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Abstract. In this paper, a study of a paradigm for domain expansion
of MACs is generalized. In particular, a tradeoff between the efficiency
of a MAC and the tightness of its security reduction is investigated
in detail. Our new on-line single-key AIL-MAC construction, the PDI-
construction, transforms any FIL-MAC into an AIL-MAC and is superior
to all previous AIL-MAC constructions given in the literature (taking the
tradeoff into account). It appears obvious that this construction is essen-
tially optimal.
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1 Introduction

1.1 Motivation: Data Integrity

A message authentication code (MAC) is a function family

H := {hk : M → T }k∈K,

where M is the message space, T the tag space, and K the key space. It is the
most commonly used method for assuring the integrity of data communicated
between two parties sharing a secret key k. A party authenticates a message m
by computing a tag τ = hk(m) which is sent along with m to the other party. A
party receiving (m′, τ ′) accepts the message m′ if (m′, τ ′) is valid, i.e., satisfies
τ ′ = hk(m′). Of course, it should be infeasible for a party not in possession of k
to be able to generate a valid message-tag pair (which is new), since this would
contradict data integrity. The function hk is referred to as an instantiation of
the MAC H .
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1.2 Domain Expansion of MACs

Cryptographic primitives can be classified according to their domain. We refer
to a primitive with domain:

– {0, 1}L, i.e., the set of all bitstrings of length L, as a fixed-input-length (FIL)
primitive.

– {0, 1}∗, i.e., the set of all bitstrings of finite length, as a arbitrary-input-length
(AIL) primitive.

– {0, 1}≤N , i.e., the set of all bitstrings of length at most N , as a variable-
input-length primitive.

VIL- and AIL-primitives are often constructed by iterating applications of some
FIL-primitive.

In the context of constructing VIL- or AIL-MACs, a natural and weak as-
sumption on the FIL-primitive is that of being a MAC. This was first studied
by An and Bellare in [1], who proposed and proved the security of the NI-
construction, the first VIL-MAC based on a FIL-MAC. Domain expansion of
MACs was further studied in [8], where a general paradigm for constructing
VIL- and AIL-MACs by iterating applications of a FIL-MAC was proposed.
Several improvements on the NI-construction and two single-key AIL-MAC con-
structions, Chain-Shift (CS) and Chain-Rotate (CR), were presented. While the
CS-construction transforms FIL-MACs with input-length/output-length ratio
at least 2, the CR-construction transforms any FIL-MAC (irrespectively of its
input-length/output-length ratio) at the cost of a less tight security reduction
(by a factor of roughly 5). In this paper the paradigm is generalized and analyzed
further.

Domain expansion iswell studied formanycryptographicprimitives suchas col-
lision resistant hash function [6,10], pseudo-random functions (PRFs) [2,3,11,7],
universal one-way hash functions [4,12], and random oracles [5]. Since a PRF is
(trivially) also a MAC, many VIL- and AIL-PRFs based on a FIL-PRF are widely
used as VIL- and AIL-MACs, respectively. However, these MACs are only guar-
anteed to be secure under the (relative strong) assumption that the FIL-primitive
is a PRF. For instance the CBC-MAC [3] is not secure under the assumption that
the FIL-primitive is a secure MAC [1]. In cryptography a central goal is to prove
the security of cryptographic schemes under as weak assumptions as possible. De-
manding that the FIL-primitive is a MAC (rather than a PRF) is a more cautious
cryptographic assumption.

1.3 The Construction Paradigm

Let us briefly recall the construction paradigm of [8] as a reference for our con-
tributions. Throughout this paper, the function family

G := {gk : {0, 1}L → {0, 1}�}k∈{0,1}κ

(with L > �) denotes a FIL-MAC with compression parameter

b := L − �.
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The paradigm considers a type of construction C·, which uses G to construct an
AIL-MAC1

CG := {Cgk : {0, 1}∗ → {0, 1}�}k∈{0,1}κ .2

More precisely, the computation of the tag τ = Cgk(m) for an n-bit message
m can be described as follows. In a pre-processing step m is encoded into a
bit string m′, for instance by padding m and appending information about its
length. The processing step is best described with a buffer initialized with m′,
where each call to gk fetches (and deletes) some L bits and writes back the �-bit
result to the buffer (for instance by concatenating it at the end of the buffer).
This reduces the number of bits in the buffer by b with each call to gk. The output
of the last (possible) call to gk is returned as the tag (instead of being written
back to the buffer). The length of m′ is appropriately chosen to be t(n) · b+ � for
some t(n) ∈ N, to leave the buffer empty after the computation. We stress that
t(n) is exactly the number of calls to gk before the tag is returned. The function
t(·) is referred to as the application function of C·. A particular construction can
thus be described by the encoding function mapping m to m′ and by the scheme
by which the L-bit blocks are fetched. The computation process is illustrated in
Fig. 1.
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Fig. 1. The construction paradigm

The efficiency of a construction is measured in the number of applications
t(n) of the FIL-MAC, or, equivalently, in terms of the waste

w(n) := t(n) · b + � − n,

i.e., the amount by which pre-processing expands the message.

