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Abstract

The 1976 seminal paper of Diffie and Hellman is a landmark in the
history of cryptography. They introduced the fundamental concepts of
a trapdoor one-way function, a public-key cryptosystem, and a digital
signature scheme. Moreover, they presented a protocol, the so-called
Diffie-Hellman protocol, allowing two parties who share no secret in-
formation initially, to generate a mutual secret key. This paper sum-
marizes the present knowledge on the security of this protocol.

1 Introduction

In 1976, Whitfield Diffie and Martin Hellman published their celebrated pa-
per [16] which initiated a revolution in cryptography. Diffie and Hellman can
be seen as the founders of modern cryptography. The theoretical concepts
of a public-key cryptosystem and a digital signature have been realized only
two years after Diffie and Hellman’s paper by Rivest, Shamir, and Adleman
in the RSA-system [50]. However, Diffie and Hellman presented the first
protocol with public-key properties, the so-called Diffie-Hellman (DH) pro-
tocol for public key distribution. An earlier protocol due to Merkle, called
Merkle’s puzzles, achieved the same goals, but the DH protocol has the bet-
ter ratio between security and efficiency. The security of the DH protocol is

*This work was supported by the Swiss National Science Foundation (SNF), grant
No. 20-42105.94.



based on the hardness of a certain computational problem (see Section 2.1).
The protocol allows two parties Alice and Bob, who are connected by an
authenticated but otherwise insecure channel, to generate a secret key which
is (believed to be) difficult to compute for an adversary Eve overhearing the
communication between Alice and Bob.

The protocol works as follows. Let G be a finite cyclic group with order
|G| generated by g. In order to generate a mutual secret key, Alice and
Bob secretly choose integers s4 and sp, respectively, at random from the
interval [0, |G| — 1].! Then they compute secretly as = ¢g°4 and ap = ¢°B,
respectively, and exchange these group elements over the insecure public
channel. Finally, Alice and Bob compute asp = aSBA = ¢°4%B and agy =
a’f = g°B%4, respectively. Note that asap = apa, and hence this quantity
can be used as a secret key shared by Alice and Bob. More precisely, they can
apply a function mapping elements of G to the key space of a cryptosystem.
For instance, they can use an appropriate block (e.g., the least significant
bits of a4p) as the secret key of a conventional block cipher. Figure 1 shows
a mechanical analog of the Diffie-Hellman protocol.

Waldvogel and Massey [58] have studied the distribution of the resulting
secret key under the assumption that the secret values s4 and sp are chosen
independently and uniformly in [0, |G| — 1]. They showed that if the group
order contains at least one large prime factor (the Diffie-Hellman protocol
is insecure otherwise anyway), the distribution of the group element a4p is
close to uniform over G. Moreover, when s4 and sp are chosen uniformly
in ng| (instead of Zg), then the resulting key is perfectly uniformly dis-
tributed in the set {¢g¢ : c € Z‘*G|}.

Specific groups that have been proposed for application in the DH pro-
tocol are the multiplicative groups of large finite fields (prime fields [16] or
extension fields), the multiplicative group of residues modulo a composite
number [37], [38], elliptic curves over finite fields [43], [24], the Jacobian of
a hyperelliptic curve over a finite field [23], and the class group of imaginary
quadratic fields [9].

This paper is organized as follows. In Section 2, some computational
problems related to the DH protocol are discussed such as the Diffie-Hellman
problem, the Diffie-Hellman decision problem, and the discrete logarithm
problem. Section 3 is concerned with the relationship between the security

Tt is not necessary that Alice and Bob know the order of the group G. If |G| is not
known, Alice and Bob choose their integers from a sufficiently large interval. Moreover,
if no generator of G is known, one can find such a g € G by trial and error if the group
order |G| and its factorization |G| = [J¢/* are known. However, it is sufficient if g is an
element of G of high order.
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Figure 1: A mechanical analog of the Diffie-Hellman protocol. The padlocks
have no keys. They are easy to lock, but hard to open. The two padlocks
linked to each other are the secret key. The adversary Eve’s task is to link
two locked padlocks, which seems to require to open one of the locks first.

of the DH protocol and the hardness of the discrete logarithm problem. A
technique is described that allows to reduce the discrete logarithm problem
to the Diffie-Hellman problem efficiently for many groups. In Section 4,
different definitions of breaking the DH protocol are discussed and com-
pared. It is shown for example that breaking the protocol with a substantial
probability is almost as hard as breaking it for all instances. Section 5 de-
scribes security proofs for the DH protocol under certain conditions on the
knowledge and computational power of the adversary.

2 Computational problems related to the Diffie-
Hellman protocol

2.1 The Diffie-Hellman problem

Definition 1 Let G be a finite cyclic group generated by g. The problem of
computing g°4%B from ¢g®4 and ¢°B is called the the Diffie-Hellman problem



(DH problem for short) with respect to g.

One possibility to solve the DH problem is to compute s4 (or sg) from g°4
(g°B) first.

Definition 2 Let G be a finite cyclic group generated by g. The problem
of computing from a € G a number s such that ¢g° = a is called the discrete
logarithm problem (DL problem) with respect to g.

