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Abstract. Luby and Rackoff showed how to construct a (super-)pseudo-
random permutation {0, 1}2n → {0, 1}2n from some number r of pseudo-
random functions {0, 1}n → {0, 1}n. Their construction, motivated by
DES, consists of a cascade of r Feistel permutations. A Feistel permu-
tation 1for a pseudo-random function f is defined as (L, R) → (R, L ⊕
f(R)), where L and R are the left and right part of the input and ⊕
denotes bitwise XOR or, in this paper, any other group operation on
{0, 1}n. The only non-trivial step of the security proof consists of prov-
ing that the cascade of r Feistel permutations with independent uniform
random functions {0, 1}n → {0, 1}n, denoted Ψr

2n, is indistinguishable
from a uniform random permutation {0, 1}2n → {0, 1}2n by any com-
putationally unbounded adaptive distinguisher making at most O(2cn)
combined chosen plaintext/ciphertext queries for any c < α, where α is
a security parameter.
Luby and Rackoff proved α = 1/2 for r = 4. A natural problem, proposed
by Pieprzyk is to improve on α for larger r. The best known result, α =
3/4 for r = 6, is due to Patarin. In this paper we prove α = 1 −O(1/r),
i.e., the trivial upper bound α = 1 can be approached. The proof uses
some new techniques that can be of independent interest.

1 Introduction

The security of many cryptographic systems (e.g., block ciphers and message
authentication codes) is based on the assumption that a certain component
(e.g. DES or Rijndael) used in the construction is a pseudo-random function
(PRF) [2]. Such systems are proven secure, relative to this assumption, by show-
ing that any efficient algorithm for breaking the system can be transformed into
an efficient distinguisher for the PRF from a uniform random function (URF).

1.1 Constructing Pseudorandom Permutations

There is a long line of research based on this paradigm, initiated in the seminal
paper of Luby and Rackoff [5] who showed how to construct a pseudo-random
permutation (PRP) from any PRF. That paper is not only of interest because it



introduced the paradigm, but also because it proposed a very natural construc-
tion, motivated by DES, consisting of r Feistel permutations involving indepen-
dent invocations of a PRF.

Usually, the only non-trivial step in a security proof of a construction based
on PRF’s is a purely probability-theoretic step, namely the analysis of the ide-
alised construction when the PRF’s are replaced by URF’s, and proving that it
is information-theoretically indistinguishable from, in our case, a uniform ran-
dom permutation (URP), when the number of allowed queries is bounded (by a
large, usually exponential bound).1 The strength of the security proof depends
on the size of this bound. Ideally, the number of allowed queries should be close
to the trivial information-theoretic upper bound: If, for some sufficiently large
number of queries, the expected entropy contained in the answers from the per-
fect system exceeds the entire internal randomness of the construction, then a
(computationally unbounded) distinguisher trivially exists.

More concretely, the r-round Luby-Rackoff construction of a permutation
{0, 1}2n → {0, 1}2n (hereafter denoted by Ψr

2n) consists of a cascade of r Feistel
permutations involving independent URF’s {0, 1}n → {0, 1}n, where a Feistel
permutation for a URF f is defined as (L,R) → (R,L ⊕ f(R)). Here L and R
are the left and right part of the input and ⊕ denotes bitwise XOR or, in this
paper, any other group operation on {0, 1}n.

Two versions of a PRP were considered in [5], namely when queries from only
one side are allowed, and when queries from both sides are allowed. When the
PRP is considered as a block cipher, these two variants correspond to chosen-
plaintext and to combined chosen-plaintext/ciphertext attacks respectively . The
latter variant was referred to in [5] as a super-PRP. In this paper we will only
consider this stronger variant.

The problem we hence address is to prove that Ψr
2n is indistinguishable from

a uniform random permutation {0, 1}2n → {0, 1}2n by any computationally un-
bounded adaptive distinguisher making a certain number of queries. To compare
results, it makes sense to measure the number of queries on an logarithmic scale,
i.e., by the number c when O(2cn) queries are allowed. More precisely, one can
state a result in terms of a constant α such that for all c < α, indistinguishability
holds for all sufficiently large n.

Luby and Rackoff proved that α = 1/2 for r = 4. Since then several simpli-
fications (e.g. [6],[8]) and generalisations of this result have appeared. Ramzan
and Reyzin [13] proved that even if the adversary has black-box access to the
middle two functions of Ψ4

2n, the security is maintained. Naor and Reingold [8]
showed that the security is maintained if one replaces the first and last round
of Ψ4

2n with pairwise independent permutations, and even weaker constructions
were proven secure in [11].

1 Two systems F and G are indistinguishable by a distinguisher D making at most k
queries if the following holds: The expected advantage of D, after making k queries
to a black-box containing either F or G with equal probability, in guessing which
system is in the black-box, is negligible.
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A natural problem, proposed by Pieprzyk [12], is to improve on α for larger
m. The best known result, α = 3/4 for r = 6, is due to Patarin [10]. He also
conjectured that better bounds hold. In this paper we address this problem
and prove α = 1 − O(1/r), i.e., that the optimal upper bound2 α = 1 can be
approached for increasing r.

The proof uses some new techniques that appear to be of independent inter-
est. In many of the literature (e.g. [6],[7],[8]) on security proofs based on PRF’s,
one considers a (bad) event such that if the event does not occur, then the system
behaves identically to the system it should be distinguished from, thus one can
concentrate on the (simpler) problem of provoking the bad event. However, this
approach has so far only been successful in analysing Ψr

2n for (small) constant r.
Therefore, as a new technique, we extend the system Ψr

2n to a more sophisticated
construction that offers new possibilities to define such events.