1 We consider single-key AIL-MAC constructions in this paper, i.e., AIL-MAC con-
structions which use one instantiation of the FIL-MAC.

2 C· denotes the construction, where the dot is the placeholder for G. Actually, C·

transforms any FIL-MAC with any compression parameter b and output length � (if
not stated otherwise). We describe C· for arbitrary but fixed values of b and �, and
let these parameters be implicitly given (if not stated otherwise).
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1.4 Our Contribution

In this paper, we generalize the construction paradigm of [8]. The main idea is to
comprise constructions which first transform the FIL-MAC G into a FIL-MAC

[G]f := {[gk]f}k∈{0,1}κ

defined by
[gk]f (x) := f(gk(x)),

where f : {0, 1}� → {0, 1}�−δ (with δ > 0) is a key-less compression function,
and then the FIL-MAC [G]f (rather than G) into an AIL-MAC C [G]f (by some
AIL-MAC construction C·). The new type of construction C[·]f is more efficient
than C·, since [G]f compresses more than G. However, this improvement is at
the cost of a worse security reduction. For example if the function f cuts away
the δ most significant bits of its input, the security reduction is worsened by a
factor of roughly 2δ.

This tradeoff is investigated in detail. At first sight, a less tight security reduc-
tion by some constant factor (as for the CR-construction [8]) seems irrelevant.
However, by allowing such a factor, the throughput of other constructions can be
improved substantially and result in overall better constructions (see Sect. 4.3).

In this paper, we also propose a new on-line3 AIL-MAC construction, the
PDI-construction, which is superior to all AIL-MAC constructions given in the
literature, taking the security/efficiency tradeoff into account.

2 Preliminaries

2.1 Notation

If M is a set, #M denotes its cardinality. For a sequence S of elements, |S|
denotes its length and Si the sequence of its first i ≤ |S| elements. For any
n ∈ N0, let [n] := {1, . . . , n} (with [0] := ∅).

For x, y ∈ {0, 1}∗, let |x| denote the length of x (in bits), x‖y the concate-
nation of x and y, 〈n〉b a b-bit encoding of a positive integer n ≤ 2b, x[i] the ith

bit of x, and
x[i, j] := x[i]

∥
∥x[i + 1]

∥
∥ · · ·

∥
∥x[j]

for 1 ≤ i < j ≤ |x|. Furthermore, let RR(·) denote the operator on bit strings
that rotates the input by one position to the right, i.e.,

RR(x) := x[L]‖x[1, L − 1].

An encoding σ : {0, 1}∗ → {0, 1}∗ is called prefix-free if there are no three
strings x, x′, y ∈ {0, 1}∗ such that x �= x′ and σ(x)‖y = σ(x′). A non-trivial
collision for a function f is a pair x �= x′ of inputs for which f(x) = f(x′).

If E denotes an event, Ē denotes the complementary event.
3 .e., the ability to process a message as the message bits arrive, without knowing the

message length in advance.
i
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2.2 Security Definition for MACs

A forger F for a MAC H := {hk : M → T }k∈K has oracle access to hk(·) (for
which k is chosen uniformly at random from K and kept secret) and can thus
learn the tag values for some adaptively chosen messages m1, . . . , mq. It then
returns a forgery (m, τ), i.e., a message m together with a tag τ . The forger
F is considered successful if hk(m) = τ . The only constraint on m is that it
must be new, i.e., different from all previous messages m1, . . . , mq. A forger F is
referred to as a (t, q, µ, ε)-forger, if t, q, and µ are upper bounds on the running
time, the number of messages (or oracle queries), and the total length (in bits)
of the oracle queries including the forgery message m, respectively, and ε is a
lower bound on the success probability. Informally, a MAC is considered secure
against existential forgery under an adaptive chosen-message attack, if there is
no (t, q, µ, ε)-forger, even for very high values of t, q, and µ, and a very small
value of ε.

Definition 1. A MAC is (t, q, µ, ε)-secure if there exists no (t, q, µ, ε)-forger.

A forger for a FIL-MAC will be denoted simply as a (t, q, ε)-forger, since the
parameter µ is determined by q and the input-length L, i.e., µ = (q + 1) · L.

To prove the security of a MAC, based on a FIL-MAC, one shows that the
existence of a (t, q, µ, ε)-forger F for the MAC implies the existence of a (t′, q′, ε′)-
forger F ′ for the FIL-MAC, where t′, q′, and ε′ are functions of t, q, µ, and ε.
In all our security proofs F is called only once by F ′. Therefore, the running
time of F ′ is essentially that of F , i.e., t′ ≈ t, with some small overhead that is
obvious from the construction of F ′. We will therefore not bother to explicitly
compute the running time of forgers, as this complicates the analysis unneces-
sarily without providing more insight. Therefore we drop the time parameter t
in the sequel.