(For a detailed discussion of the discrete logarithm problem, see [39] or
Odlyzko’s paper in this issue.) For many groups it is not known whether
the most efficient way of solving the DH problem is by solving the DL
problem first. It is also unknown whether there exist groups for which the
DH problem is substantially easier than the DL problem. This question is
addressed in Section 3 of this paper. Finally, it is an open question whether
(though widely believed that) there are groups for which the DL problem is
difficult. In Section 5.1 some evidence for this claim is given.

2.2 The Diffie-Hellman decision problem

For certain groups for which the DH problem is hard (note again that it is
not known whether such groups exist), it is believed that even the problem
of verifying the correctness of a solution of the DH problem is hard, i.e.,
given g® and ¢°, it is computationally infeasible to distinguish ¢** from a
completely random group element. This implies that no partial information
about g% can be efficiently extracted from g® and g®. The Diffie-Hellman
decision problem is defined as follows. It was first explicitly formulated
in [7].

Definition 3 Let G be a finite cyclic group with generator g. Let g%, ¢°, g¢
be chosen independently and randomly in G according to the uniform dis-
tribution. Given the triples (g2, g, ¢*®) and (¢2, ¢°, ¢°) in random order, the
Diffie-Hellman decision problem (DHD problem for short) is to decide, with
probability substantially greater than 1/2, which of the triples is the correct
DH triple (g%, g°, g**).

The DHD problem appears to be easier than the DH problem in general.
For instance, consider a group G with order |G| = 2p where p is a prime, and
for which the DH problem is hard. When given the random triple (g%, g°, g%)
and the DH triple (g2, ¢°, g?), then with probability 3/4, the correct DH
triple can be recognized. The reason is that from g%, one can determine a



modulo 2 by computing (¢*)P, which is equal to e if @ = 0 (mod 2) and
to gP(# e) if a = 1 (mod 2). With probability 1/2, a - b # ¢ (mod 2), in
which case the correct DH triple can be determined. Otherwise, the success
probability is 1/2.

Generally, the DH problem can be hard in a group G if the group order
|G| contains at least one large prime factor, whereas the DHD problem can
only be hard if |G| is free of small prime factors (see also Section 5.1).

Canetti [10] has described the following generalization of the DHD prob-
lem for a group G of prime order. Let f be an uninvertible function, i.e.,
a function for which it is hard to obtain z from f(z) with non-negligible
probability. (Note that an uninvertible function is not necessarily one-way,
as the example f(z) = 0 shows.) Then the generalized version of the DHD
problem is to distinguish between the triples (f(a), g°,¢®) and (f(a), ¢°, g°)
with probability significantly greater than 1/2. As shown in [10], certain
hash functions can be shown to hide all partial information about their input
under the assumption that the generalized DHD problem is hard. Although
this conjecture appears to be very strong, it has not yet been contradicted.

2.3 The discrete logarithm problem

Let A = (a;)i=0,...,n—1 be a list of elements of some set such that it is easy
to compute a; for a given i. The index search problem for A is the problem
of computing for a given b an index % such that b = a;. This problem can
trivially be solved by exhaustive search, which requires at most n compar-
isons. If the list A has the property that the permutation o : a; — a;41
(where the index is reduced modulo n) can efficiently be computed, then the
search can be sped up by a time-memory tradeoff known as the baby-step
giant-step algorithm. A table of size M is required for storing the sorted list
of values b,o(b),...,c™~1(b). The elements ag,ans,asnr, .. are computed
until one of them, a;yz, is equal to one of the values ¢/ (b) in the table. Then
the index of b is 1M — j.

The discrete logarithm problem in a cyclic group H of order |H| with gen-
erator h is the index search problem for the list (h° =e,h! = h,... ,h|H‘_1).
Multiplication with h corresponds to the above-mentioned permutation o.
Hence the baby-step giant-step method is applicable for solving the DL
problem.

Moreover, the computation of a discrete logarithm in a group H can be
reduced to the same problem in the minimal non-trivial subgroups of H,
i.e., the subgroups of H with prime order, by the following method which is
often attributed to Pohlig and Hellman [47].



Let a = h”. For a fixed prime factor ¢ of |H|, consider the group element
aHl/4 = p=H|/4_ The algorithm is based on the following two simple ob-
servations. Because (a/71/9)9 = ¢/l = ¢, the group element a'#1/7 can take
q possible values, namely the ¢ different g-th roots h°, plHl/a, .. pla=1)IH|/q
of the neutral element e. These group elements form a subgroup generated
by h/H#1/4. Secondly, the modulus of z with respect to ¢ determines which of
these roots equals al#!/7. More precisely,

afllla = plHl/e — =4 (modq).

Hence x can be determined modulo ¢ by solving the DL problem in the
subgroup (h/H!/9). If q is a prime factor of | H| with multiplicity f > 1, then
the coefficients g, x1,...,75_1 of the g-adic representation z = zg + z19 +
+-+x;1¢/ 7! (mod ¢7) can be computed as follows. Because = = zy (mod
q), the first coefficient xy can be obtained as just described. When zq is
known, we compute the group element (a - h~%0)H!/ ¢ Because

(a- h—ﬂUO)IH\/q2 = prrlfl/e

this group element is again equal to one of the g-th roots of the neutral
element. The coefficient 1 can be determined by computing a discrete
logarithm in the group (h/#1/9).

