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Abstract. A public random function is a random function that is ac-
cessible by all parties, including the adversary. For example, a (public)
random oracle is a public random function {0, 1}∗ → {0, 1}n. The natural
problem of constructing a public random oracle from a public random
function {0, 1}m → {0, 1}n (for some m > n) was first considered at
Crypto 2005 by Coron et al. who proved the security of variants of the
Merkle-Damg̊ard construction against adversaries issuing up to O(2n/2)
queries to the construction and to the underlying compression function.
This bound is less than the square root of n2m, the number of random
bits contained in the underlying random function.

In this paper, we investigate domain extenders for public random func-
tions approaching optimal security. In particular, for all ε ∈ (0, 1) and all
functions m and � (polynomial in n), we provide a construction Cε,m,�(·)
which extends a public random function R : {0, 1}n → {0, 1}n to a
function Cε,m,�(R) : {0, 1}m(n) → {0, 1}�(n) with time-complexity poly-
nomial in n and 1/ε and which is secure against adversaries which make
up to Θ(2n(1−ε)) queries. A central tool for achieving high security are
special classes of unbalanced bipartite expander graphs with small de-
gree. The achievability of practical (as opposed to complexity-theoretic)
efficiency is proved by a non-constructive existence proof.

Combined with the iterated constructions of Coron et al., our re-
sult leads to the first iterated construction of a hash function {0, 1}∗ →
{0, 1}n from a component function {0, 1}n → {0, 1}n that withstands
all recently proposed generic attacks against iterated hash functions, like
Joux’s multi-collision attack, Kelsey and Schneier’s second-preimage at-
tack, and Kelsey and Kohno’s herding attacks.

1 Introduction

1.1 Secret vs. Public Random Functions

Primitives that provide some form of randomness are of central importance in
cryptography, both as a primitive assumed to be given (e.g. a secret key), and
as a primitive constructed from a weaker one to “behave like” a certain ideal
random primitive (e.g. a random function), according to some security notion.
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An adversary may have different types of access to a random primitive. The
two extreme cases are that the adversary has no access and that he has complete
access1 to it. For example, the adversary is assumed to have no access to a
secret key, and a pseudo-random function (PRF) is a (computationally-secure)
realization from such a secret key of a secret random function to which the
adversary has no access. In contrast, a (public) random oracle, as used in the
so-called random-oracle model [7], is a function {0, 1}∗ → {0, 1}n to which the
adversary has complete access, like the legitimate parties. Similarly, a public
parameter (e.g. the parameter selecting a hash function from a class) is a finite
random string to which the adversary has complete access. It is natural to also
consider finite-domain public random functions.

In this paper we are interested in such public random primitives and reduc-
tions among them. The question whether (and how) a certain primitive can be
securely realized from another primitive is substantially more complex in the
public setting, compared to the secret setting, and even the security notion is
more involved. For example, while the CBC-construction can be seen as the
secure realization of a secret random function {0, 1}∗ → {0, 1}n from a secret
random function {0, 1}n → {0, 1}n [5,19], the same statement is false if public
functions (accessible to the adversary) are considered. Another famous exam-
ple of a reduction problem for public primitives is the realization of a (public)
random oracle from a public parameter. This was shown to be impossible [8,21].

1.2 Domain Extension and the Birthday Barrier

A random primitive (both secret or public) can be characterized by the number
of random bits it contains. An �-bit key is a string (or table) containing � random
bits, a random function {0, 1}m → {0, 1}n corresponds to a table of n2m random
bits which can be accessed efficiently, and a random oracle {0, 1}∗ → {0, 1}n

corresponds to a countably infinite table of random bits.2 Of course, a random
table of N bits can be interpreted as a random function {0, 1}m → {0, 1}n for
any m and n with n2m ≤ N . For example, n can be doubled at the apparently
minor expense of reducing m by 1.

An important topic in cryptography is the secure expansion of such a table,
considered as an ideal system. This is referred to as domain extension, say from
{0, 1}m to {0, 1}2m (or to {0, 1}∗), which corresponds to an exponential (or even
infinite) blow-up of the table size. (In contrast, increasing the range, say from
{0, 1}n to {0, 1}2n, corresponds to merely a doubling of the table size.)

1 Side-channel attack analyses, where part of the secret key is assumed to leak, are
examples of intermediate scenarios.

2 Each bit can be accessed in time logarithmic in its position in the table, which is
optimal since the specification of the position requires logarithmically many bits. In
this paper we only consider such random primitives where the bits can be accessed
efficiently, but there are also more complicated primitives, like an ideal cipher, which
on one hand has a special permutation structure and also allows on the other hand
a special additional type of access, namely inverse queries.
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In [21] a generalization of indistinguishability to systems with public access,
called indifferentiability, was proposed. Like for indistinguishability, there is a
computational and a stronger, information-theoretic, version of indifferentiabil-
ity. This general notion allows to discuss the secure realization of a public random
primitive from another public random primitive. In [21] also a simple general
framework was proposed, based on entropy arguments, for proving impossibility
results like that of [8]. One can easily show that not even a single-bit extension of
a public parameter, from � to �+1 bits, is possible, let alone to an exponentially
large table (corresponding to a public random function {0, 1}m → {0, 1}n) or
even to an infinite table (corresponding to the impossibility of realizing a random
oracle [8,21]).

However, the situation is different if one starts from a public random function
(as opposed to just a public random string). Coron et al. [11] considered the
problem of constructing a random oracle {0, 1}∗ → {0, 1}n from a public random
function {0, 1}m → {0, 1}n (where m > n) and showed that a modified Merkle-
Damg̊ard construction [24,12] works, with information-theoretic security (i.e.,
indifferentiability) up to about O(2n/2) queries. This bound, only the square
root of O(2n), is usually called the “birthday barrier”. The term “birthday” is
used because the birthday paradox applies (as soon as two different inputs to
the function occur which produce the same output, security is lost) and the term
“barrier” is used because breaking it is non-trivial if at all possible.