2.3 Security Reductions

We make use of the proof technique of [8], which we recall for completeness. Let
F be a (q, µ, ε)-forger for a MAC CG and let

F ◦ Cgk

denote the process in which F ’s queries to (its oracle) Cgk are computed and
returned to F , and where F ’s forgery (m, τ) is verified by computing Cgk(m).
Consider the random variables occurring at the interface to gk (in the process
F ◦Cgk), and let zi denote the ith input to gk and yi := gk(zi) the corresponding
output. The sequences

Z := (z1, z2, . . .) and Y := (y1, y2, . . .)

are thus naturally defined. Note that as soon as the key k and the random coins
of F are fixed, all values in Z and Y are determined, and also whether F is
successful or not. Let E denote the event that F is successful. Without loss of
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generality we assume that F ’s forgery message m is distinct from F ’s oracle
queries. Thus E occurs if and only if Cgk(m) = τ .

A forger F ′ for the FIL-MAC G simulates F ◦ Cgk with the help of F and
its oracle access to gk. At some query zi to gk it stops the simulation and re-
turns a forgery (z′, τ ′) for gk (without making any other oracle queries to gk).
Such a forger is characterized by the time when it stops (i.e., i) and the way it
produces its forgery. This is referred to as a strategy s of F ′ and F ′

s denotes the
corresponding forger.

The most simple strategy is the näıve strategy sna. F ′
sna

stops the simulation
of F ◦ Cgk at the very last query z to gk (i.e., z is the last entry in Z). Then it
returns (z, τ) as a forgery, where τ is the forgery tag of F ’s forgery (m, τ) for
Cgk . F ′

sna
is successful if the following two conditions hold. First, E occurs, i.e.,

Cgk(m) = τ (and thus gk(z) = τ by definition of C·), and second z is new, i.e.,
z is only the last entry in Z. Let Enew denote the event that z is new. Thus F ′

sna

is successful whenever E ∧ Enew occurs.
Assume there is a set S of strategies for a construction with the property

that, whenever Ēnew occurs, there exists at least one strategy s ∈ S for which F ′
s

is successful. Such a set is referred to as complete for the construction. Obviously,
the set S ∪ {sna} has the property that whenever E occurs, there is at least one
strategy s ∈ S∪{sna} for which F ′

s is successful. Thus an overall strategy of F ′ is
to pick its strategy uniformly at random from S ∪ {sna}. Its success probability
is at least the probability that E occurs, divided by #S + 1. As F ′’s number of
oracle queries is |Z|, which is a random variable, it is convenient to introduce
the following function.

Definition 2. [8] The expansion function e : N × N → N of a construction C·

is defined as

e(q̃, µ̃) := max

{
q̃

∑

i=1

t(ni) : n1, . . . , nq̃ ∈ N0, n1 + · · · + nq̃ ≤ µ̃

}

,

where t(·) is the application function of C·.

It follows that |Z| ≤ e(q + 1, µ), since there are at most q + 1 queries of total
length at most µ to Cgk in F ◦ Cgk . In general, #S is a function of e(q + 1, µ).

Proposition 1. [8] The existence of a complete set S for a construction C·

and a (q, µ, ε)-forger F for CG implies the existence of a (q′, ε′)-forger F ′ for G,
where q′ = e(q + 1, µ) and ε′ = ε

#S+1 .

An important class of strategies for F ′ are the deterministic strategies. A
deterministic strategy s is characterized by a pair (i, f), where i ∈ [e(q + 1, µ)]
is an index and f a function mapping (Zi,Yi−1) to some value ŷi ∈ {0, 1}�

(which can be seen as a prediction of yi). To be more precise, the corresponding
forger F ′

s stops (the simulation of F ◦ Cgk) at query zi and returns (zi, ŷi) as a
forgery.4 The forger is successful if ŷi = yi and if zi is new, i.e., not contained in
4 If i > |Z| the forger aborts.
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the sequence Zi−1. In the sequel, we will make use of the following two sets of
deterministic forgers (from [8]):

– Let si,y (for y ∈ {0, 1}�) denote the strategy of stopping at query zi and
returning (zi, y) as a forgery. Note that whenever the event occurs that an
output of gk is equal to y, i.e., y is an entry in Y, then there exists a strategy
s ∈ Sy := {si,y|i ∈ [e(q + 1, µ)]} for which F ′

s is successful. We have

#Sy = e(q + 1, µ). (1)

– Let scoll,i,j (for i > j) denote the strategy of stopping at query zi and
returning (zi, yj) as a forgery. Note that whenever a non-trivial collision for
gk occurs, i.e., α, β ∈ [|Z|] satisfying zα �= zβ and yα = yβ, then there is
a strategy s ∈ Scoll := {scoll,i,j |i, j ∈ [e(q + 1, µ)], i > j)} for which F ′

s is
successful. The cardinality of Scoll is

#Scoll = e(q + 1, µ)2/2 − e(q + 1, µ)/2. (2)

3 Concrete AIL-MAC Constructions

In this section we present new on-line AIL-MAC constructions. First, we in-
troduce the Double-Iterated (DI) construction which has constant waste (i.e.,
w(n) ∈ θ(1)) and therefore is efficient for long messages. Then, we present the
Prefix-Free Iterated (PI) construction which has linear waste (i.e., w(n) ∈ θ(n))
but is more efficient than the DI-construction for short messages.