With this method, z can be computed modulo ¢/ for all prime fac-
tors ¢ of |H|, and Chinese remaindering yields x modulo |H|, i.e., the
discrete logarithm of a. The complexity of this algorithm for a group H
with [H| = [[¢;* is O(Y fi(log |H| + ¢;)). If memory space for storing /g
group elements (where ¢ is the largest prime factor of |H|) is available, the
running time reduces to O(}_ fi(log|H| + /g;log q;)) when the baby-step
giant-step method is applied for computing the discrete logarithms in the
subgroups. The method is efficient only if |H| is smooth, i.e., if g < B
for a small smoothness bound B. In the worst case we have ¢; =~ B for
all 4, i.e., the number of factors is O(log|H|/log B), and the complexity
is O((log |H|)? + Blog |H|/log B) or O((log|H|)? + v Blog|H|) when the
baby-step giant-step method is used.

An additional general-purpose discrete logarithm algorithm is Pollard’s
rho-method [48]. Heuristic arguments suggest that this algorithm has ap-
proximately the same running time as the baby-step giant-step method, but
this has not been rigorously proved. The advantage of Pollard’s rho-method
is that it requires virtually no memory space.

Shoup showed [55] that no general-purpose discrete logarithm algorithm
can be substantially faster than the combination of the Pohlig-Hellman de-
composition and the baby-step giant-step method. For a description of these



results see Section 5.1. For particular groups such as the multiplicative group
of a finite field there exist more efficient algorithms for the computation of
discrete logarithms. These so-called index calculus methods have subex-
ponential running time. The index calculus method for the multiplicative
group of a prime field for instance is based on the fact that the group el-
ements of Z; can be interpreted as integers, which can be easily factored
when they consist only of small prime factors. For a description of these
methods we refer to the survey article on the discrete logarithm problem
by McCurley [39] and the references therein, and to Odlyzko’s paper in this
issue.

For certain groups however the fastest known algorithms for solving the
DL problem are the general-purpose algorithms described above. Exam-
ples of such groups are non-supersingular elliptic curves and Jacobians of
hyperelliptic curves, which were proposed by Miller [43] and Koblitz [24],
[23] to be used in discrete-logarithm based cryptosystems such as the Diffie-
Hellman protocol. They appear to have the advantage that shorter secret
keys can be used for the same security level. Menezes et. al. [40] have shown
that the DL problem in a supersingular elliptic curve over a finite field can
be efficiently reduced to the same problem in the multiplicative group of an
extension field of small degree.

Van Oorschot and Wiener [45] have studied the risk of choosing short
exponents in the DH protocol. They presented a combination of Pollard’s
lambda-method and the Pohlig-Hellman decomposition.

Pollard’s lambda-method [48] allows to find a discrete logarithm that
is known to lie in a fixed interval [A, B] of length w = B — A in heuristic
expected time O(y/w) (instead of O(y/w logw) with a simple generalization
of the baby-step giant-step method). The idea is to compute two sequences
of group elements, one starting with the upper limit B of the interval (the
“trail of the tame kangaroo”) and the other with the group element y of
which the discrete logarithm should be computed (the “trail of the wild
kangaroo”). The behavior of both sequences is given by ;11 = x; - USON
where f is a “random-like” function taking integer values in a range R
of mean m, where m = a - w'/? for some a depending on the tolerated
failure probability. The starting point of the trail of the tame kangaroo (the
sequence Zg,T1,-..) is zg = h¥, and the group elements zg,z1,...,zy are
computed (for some fixed V). The trail of the wild kangaroo (the sequence
x(, Th,...) starts at 2 = y and stops with ', if

M-1 N-1
Fa) > 3 ) + (B~ 4)
i=0

J=0



because the wild kangaroo has passed the tame kangaroo and escaped. Cap-
ture is indicated by z!, = zy for some m. Then, the discrete logarithm of
y is

zy — fxo) =+ — f(@h1) -

Let now y = h*, where z is known to be smaller than w for some w, and
let |[H| = S-N, where S is the smooth part of the group order. By the Pohlig-
Hellman decomposition, k can be computed such that £k = z (mod S). Then
x =k+r-S for some r < w/S or equivalently, y' = (h')", where y' := y-h™*
and A’ := h¥. The discrete logarithm r of 3/ with respect to the base A’ can
now be computed in probabilistic time O(y/w/S) using Pollard’s lambda
method. In other words, the information obtained by the smooth part can
be used to reduce the running time of the lambda-method by v/S. The
conclusion is that it is dangerous to use short exponents in the group Z;
with randomly chosen p, because p— 1 is likely to have a substantial smooth
part. This can be avoided by using a subgroup of prime order for the Diffie-
Hellman protocol, for instance by selecting a prime p such that (p —1)/2 is
also prime.

3 The relationship between the DH problem and
the DL problem

As mentioned already, it is obvious that the DH problem is at most as hard
as the DL problem. The strongest possible form of the converse statement
would be that no more efficient way exists for solving the DH problem than
to solve the DL problem first. In a strict sense, this would mean that given
g* and g¢", it is only possible to obtain g*’ when computing u or v first.
However, it appears that such a statement can be proved only by giving
an efficient algorithm that, when given g%, ¢g”, and ¢“Y, computes u or v.
Of course such an algorithm can only exist for groups for which it is easy
to compute discrete logarithms because this algorithm itself can be used to
compute the discrete logarithm of a group element a efficiently when giving
as input a, ¢° (in random order), and a®.