1.2 The Main Theorem

Our main theorem states that any computationally unlimited distinguisher,
making at most k chosen plaintext/ciphertext queries has advantage at most

k2

22n−2 + kr+1

2r(n−3)−1 in distinguishing Ψ6r−1
2n from a uniform random permutation

(URP).
As a corollary3 we get that any distinguisher (as above), making at most

O(2cn) queries has exponentially small (in n) advantage in distinguishing Ψr
2n

(here r+1 must be a multiple of 6) from a URP if c < 1−6/(r+7).4 This beats
the best known bound α = 3/4 for r = 23 where we get α = 4/5.

1.3 Related Work

Different constructions of PRP’s, so called unbalanced Feistel schemes, were
investigated in ,[4],[8]. An unbalanced Feistel scheme over {0, 1}n, for k ≥ 2 and
` = n/k, is a generalisation of the original scheme, where the URF’s in each
round are unbalanced, i.e. {0, 1}(k−1)` → {0, 1}`. For k = 2 one gets the original
Feistel scheme. In [8] the security of those schemes (where the number of rounds
is k + 2) up to 2n(1−1/k)/2 queries is shown.5 We approach the same bound (for

2 This upper bound can be seen as follows: The internal randomness of Ψr
2n are the r

function tables for the URF’s, each containing n2n bits. The entropy of an output
of a URP on 2n bits is log(22n) = 2n bits for the first, log(22n − 1) for the second
output and so on, which is more that n for the first 22n − 2n queries. So after r2n

(this is in O(2n) for any fixed r) queries the entropy of the output of a URP is larger
than the entropy in Ψr

2n, and thus a computationally unbounded distinguisher exists.
3 We use that k2

22n−2 + kr+1

2r(n−3)−1 ∈ O
�
kr+1/2rn

�
, and this is in O(1) if k is in the

order of 2n(1− 1
r+1 ).

4 If 6 does not divide r + 1, then this must be replaced by c < 1 − 1/(b r+1
6

c + 1).
5 This bound is basically the birthday bound for the URF’s used, and thus the square

root of the information theoretic upper bound O(2n(1−1/k)) for this construction.
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a permutation over the same domain {0, 1}n) for the original Feistel scheme (i.e.
fixed k = 2) as the number of rounds is increased.

Another line of research concentrated on schemes where the number of dif-
ferent PRF’s used in the construction is minimised (see [12],[9]). Knudsen [3]
considered a different settings where the functions are not URF’s but chosen
from a family of size 2k.

A generic way to strengthen the security of random permutations was given
by Vaudenay [14] who showed that the advantage (for computationally unlimited
distinguishers) in distinguishing a cascade of independent random permutations
from a URP is basically only the product of the advantages of distinguishing
each random permutation separately.

1.4 Organisation of the Paper

The proof of our main theorem is based on the framework of [7]; the required
definitions and results from [7] are summarised in Section 2. In Section 3 we
propose a new lemma which reduces the task of upper bounding the indistin-
guishability of a random permutation from a URP by adaptive combined chosen
plaintext/ciphertext strategies, to the task of upper bounding the probability
that a non-adaptive chosen plaintext only strategy succeeds in provoking some
event. In Section 4 we first give a formal definition of the (many-round) Luby-
Rackoff construction and then state the main theorem (Section 4.1). An outline
of the proof is given in Section 4.2. The full proof is shown in Section 5. Section
6 summarises some conclusions.

2 Indistinguishability of Random Systems

This section summaries some definitions and results from [7], sometimes in a less
general form. We also propose two simple new lemmas.

2.1 Notation

We denote sets by capital calligraphic letters (e.g. X ) and the corresponding cap-
ital letter X denotes a random variable taking values in X . Concrete values for
X are usually denoted by the corresponding small letter x. For a set X we denote
by X k the set of ordered k-tuples of elements from X . Xk = (X1, X2, . . . , Xk)
denotes a random variable taking values in X k and a concrete value is usually
denoted by xk = (x1, x2, . . . , xk).

Because we will consider different random experiments where the same ran-
dom variables appear, we extend the standard notation for probabilities (e.g.
PV (v),(PV |W (v, w)) by explicitly writing the random experiment E considered
as a superscript, e.g. PE

V (v). Equivalence of distributions means equivalence on
all inputs, i.e.

PE1
V = PE2

V ⇐⇒ ∀v ∈ V : PE1
V (v) = PE2

V (v)

If a denotes the event that a random variable A takes some specific value, say
a ⇐⇒ A = 1, then we write PE

a to denote PE
A(1).
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2.2 Random Automata and Random Systems

A central concept in the framework are systems, which take inputs (or queries)
X1, X2, . . . ∈ X and generate, for each new input Xi, an output Yi ∈ Y. Such a
system can be deterministic or probabilistic, and it can be stateless or contain
internal memory. A stateless deterministic system is simply a function X → Y.

Definition 1 A random function X → Y (random permutation on X ) is a ran-
dom variable which takes as values functions X → Y (permutations on X ). A
deterministic system with state space Σ is called an (X ,Y)-automaton and is de-
scribed by an infinite sequence f1, f2, . . . of functions, with fi : X ×Σ → Y×Σ,
where (Yi, Si) = fi(Xi, Si−1), Si is the state at time i, and an initial state S0 is
fixed. An (X ,Y)-random automaton F is like an automaton but fi : X×Σ×R →
Y×Σ (where R is the space of the internal randomness), together with a proba-
bility distribution over R×Σ specifying the internal randomness and the initial
state.6

Definition 2 A uniform random function (URF) R : X → Y (A uniform ran-
dom permutation (URP) P on X ) is a random function with uniform distribution
over all functions from X to Y (permutations on X ). Throughout, the symbols
P and R are used for the systems defined above.