For secret random functions, many constructions in the literature, also those
based on universal hashing [9,26] and the CBC-construction [5,19], suffer from
the birthday problem, and hence several researchers [1,4,19] considered the prob-
lem of achieving security beyond the birthday barrier. The goal of this paper is to
solve the corresponding problem for public random functions. Namely, we want
to achieve essentially maximal security, i.e., up to Θ(2n(1−ε)) queries for any
ε > 0 (where the construction may depend on ε). Like for other problems (see
e.g. [13]), going from the “secret case” to the “public case” appears to involve
substantial new construction elements and analysis techniques.

1.3 Significance of Domain Extension for Public Random Functions

The domain extension problem for public random functions has important impli-
cations for the design of cryptographic functions, in addition to being of general
theoretical interest. We also refer to [11] for a discussion of the significance of
this problem.

Cryptographic functions with arbitrary input-length are of crucial importance
in cryptography. Desirable properties for such functions are collision-resistance,
second-preimage resistance, multi-collision resistance, being pseudo-random, or
being a secure MAC, etc. A general paradigm for constructing a cryptographic
function {0, 1}∗ → {0, 1}n, both in the secret and the public case, is to make use
of a component function F : {0, 1}m → {0, 1}n and to embed it into an iterated
construction C(·) (e.g. the CBC or the Merkle-Damg̊ard construction), resulting
in the overall function C(F) : {0, 1}∗ → {0, 1}n.
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It is important to be able to separate the reasoning about the component
function F and about the construction C(·). Typically, F is simply assumed to
have some property, like being collision-resistant, second-preimage resistant, a
secure MAC, etc. In contrast, the construction C(·) is (or should be!) designed
in a way that one can prove certain properties.

There are two types of such proofs for C(·). The first type is a complexity-
theoretic reduction proof showing that if there exists an adversary breaking a
certain property of C(F), then there exists a comparably efficient adversary
breaking a property (the same or a different one) of F. For example, using such
an argument one can prove that the Merkle-Damg̊ard [24,12] construction is
collision-resistant if the component function is. Similarly, one can prove that the
CBC construction is a PRF if the component function is [5], or that certain
constructions [2,22] are secure MACs if the component function is.

A second type of proof, which is the subject of [11] and of this paper, is the
proof that if F is a public random function, then so is C(F), up to a certain num-
ber B of queries. Such a proof implies the absence of a generic (black-box) attack
against C(F), i.e., an attack which does not exploit specific properties of F, but
uses it merely as a black-box.3 Such a generic proof is not an ultimate security
proof for C(F), but it proves that the construction C(·) itself has no weakness.
A main advantage of such a proof is that it applies to every cryptographic prop-
erty of interest (which a random function has), not just to specific properties like
collision-resistance.

The number B of queries up to which security is guaranteed is a crucial para-
meter of such a proof, especially in view of several surprises of the past years re-
garding weaknesses of iterated constructions. Joux [15] showed that the security
of the Merkle-Damg̊ard construction (with compression function with n-bit out-
put) against finding multi-collisions is not much higher than the security against
normal collision attacks, namely the birthday barrier O(2n/2), which is surpris-
ing because for a random function, finding an r-multi-collision requires Θ(2

r−1
r n)

queries. Joux’s attack has been generalized to a wider class of constructions [14].
Other attacks in a similar spirit against iterated constructions are the second-
preimage attack by Kelsey and Schneier [17], and herding attacks [16]. One
possibility to overcome these issues is to rely on a compression function with
input domain much larger than the size of the output of the construction (cf.
for example the constructions in [18] and the double block-length construction
of [10]), but this does not seem to be the best possible approach, both from a
theoretical and from a practical viewpoint, as explained below.

A proof, like that of [11], for a construction C(·) of a public random function,
implies that C(·) is secure against all possible attacks, up to the bound B on
the number of queries stated in the proof. Since the bound in [11] is the birth-
day barrier, this implies nothing (beyond the birthday barrier) for attacks that
require more queries, like the attacks of [15,17,10] mentioned above, and indeed
the constructions of [11] also suffer from the same attacks.

3 This is analogous to security proofs in the generic group model [27,20] which show that
no attack exists that does not exploit the particular representation of group elements.
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The bound B is also of importance since it determines the input and output
sizes of F. For example, because collision-resistance is a property that can hold
only up to 2n/2 queries (due to the birthday paradox), n must be chosen twice as
large as one might expect to be feasible in a näıve security analysis. Moreover,
since the function must be compressing to be useful in a construction C(·),
the input size m must be larger than the output size n. However, if collision-
resistance is not required, but instead for example second-preimage resistance,
then the input size m of F can potentially be smaller or, turning the argument
around, security for a given m can be much higher.

The input size m of F is relevant for two more reasons. First, if one considers
the (perhaps not very realistic) possibility of finding a random function in Nature
(say, by scanning the surface of the moon or by appropriately accessing the
WWW), then m is a crucial parameter since the table size n2m is exponential in
m. Second, for a given maximal computing time for F, the difficulty of designing
a concrete cryptographic function F : {0, 1}m → {0, 1}n that is supposed to
“look random” increases significantly if m is large. This can be seen as follows.
Such a function F for large m could be modified in many different ways to reduce
m to m′ < m (e.g. set m − m′ input bits to 0 or to any fixed value, or repeat
an input of size m′ until a block of length m is filled, etc.), and for each of these
modifications it would still have to be secure.4 Hence simply designing a new
function with doubled m is not a very reasonable solution for the birthday barrier
problem. Rather, one should find a construction that doubles (or multiplies) the
input size but at the same time preserves the security almost optimally.

1.4 Contributions and Outline of This Paper

The main contribution of this paper is a construction paradigm for breaking the
birthday barrier for domain extension of public random functions. More precisely,
in Section 3 we prove that for every ε ∈ (0, 1), m and �, there exists an efficient
construction Cε,m,�(·) which extends a public random function {0, 1}n → {0, 1}n

to a public random function {0, 1}m → {0, 1}�, and which guarantees security
for up to Θ(2n(1−ε)) queries.

A central tool in our approach is a new combinatorial object, which we call an
input-restricting function family. Section 4 discusses constructions of such fami-
lies from highly-unbalanced bipartite expander graphs. While current expander
constructions only allow our paradigm to be efficient in a complexity-theoretic
sense (i.e. polynomial-time), an existence proof shows that very efficient con-
structions exist which would be of real practical interest if such graphs could be
made explicit. We hope this paper provides additional motivation to investigate
explicit constructions of unbalanced bipartite expanders for parameters ranges
which have not received much attention so far.