A less strict version is that for groups for which the DH problem can be
solved efficiently for all instances (or at least for a non-negligible fraction)
it is possible to compute discrete logarithms efficiently. It was shown that
this is true for certain classes of groups. In this section we describe a gen-
eral technique for proving such equivalence results which was introduced by
Maurer [32] as a generalization of an earlier result by den Boer [15], and was



further developed by Wolf [60], Boneh and Lipton [5], Maurer and Wolf [36],
and Cherepnev [13].

3.1 The Diffie-Hellman oracle

Definition 4 A Diffie-Hellman oracle (DH oracle for short) for a group G
with respect to a given generator g takes as inputs two elements a,b € G
(where a = ¢g* and b = ¢g¥) and returns (without computational cost) the
element g".

We will show that under a plausible but unproven number theoretic assump-
tion, for every finite cyclic group whose order is not divided by a multiple
large prime factor there exists a polynomial-time algorithm for computing
discrete logarithms and that makes calls to a DH oracle for this group.

In Section 4 we consider different types of DH oracles, such as oracles
that answer correctly only with a small probability. The reduction of the DL
problem to the problem of breaking the DH protocol with small probability
for instance leads to stronger equivalence results.

3.2 Computations on implicit representations using a DH
oracle, and the black-box field problem

In the following, let the group order |G| and its factorization |G| = [] p§* be
known, let p be a fixed prime factor of this order, and let a DH oracle be given
for the group G. Every element y of the field GF(p) can be interpreted as
corresponding to an equivalence class of elements of G, namely those whose
discrete logarithm is congruent to y modulo p. Every element of this set is
a representation of the field element y.

Definition 5 Let G be a cyclic group with a fixed generator g, and let p be
a prime divisor of the group order. Then, a group element a = g¥ is called
an implicit representation (with respect to G and g) of y € GF(p) ify =/
(mod p). We write y ~ a.

Note that this implicit representation of a field element is not unique if
|G| # p.

The following operations on elements of GF(p) can be performed effi-
ciently on implicit representations of these elements (i.e., by operating in the
group (), where the result is also in implicit form. Let y and z be elements
of GF(p), with



Because
y =z if and only if a/Cl/P = pCl/P

equality of two implicitly represented elements of GF'(p) can be tested by
O(log |G|) group operations. Furthermore we have

y+z ~ a-b
yz ~ DH(a,b)
—y ~ a~l=glGt
and these implicitly performed operations on elements of GF(p) require a
group operation in G, a call to the DH oracle, and O(log|G|) group opera-
tions, respectively.

In order to simplify the notation, we also introduce the notion of an e-
th-power-DH-oracle (PDH, oracle) that computes an implicit representation
of the e-th power of an implicitly represented element. A possible imple-
mentation of a PDH, oracle is to use a “square and multiply” algorithm for
obtaining an implicit representation of 3¢, denoted by PDH,(a), by O(loge)
calls to a normal DH oracle (remember that y ~» a). In particular we can
compute multiplicative inverses of implicitly represented elements because

y~! ~> PDH,_5(a) .

We call addition, subtraction, multiplication, division, and equality test-
ing in GF(p) algebraic operations. Any efficient computation in GF(p)
can be performed equally efficiently on implicit representations whenever
it makes use only of algebraic operations. We will call such algorithms al-
gebraic. Examples of algebraic algorithms are the evaluation of a rational
function, testing quadratic residuosity of y by comparing

(PDH(p—l)/Q(a))m/p and g|G|/p :

or the computation of square roots using the algorithm of Peralta [46] or a
faster method due to Massey [31]. Note that algorithms based on exhaustive
search (for example to solve the index search problem, in particular the
discrete logarithm problem) lead to explicit results even when executed on
implicitly represented arguments.

In order to reduce the DL problem to the DH problem in G (with re-
spect to a fixed generator g), we have to find algorithms that compute s from
g°, using the above technique of implicit computing. Because of the Chi-

nese remainder theorem, it is sufficient to compute s modulo the maximal

10



prime powers dividing the group order |G|. We first address the problem of
computing s modulo a prime factor p of |G|.

Boneh and Lipton [5] have formalized this as the black-boz field problem.
Intuitively, a black-box field is a field GF(p) of which the elements are
represented by not necessarily unique arbitrary binary strings from which it
is a priori difficult to determine the represented field element explicitly. The
inverse problem of computing a black-box representation from an explicitly
given field element on the other hand is easy in a black-box field.

The black-box field problem is to compute, from a black-box representa-
tion of an element z, denoted by [z], the element x explicitly by an algorithm
that can make use of oracles performing addition, multiplication, and equal-
ity tests of field elements in black-box representation. More precisely, these
oracles take as inputs [z] and [y] and output [z + y], [z - y], and dzy (the
Kronecker symbol, i.e., §py = 1 if ¢ = y and d;y = 0 otherwise), respec-
tively. Efficient algorithms for solving the black-box field problem support
the security of the Diffie-Hellman protocol because they allow to compute
discrete logarithms in G modulo large prime factors of |G| when given a DH
oracle for G. A polynomial-time solution for instance would prove the com-
putational equivalence of the DH problem and the DL problem for groups
whose order is free of multiple large prime factors.