Finally, we propose the Prefix-Free Double Iterated (PDI) construction, which
depends on some design parameter r ∈ N0 and is a hybrid constructions between
the DI- and the PI-construction. For r = 0 the construction is equivalent to the
DI-construction and for r → ∞ to the PI-construction. For values of r between
this range the advantages of both the DI- and the PI-construction are exploited.
The idea is to simply apply the PI-construction for short messages and the DI-
construction for long messages. What short and long means depends on the value
of r.

3.1 The Iteration (I) Method

Before the AIL-MAC constructions are presented, we analyze the iteration IhIV(·)
of a function h : {0, 1}b+� → {0, 1}�, where IV denotes a fixed �-bit initialization
value. It is defined as follows and illustrated in Fig. 2 (see Sect. 9.3.1 of [9]).

The value τ = Ih
IV(m) for a string m ∈ ({0, 1}b)∗, i.e., m1‖ · · · ‖mt = m for some

t ∈ N0 and |mi| = b for i ∈ [t], is computed as

y0 = IV; yi = h(yi−1‖mi) , 1 ≤ i ≤ t; τ = yt.
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m1 mt−1 mt

hh h
ytIV · · ·

Fig. 2. The iteration (I) method

Lemma 1. A non-trivial collision in IhIV(·) implies a non-trivial collision in h
or that an output of h is equal to IV.

Proof. Let m �= m′ and IhIV(m) = IhIV(m′) denote a non-trivial collision in IhIV(·).
Furthermore, let (z1, . . . , zt) and (z′1, . . . , z

′
t′) denote the sequence of inputs to

h in the computation of IhIV(m) and IhIV(m′), respectively. Note that h(zt) =
IhIV(m) = IhIV(m′) = h(z′t′).

Let i denote the smallest index (if any) for which zt−i �= z′t′−i and h(zt−i) =
h(z′t′−i). The existence of i directly implies a non-trivial collision in h(·). The
non-existence of such an index i implies that one of the sequences (z1, . . . , zt) and
(z′1, . . . , z′t′) is a suffix of the other with t �= t′ since m �= m′. Assume without loss
of generality that t < t′. In this case we have IV‖v = z1 = z′t′−t+1 = h(zt′−t)‖v
for some v ∈ {0, 1}b, which means that an output of h is equal to IV. ��

Lemma 2. IhIV(m) = IhIV′(m′) with m, m′ ∈ ({0, 1}b)∗ and IV �= IV′ imply a
non-trivial collision in h, or that an output of h is equal to IV or IV′.

Proof. Let (z1, . . . , zt) and (z′1, . . . , z
′
t′) denote the sequence of inputs to h in the

computation of IhIV(m) and IhIV′(m′), respectively. Note that h(zt) = IhIV(m) =
IhIV′(m′) = h(z′t′).

Let i denote the smallest index (if any) for which zt−i �= z′t′−i and h(zt−i) =
h(z′t′−i). The existence of i directly implies a non-trivial collision in h(·). The
non-existence of such an index i implies that one of the sequences (z1, . . . , zt)
and (z′1, . . . , z

′
t′) is a suffix of the other with t �= t′ since IV �= IV′. If t < t′ we

have IV‖v = z1 = z′t′−t+1 = h(zt′−t)‖v for some v ∈ {0, 1}b, which means that
an output of h is equal to IV. Analogously, one shows that if t > t′ an output of
h is equal to IV′. ��

Remark 1. The Merkle-Damg̊ard (MD) iteration method [6,10] for collision-
resistant hashing is a result of similar nature. The hash value MDh

IV(m), where
m ∈ {0, 1}≤2b

(and IV ∈ {0, 1}�), is defined by first breaking m into sequence of
b-bit blocks m1, . . . , mt (where mt is padded with zeroes if necessary) and then
returning the value IhIV(m1‖ · · · ‖mt‖〈|m|〉b). A non-trivial collision in MDh

IV(·)
implies a non-trivial collision in h(·).

3.2 The DI-Construction

The DI-construction is a generalization of the CS-construction [8], which trans-
forms any FIL-MAC (irrespectively of its input-length/output-length ratio) to
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an AIL-MAC.5 To be more precise, DI· uses any FIL-MAC G to construct an
AIL-MAC DIG := {DIgk : {0, 1}∗ → {0, 1}�}k∈{0,1}κ as follows.

Break the message m ∈ {0, 1}∗ (of length n) into a sequence of b-bit blocks
m1, . . . , mt−1 (if t > 1) and a (��/b�b − �)-bit block mt, where a 1 followed by
0’s is used as padding, i.e., m1‖ · · · ‖mt = m‖10ν for some ν ∈ {0, . . . , b − 1}. Let

DIgk (m) :=

��
�

Igk

1�

�
Igk

0� (m1‖ · · · ‖mt−1) ‖mt

�
if t > 1

Igk

1� (0�‖m1) otherwise
.

The application function is t(n) =
�

n+1+�
b

�
(resulting in the waste w(n) ∈ Θ(1)).

Theorem 1. A (q, µ, ε)-forger F for DIG implies a (q′, ε′)-forger F ′ for G,
where q′ = µ

b + b+�
b · (q + 1) and ε′ = ε

1
2 q′2+ 3

2 q′+1
.