Finally, our techniques allow to use a public random function {0, 1}n →
{0, 1}n to construct a compression function with sufficiently large domain and

4 This argument applies even though we know that a public random function is not
securely realizable from a public random parameter.
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range and to plug it into the construction of [11] to achieve the first iterated
construction of a public random oracle {0, 1}∗ → {0, 1}n from a public random
function {0, 1}n → {0, 1}n with security above the birthday barrier. We discuss
this in Section 5.

2 Preliminaries

2.1 Notation and Probabilities

Throughout this paper, calligraphic letters (e.g. U) denote sets. A k-tuple is de-
noted as uk = [u1, . . . , uk], and the set of k-tuples of elements of U is denoted
as Uk. We use capital letters (e.g. U) to name random variables, whereas their
concrete values are often denoted by the corresponding lower-case letters (e.g.
u). Also, we write PU for the probability distribution of U , and we use the short-
hand PU (u) for P(U = u). Given random variables U and V , as well as events A
and B, PUA|V B denotes the corresponding conditional probability distribution,
which is interpreted as a function U × V → R≥0, where the value PUA|V B(u, v)
is well-defined for all u ∈ U and v ∈ V such that PV B(v) > 0 (and undefined
otherwise). Two probability distributions PU and PU ′ on the same set U are
equal, denoted PU = PU ′ , if PU (u) = PU ′(u) for all u ∈ U . Also, for condi-
tional probability distributions, equality holds if it holds for all inputs for which
both are defined. We often need to deal with distinct random experiments where
equally-named random variables and/or events appear. To avoid confusion, we
add superscripts to probability distributions (e.g. PE

U|V (u, v)) to make the ran-
dom experiment explicit. Finally, we denote by s‖s′ the concatenation of two
binary strings s, s′ ∈ {0, 1}∗.

2.2 Indistinguishability of Random Systems

In this section, we review basic definitions and facts from the framework of
random systems of [19]. A random system is the abstraction of the input-output
behavior of any discrete system.

Definition 1. An (X , Y)-random system F is a (generally infinite) sequence
of conditional probability distributions5 pF

Yi|XiY i−1 for all i ≥ 1. Two random
systems F and G are equivalent, denoted F ≡ G, if pF

Yi|XiY i−1 = pG
Yi|XiY i−1 for

all i ≥ 1.

The system is described by the conditional probabilities pF
Yi|XiY i−1(yi, x

i, yi−1)
(for i ≥ 1) of obtaining the output yi ∈ Y on query xi ∈ X given the previ-
ous i − 1 queries xi−1 = [x1, . . . , xi−1] ∈ X i−1 and their corresponding out-
puts yi−1 = [y1, . . . , yi−1] ∈ Yi−1. An example of a random system that we
consider in the following is a random function R : {0, 1}m → {0, 1}n, which

5 We use a lower-case p to stress the fact that these conditional distributions by them-
selves do not define a random experiment.
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returns for every distinct input value x ∈ {0, 1}m an independent and uniformly-
distributed n-bit value. Moreover, a random oracle O : {0, 1}∗ → {0, 1}n is a
random function taking inputs of arbitrary length.

A distinguisher D for an (X , Y)-random system is a (Y, X )-random system
which is one query ahead, i.e. it is defined by the conditional probability distribu-
tions pD

Xi|Xi−1Y i−1 for all i ≥ 1. In particular, pD
X1

is the probability distribution
of the first value queried by D. Finally, the distinguisher outputs a bit after
a certain number (say k) of queries depending on the transcript (Xk, Y k). For
an (X , Y)-random system F and a distinguisher D, we denote by D ◦ F the
random experiment6 where D interacts with F. Furthermore, given an addi-
tional (X , Y)-random system G, the distinguishing advantage of D in distin-
guishing systems F and G is defined as ΔD(F,G) :=

∣
∣PD◦F(1) − PD◦G(1)

∣
∣,

where PD◦F(1) and PD◦G(1) denote the probabilities that D outputs 1 after
its k queries when interacting with F and G, respectively.

We are interested in considering an internal monotone condition defined on a
random system F. Such a condition is initially true, and once it fails, it cannot
become true any more. In particular, a system FA with a monotone condition A
is an (X , Y × {0, 1})-random system, where the additional output bit indicates
whether the condition A holds after the i’th query has been answered. In gen-
eral, we characterize such a condition by a sequence of events A = A0, A1, . . .,
where A0 always holds, and Ai holds if the condition holds after query i. The
condition fails at query i if Ai−1 ∧ Ai occurs. For a system with a monotone
condition FA, we write F for the system where the additional output bit is
ignored. Generally, we are interested in considering the behavior of systems
only as long as a certain monotone condition holds: Given two systems FA

and GB with monotone conditions A and B, respectively, they are equivalent,
denoted FA ≡ GB, if pF

AiYi|XiY i−1Ai−1
= pG

BiYi|XiY i−1Bi−1
holds for all i ≥ 1.

The probability that a distinguisher D issuing k queries makes a monotone
condition A fail in the random experiment D◦F is defined as νD(FA) := PD◦F

Ak
.

The following lemma from [19] relates this probability with the distinguishing
advantage.

Lemma 1. If FA ≡ GB holds, then ΔD(F,G) ≤ νD(FA) = νD(GB) for all
distinguishers D.

One can use a random system F as a component of a larger system: In par-
ticular, we are interested in constructions C(·) such that the resulting random
system C(F) invokes F as a subsystem. (Note that C(·) itself is not a random
system, while C(F) is a random system.)

Finally, we remark that in general when we mention that a construction (or
a distinguisher) is efficient we mean that there exists a probabilistic interactive
Turing machine implementing the same input-output behavior and with poly-
nomial running time (in the understood security parameter).