Note that the problem of finding generic algorithms for solving the DL
problem is, following the above formalism, the black-box group problem for
cyclic groups. (The generic DL problem considered in [55] is even a simpler
problem because the representation is supposed to be unique. This allows
the use of the sorting and searching techniques that are essential for the
baby-step giant-step method.) Surprisingly enough, though the black-box
group problem is provably hard, the additional structure offered by a field
allows to solve the black-box field problem efficiently in many cases.

3.3 Reducing the computation of discrete logarithms to solv-
ing the DH problem

We describe a general method for computing discrete logarithms modulo a
fixed large prime factor p of |G| efficiently with a DH oracle for G. Let for
simplicity G = (g) with |G| = p prime. The basic idea is to reduce the size
of the search spaces for the index search problem or more precisely, the size
of the subgroups for computing discrete logarithms. Repeated application of
exhaustive search in small spaces allows to obtain ezplicit information from
implicit information efficiently. One such example was described by Boneh
and Lipton [5]. From the implicit representation a = g of x € GF(p) one

11



can compute the implicit representation of the Legendre symbol

<E> =2 D/2  (mod p) .
p

Since only two values are possible (if z #Z 0 (mod p)) the Legendre symbol
can also be computed explicitly by comparing its implicit representation
with g and ¢g—'. Analogously, the entire sequence

G (5)- (57)

of Legendre symbols can be computed. Unfortunately, no method is known
for computing x modulo p efficiently from this explicit information about x.

We describe a different technique due to Maurer [32], which is based
on the same idea, but which uses a so-called auziliary group. In order to
illustrate the method, let us assume that a cyclic elliptic curve E = Eg(p)

over GF'(p) with generator P is given with B-smooth order |E| =[] ¢;*. We
show that this allows to compute discrete logarithms in G in time

VB - (log p)o(l)

when given a DH oracle for G.
The elliptic curve E,4(p) (with parameters a and b in GF(p)) is the set

{(z,y) € (GF(p))? : 9* = 2* 4+ az + b} U{O}

(the additional point O is called the “point at infinity”). There exists an
operation on the points of the elliptic curve (called addition) which can be
expressed in a constant number of algebraic operations in the coordinates
and such that F, 3(p) forms an abelian group with neutral element 0. We
refer to [42] for an introduction to elliptic curves.

We describe how x can be computed from g®. First, the group element

z3+azr+b
g

can be computed from ¢g* by O(logp) group operations and two calls to the
DH oracle for G. If 22 + ax + b is a quadratic residue mod p (which can
be tested efficiently), then a group element g¥ can be computed such that
y? = 2® + ax + b (mod p). (Otherwise, g* can be replaced by ¢g®¢ for a
random offset d until the corresponding expression is a quadratic residue.)
Hence we have computed

3
(¢°,¢%) = (g",g”” +‘“”+b)

12



with z,y € GF(p), where (z,y) := @ is a point of the elliptic curve E.

When given (g%, ¢"') and (g"“?, g¥?) with the property that (u;,v;) € E,
then (g“2,g"®) can be computed such that (us,vs) = (u1,v1) + (ug,v2) (in
E). This computation requires O(log p) group operations in G and O(log p)
calls to the DH oracle for G.

Let ¢ be a prime factor of |E|. From (¢*,¢Y) we compute (g%, g") such
that (u,v) = (|E|/q) - Q (in E). From the generator P of E, the points
(uj,v;) =1i-(|E|/q) - P are computed for i = 0,1,...,¢—1, and from (u;, v;)
we obtain the group elements (g%, g*¢). For Q = kP, we have

(¢“,¢") = (¢“,¢") <= k=i (modg).

In analogy to the Pohlig-Hellman algorithm, k£ can be computed modulo
the prime powers of |E|, and hence modulo |E|. From k, compute kP = @,
and z is the first coordinate of this point.

The running time is O(B - (logp)?) group operations in G and field
operations in GF(p), and O((log p)?) calls to the DH oracle for G. With the
time-memory tradeoff, both complexities can be replaced by O(v/B-(log p)?).

3.4 Generalizing the reduction method

From the previous section we can conclude that if each large prime factor p of
|G| is single and for every such p a cyclic elliptic curve over GF'(p) is known
with smooth order, then breaking the DH protocol and computing discrete
logarithms are equivalent for G. Maurer and Wolf [36], [33] have relaxed
these conditions considerably by generalizing the reduction technique. The
notion of an auzxiliary group was introduced with the property that if for ev-
ery large prime factor p of |G| a “suitable” auxiliary group is known then the
equivalence holds. The required property of such an auxiliary group H over
GF(p) is that the elements of H must have a representation by m-tuples
of GF(p)-elements such that the group operation of H can be performed
by a polynomial number of algebraic operations in the GF(p)-coordinates.
Moreover, a so-called EMBED algorithm must exist that computes, in a poly-
nomial number of algebraic operations in GF(p), from a given z € GF(p)
an element ¢ of H with the property that x is one of the coordinates of
c. If these conditions are satisfied, H is called defined strongly algebraically
over GF(p). Finally, H must be abelian of rank » = O(1). The following
theorem has been proved in [33].