A large variety of constructions and definitions in the cryptographic literature
can be interpreted as random functions, including pseudo-random functions. The
more general concept of a (stateful) random system is considered because this
is just as simple and because distinguishers can also be modelled as random
systems.

The observable input-output behaviour of a random automaton F is referred
to as a random system. In the following we use the terms random automaton
and random system interchangeably when no confusion is possible.

Definition 3 An (X ,Y)-random system F is an infinite7 sequence of conditional
probability distributions PF

Yi|XiY i−1 for i ≥ 1. Two random automata F and G
are equivalent, denoted F ≡ G, if they correspond to the same random system,
i.e., if PF

Yi|XiY i−1 = PG
Yi|XiY i−1 for i ≥ 1 or, equivalently, PF

Y i|Xi = PG
Y i|Xi for

i ≥ 1.

2.3 Monotone Conditions for Random Systems

In the sequel it will be very useful to consider conditions defined for a random
system F. Loosely speaking, a random system F with a condition A, denoted FA,
is the random system F, but with an additional binary output A1, A2, . . ., where
Ai = 1 means that the condition holds after the ith query to F. Throughout we
will only consider monotone conditions, this is to say that if a condition fails to
hold at some point, it never hold again.
6 F can also be considered as a random variable taking on as values (X ,Y)-automata.
7 Random systems with finite-length input sequences could also be defined.
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Definition 4 Let F be any (X ,Y)-random system. We use the notation FA to
denote a (X , {0, 1}×Y)-random system (FA is defined the sequence of distribu-
tions PFA

AiYi|XiY i−1Ai−1 where Ai ∈ {0, 1}) for which the following holds:

PFA
Yi|XiY i−1 = PF

Yi|XiY i−1 for i ≥ 1

This simply says, that if we ignore the Ai’s in FA, we get a random system
which is equivalent to F. Moreover the Ai’s are monotone, this is to say that
(Ai = 0) ⇒ (Aj = 0) for j > i or equivalently (Ai = 1) ⇒ (Aj = 1) for j < i.
To save on notation we will denote an event Ai = 1 by ai and Ai = 0 by ai. “Ai

holds” means Ai = 1.

One way to define a random system FA is to explicitly give a distribution as in
Definition 4. If F is given as a a description of a random automaton one can also
define a “natural” condition directly on the random automaton.

As an example consider the random automaton Ψr
2n as described in the intro-

duction. The evaluation of Ψr
2n requires the evaluation of the r internal URF’s.

Let jU` denote the input to the URF in round j in the `th query (i.e. as Ψr
2n is

queried with X`). Now we could for example define a condition A for Ψr
2n such

that Ai holds if, for some fixed j, all the jU` are distinct for 1 ≤ ` ≤ i. The proof
of our main theorem will require a (more complicated) condition of this kind.

We will now define what we mean by equivalence of random systems with
conditions.

Definition 5 FA $ GB means

PFA
aiYi|Xiai−1Y i−1 = PGB

biYi|Xibi−1Y i−1 (1)

or, equivalently, PFA
aiY i|Xi = PGB

biY i|Xi for all i ≥ 1.

So FA $ GB if the systems are defined by the same distribution whenever
the condition holds, i.e. for all xi, yi : PFA

AiY i|Xi(1, yi, xi) = PGB
BiY i|Xi(1, yi, xi).

However, if the condition does not hold, we may have PFA
AiY i|Xi(0, yi, xi) 6=

PGB
BiY i|Xi(0, yi, xi).

2.4 Distinguishers for Random Systems

We consider the problem of distinguishing two (X ,Y)-random systems F and
G by means of a computationally unbounded, possibly probabilistic adaptive
distinguisher algorithm (or simply distinguisher) D asking at most k queries,
for some k. The distinguisher generates X1 as an input to F (or G), receives
the output Y1, then generates X2, receives Y2, etc. Finally, after receiving Yk, it
outputs a binary decision bit. More formally:

Definition 6 A distinguisher for (X ,Y)-random systems is a (Y,X )-random
system D together with an initial value X1 ∈ X , which outputs a binary decision
value Ek after some specified number k of queries to the system. By D � F we
denote the random experiment where D is querying F.
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Throughout we will only consider distinguishers who never ask the same query
twice. For bidirectional permutations (see Definition 11) we additionally require
that distinguishers do not query with a Yi (Xi) when they already received Yi

(Xi) on a query Xj (Yj) for a j < i. Because we will only apply distinguishers
to stateless systems (e.g. random permutations), this can be done without loss
of generality. Such queries yield no information and thus there always is an an
optimal distinguisher (see definition below) who never makes such queries.

Definition 7 The maximal advantage, of any adaptive distinguisher D issuing
k queries, for distinguishing F and G, is

∆k(F,G) := max
D

∣∣PD�F(Ek) − PD�G(Ek)
∣∣ .

A distinguisher that achieves the above maximum is called an optimal distin-
guisher for F and G.

We now consider a distinguisher D (according to the view described above)
which queries a system FA and whose aim it is to make A fail, making k queries
to FA (i.e. to provoke the event ak).

Definition 8 For a random system FA, let

ν(FA, ak) := max
D

PD�FA
(ak)

be the maximal probability, for any adaptive distinguisher D, of provoking ak

in F. A distinguisher that achieves the above maximum is called an optimal
provoker for ak in F. Moreover, let

µ(FA, ak) := max
xk

PFA
ak|Xk(xk)

be the maximal probability of any non-adaptive distinguisher in provoking ak.

The following proposition (Theorem 1 from [7]) states that, for two random
systems F and G, we can upper bound ∆k(F,G) by ν(FA, ak) or ν(GB, bk) if
there is any FA and GB such that FA $ GB.