6 In particular, in this random experiment, the joint distribution PD◦F
XkY k is well-defined

as
�k

i=1 pD
Xi|Xi−1Y i−1 · pF

Yi|XiY i−1 .
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2.3 Indifferentiability, Reductions, and Public Random Primitives

The notion of indifferentiability [21] naturally extends the concept of indis-
tinguishability to systems with a public and a private interface7 adopting a
simulation-based approach. The public interface can be used by all parties,
including the adversary, whereas the legitimate parties have exclusive access
to the private interface. Generally, we denote such a system as an ordered
pair F = [Fpub,Fpriv]. Furthermore, given constructions S(·) and C(·) leav-
ing, respectively, private and public queries unmodified, we simply write S(F) =
[S(Fpub),Fpriv] and C(F) = [Fpub,C(Fpriv)].

Public random primitives are a special case of such systems. A public random
function (puRF) R : {0, 1}m → {0, 1}n is a system with a public and a private
interface which behaves as the same random function at both interfaces.8 In
particular, both interfaces answer consistently. Furthermore, a public random
oracle (puRO) O : {0, 1}∗ → {0, 1}n is a public random function which takes
inputs of arbitrary bit-length.

The following definition refines the notion of (information-theoretic) indiffer-
entiability from [21] to deal with concrete parameters.

Definition 2. Let α : N → R≥0 and σ : N → N be functions. A system F is

(α, σ)-indifferentiable from G, denoted F
α,σ
� G, if there exists a simulator S such

that ΔD([Fpub,Fpriv], [S(Gpub),Gpriv]) ≤ α(k) for all distinguishers D making at
most k queries, and S makes at most σ(k) queries to Gpub when interacting with D.

The purpose of the simulator is to mimic Fpub by querying Gpub, but without
seeing the queries made to Gpriv. Indifferentiability directly implies a notion of
reducibility.

Definition 3. A system G is (α, σ)-reducible to a system F if there exists an
efficient, deterministic, and stateless construction C(·) such that [Fpub,C(Fpriv)]
α,σ
� G. The construction C(·) is called an (α, σ)-reduction.

Note that if a random primitive is (α, σ)-reducible to a further random primitive
with an N -bit table, then α(k) ≥ 1

2 for all k > N , and hence security can only
be achieved with respect to distinguishers issuing at most N queries. (We refer
the reader to the full version [23] for a proof.) The following lemma states that
reducibility is transitive. We omit its simple proof.

Lemma 2. Let E,F, and G be systems. If C(·) is a (α, σ)-reduction of F to E,
and C′(·) is an (α′, σ′) reduction of G to F that makes at most kC′(k) queries
to Fpriv when queried k times, then C′(C(·)) is an (α, σ)-reduction of G to E,
where α(k) = α(k + kC′(k)) + α′(k + σ(k)) and σ(k) = σ′(σ(k)).

7 Formally, this can be seen as a random system with a single interface and two types
of queries.

8 For this reason, we generally write both Rpub and Rpriv as R.



Domain Extension of Public Random Functions 195

The computational variant of indifferentiability is obtained by requiring S to be
efficient and the advantage ΔD([Fpub,Fpriv], [S(Gpub),Gpriv]) to be negligible
for all efficient distinguishers D. A computational reduction is defined accord-
ingly. In the information theoretic case, it is sometimes desirable to prove that
the simulator is efficient when queried by an efficient distinguisher, as this then
implies the corresponding complexity-theoretic statement. We refer the reader
to [21,11] for the implications of computational indifferentiability.

In contrast, as long as we are only interested in excluding generic attacks
against security properties of a random function, the running time of the simula-
tor is irrelevant. If C(·) is an (α, σ)-reduction of a puRO O : {0, 1}∗ → {0, 1}n (or
of a puRF R′ : {0, 1}m → {0, 1}�) to a puRF R : {0, 1}n → {0, 1}n, then C(R)
inherits all the security properties of the truly-random oracle O (or of R′), as long
as the number of queries keeps α(k) small: Any adversary A making k queries (to
both R and C(R)) and breaking some property of C(R) with probability π(k)
can be transformed (combining it with the simulator) into an adversary A′ mak-
ing at most k + σ(k) queries to O and breaking the same property for O with
probability at least π(k) − α(k), and if no such A′ can exist, then also no ad-
versary A exists. The actual running time of A′ is irrelevant, as the security of
a random function (or oracle) with respect to a certain property is determined
by the number of queries of the adversary, and not by its running time. For ex-
ample, if σ(k) = Θ(k), then, given a random element s ∈ {0, 1}m, no adversary
can find a second preimage s′ ∈ {0, 1}m with s′ 
= s and C(R)(s) = C(R)(s′)
with probability higher than Θ(k · 2−n) + α(k).

3 Beyond-Birthday Domain Extension for Public
Random Functions

3.1 The Construction

We first discuss at an abstract level the main construction of this paper (repre-
sented in Figure 1), which implements a function mapping m-bit strings to �-
bit strings from r + t independent puRF’s F1, . . . ,Fr : {0, 1}n → {0, 1}tρn

and G1, . . . ,Gt : {0, 1}n → {0, 1}� (for given parameters r, t, and ρ). Let E1, . . . ,
Er : {0, 1}m → {0, 1}n be efficiently-computable functions (to be instantiated
below). On input s ∈ {0, 1}m, the construction operates in three stages:

1. The values Fp(Ep(s)) = F(1)
p (Ep(s))‖ · · · ‖F(t)

p (Ep(s)) ∈ {0, 1}tρn are com-
puted for all p = 1, . . . , r, where F(q)

p (Ep(s)) ∈ {0, 1}ρn for all q = 1, . . . , t;
2. The value w(s) = w(1)(s)‖ · · · ‖w(t)(s) is computed, where w(q)(s) equals

(for all q = 1, . . . , t) the first n bits of the product
⊙r

p=1 F(q)
p (Ep(s)), and �

denotes multiplication in GF (2ρn) with ρn-bit strings interpreted as elements
of the finite field GF (2ρn);

3. Finally, the value
⊕t

q=1 Gq(w(q)(s)) is output.