Theorem 1 [33] Let P be a fized polynomial, and let G be a cyclic group
with generator g such that |G| and its factorization |G| = [[;_,p{* are

13



known. If every prime factor p of |G| greater than B := P(log|G|) is single,
and for every such p a finite abelian group H, with rank r = O(1) is given
that is defined strongly algebraically over GF(p) and whose order |Hp| is B-
smooth (and known), then breaking the Diffie-Hellman protocol for G with
respect to g is probabilistic polynomial-time equivalent to computing discrete
logarithms in G to the base g.

Various types of groups have been proved to be useful auxiliary groups
[60], [33], [59]. The use of the groups H, = GF(p)* as auxiliary groups leads
to the results of den Boer [15], who proved that the DH problem and the
DL problem are equivalent for groups G for which ¢(|G|) is smooth, where
@ is Euler’s totient function. This condition is equivalent to the condition
that large prime factors p of |G| are single and have the property that p — 1
is smooth.

The use of elliptic curves, as shown in the previous section, has been
proposed by Maurer [32], and the application of Jacobians of higher-degree
curves was investigated in [60].

Subgroups of GF(p")* as auxiliary groups have been examined in [60]
and [36], where it has been shown that the subgroups of GF (p*!)* of order

kl_l

Z;k — — phU=D) g ph(=2) gk g (1)
are suitable auxiliary groups for k£ and [ polynomial in log |G|, as well as the
subgroups of GF (p")* of order ®,(p), i.e., the n-th cyclotomic polynomial
evaluated in p, for n = O(1). Without going into the details, we roughly
describe the EMBED algorithm in this case. Membership of an arbitrary
field element « in the subgroup H is characterized by the equation ol = 1,
and in a normal basis representation of the extension field, this condition
is equivalent to a polynomial equation in the GF(p*)-coefficients of this
element if H has order (1), and to a system of polynomial equations over
GF(p) if |H| = ®,(p). In the first case, the EMBED algorithm works as
follows. The element z € GF(p) can be assigned to one of the coordinates,
and one can solve the polynomial equation for one of the other coordinates in
probabilistic polynomial time by the Cantor-Zassenhaus algorithm (see for
example [56]). It is crucial that this algorithm only uses algebraic operations
in the underlying field. The second case is treated analogously, but a system
of polynomial equations has to be solved by the EMBED algorithm. As
described in [60], this can be done with Grébner bases computations, using
algebraic operations only. The use of these groups as auxiliary groups leads
to the following theorem.
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Theorem 2 [33] Let P be a fized polynomial and let ¢ be a fized constant.
Let G be a cyclic group with generator g. Assume that all the prime factors p
of |G| greater than P(log|G|) are single. Then there ezists an algorithm that
makes queries to a DH oracle for G and computes s from g° in probabilistic
time v/B - (log |G))°W), where B is the minimum of the largest prime factors
of the numbers (p* —1)/(pF — 1) for k,1 < P(log|G|), and of the numbers
b, (p) forn <ec.

For the case where the group order |G| is divisible by a large multiple
prime factor p a rather pessimistic result was proved. It follows from a result
by Shoup [55] (see also [35], [34], [59]) that unless additional assumptions
are made on G (i.e., on the representation of the group elements), an efficient
reduction from the DL problem to the DH problem cannot exist for G. More
precisely, every reduction has running time Q(,/p). In [35], [59], additional
lower bounds on the complexity of such reductions (and in particular on the
number of required calls to the DH oracle) are proved.

3.5 Non-uniform equivalence

It is well-known that for any a,b € GF(p)

p—2yp+1<|Ep(GF(p))| <p+2yp+1,

and that for each d € [p—2,/p+1,p +2,/p+ 1] there exists a cyclic elliptic
curve over GF(p) with order d [51]. This implies the following non-uniform
reduction of the DL problem to the DH problem. For a number n, we define
v(n) to be the minimum of the set of largest prime factors of the numbers
d in the interval [n — 2y/n+1,n + 2y/n + 1].

Theorem 3 [33] Let P be a fized polynomial. For every finite cyclic group
G with order |G| =[] p;* and such that all multiple prime factors p; of |G|
are smaller than P(log|G|), there exists an algorithm that makes calls to a
DH oracle for G and computes discrete logarithms of elements of G in time

max{v(p;)} - (log |G|)°W .

Very little is known about the existence of smooth numbers in the interval
of interest, i.e., about v(p), for a given prime p. However, it is known [11]
that for every fixed wu,

Y(n,n'/) fn = um(FetD (2)

where 1)(n,y) denotes the number of integers < n with no prime divisor > .
This fact suggests that v(n) is polynomial in log n.
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Smoothness Assumption 1 v(n) is of order (logn)°(.

This assumption implies the existence of a (log p)O(l)—smooth cyclic elliptic
curve over GF(p) for each prime number p. Therefore for every cyclic group
G there exists a small piece of information, which depends only on the
order of G, that makes breaking the Diffie-Hellman protocol and computing
discrete logarithms equivalent in G. This information is a string S consisting
of the prime factors p; of |G| and appropriate elliptic curve parameters a;
and b; for all p;.

Corollary 4 [32] Let P be a fized polynomial. If Smoothness Assumption 1
is true, then for every group G = (g) whose order contains no multiple prime
factors greater than B := P(log|G|), there exists a string S of length at most
3log |G| such that when given S, breaking the Diffie-Hellman protocol for G
s polynomial-time equivalent to computing discrete logarithms in G.