Proposition 1 If FA $ GB then ∆k(F,G) ≤ ν(FA, ak) = ν(GB, bk). More-
over, µ(FA, ak) = µ(GB, bk).

2.5 Some Useful Propositions and Definitions

Definition 9 The cascade of an (X ,Z)-random permutation E and a (Z,Y)-
random permutation F, denoted EF, is the (X ,Y)-random permutation defined
as applying E to the input sequence and F to the output of E.

For EA and FB (where E and F are as above), the (X ,Y × {0, 1}2)-random
system EAFB can be defined naturally.8 EAFB $ GCHD means PEAFB

aibiY i|Xi =

PGCHD
cidiY i|Xi , i.e., equivalence of the distributions if both conditions hold.

8 Formally PEAFB
AiBiY i|Xi =

P
Zi PEA

AiZi|XiP
FB
BiY i|Zi .
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Lemma 1 If EA $ GC and FB $ HD then EAFB $ GCHD.

Proof. Let X and Z (Z and Y ) denote the input and output of the first (second)
permutation in the cascade. For any xi and yi we have

PEAFB
aibiY i|Xi(yi, xi) =

∑
zi∈Zi

PEA
aiZi|Xi(zi, xi)PFB

biY i|Zi(yi, zi) =

∑
zi∈Zi

PGC
ciZi|Xi(zi, xi)PHD

diY i|Zi(yi, zi) = PGCHD
cidiY i|Xi(yi, xi).

For any zi ∈ Zi, equality of the first (second) factor in the sums of the second
and third term above holds because we have EA $ GC (FB $ HD). ut
The following proposition (Theorem 2 from [7]) states, that if the probability of
ai (i.e. Ai = 1), conditioned on ai−1, X

i and Y i−1, does not depend on Y i−1

(which is the output seen so far), then adaptive strategies are no better than
non-adaptive ones in making A fail.

Proposition 2 If PFA
ai|Xiai−1Y i−1 = PFA

ai|Xiai−1
, then ν(FA, ak) = µ(FA, ak).

Definition 10 For a random permutation Q, the inverse is also a random per-
mutation and is denoted by Q−1. If the (X ,Y × {0, 1})-random system QA is
defined, the (Y,X × {0, 1})-random system QA−1 can be defined naturally: Let

PQA−1

AiXi|Y i = PQ−1

Xi|Y iP
QA

Ai|XiY i , i.e., we let PQA−1

Ai|XiY i

def= PQA

Ai|XiY i .

Definition 11 For an X -random permutation Q, let 〈Q〉 be the bidirectional
permutation9 Q with access from both sides (i.e., one can query both Q and
Q−1). More precisely, 〈Q〉 is the random function X × {0, 1} → X defined as
follows:

〈Q〉(Ui, Di) =
{

Q(Ui) if Di = 0
Q−1(Ui) if Di = 1 .

If QA is defined, 〈QA〉 can also be defined naturally: Let Vi := 〈Q〉(Ui, Di), and
let Xi and Yi be the i-th input and output of Q (i.e., if Di =0, then Xi =Ui and
Yi =Vi, and ifDi =1, then Yi =Ui andXi =Vi). Now we let P

〈QA〉
Ai|XiY i

def= PQA

Ai|XiY i .

The proposition below is Lemma 10 (iii) from [7].

Proposition 3 FA $ GB ⇐⇒ 〈FA〉 $ 〈GB〉.
We will also need the following

Lemma 2 ν(〈PCPD−1〉, ck ∨ dk) ≤ ν(〈PCP−1〉, ck) + ν(〈PPD−1〉, dk).

Proof. Consider D, the optimal provoker for ck ∨ dk in 〈PCPD−1〉. D can be
used to provoke ck resp. dk separately (though here it may not be optimal), the
lemma now follows by application of the union bound and the observation that
using optimal provokers for ck resp. dk can only increase the success probability.

ut
9 This definition is motivated by considering a block cipher which, in a mixed chosen-

plaintext and chosen-ciphertext attack, can be queried from both sides.
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3 Cascades of Two Random Permutations

Consider a cascade of two independent URP’s (recall by the symbol P we denote
a URP) where a condition C is defined on the first URP. Eq. (2) from Lemma 3
states that making C fail is equally hard for adaptive distinguishers which may
access the cascade from both sides as for an non-adaptive distinguishers who
may access the URP (on which C is defined) only from one side.

Lemma 3
ν(〈PCP−1〉, ck) = ν(PCP−1, ck) = µ(PC , ck) (2)

ν(〈PPD−1〉, dk) = ν(PDP−1, dk) = µ(PD , dk). (3)

Proof. We first show that

ν(PCP, ck) = µ(PCP, ck) = µ(PC , ck). (4)

Here PPCP
ci|Xici−1Y i−1 = PPCP

ci|Xici−1
holds because C is defined on the first P in the

cascade, but Y i−1 gives no information (is independent) of the output of the
first P. The first step now follows from Proposition 2. The last step is trivial.

We now prove (2). Consider an optimal provoker D for ck in 〈PCP−1〉. Let
Zi denote the random variable denoting the value appearing between the two
P’s in the ith query. D may query either PCP−1 or PPC−1, a query to the latter
results in a uniform random10 Zi and thus also a uniform random value at the
input to PC , we see that querying PPC−1 can be no better to provoke ck than
querying PCP−1 with a random value, thus there always is an optimal provoker
for ck which never chooses to query PPC−1 and the first step of (2) follows. The
second step follows from (4) using P ≡ P−1. Eq.(3) follows by symmetry. ut
Lemma 4 Let F and G be random permutations and let P be the uniform ran-
dom permutation on the same domain as F and G. If there are any FA,PC ,GB

and PD such that FA $ PC and GB $ PD holds, then11

∆k(〈FG−1〉, 〈P〉) ≤ µ(PC , ck) + µ(PD , dk). (5)

Proof. The first step below uses the simple fact that PP−1 ≡ P, the second
step below follows from Proposition 1 using FAG−1B $ PCPD−1, which follows
from Lemma 1. The fourth step follows from Lemma 2.