Proof. We show that S := Scoll ∪ S0� ∪ S1� is complete for DI· by proving that,
whenever the last input z to gk is not new, there is a non-trivial collision in gk

or an output of gk that is equal to 0� or 1�.
Assume that z is not new. Furthermore, assume that there is no non-trivial

collision in gk and no output of gk that is equal to 0� or 1�. We show that this
leads to a contradiction. By Lemma 1, there can not be a non-trivial collision in
Igk

0� (·). Furthermore, no output of Igk

0� (·) is equal to 0�, since this would directly
imply a non-trivial collision in gk. As a consequence, the last input m̃ to Igk

1� (·)
is distinct from the other inputs to Igk

1� (·).6 Since z is not new, z must have been
an earlier query to gk, resulting from some query m′ = m′

1‖ · · · ‖m′
t′ to Igk

IV(·)
with IV ∈ {0�, 1�}. Let z′1, . . . , z

′
t′ denote the sequence of queries to gk in the

computation of Igk

IV(m′) and let s be the index for which z′s = z. Thus, we have
Igk

IV(m′
1‖ · · · ‖m′

s) = Igk

1� (m̃). We distinguish two cases:

– If IV = 0�, we arrive at a contradiction by Lemma 2.
– If IV = 1�, it follows from the construction that |m′| = |m̃|. Thus, we have

m′
1‖ · · · ‖m′

s �= m̃, since m̃ is distinct (from the other queries to Igk

1� (·)). As a
consequence, we arrive at a contradiction by Lemma 1.

By definition of e(q + 1, µ), there exist n1, . . . , nq+1 ∈ N0 such that:

e(q + 1, µ) =
q+1
∑

i=1

t(ni) =
q+1
∑

i=1

⌈
ni + 1 + �

b

⌉

≤ µ + (b + �)(q + 1)
b

=: q′.

Thus #S + 1 ≤ q′2/2 + 3q′/2 + 1 by (1) and (2). Proposition 1 concludes the
proof. ��
5 The constructions coincide for b ≥ �.
6 Recall that, with out loss of generality, we assume that the forgery message m of F

is distinct from its oracle queries.
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Remark 2. The method, used (in [8]) for improving the efficiency of the CS-
construction for short messages, can directly be applied for the DI-construction
as well. This results in a more efficient construction, which is unfortunately not
(completely) on-line.

The DI-construction can also be parallelized in the same way as the CS-
construction (see [8]).

3.3 The PI-Construction

The PI-construction uses a prefix-free encoding σ : {0, 1}∗ → ({0, 1}b)∗, to be
defined later, for transforming G into the AIL-MAC PIG := {PIgk : {0, 1}∗ →
{0, 1}�}k∈{0,1}κ . It is defined as follows.

For a message m ∈ {0, 1}∗, let

PIgk (m) := I
gk

0� (σ(m)).

Theorem 2. A (q, µ, ε)-forger for PIG (with a prefix-free encoding σ) implies a
(q′, ε′)-forger for G, where q′ = e(q + 1, µ) and ε′ = ε

1
2 q′2+ 1

2 q′+1
. The expansion

function e depends on the concrete choice of σ.

Proof. We apply Proposition 1 and show that S := Scoll ∪ S0� is complete for
PI· by showing that if z is not new, then there is a non-trivial collision in gk or
a 0�-output of gk. This follows directly from Lemma 1 and the fact that an old
z implies a non-trivial collision in Igk

0� (·) (due to the prefix-free encoding). ��
The on-line property and the efficiency of the construction (hence also the

expansion function e) depend on which prefix-free encoding σ is used. It seems
obvious that there is no prefix-free encoding for which the construction is on-line
and has waste w(n) ∈ O(log(n)).7 However, allowing linear waste, i.e., w(n) ∈
θ(n), there are prefix-free encodings for which the construction has the on-line
property. Throughout this paper, we define σ as follows.

Let
σ(m) := 0‖m1‖0‖m2‖ · · · ‖0‖mt−1‖1‖mt,

where m ∈ {0, 1}∗ and m1, . . . , mt are (b − 1)-bit blocks such that m1‖ · · · ‖mt =
m‖10ν with ν ∈ {0, . . . , b − 2}.

The application function of the PI-construction, with prefix-free encoding σ
(as just defined), is t(n) = �(n + 1)/(b − 1)�. This results in waste w(n) ∈ θ(n).
However, note that the PI-construction is more efficient than the DI-construction
if (and only if) the message length is shorter than �(b − 1).

The following Corollary follows.
7 The prefix-free encoding, described next, has logarithmic waste but is not on-line. Let

σ : {0, 1}∗ → ({0, 1}b)∗ be defined by r = |〈|m|〉| − 1 and ρ(m) := 0r1‖〈|m|〉‖m‖0ν ,
where ν ∈ {0, . . . , b − 1} is chosen such that the length is a multiple of b.
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Corollary 1. A (q, µ, ε)-forger for PIG (with σ defined as above) implies a
(q′, ε′)-forger for G, where q′ = µ

b−1 + (q + 1) and ε′ = ε
1
2 q′2+ 1

2 q′+1
.