3.6 Uniform equivalence

Boneh and Lipton [5] used the presented technique to show that there exists
an algorithm that reduces the DL problem to the DH problem in heuristic
subexponential time for all groups. Such a result is of interest for groups
for which no subexponential-time algorithm for the computation of discrete
logarithms is known, such as non-supersingular elliptic curves or Jacobians
of hyperelliptic curves.

The basic idea of the reduction is as follows. Like in Lenstra’s elliptic
curve integer factoring method [28], elliptic curve parameters are chosen at
random until a curve with subexponentially-smooth order is generated. The
running-time analysis of such an algorithm is based on the following condi-
tions. First, the orders of elliptic curves with randomly chosen parameters
should be (almost) uniformly distributed in the interval of interest (or a
substantial sub-interval). Secondly, the density of smooth numbers in this
interval must be high enough. The first problem was solved by Lenstra [28].
The orders of a non-negligible fraction of the elliptic curves with randomly
chosen a, x, and y lie in the interval (p+1—,/p, p+1+,/p) and are distributed
close to uniformly in this interval. The second problem, concerning smooth
numbers in small intervals of type [z,z 4+ O(y/x)] has not been solved, hence
the running time of the algorithm is heuristic. As mentioned earlier, the
density of smooth numbers in sufficiently large intervals satisfies (2). Mo-
tivated by this, the plausible assumption is often made that the statement
concerning the density also holds for smaller intervals (see [28] or [5]). We

write Lo (p) for exp((logp)®(log logp)t=2).
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Smoothness Assumption 2 Integers that are randomly chosen from the
interval (p+1— /p,p+ 14 /p) are Lq(p)-smooth with probability at least
1/Li-a(p)' =W for any a.

This statement for @ = 1/2 allows a running-time analysis of both the elliptic
curve integer factoring algorithm and of the reduction of the DL problem
to the DH problem considered in this section. The assumption for a = 2/3
and a = 1/2 is necessary for a reduction of algebraic algorithms which is
described in Section 3.7.

By using the described method of choosing elliptic curves over GF(p)
at random, computing their order in polynomial time by a method due to
Schoof [54], checking the smoothness of this order with the elliptic curve
factoring algorithm (and choosing a new curve unless the order is L; /2 (p)-
smooth), and applying the technique described in the previous sections,
Boneh and Lipton showed in [5] that the black-box field problem in GF(p)
can be solved in time L ) (p)?>T°(M). This immediately leads to the following
result.

Theorem 5 [5] Assume that Smoothness Assumption 2 is true for o = 1/2.
For groups G = (g) with the property that |G| has no multiple prime factor
greater than L1/2(|G|)2 there exists an algorithm that makes queries to a
DH oracle for G with respect to g and that computes s from g° in time
Lypp(|G)>+em.

Of course this result is useless for groups in which the DL problem can
be solved in time Ly /(|G )2+°() such as the multiplicative group of a finite
field. Non-supersingular elliptic curves have been proposed to be used in
DL based systems because it is assumed that no subexponential algorithm
for solving the DL problem exists for these groups. Theorem 5 implies that
if elliptic curves have the advantage that no subexponential solution to the
DL problem exists, then they have the additional advantage that this also
leads to a lower bound of the complexity for breaking the DH protocol.

In the next section an even faster subexponential reduction will be de-
scribed which works under the additional condition that a DH oracle for
elliptic curves is given by a subexponential-time algebraic algorithm.

In order to obtain an integer factoring algorithm with rigorously proven
running time, Lenstra, Pila, and Pomerance [27] have studied the use of
hyperelliptic curves of genus 2 instead of elliptic curves. Jacobians of these
curves have the advantage that the group order varies in an interval of
size [z,z + O(x%/*)] instead of [z,z + O(y/z)]. In a series of papers, the
first of which has already been published [27], they prove that the factoring
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algorithm using Jacobians of hyperelliptic curves of genus 2 has running
time at most

Lys(p)°™ - (logn)?

where p is the largest prime factor of n. In the mentioned first paper of
the series a result on smooth numbers is shown which roughly corresponds
to the statement of Smoothness Assumption 2 for o = 2/3, and for larger
intervals of the form [z, z + y], where 23/5 < y < .

Because of the similarities of the two methods, the analysis of the integer
factoring algorithm also yields a provable subexponential solution of the
black-box field problem, and hence a subexponential reduction of the DL
problem to the DH problem.

Theorem 6 Let c be a fized constant. For groups G = (g) with the property
that |G| has no multiple prime factor greater than Lo /3(|G|)¢ there exists an
algorithm that makes queries to a DH oracle for G with respect to g and that
computes s from g° in time L2/3(|G|)O(1).

As in the case of the factoring algorithms, this reduction is less efficient
and less practical than the reduction using elliptic curves, but it is an im-
provement in the sense that it is so far the best rigorously proved complexity
result.

3.7 Reducing the DL problem to algebraic algorithms solv-
ing the DH problem

Several results were obtained in [60], [33], [59], [5], and [13] under the
assumption that algorithms with certain properties exist for solving the DH
problem in certain classes of groups.