∆k(〈FG−1〉, 〈P〉) = ∆k(〈FG−1〉, 〈PP−1〉) ≤
ν(〈PCPD−1〉, ck ∧ dk) = ν(〈PCPD−1〉, ck ∨ dk) ≤

ν(〈PCP−1〉, ck) + ν(〈PPC−1〉, dk) = µ(PC , ck) + µ(PD, dk).

The last step follows from Lemma 3. ut
10 Meaning uniform random in Z \ {Z1, . . . , Zi−1}, see the comment at the end of

Definition 6.
11 Note that by Proposition 1 we have µ(PC , ck) = µ(FA, ak) and µ(PD , dk)+µ(FB, bk),

so one could also write the second term of (5) as µ(FA, ak) + µ(FB, bk).
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Corollary 1 If FA $ PC then ∆k(〈FF−1〉, 〈P〉) ≤ 2µ(PC , ck), where the two
F’s in the cascade FF−1 must be independent.

Note that with this corollary we have reduced the problem of upper bounding
the indistinguishability of a cascade FF−1 of two random permutations from P
by any adaptive strategy who may access the cascade from both sides to the task
of finding a FA and a PC such that FA $ PC and upper bounding µ(P, ck), i.e.,
the maximal probability of making C fail in P by any non-adaptive strategy who
may access the permutation only from one side.

4 The Main Theorem

In Section 4.1 we give a formal definition of the (many-round) Luby-Rackoff
construction and state the main theorem. In Section 4.2 an outline of the proof
is given. The full proof is given in Section 5.

4.1 Statement of the Main Theorem

We denote by I` the set {0, 1}` of bit-strings of length `. For a random permu-
tation (random function) Q` the subscript denotes that it is a permutation on
I` (a function I` → I`).

Definition 12 For n ∈ N, let12 ψ(Rn) be the Feistel-permutation on I2n defined
by ψ(Rn)(L,R) def= (R,L ⊕ Rn(R)), where L,R ∈ In. By Ψr

2n we denote the
permutation which is defined as a cascade of r permutations ψ(Rn), where the
Rn are all independent.

Our main theorem states that

Theorem 1

∆k

(〈Ψ6r−1
2n 〉, 〈P2n〉

) ≤ k2

22n−2
+

kr+1

2r(n−3)−1
.

4.2 Outline of the Proof

In this section we will see how the results from Sections 2 and 3 can be used
to upper-bound the indistinguishability of any random permutation (and Ψr

2n in
particular) from a URP. We stress here that all statements in those sections are
about random systems, hence also about any particular realisation as random
automata. Below we will also need the following simple

Lemma 5

∆k

(〈Ψr
2n(Ψr

2n)−1〉, 〈P2n〉
)

= ∆k

(〈Ψ2r−1
2n 〉, 〈P2n〉

)
.

12 Recall that the symbol R denotes a URF.
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Proof. Let Π(L,R) def= (R,L), i.e. Π simply exchanges the right and left half
of the input. We have (Ψr

2n)−1 ≡ ΠΨr
2nΠ , with this and Ψ1

2nΠΨ
1
2n ≡ Ψ1

2n,
which holds because the XOR of two independent URF’s is again a URF, we
get Ψ r

2n(Ψr
2n)−1 ≡ Ψr−1

2n Ψ1
2nΠΨ

1
2nΨ

r−1
2n Π ≡ Ψ2r−1

2n Π . This and P2n ≡ P2nΠ
proves the first step of ∆k

(〈Ψr
2n(Ψr

2n)−1〉, 〈P2n〉
)

= ∆k

(〈Ψ2r−1
2n Π〉, 〈P2nΠ〉) =

∆k

(〈Ψ2r−1
2n 〉, 〈P2n〉

)
, the second step is trivial. ut

Our aim is to upper-bound ∆k(〈Ψr
2n〉, 〈P2n〉). With Propositions 1 and 3 this can

be done as follows: Define some random automata F and G such that F ≡ Ψr
2n

and G ≡ P2n. Then define conditions A and B on F and G respectively, such that
FA $ GB and prove an upper bound ε(k, r, n) for ν(〈GB〉, bk) (or ν(〈FA〉, ak),
which is the same). It follows that ∆k(〈Ψr

2n〉, 〈P2n〉) ≤ ε(k, r, n).
With Corollary 1 we can bypass the task of upper bounding ν(〈GB〉, bk) and

give an upper bound ε′(k, r, n) for µ(GB, bk) instead.13 Then, using Lemma 5 in
the first and Corollary 1 in the second step, we get

∆k(〈Ψ2r−1
2n 〉, 〈P2n〉) = ∆k(〈Ψr

2n(Ψr
2n)−1〉, 〈P2n〉) ≤ ε′(k, r, n).

Note that the price we payed for this simplification is that our bound now applies
for Feistel-permutations with 2r − 1 instead of r rounds. This is basically the
idea underlying the proof of the main theorem. Though in the proof the two
random automata F and G (as discussed above) are not defined separately,
we only give one random automaton H with two outputs, where the random
system H is equivalent to14 Ψ3r

2n or P2n if we ignore the right or left output of
H, respectively. For this H, a condition M is given such that the two outputs
of HM have the same distribution whenever the condition holds.

5 Proof of the Main Theorem

In this section we propose three lemmas used in the proof (as outlined in the
previous section) of our main theorem. The proof itself is given at the end of
this section.