Proof. The proof follows directly from Theorem 2 and the fact that there exist
n1, . . . , nq+1 ∈ N0 such that

e(q + 1, µ) =
q+1
∑

i=1

t(ni) =
q+1
∑

i=1

⌈
ni + 1
b − 1

⌉

≤
q+1
∑

i=1

ni + b − 1
b − 1

≤ µ

b − 1
+ (q + 1) =: q′.

As a consequence #S + 1 ≤ q′2/2 + q′/2 + 1 by (1) and (2). ��

3.4 The PDI-Construction

The PDI-construction is an AIL-MAC construction, which is a hybrid construc-
tion between the PI- and DI-construction. It exploits the advantages of both
constructions as follows.

Let r ∈ N0 be a design parameter. The construction PDI·r transforms any
FIL-MAC G into the AIL-MAC

PDIGr := {PDIgk
r : {0, 1}∗ → {0, 1}�}k∈{0,1}κ ,

where PDIgk
r (·) is defined as follows.

For a message m ∈ {0, 1}∗ (of length n), let

PDIgk
r (m) :=

��
�

PIgk (m) if n < r(b − 1)

DIgk (0‖m1‖0‖m2‖ · · · ‖0‖mr‖mr+1) otherwise
,

where m1, . . . , mr is a sequence of (b− 1)-bit blocks and mr+1 a bitstring such that
m1‖ · · · ‖mr‖mr+1 = m.

The application function is t(n) =

��
�

�
n+1
b−1

�
if n < r(b − 1)

�
n+1+�+r

b

�
otherwise

.

Although not directly clear from the definition above, this construction is
on-line (no matter whether |m| < r(b− 1) or not, the processing of m starts out
in the same way).

We stress that the PDI-construction is equivalent to the DI-construction for
r = 0 and to the PI-construction for r → ∞. As is obvious from the definition of
PDI·r, the construction is as efficient as PI· for messages of shorter length than
r(b − 1) and slightly less efficient than DI· for longer messages.
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Theorem 3. A (q, µ, ε)-forger for PDIGr implies a (q′, ε′)-forger for G, where
q′ = µ

b−1 + (q + 1) + �+r
b · Λ − 1

b·(b−1) · Π and ε′ = ε
1
2 ·q′2+( 1

2+γ)·q′+1
, where

(Λ, Π) :=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(q + 1, µ) if r = 0
(⌊

µ
r(b−1)

⌋

, 0
)

if µ
q+1 ≤ r(b − 1) − 1

(

min
(

q + 1,
⌊

µ
r(b−1)

⌋)

, µ − q(r(b − 1) − 1)
)

otherwise

,

and γ takes the value 1 if µ ≥ r · (b − 1) and 0 otherwise.

Proof (Sketch). Let γ be an indicator variable that takes the value 1 if µ ≥
r·(b−1) and 0 otherwise. We omit the proof that Scoll∪S0� is complete for the con-
struction if γ = 0 and that Scoll ∪S0� ∪S1� is complete for the PDI-construction
otherwise, since it is similar to the proof of the DI- and PI-construction.8 Ap-
plying Proposition 1 and the following fact concludes the proof.

By definition of e(q + 1, µ), there exist n1, . . . , nq+1 ∈ N0 such that e(q +
1, µ) =

∑q+1
i=1 t(ni). Let ζi be an indicator variable that takes value 1 if ni ≥

r(b − 1) and 0 otherwise. We have that

q+1
∑

i=1

t(ni) ≤
q+1
∑

i=1

ζi ·
⌈

ni + 1 + � + r

b

⌉

+ (1 − ζi) ·
⌈

ni + 1
b − 1

⌉

≤
q+1
∑

i=1

ζi ·
ni + b + � + r

b
+ (1 − ζi) ·

ni + b − 1
b − 1

≤ µ

b − 1
+ (q + 1) +

� + r

b
·

q+1
∑

i=1

ζi −
1

b · (b − 1)

q+1
∑

i=1

ζi · ni.

Furthermore, it is straightforward to verify that the following two inequalities
hold

q+1
∑

i=1

ζi ≤
{

q + 1 if r = 0

min
(

q + 1,
⌊

µ
r(b−1)

⌋)

otherwise
=: Λ

q+1
∑

i=1

ζi · ni ≥

⎧

⎪⎨

⎪⎩

µ if r = 0
0 if µ

q+1 ≤ r(b − 1) − 1
µ − q(r(b − 1) − 1) otherwise

=: Π.

As a consequence #S + 1 ≤ q′2/2 + (1/2 + γ) · q′ + 1 by (1) and (2). ��

8 Note that if µ < r(b− 1) all queries issued by the forger for PDIgk
r (·) (including the

forgery message) are shorter than r(b − 1) and hence DIgk (·) is never invoked.
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4 The Generalized Construction Paradigm

In this section, we generalize the construction paradigm to comprise a greater
class of constructions. Furthermore, we investigate a tradeoff between the effi-
ciency (of a construction) and the tightness (of its security reduction) in detail.

4.1 An Efficiency/Security Tradeoff

A general design goal of AIL-MAC constructions is to minimize the number
of applications t(n) of the FIL-MAC (where n denotes the message length). A
natural approach to decrease the number of applications (which is not implied
by the type of construction C·) is to increase the compression parameter of the
FIL-MAC before it is transformed by some construction C·. However, as we will
see, this is at the cost of a less tight security reduction.