Our approach relies on the observation that if for each new query to the con-
struction with input s ∈ {0, 1}m there exists an index q ∈ {1, . . . , t} for which Gq
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Fig. 1. Main construction, where F1, . . . , Fr and G1, . . . ,Gt are independent puRF’s
and E1, . . . , Er : {0, 1}m → {0, 1}n are efficiently-computable functions

has not been queried yet at the value w(q)(s), either directly at its public inter-
face or by the construction at the private interface, the resulting output value
is uniformly distributed and independent from all previously-returned values.
This resembles the approach taken to extend the domain of (secret) random
functions [1,4,19]. However, we stress that the role of the first two stages (in-
cluding the functions E1, . . . , Er) is crucial here: Not only they have to guarantee
that such an index q always exists, but they must also permit simulation of the
puRF’s F1, . . . ,Fr and G1, . . . ,Gt given only access to the public interface of
an (ideal) puRF R : {0, 1}m → {0, 1}�, without seeing the queries made to the
private interface of R. Also, the probability that the simulation fails must be
small enough to allow security beyond the birthday barrier.

3.2 Input-Restricting Functions

For every s ∈ {0, 1}m one can always learn the value w(s) by querying the pub-
lic interfaces of F1, . . . ,Fr with appropriate inputs E1(s), . . . , Ep(s), respectively.
For every such s, the sum

⊕t
q=1 Gq(w(q)(s)) equals the output of the construction

on input s. The simulator must ensure that its answers for queries to the func-
tions G1, . . . ,Gt are consistent with these constraints. However, if E1, . . . , Er al-
low a relatively small number of queries to the functions F1, . . . ,Ft to reveal a
too large number of values w(s), then the simulator possibly fails to satisfy all
constraints. For example, the Benes construction [1] adopts an approach similar
to the one of our construction, but suffers from this problem and its security in
the setting of puRF’s is inherently bounded by the birthday barrier. (We provide
a concrete attack in the full version [23].) To overcome this problem, we introduce
the following combinatorial notion.
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Definition 4. Let ε ∈ (0, 1) , and let m > n. A family E of functions E1, . . . , Er :
{0, 1}m → {0, 1}n is called (m, δ, ε)-input restricting if it satisfies the following
two properties:

Injective. For all s 
= s′ ∈ {0, 1}m, there exists p ∈ {1, . . . , r} such that Ep(s) 
=
Ep(s′).

Input-Restricting. For all subsets U1, . . . , Ur ⊆ {0, 1}n such that |U1| + · · · +
|Ur| ≤ 2n(1−ε), we have

∣
∣
∣{s ∈ {0, 1}m | Ep(s) ∈ Up for all p = 1, . . . , r}

∣
∣
∣ ≤ δ · (|U1| + · · · + |Ur|) .

It is easy to see that δ ≥ 1/r must hold. Furthermore, we need r · n ≥ m for the
family to be injective. When talking about efficiency, we can naturally extend
the notion to asymptotic families E = {En}n∈N of function families by letting m,
δ, ε, and r be functions of n, and En = {En

1 , . . . , En
r(n)}, with En

p : {0, 1}m(n) →
{0, 1}n. In particular, note that we allow the size of the family to grow with the
security parameter. The family En is called explicit if r = r(n) is polynomial
in n and if there exists a (uniform) polynomial-time (in n) algorithm E that
outputs En

p (s) ∈ {0, 1}n on input n ∈ N, s ∈ {0, 1}m(n), and p ∈ {1, . . . , r(n)}.
The family is additionally called invertible if there exists an algorithm which on
input the sets U1, . . . , Ur ⊆ {0, 1}n and n returns the set of all s ∈ {0, 1}m for
which Ep(s) ∈ Up for all p = 1, . . . , r in time polynomial in |U1| + · · · + |Ur| and
in n. We will not, however, stress the asymptotic point of view in the following,
as long as it is clear from the context that the statements can be also formalized
in this sense.

We postpone the discussion of the existence of explicit function families to
Section 4, where we construct (for all constants ε) explicit families of (m, δ, ε)-
input-restricting functions for all polynomials m and sufficiently-small δ using
highly unbalanced expander graphs with polynomial-degree.

3.3 Main Result

Let ε ∈ (0, 1). The concrete construction CE
ε,m,�(·) is obtained from the de-

scription in Section 3.1 by instantiating the functions E1, . . . , Er with an ex-
plicit family E = {E1, . . . , Er} of (m, δ, ε)-input restricting functions with n-bit
output. Also, we let ρ :=

⌈
m
n + 2 − ε

⌉

and t := 
2/ε − 1�. Note that underly-
ing r + t puRF’s can be seen as a single puRF R′ : {0, 1}n+φ(n) → {0, 1}n,
where φ(n) = 
log(r · tρ + t�/n)�. If m, �, and 1/ε are polynomial in n, then in
particular φ(n) = O(log n). Also, it is easy to see that CE

ε,m,�(·) is efficient, as
long as the function family E is explicit. The following is the main theorem of
this paper and it is proved in the next section.

Theorem 1. The construction CE
ε,m,�(·) is an (α, σ)-reduction of the puRF R :

{0, 1}m → {0, 1}� to the puRF’sF1, . . . ,Fr : {0, 1}n → {0, 1}t·ρn andG1, . . . ,Gt :
{0, 1}n → {0, 1}�, where for all k ≤ 2n(1−ε) − r,

α(k) ≤ 2rt(δ + 1)t+1 · kt+2 · 2−nt +
1
2
t(δ + 1) · k · (k + 2r + 1) · 2m−ρn
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and σ(k) ≤ δ(n) ·k. If the family E is invertible, the simulator runs in time poly-
nomial in k and n, and in particular CE

ε,m,�(·) is also a computational reduction.

We remark the following two important consequences of Theorem 1. First, if ε is
constant and r, δ polynomial in n, the above advantage α(k) is negligible for all
parameters k up to k = 2n(1−ε) − r. In particular, choosing ε < 1

2 leads to secu-
rity beyond the birthday barrier,9 and we are going to provide input-restricting
families of functions with appropriate parameters in Section 4. Second, the re-
sult can be used to extend the domain of a puRF R′ : {0, 1}n → {0, 1}n with
security up to 2n(1−μ) queries: One chooses any ε < μ and n′ maximal such
that n′ + φ(n′) ≤ n, and interprets the function R′ as a puRF {0, 1}n′+φ(n′) →
{0, 1}n′

by dropping approximately φ(n′) bits of the output. The above advan-
tage is still negligible for all k ≤ 2n′(1−ε) − r, and hence for all k ≤ 2n(1−μ) for n
large enough, since n − n′ = o(n).