For the sequel fix any r ∈ N and n ∈ N, and let H denote the (X ,Y × Z)-
random automaton (where X = Y = Z = I2n

def= {0, 1}2n) as shown in Figure 1.
Let HL (HR) be equivalent to H, but where the output is only the left (right)
half of the output of H.

H is constructed by combining a P2n and a Ψ3r
2n (the two Ψ3r

2n’s drawn in
the figure are one and the same). In H, the output Yi × Zi on the ith query Xi

is determined as follows: Ψ3r
2n is queried with Xi, this gives Yi. The Xi is also

applied to P2n to get a value X̃i. Then Ψ3r
2n is queried with X̃i which gives the

Zi.
13 This is likely to be much easier because we need to consider only non-adaptive chosen-

plaintext strategies instead of adaptive combined chosen plaintext and ciphertext
strategies.

14 for technical reasons, we will need the number of rounds to be a multiple of 3 here
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0V`

1V`

2V`

3V`

3rV`
3r+1V`

0W`

1W`

2W`

3W`

3rW`
3r+1W`

0S`

1S`

P2n

X`

eX`

Y` Z`

Fig. 1. The random automaton H. The labelling refers to the random variables as used
in Section 5. On input X`, Ψ3r

2n is invoked twice, once with X` and once with eX`. Ψ3r
2n

and P2n are independent, and also all 3r URF’s are independent. Note that in the
figure the two Ψ3r

2n permutations are one and the same, i.e., URF’s at the same level
are identical.

Lemma 6 HL ≡ Ψ3r
2n and HR ≡ P2n.

Proof. HL ≡ Ψ3r
2n can be seen directly from the definition of HL. We have

HR ≡ P2nΨ
3r
2n ≡ P2n since the cascade of a URP with any other permutation

(which is independent of the URP) is again a URP. ut
Consider H being queried with some xk = {x1, . . . , xk} ∈ X k. The `th query
x` results in two invocations of Ψ3r

2n, once with x` and once with X̃`, where X̃`

is the random variable denoting the output of P2n on input x` (cf. Fig. 1). A
query to Ψ3r

2n results in one query to every of the 3r URF’s. Let jV` denote the
input to the jth URF when queried with x` and let jW` denote the input to the
jth URF when queried with X̃`.

After k queries we say that an input jV` resp. jW` is unique (and we denote
this event by jτ` resp. j τ̃`) if the jth URF was invoked only once with jV` resp.
jW`, i.e., for 1 ≤ i ≤ k and 1 ≤ j ≤ 3r we define

jτ` ⇐⇒ (∀i, i 6= ` : jV` 6= jVi) ∧ (∀i : jV` 6= jWi)

j τ̃` ⇐⇒ (∀i, i 6= ` : jW` 6= jWi) ∧ (∀i : jW` 6= jVi).

12



By qξ` we denote the event that 3q+2V`, 3q+3V`, 3q+2W` and 3q+3W` are all unique,
i.e, for 0 ≤ q ≤ r − 1:

qξ` ⇐⇒ 3q+2τ` ∧ 3q+3τ` ∧ 3q+2̃τ` ∧ 3q+3̃τ`.

By λ` we denote the event that qξ` holds for some q, 0 ≤ q ≤ r − 1:

λ` ⇐⇒
r−1∨
q=0

qξ`.

We can now define our monotone condition M for H.

Definition 13 The condition M for H is defined as (Recall that mk denotes
the event that Mk = 1):

mk ⇐⇒
k∧

`=1

λ` ⇐⇒
k∧

`=1

r−1∨
q=0

3q+2τ` ∧ 3q+3τ` ∧ 3q+2̃τ` ∧ 3q+3̃τ`. (6)

So after HM has been queried with k inputs x1, . . . , xk, the condition Mk holds
if the following holds for i = 1, . . . , k: There is an index q such that the four
values that appear as the input to the URF’s in the consecutive rounds 3q+2 and
3q + 3, when Ψ3r

2n is queried with xi and X̃i, are unique. In the proof of Lemma
8 we will use this fact to show that the right and left part of the output of HM

has the same distribution whenever the condition holds, i.e., HM
L $ HM

R . But
first we give an upper bound on the probability of any non-adaptive strategy,
making at most k queries, in provoking the event mk (i.e. Mk = 0).

Lemma 7

µ(HM,mk) def= max
xk∈Xk

PH
mk|Xk(xk) ≤ k2

22n−1
+

kr+1

2r(n−3)
.

Proof. Consider any xk ∈ X k (in particular the one maximising the second term
in the lemma). Throughout the proof, all probabilities are in the random exper-
iment where H is queried with xk. So for example P[mk] denotes PH

mk|Xk(xk).

To establish the lemma, we must show that P[mk] ≤ k2

22n−1 + kr+1

2r(n−3) .
Let γk denote the event (defined on H after k queries) which holds if and

only if xk and X̃k have no elements in common (i.e. all elements in xk
⋃
X̃k are

distinct)15. The birthday bound gives us

P[γk] =
k−1∏
i=0

(
1 − k + i

22n

)
≥ 1 − k2

22n−1
. (7)

We will now upper bound P[mk|γk]. In order to do so it helps to think of Ψ3r
2n as

a cascade of r blocks, each a Ψ3
2n permutation. For 0 ≤ q ≤ r − 1 let

qS
def= ((3q+1V1, 3qV1), ..., (3q+1Vk, 3qVk), (3q+1W1, 3qW1), ..., (3q+1Wk, 3qWk))

15 The xk are all distinct, see comment after Definition 6.
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denote the values appearing on the input to the q + 1th block on input xk and
X̃k (here 0V` and 0W` are as in figure 1). Let qS denote the set of values qS may
take on. Next we prove that, for any ` : 1 ≤ ` ≤ k, h ∈ {2, 3} and any possible
qs ∈ qS