To be more precise, let f : {0, 1}� → {0, 1}�−δ be a compression function
with compression parameter δ > 0 and let f−1(y) denote the set of all preim-
ages9 of y ∈ {0, 1}�−δ. Let [·]f denote the construction, which transforms G into
a FIL-MAC

[G]f := {[gk]f : {0, 1}L → {0, 1}�−δ}k∈{0,1}κ ,

defined by

[gk]f (x) := f(gk(x)).

Lemma 3. A (q, ε)-forger F for [G]f implies a (q, ε/s)-forger F ′ for G, where
s = max{#f−1(y) : y ∈ {0, 1}�−δ}.

Proof. The forger F ′ runs F , answering all its oracle queries with the help of its
own oracle. When F returns a forgery (m, τ), F ′ chooses an element τ̂ uniformly
at random from f−1(τ) and outputs (m, τ̂) as its own forgery. If F ′ is successful
it follows that τ = [gk]f (m) = f(gk(m)). Thus, there is an element τ ′ ∈ f−1(τ)
for which τ ′ = gk(m). The probability that τ̂ = τ ′ is

1/#f−1(τ) ≥ 1/s, where s = max{#f−1(y) : y ∈ {0, 1}�−δ}.

Let E ′ denote the event that F ′ is successful and E the event that F is successful.
It follows that

Pr [E ′] ≥ Pr [E ′ | E ] · Pr [E ] ≥ Pr [τ̂ = τ ′]
︸ ︷︷ ︸

≥1/s

· Pr [E ]
︸ ︷︷ ︸

=ε

.

��
9 We assume that, for all y ∈ {0, 1}�−δ , one can efficiently sample an element uniformly

at random from f−1(y).
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To get as tight a security reduction in Lemma 3 as possible the largest preim-
age set of the key-less compression function must be as small as possible. A
function achieving this is

∆δ : {0, 1}� → {0, 1}�−δ , defined by x �→ x[1, � − δ],

which simply cuts off the δ least significant bits of the input. As a consequence
∆δ can always be chosen as the compression function without loss of generality.
To simplify the notation, we write [·]δ to denote the construction [·]∆δ

.

Corollary 2. A (q, ε)-forger for [G]δ implies a (q, ε/2δ) forger for G.

Proof. Since each image of ∆δ(·) has equally many preimages, namely 2δ, the
largest preimage set is as small as possible. Apply Lemma 3. ��

4.2 The Generalized Paradigm

The AIL-MAC C[G]δ is defined by simply letting the construction C· transform
the FIL-MAC [G]δ, which has compression parameter b′ = b + δ and output-
length �′ = � − δ. This is illustrated in Fig. 3.

[i = t]

[i < t]

F
et

ch
er

P
re

-p
ro

c.

m

|m|
zi

m′ [gk]δ
Buffer

C[gk]δC·
τ = [gk(zt)]δ

Fig. 3. The generalized construction paradigm

Since [G]δ compresses more than G, the number of applications of the FIL-
MAC G is in general smaller for C[·]δ than for C·. However, this is at the cost
of having a less tight security reduction for C[G]δ by a factor of roughly 2δ. The
tradeoff between the efficiency and the tightness should be taken into account
when comparing AIL-MAC constructions with each other (see next section).

Corollary 3. Let b denote the compression parameter and � the output-length
of a FIL-MAC G.10 If tb,�(n) is the application function of C·, then tb+δ,�−δ(n)
is the application function of C[·]δ . If a (q, µ, ε)-forger for CG implies a (q′, ε′)-
forger for G, where

q′ = q′b,�(q, µ, ε) and ε′ = ε′b,�(q, µ, ε),

10 Here we make the parameters b and � explicit.
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then a (q, µ, ε)-forger for C [G]δ implies a (q′′, ε′′/2δ)-forger for G, where

q′′ = q′b+δ,�−δ(q, µ, ε) and ε′′ = ε′b+δ,�−δ(q, µ, ε).

Proof. The FIL-MAC [G]δ has compression parameter b′ = b + δ and output-
length �′ = � − δ. Apply Corollary 2. ��

To prove the security of a construction C [·]δ , one simply applies Corollary 3 (with
the proof technique of Sect. 2.3).

4.3 An Illustrative Example

To illustrate the generalization and the security/efficiency tradeoff, let us first
briefly recall the Chain-Rotate construction of [8] (as a reference). The CR-
construction transforms any FIL-MAC G into the AIL-MAC CRG := {CRgk :
{0, 1}∗ → {0, 1}�}k∈{0,1}κ , as follows.

Parse the message m ∈ {0, 1}∗ into a sequence {mi}t
i=1 of b-bit blocks such that

m1‖ · · · ‖mt = m‖10ν for a ν ∈ {0, . . . , b − 1}, and let

CRgk (m) := gk (RR(y‖mt)) , where y :=

��
�

I
gk

0� (m1‖ · · · ‖mt−1) if t > 1

0� otherwise
.