3.4 Proof of Theorem 1

We prove that there exists a simulator S such that ΔD(H1,H2) is bounded by
the above expression for all distinguishers D making at most k ≤ 2n(1−ε) − r
queries, where for notational convenience H1 and H2 are defined as

H1 := [F1, . . . ,Fr,G1, . . . ,Gt,CE
ε,m,�(F1, . . . ,Fr,G1, . . . ,Gt)]

H2 := [S(R),R].

There are three types of queries to the systems H1 and H2: The first two types
are F-queries, denoted (F, p, u) for p ∈ {1, . . . , r} and u ∈ {0, 1}n, and G-queries,
denoted (G, q, v), for v ∈ {0, 1}n and q ∈ {1, . . . , t}. In H1, a query (F, p, u)
returns the value Fp(u) and a query (G, q, v) returns the value Gq(v), while
in H2 both query-types are answered by the simulator S. The third type of
queries, called R-queries, are denoted (R, s) for s ∈ {0, 1}m and are answered
by the construction CE

ε,m,�(·) in H1, and by the private interface of the ran-
dom function R in H2. Given the first i queries xi = [x1, . . . , xi], where xj ∈
{(F, p, u), (G, q, v), (R, s)} for all j = 1, . . . , i, we define for all indices p and q
the sets Fp,i and Gq,i that contain, respectively, all values u ∈ {0, 1}n for which a
query (F, p, u) and all v ∈ {0, 1}n for which a query (G, q, v) appears in xi. Also,
we let Ri be the set of values s ∈ {0, 1}m for which a query (R, s) appears in xi,
and we let Si consist of all the values s ∈ {0, 1}m such that Ep(s) ∈ Fp,i for
all p = 1, . . . , r. Furthermore, let ΔSi := Si\Si−1. Notice that the set Si contains
all inputs for which the values returned by the first i queries allow to compute
the value w(s). Clearly, |Si| =

∑i
j=1 |ΔSj | ≤ δ · i for all i ≤ 2n(1−ε), since the

family E is input-restricting. For s ∈ Si, we define w(s) = w(1)(s)‖ · · · ‖w(t)(s)
as in the description of CE

ε,m,�(·) according to the answers of the first queries,
and for a set S ⊆ Si we use the shorthand w(q)(S) := {w(q)(s) | s ∈ S}.

9 Note that ε could even be some function going (slowly) towards zero, even though
this may require setting t differently.
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The simulator S defines the function tables of F1, . . . ,Fr and of G1, . . . ,Gt

dynamically. That is, all values Fp(u) and Gq(v) are initially undefined for
all u, v ∈ {0, 1}n and indices p and q. Upon processing a new F-query xi =
(F, p, u), the simulator sets the value Fp(u) to a fresh random value and com-
putes the set ΔSi: The simulator knows this set, as it processes all F-queries.
For each s ∈ ΔSi, the equality

⊕t
q=1 Gq(w(q)(s)) = R(s) must be satisfied,

and hence S tries to satisfy these constraints by appropriately setting the values
of the functions G1, . . . ,Gt. More precisely, it looks for an ordering of ΔSi =
{s1, . . . , s|ΔSi|} with the property that for all j = 1, . . . , |ΔSi| there exists qj ∈
{1, . . . , t} such that w(qj)(sj) /∈ {w(qj)(s1), . . . , w(qj)(sj−1)} ∪ Gq,i−1, and sets
Gqj (w(qj)(sj)) := R(sj) ⊕

⊕

q �=qj
Gq(w(q)(sj)) for j = 1, . . . , |ΔSi|, where each

undefined value in the sums is set to an independent random value. A query
to the public interface of R is issued in order to learn R(sj). If no such or-
dering exists, then the simulator aborts.10 Finally, the value Fp(u) is returned.
For a query xi = (G, q, v), the simulator returns Gq(v), defining it to a random
value if undefined. In the full version of this paper [23], we provide a detailed
pseudo-code description of the simulator S. The number of R-queries made by
the simulator after i ≤ 2n(1−ε) queries is |Si| ≤ δ · i. Also, as long as the family E
is invertible and an appropriate ordering can be efficiently found, its running
time is efficient in k and n. In fact, we show that with very high probability any
ordering can be used.

Without loss of generality, it is convenient to advance the generation of the
random functions F1, . . . ,Fr to the initialization phase, that is, their entire
function tables are generated once uniformly at random in both H1 and H2.
Subsequently, all queries (F, p, u) are answered according to the initial choice. In
particular, this means that in H2 the simulator S uses the value Fp(u) already
defined instead of generating a new fresh random value. It is clear that the behav-
ior of both systems is unchanged. This also allows us to define the value w(s) =
w(1)(s)‖ · · · ‖w(t)(s) for all s ∈ {0, 1}m and each such value induces a constraint,
namely the answer of an R-query (R, s) must equal

⊕t
q=1 Gq(w(q)(s)). Such a

constraint remains hidden until s ∈ ΔSi from some i, and in this case the sim-
ulator attempts to fill the function tables of G1, . . . ,Gt consistently. To avoid
possible problems, we have to account for two things captured by the two fol-
lowing monotone conditions which we define on both H1 and H2:

(a) The monotone condition A = A0, A1, . . . fails at query i if there exists an s ∈
ΔSi such that w(q)(s) ∈ w(q)(Si \ {s}) ∪ Gq,i−1 for all q = 1, . . . , t.

(b) The monotone condition B = B0, B1, . . . fails at query i if there exists s ∈
Ri \ Si such that w(q)(s) ∈ w(q)(Si ∪ Ri \ {s}) ∪ Gq,i for all q = 1, . . . , t.

As long as A does not fail, the simulator never aborts. This in particular implies
that R-queries (R, s) for s ∈ Si in H2 are consistent with G-queries answered
by the simulator. However, all R-queries (R, s) for s /∈ Si are answered indepen-
dently and uniformly at random in H2, and B ensures that this happens in H1

10 Note that there is no need to formalize the exact meaning of abortion, since whenever
the simulator fails to find such an ordering, then the distinguisher is assumed to win.
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as well. In the full version [23], we prove the following lemma, which formalizes
this argument and states that as long as neither A nor B fail, then H1 and H2
behave identically.