P[¬3q+hτ`|γk, qS = qs] ≤ 2k
2n

and P[¬3q+hτ̃`|γk, qS = qs] ≤ 2k
2n
. (8)

Let qsj denote the jth element in qs (e.g. 0s1 = {1v1, 0v1}) and let qs
L
j and qs

R
j

denote the left and right part of qsj . We will only prove the first statement for
h = 2, the other cases are similar. The probability that ¬3q+2τ`, conditioned
on qS = qs, is the probability that there is a t 6= `, 1 ≤ t ≤ 2k, such that
f(qs

L
` ) ⊕ qs

R
` = f(qs

L
t ) ⊕ qs

R
t , where f is a URF. This is at most 2k

2n if all the
2k elements in qs are distinct, which is the case because we condition on γk.16

Now for any `, q and qs ∈ qS we get (using the union bound in the first and (8)
in the second step)

P[¬qξ`|γk, qS = qs] ≤
∑

τ∈{3q+2τ`,3q+3τ`,3q+2eτ`,3q+3eτ`}
P[¬τ |γk, qS = qs] ≤

8k
2n

=
k

2n−3
. (9)

The reason we introduced qS is that, conditioned on qS, the probability of any
event defined on the last 3r − q rounds of Ψ3r

2n does not depend on any event
defined on the 3q first rounds of Ψ3r

2n. The reason is that all rounds (random
functions) are independent, and every interaction between the first 3q and the
last 3q−r rounds is captured by qS (which specifies all values exchanged between
round 3q and round 3q + 1). Let qκ be any event defined on the 3q first rounds
of Ψ3r

2n. By the above argument for any qs ∈ qS,

P[¬qξ`|γk, qS = qs, qκ] = P[¬qξ`|γk, qS = qs]. (10)

For 0 ≤ q ≤ r − 1 let qκ
def=

∧q−1
t=0 ¬tξ`. Now

P[¬λ`|γk] = P[
r−1∧
q=0

¬qξ`|γk] =
r−1∏
q=0

P[¬qξ`|γk, qκ] = (11)

r−1∏
q=0

∑
qs∈qS

P[qS = qs|γk, qκ]P[¬qξ`|γk, qS = qs, qκ] ≤
(

k

2n−3

)r

=
kr

2r(n−3)
.

In the fourth step above we used P[¬qξ`|γk, qS = qs, qκ] = P[¬qξ`|γk, qS = qs] ≤
k

2n−3 , which follows from (10) and (5). Now using the union bound in the third

16 Consider any t 6= `. If qs
L
t = qs

L
` , then qs

R
t 6= qs

R
` (because {qs

L
t , qs

R
t } 6= {qs

L
` , qs

R
` })

and thus f(qs
L
` )⊕ qs

R
` 6= f(qs

L
t )⊕ qs

R
t . If qs

L
t 6= qs

L
` , then P[f(qs

L
` )⊕ qs

R
` = f(qs

L
t )⊕

qs
R
t ] = 1/2n. With the union bound we now get that the probability that f(qs

L
` ) ⊕

qs
R
` = f(qs

L
t )⊕qs

R
t for any of the 2k−1 possible t 6= `, is at most (2k−1)/2n ≤ 2k/2n.
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and (11) in the fourth step below, we obtain

P[mk|γk] = P
[¬ k∧

`=1

λ`|γk

]
= P

[ k∨
`=1

¬λ`|γk

] ≤ k∑
`=1

P[¬λ`|γk] ≤ k
kr

2r(n−3)
(12)

And finally, using (7) and (12) in the last step, we get

P[mk] = P[mk,¬γk] + P[γk]P[mk|γk]︸ ︷︷ ︸
P[mk,γk]

≤ P[¬γk] + P[mk|γk] ≤ k2

22n−1
+

kr+1

2r(n−3)
.

ut
Lemma 8

HM
L $ HM

R .

Proof. We will show that for all k and all xk, g′, g′′ ∈ Ik
2n we have

PHM
mkY kZk|Xk(g′, g′′, xk) = PHM

mkY kZk|Xk(g′′, g′, xk). (13)

If we sum the two terms above over all g′′, we see that (13) implies that for all
xk, g′ ∈ Ik

2n

P
HM

L

mkY k|Xk(g′, xk) = P
HM

R

mkZk|Xk(g′, xk) (14)

holds. Note that this is exactly the statement of the lemma.
The space of internal randomness for H (see Definition 1) consists of the func-

tion tables for the 3r Rn’s which build Ψ3r
2n (each uniform random in {0, 1}n2n

)
and a number uniform random between 1 and 22n! defining one possible per-
mutation on {0, 1}2n. Thus the internal randomness of H is an element chosen
uniformly random in R def= {0, 1}3rn2n × [1, 22n!].

Let R(xk, g′, g′′) ⊂ R be such that iff the internal randomness of H is ρ ∈
R(xk, g′, g′′), then the system will output (g′, g′′) on input xk and Mk will hold
(note that Mk is determined by xk and ρ). With this we can write (13) as

|R(xk, g′, g′′)|
|R| =

|R(xk, g′′, g′)|
|R| . (15)

We will prove (15) by showing a bijection between the sets R(xk, g′, g′′) and
R(xk, g′′, g′), which implies that they have the same cardinality.

Consider H with internal randomness ρ ∈ R(xk, g′, g′′) was queried with
xk. Let V,W and X̃ be as defined before Definition 13. Note that V,W, X̃ are
determined by ρ and xk, we use the corresponding small letters to denote the
values taken by V,W and X̃. Also all 3r URF’s are deterministic functions when
ρ is fixed, we denote the function in the jth round by fj .