The application function is t(n) =
�

n+1
b

�
(resulting in the waste w(n) ∈ Θ(1)).

Theorem 4. [8] A (q, µ, ε)-forger for CRG implies a (q′, ε′)-forger for G, where
q′ = µ

b + (q + 1) and ε′ = ε
5
2 q′2+ 3

2 q′+1
.

The efficiency of CR· is better than for DI· and PI· (just compare the ap-
plication functions). However, note that the tightness of the security reduction
is roughly a factor 5 worse. At first sight one might be tempted to neglect the
factor 5 and consider the CR-construction as the better construction. However,
as we show next, the construction PI[·]δ+1 is as efficient and more secure than
CR[·]δ for all δ. This illustrates the importance of taking the security/efficiency
tradeoff into account when comparing AIL-MAC constructions.

The following two corollaries follow directly from Corollary 3, using Theorem
4 and Corollary 1, respectively.

Corollary 4. A (q′, ε′)-secure FIL-MAC G implies a (q, µ, ε)-secure AIL-MAC
CR[G]δ , for

ε ≥ 2δ ·
(

5
2
· q′2 +

3
2
· q′ + 1

)

· ε′ and
µ

b + δ
+ (q + 1) ≤ q′.

The application function is t(n) =
⌈

n+1
b+δ

⌉

.
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Corollary 5. A (q′, ε′)-secure FIL-MAC G implies a (q, µ, ε)-secure AIL-MAC
PI[G]δ , for

ε ≥ 2δ ·
(

1
2
· q′2 +

1
2
· q′ + 1

)

· ε′ and
µ

b + δ − 1
+ (q + 1) ≤ q′.

The application function is t(n) =
⌈

n+1
b+δ−1

⌉

.

It is straightforward to verify that the application function is equivalent for
PI[·]δ+1 and CR[·]δ (and hence the efficiency is the same). Furthermore, the bound
for q and µ are also equivalent for the constructions. Since the lower bound for
ε is smaller for PI[·]δ+1 , by a factor of roughly 2.5, it follows that PI[·]δ+1 has a
tighter security reduction.

5 Comparisons of AIL-MACs

It is clear from the above that we do not need to consider CS[·]δ and CR[·]δ

(for any δ) in our comparison of AIL-MAC constructions, since DI[·]δ is a gen-
eralization of the former and PI[·]δ+1 is more efficient and has a tighter security
reduction than the latter. Furthermore, recall that PDI[G]δ

r is equivalent to DI[G]δ

for r = 0 and to PI[G]δ for r → ∞.
As a consequence, for all AIL-MAC constructions in the literature there is a

choice for r and δ for which PDI[·]δr is as efficient and secure. The concrete choice
for δ and the design parameter r is application dependent. Combining Corollary
3 and Theorem 3, we get:

Corollary 6. A (q′, ε′)-secure FIL-MAC G implies a (q, µ, ε)-secure AIL-MAC
PDI[G]δ

r , for

ε ≥ 2δ ·
(

q′2

2
+

(
1
2

+ γ

)

· q′ + 1
)

· ε′, and

µ

b + δ − 1
+ (q + 1) +

� − δ + r

b + δ
· Λ − 1

(b + δ)(b + δ − 1)
· Π ≤ q′,

where

(Λ, Π) :=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(q + 1, µ) if r = 0
(⌊

µ
r·(b+δ−1)

⌋

, 0
)

if µ
q+1 ≤ r · (b + δ − 1) − 1

(

min
(

q + 1,
⌊

µ
r·(b+δ−1)

⌋)

, µ − q · (r · (b + δ − 1) − 1)
)

otherwise

and γ equals 1 if µ ≥ r · (b + δ − 1) and 0 otherwise. The application function is

t(n) =

⎧

⎪⎨

⎪⎩

⌈
n+1

b+δ−1

⌉

if n < r(b + δ − 1)
⌈

n+1+�−δ+r
b+δ

⌉

otherwise
.
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Note that Corollary 6 is equivalent to Corollary 5 for r → ∞ and to the
following corollary for r = 0.

Corollary 7. A (q′, ε′)-secure FIL-MAC G implies a (q, µ, ε)-secure AIL-MAC
DI[G]δ(≡ PDI[G]δ

0 ), for

ε ≥ 2δ ·
(

1
2
· q′2 +

3
2
· q′ + 1

)

· ε′ and
µ

b + δ
+

b + �

b + δ
· (q + 1) ≤ q′.

The application function is t(n) =
⌈

n+1+�−δ
b+δ

⌉

.

6 Conclusion

In this paper, a study of a paradigm for constructing AIL-MACs by iterating
applications of a FIL-MAC was continued. The paradigm was generalized in a
natural way and an efficiency/security tradeoff was investigated in detail.

Our new on-line single-key AIL-MAC construction, the PDI-construction,
transforms any FIL-MAC into an AIL-MAC with constant waste. It is superior
to all constructions given in the literature (taking the tradeoff into account) and
it appears obvious that it is essentially optimal.

An open question is whether there exists a prefix-free encoding σ′ such that
the PI-construction (with encoding σ′) is on-line and has logarithmic waste. Our
conjecture is that there is no such encoding.
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