Lemma 3. HA∧B
1 ≡ HA∧B

2 .

To provide some intuition as to why the probability that a distinguisher D
makes A ∧ B fail is small, let us assume first that for any two distinct s, s′ ∈
{0, 1}m (such that at least one of them is not in Si) and for all q = 1, . . . , t, the
probability (conditioned on the answers to the previous queries) that w(q)(s) =
w(q)(s′) is bounded by some small value ϕ (say ϕ ≈ 2−n). In order to upper
bound the probability of A failing after query i, combining the union bound
with the above assumption we see that P(w(q)(s) ∈ w(q)(Si \ {s}) ∪ Gq,i−1) ≤
|w(q)(Si \ {s}) ∪ Gq,i−1| · ϕ ≤ (δ + 1) · i · ϕ for all s ∈ ΔSi, since E is input-
restricting. Furthermore, for all distinct q, q′ ∈ {1, . . . , t} and s, s′ ∈ {0, 1}n

(possibly s = s′), the structure of the first two stages of CE
ε,m,�(·) ensures that

the values w(q)(s) and w(q′)(s′) are statistically independent, and hence

P(∀q : w(q)(s) ∈ w(q)(Si \ {s}) ∪ Gq,i−1) ≤ (δ + 1)t · it · ϕt.

Therefore, the probability pH1

Ai|XiY i−1Ai−1
(xi, yi−1) = pH2

Ai|XiY i−1Ai−1
(xi, yi−1)

that there exists an s ∈ ΔSi making A fail after query i is bounded by |ΔSi| ·
(δ + 1)t · it · ϕt, where |ΔSi| is small for all i ≤ 2n(1−ε).

Nevertheless, turning this intuition into a formal proof (and extending it to
the monotone condition B) requires additional care. The probability that w(q)(s)
equals w(q)(s′) happens to be small only with overwhelming probability (taken
over the answers to the previous queries): This fact follows from the use of
multiplication in GF (2ρn) and the choice of a sufficiently large parameter ρ.

In particular, a complete proof of the following lemma appears in the full
version of this paper [23].

Lemma 4. For all distinguishers D making at most k ≤ 2n(1−ε) − r queries we
have νD(HA∧B

1 ) = νD(HA∧B
2 ) ≤ 2rt(δ + 1)t+1 · kt+2 · 2−nt + 1

2 t(δ + 1) · k · (k +
2r + 1) · 2m−ρn.

By combining Lemmas 3 and 4, Theorem 1 follows making use of Lemma 1.

4 Existence of Input-Restricting Function Families

In this section, we prove the existence of input-restricting function families ac-
cording to Definition 4, and we study their relationship to highly unbalanced
bipartite expander graphs. First, we recall the following definition.

Definition 5. A bipartite graph G = (V1, V2, E) is (K, γ)-expanding if |Γ (X)| ≥
γ · |X | for all subsets X ⊂ V1 such that |X | ≤ K, where Γ (X) ⊆ V2 is the set
of neighbors of X. Furthermore, such a graph has left-degree D if the degree of
all v ∈ V1 is bounded by D.
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A family of graphs G = (V1, V2, E) with V1 := {0, 1}m(n), V2 := {0, 1}n (pa-
rameterized by the security parameter n) with left-degree D = D(n) is called
explicit if there exists a (uniform) algorithm which, on input 1n, v ∈ {0, 1}m(n)

and i ∈ {1, . . . , D(n)} outputs the i’th neighbor of v in time polynomial in n.
(The ordering of the neighbors is arbitrary.)

Given a bipartite graph G = (V1, V2, E) with V1 = {0, 1}m, V2 = {0, 1}n,
and left-degree D, we construct the family of functions E = {E1, . . . , Er},
where r = D + 
m/n�, and the functions E1, . . . , ED : {0, 1}m → {0, 1}n

are such that Ep(s) is the p’th neighbor of s in G for all p = 1, . . . , D. Fur-
thermore, the functions ED+1, . . . , ED+
m/n� are defined as ED+p(s) := s(p)

for p = 1, . . . , 
m/n�, where extra zeros are appended to s to make its length
a multiple of n. Clearly, this family is injective. Furthermore, it turns out that
good expanding properties for G imply that the family E is input-restricting. We
refer the reader to the full version [23] for a proof of the following lemma.

Lemma 5. Let m ≥ n. Assume that there exists an explicit family of bipartite
(K, γ)-expander graphs G = (V1, V2, E) with polynomially-bounded left-degree D

where V1 = {0, 1}m and V2 = {0, 1}n. Then, for all ε > 0 such that ε > 1− log(Kγ)
n

for n large enough, there exists an explicit (m, δ, ε)-input-restricting family of
functions with δ = γ−1 and cardinality r := D + 
m/n�. Furthermore, if 
m/n�
is constant, then the family is invertible.

For example, if a family exists with K = 2n(1−η) and constant expansion fac-
tor γ > 1, then 1 − log Kγ

n = η − o(1), and hence the family is (m, γ−1, η)-input
restricting. It remains to be shown that an explicit family of unbalanced ex-
pander graphs with sufficiently small (i.e. polynomially-bounded) left-degree ex-
ists. Much work in this area has been devoted to lossless unbalanced expanders,
i.e., with γ ≈ D, but the best known constructions (cf. e.g. [28,25]) for this
case lead to either super-polynomial degree or a much too small bound K for
our choice of parameters. However, we are satisfied even if the expansion factor
is much smaller than the left-degree, as long as the latter stays small, and it is
possible to obtain such graphs by appropriately composing known constructions.
We discuss the following result in the full version of this paper [23].11

Theorem 2. For all polynomials γ and constants η ∈ (0, 1), and all func-
tions m (polynomially-bounded in n), there exists an explicit family of expander
graphs G = (V1, V2, E) with V1 = {0, 1}m, V2 = {0, 1}n which is (2n(1−η), γ)-
expanding and has left-degree polynomially-bounded in n.