Let α1, . . . , αk be such that 3α`+2τ` ∧3α`+3 τ` ∧3α`+2 τ̃` ∧3α`+3 τ̃` for ` =
1, . . . , k. By (6) and the fact that Mk holds, such α1, . . . , αk exist. If there are
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several possibilities for α` then let it be, say, the smallest possible value. Note
that for 1 ≤ ` ≤ k, ρ defines the following relations:

f3α`+2(3α`+2v`) = 3α`+1v` ⊕ 3α`+3v` f3α`+2(3α`+2w`) = 3α`+1w` ⊕ 3α`+3w`

f3α`+3(3α`+3v`) = 3α`+2v` ⊕ 3α`+4v` f3α`+3(3α`+3w`) = 3α`+2w` ⊕ 3α`+4w`

Let φxk(ρ) be a transformation on ρ which for 1 ≤ ` ≤ k changes the function
table of f3α`+2 resp. f3α`+3 on inputs 3α`+2v` and 3α`+2w` resp. 3α`+3v` and
3α`+3w` to

f3α`+2(3α`+2v`) = 3α`+1v` ⊕ 3α`+3w` f3α`+2(3α`+2w`) = 3α`+1w` ⊕ 3α`+3v`

f3α`+3(3α`+3w`) = 3α`+2v` ⊕ 3α`+4w` f3α`+3(3α`+3v`) = 3α`+2w` ⊕ 3α`+4v`

Then φxk(ρ) is in R(xk, g′′, g′). To see this, first note that φxk only changes
f3α`+2 and f3α`+3 on inputs that are unique. Consider the two cases where the
internal randomness of H is ρ and φxk(ρ) respectively. On input x`, jv` and jw`

are equal for j ≤ 3α` + 2 in both cases, this is because for j ≤ 3α` + 1 the
input/output behaviour of the internal functions fj on inputs jv` and jw` is not
affected by φxk . With (3α`+1v`, 3α`+2v`) and (3α`+1w`, 3α`+2w`) being equal in
both cases, we see by the definition of φxk(ρ) that the values (3α`+3v`, 3α`+4v`)
and (3α`+3w`, 3α`+4w`) are exchanged in both cases. With this also all jv` and jw`

are exchanged for all j ≥ 3α`+4 (φxk does not affect the input/output behaviour
of the internal functions fj on inputs jv` and jw` for j ≥ 3α` +4), so the outputs
g′` and g′′` are also exchanged for all 1 ≤ ` ≤ k, and thus φxk(ρ) ∈ R(xk, g′′, g′).

Finally note that φxk(φxk(ρ)) = ρ, thus φxk is a bijection (actually even an
involution) between R(xk, g′, g′′) and R(xk, g′′, g′), and hence |R(xk, g′, g′′)| =
|R(xk, g′′, g′)|. ut
Proof (of Theorem 1). There is a random automaton H (cf. Figure 1) with
two outputs such that HL ≡ Ψ3r

2n and HR ≡ P2n (Lemma 6). Here HL and
HR denote H, but where only the right and left half, respectively, is seen at
the output. There is a condition M defined for H (Definition 13) such that
HM

L $ HM
R (Lemma 8) and µ(HM,mk) ≤ k2

22n−1 + kr+1

2r(n−3) (Lemma 7). With
Corollary 1 and the observation that17 µ(HM

R ,mk) = µ(HM,mk) we now get

∆k

(〈Ψr
2n(Ψr

2n)−1〉, 〈P2n〉
) ≤ k2

22n−2
+

kr+1

2r(n−3)−1

and the theorem follows with Lemma 5. ut

17 In the non-adaptive case it does not matter how much of the output the distinguisher
can see.
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6 Conclusions

In this paper we showed that the number of queries needed to distinguish a
uniform random permutation (URP) from Ψr

2n (the r-round Feistel-permutation
with independent uniform random functions) by any computationally unbounded
adaptive distinguisher making combined plaintext/ciphertext queries, approaches
the information theoretic upper-bound O(2n), as r is increased.

The proof of our main theorem is based on the framework of [7]. In this frame-
work, for our case, one must define two random automata with the input/output
behaviour of Ψr

2n and a URP, respectively. Then one must give a condition for
each automaton, such that both have the same input/output behaviour as long
as the condition holds. The expected probability of any distinguisher (as above)
making k queries, in making this condition fail, is now an upper bound for the
advantage of any distinguisher (as above) in distinguishing Ψr

2n from a URP.
We proposed a new result (Lemma 4, see also Corollary 1) which reduces the

arising problem of upper bounding the probability of any adaptive distinguisher
making combined chosen plaintext/ciphertext queries in making the condition
fail, to the case where one only has to consider a distinguisher making non-
adaptive chosen plaintext queries. This lemma is generic and can be applied to
any random permutation, but it comes at a price: The bound now only holds for
a cascade of two of the originally considered random permutations.

We took a new approach in defining the two random automata as discussed
above. Only one random automaton H with two outputs was defined, such that
H has the same input/output behaviour as Ψr

2n or a URP when only the right or
left part of the output is considered. One now must only find a single condition
for H such that the input/output behaviour, when only the left or the right half
of the output is considered, is identical whenever the condition holds. We do
not know how to prove our result without this trick, and think that it could be
useful for the analysis of other systems as well.

Patarin conjectured that the information theoretic upper bound is already
reached if the number of rounds is constant (5 or maybe 6 or 7), this question
is still open. If the conjecture is true, then collision arguments (like “as long as
there is some input that has not appeared yet ... we cannot distinguish”), as
used here and in many other papers, will be too weak as to prove it.18 Maybe
adopting ideas from [1], and arguing about linear independence (like “as long as
some internal inputs are linearly independent...”) would be more successful.
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18 After O(2nr/(r+1)) queries to Ψr
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