a unique fixed point”, Theoretical
Computer Science, vol. 238, no. 1–2, pp. 483–488, 2000. doi: 10.1016/S0304-
3975(99)00165-6.

[PSL80] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence of
faults”, J. ACM, vol. 27, no. 2, pp. 228–234, Apr. 1980. doi: 10.1145/322186.
322188.

[PMM+17] C. Portmann, C. Matt, U. Maurer, R. Renner, and B. Tackmann, “Causal boxes:
Quantum information-processing systems closed under composition”, IEEE Trans-
actions on Information Theory, vol. 63, no. 5, pp. 3277–3305, May 2017. doi:
10.1109/TIT.2017.2676805.

[Pra85] V. Pratt, “The pomset model of parallel processes: Unifying the temporal and the
spatial”, in Seminar on Concurrency, S. D. Brookes, A. W. Roscoe, and G. Winskel,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 1985, pp. 180–196.

[Pra86] ——, “Modeling concurrency with partial orders”, International Journal of Parallel
Programming, vol. 15, no. 1, pp. 33–71, Feb. 1986. doi: 10.1007/BF01379149.

[Sco70] D. Scott, “Outline of a mathematical theory of computation”, in 4th Annual Prince-
ton Conference on Information Sciences and Systems, 1970, pp. 169–176.

[SZT+04] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprettere, “System
design using Kahn process networks: The Compaan/Laura approach”, in Design,
Automation and Test in Europe Conference and Exhibition, 2004. Proceedings, vol. 1,
Feb. 2004, 340–345 Vol.1. doi: 10.1109/DATE.2004.1268870.

[Tac14] B. Tackmann, “A theory of secure communication”, PhD thesis, ETH Zürich, 2014.
doi: 10.3929/ethz-a-010250961.

[Tar55] A. Tarski, “A lattice-theoretical fixpoint theorem and its applications”, Pacific
Journal of Mathematics, vol. 5, no. 2, pp. 285–309, 1955. doi: 10.2140/pjm.1955.
5.285.

36

https://doi.org/10.1145/322154.322167
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/S0304-3975(99)00165-6
https://doi.org/10.1016/S0304-3975(99)00165-6
https://doi.org/10.1145/322186.322188
https://doi.org/10.1145/322186.322188
https://doi.org/10.1109/TIT.2017.2676805
https://doi.org/10.1007/BF01379149
https://doi.org/10.1109/DATE.2004.1268870
https://doi.org/10.3929/ethz-a-010250961
https://doi.org/10.2140/pjm.1955.5.285
https://doi.org/10.2140/pjm.1955.5.285

	Introduction
	Motivation
	Contributions
	Related Work

	Preliminaries
	Functions and Notation for Sets and Tuples
	Order Relations
	Ordinals and Transfinite Induction
	Complete Posets and Fixed Points of Monotone and Continuous Functions

	Abstract System Algebras
	Definitions
	An Abstract Proof of Broadcast Impossibility

	Functional System Algebras
	Definitions
	Basic Properties
	Merging Input and Output Interfaces

	The System Algebras of Monotone and Continuous Systems
	Monotone Systems
	Continuous Systems
	Composition-Order Invariance of Monotone and Continuous Systems
	Kahn Networks

	The System Algebra of Causal Systems
	Causal Systems
	Fixed Points of Causal Functions
	Defining the System Algebra

	Conclusion and Future Work
	Acknowledgments
	Comparison with Strict Causality by Matsikoudis and Lee