Note that these techniques even allow to obtain slightly stronger results, for in-
stance allowing η to be a moderately vanishing function. Combining this with
Lemma 5 we see that for all constants ε ∈ (0, 1) there exist explicit (m, δ, ε)-
input-restricting families with δ−1 polynomial in n. However, by dropping the
explicitness requirement, families with much better parameters exist. In partic-
ular, the following result is a simple application of the probabilistic method.

11 Also note that a very similar result appears in unpublished work by Baltz et al.[3].
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Lemma 6. Let K and γ be arbitrary such that K · γ ≤ 2n, and let m be such
that m ≥ n. There exists a graph G = (V1, V2, E) where V1 = {0, 1}m and V2 =
{0, 1}n which is (K, γ)-expanding and with left-degree D =

⌈
1+γ log e+m
n−log(Kγ) + γ

⌉

.

For example, setting m = � = 2n , γ = 1 and K = 2n(1−ε), we obtain left-
degree D = 1+ 2

ε +(log e+1)/(ε ·n). For ε = 1
4 and n = 128, this leads to a family

of size 12 by Lemma 5. Furthermore in this case t = 7 and ρ = 4, and all these
values do not grow with n. (And a similar reasoning applies to all constants ε > 0.)
With these parameters, the construction is of practical interest, as it only relies on
the design of a secure component function {0, 1}n → {0, 1}n which may be very
efficient. We hope this motivates further research on de-randomizing families of
unbalanced expander graphs for a wider range of parameters.

5 Constructing Public Random Oracles

We first review a slightly generalized version of the prefix-free Merkle-Damg̊ard
construction [11]. Let n be the given output size, and let � ≥ n. We are given
both a compression function f : {0, 1}b+� → {0, 1}� and a prefix-free padding
scheme, that is, a mapping pad : {0, 1}∗ →

(

{0, 1}b
)+ such that pad(s) is not a

prefix of pad(s′) for all distinct s, s′ ∈ {0, 1}∗. The prefix-free Merkle-Damg̊ard
construction pfMDb,�,n(f) proceeds as follows. On input s ∈ {0, 1}∗, it com-
putes s1‖ · · · ‖sl = pad(s) (with si ∈ {0, 1}b) and the chaining values vi :=
f(si, vi−1) for all 1 ≤ i ≤ l, where v0 is set to some initialization vector IV ∈
{0, 1}�. Finally, the construction outputs the first n bits of vl. The following
theorem easily12 follows from Theorem 2 in [11].

Theorem 3. Let F : {0, 1}�+b → {0, 1}� be a puRF and let O : {0, 1}∗ →
{0, 1}n be a puRO. The construction pfMDb,�,n(·) is an (α′, σ′)-reduction of O
to F with α′(k) = O((lmax · k)2 · 2−�) and σ′(k) = k, where lmax is the maximal
length (of the padding) of a message input to the construction.

We note that there exists a trade-off between the number of queries and the length
of the queries to the construction.13 This issue is inevitable in all iterated con-
structions. We take now �, b > 0 as in the above explanation, and some ε > 0. We
set m := �+b, and we let E be an explicit (m, δ, ε)-input restricting family of func-
tions. If given only a compression function R′ : {0, 1}n+φ(n) → {0, 1}n (for φ(n)
defined as in Section 3.3), we obtain a construction pfMDb,�,n(CE

ε,m,�(·)) which
replaces calls to the compression functions by calls to the construction CE

ε,m,�(·).
We obtain the following theorem using Lemma 2.

12 The only difference with respect to the original result is that we allow the chaining
value to be larger than the output value, i.e. � > n.

13 A possible distinguishing strategy would consist of doing few very long queries, instead
of many queries, and security is guaranteed only as long as lmax · k < 2�/2.
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Theorem 4. The construction pfMDb,�,n(CE
ε,m,�(·)) is an (α, σ)-reduction of a

puRO O : {0, 1}∗ → {0, 1}n to R′, where α(k) = α((lmax + 1)k) + α′((δ + 1)k)
and σ(k) = δ · k, with α and α′ as in Theorems 1 and 3, respectively.

Setting � > 2n(1 − ε) leads to security for all distinguishers such that lmax · k ≤
Θ(2n(1−ε)). We finally note that our approach also works with all other known
constructions of a public random oracle from a public compression function, as
for example the constructions of [6,10], or other constructions discussed in [11].

Setting ε small enough provides high levels of security for properties like preim-
age resistance, second preimage resistance, multicollision resistance, or CTFP
preimage resistance [16], and also excludes the existence of attacks for these
properties (up to the obtained bound), that is, even with respect to adver-
saries which perform enough queries to find collisions for the component func-
tion f : {0, 1}n → {0, 1}n.
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22. Maurer, U., Sjödin, J.: Single-key AIL-MACs from any FIL-MAC. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 472–484. Springer, Heidelberg (2005)

23. Maurer, U., Tessaro, S.: Full version of this paper. Available at
http://eprint.iacr.org/

24. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1989)

25. Moran, T., Shaltiel, R., Ta-Shma, A.: Non-interactive timestamping in the bounded
storage model. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 460–476.
Springer, Heidelberg (2004)

26. Shoup, V.: On fast and provably secure message authentication based on univer-
sal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328.
Springer, Heidelberg (1996)

27. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

28. Ta-Shma, A., Umans, C., Zuckerman, D.: Lossless condensers, unbalanced ex-
panders, and extractors. In: STOC ’01: Proceedings of the 33rd Annual ACM
Symposium on Theory of Computing, pp. 143–152. ACM Press, New York (2001)

http://eprint.iacr.org/

	Introduction
	Secret vs. Public Random Functions
	Domain Extension and the Birthday Barrier
	Significance of Domain Extension for Public Random Functions
	Contributions and Outline of This Paper

	Preliminaries
	Notation and Probabilities
	Indistinguishability of Random Systems
	Indifferentiability, Reductions, and Public Random Primitives

	Beyond-Birthday Domain Extension for Public Random Functions
	The Construction
	Input-Restricting Functions
	Main Result
	Proof of Theorem 1

	Existence of Input-Restricting Function Families
	Constructing Public Random Oracles


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Europe ISO Coated FOGRA27)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