As an example, consider the following situation. Assume that the DH
problem is easy in the groups GF(p)* or more precisely, that there exists a
polynomial-time algebraic algorithm for solving the DH problem in GF(p)*.
Let further G be an arbitrary cyclic group with order |G| = p, where p is
prime, (p —1)/2 = ¢ is prime, and ¢ — 1 is (logp)?(V-smooth. Then there
exists an efficient reduction of the DL problem to the DH problem in G.
(Note that a direct application of the auxiliary group technique presented
above does not lead to such a reduction.) The idea of this reduction is to
apply the algorithm for solving the DH problem on elements = of GF(p)*
that are only implicitly represented (i.e., by an element g of G), and where
the oracle’s answer is also implicit.
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Let a = g%, z =: ¥ (mod p), and w =: 8 (mod ¢q) (where a and 3 are
generators of GF'(p)* and GF(q)*, respectively). For the computation of the
discrete logarithm z it is sufficient to compute v. Because ¢— 1 is smooth, v
could be computed (efficiently) from x when given a DH oracle for GF(p)*.
Unfortunately, z is not known. However, because the oracle for GF(p)* is
given by an algebraic algorithm, this algorithm can be executed (with the
same complexity) even on elements of GF(p)* given only implicitly by group
elements of G, such as z (given by a = g®). The reason is that the execution
of the algorithm solving the DH problem can be reduced to a polynomial
number of group operations, equality tests, and DH oracle calls in G. Hence
a DH oracle for G allows to compute (from a) efficiently v, w, and finally x.

Of course it is not likely that an efficient algebraic algorithm exists for
solving the DH problem in the groups GF(p)*. Nevertheless, the result can
be of some interest because it proves that if the DL problem is hard in G,
then either the same holds for the DH problem in G, or the DH problem
cannot be solved efficiently in the groups GF(p)* by an algebraic algorithm.

The above technique can be generalized in the following two ways. First,
it was shown that the iteration depth can be increased [60], [33], [13]. The
reduction complexity is then exponential in this depth and hence polyno-
mial only as long as the depth is bounded by a constant. Furthermore, it
was pointed out that it is possible to use different auxiliary groups (than
multiplicative groups of finite fields) for the reduction process [60], [33], [5]-
We briefly describe some of the results.

In [33], the technique was used to prove results like the following. Assume
that there exists a sequence of groups of length [ = O(1), starting with G
and such that the last group of the sequence has smooth order, such that all
the other group orders are divided by precisely one large prime factor and
such that each group is defined strongly algebraically over GF(p;), where
p; is the large prime factor of the order of the preceding group. If for all
groups in the sequence (except for G and the smooth-order group) there
exists a polynomial-time algebraic algorithm solving the DH problem, then
the polynomial-time equivalence of the DH problem and the DL problem
holds for G.

Boneh and Lipton [5] proved a uniform result by using the technique with
an iteration depth 2, and with randomly chosen elliptic curves as auxiliary
groups. They showed that under Smoothness Assumption 2 the black-box
field problem can be solved in time L; /3(p)2+°(1) under the additional as-
sumption that the DH problem can be solved in time L;/3(g) in an elliptic
curve over GF(q) by an algebraic algorithm. Under this condition, the
result leads to a reduction of the DL problem to the DH problem of com-
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plexity L, /3(p)2+"(1), which is substantially faster than the L /z(p)2+"(1)—
reduction of Theorem 5. Here, an increase of the iteration depth does not
lead to a more efficient reduction. The reason is that according to Smooth-
ness Assumption 2 for o = 2/3, a L, /3(p)—smooth curve can be found in
time L, /3(p), and that it takes roughly time L; 5(Ly/3(p)) = L1/3(p) (under
Smoothness Assumption 2 for o = 1/2) to factor the order of this curve.
Hence the running time of the first iteration step (and hence of the entire
reduction) cannot be smaller than L, /3(p), regardless of the iteration depth.

Cherepnev [13] used the same method to construct an algorithm for
solving the DL problem from a (general-purpose) algorithm for solving the
DH problem. However, Shoup directly showed [55] that the DH problem is
hard to solve by a general-purpose algorithm (see Section 5.1). Hence the
reduction of [13] is not needed for proving a lower bound on the complexity
of solving the DH problem in this model.

4 Equivalence between various types of DH ora-
cles

4.1 Motivation

Security of a cryptographic protocol means that it is hard to break the
scheme even with small (but non-negligible) probability. In this section we
show that breaking the DH protocol with a small constant probability is
(almost) as hard as breaking it for all instances. For example, an oracle an-
swering correctly with probability 0.1% can efficiently be transformed into
an oracle that answers correctly with probability 99.9% (see Section 4.2).
This is not obvious in general because of the (assumed) hardness of the DHD
problem for certain groups (see Section 2.2). In Section 4.3, the relation-
ship between the DH problem in G and in subgroups of G is studied, and
Section 4.4 is concerned with the most significant bits of the DH key.

4.2 e-DH-oracles

First, we consider probabilistic oracles that answer correctly with a certain
non-negligible probability € > 0. In most cases, such an oracle can be
efficiently transformed into a virtually perfect oracle. This problem was
counsidered by Maurer and Wolf [36] and subsequently but independently by
Shoup [55]. We briefly describe both approaches to solve this problem.
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Definition 6 For € > 0, an e-DH-oracle is a probabilistic oracle which
returns for an input (g%, g¥) the correct answer g“¥ with probability at least
¢ if the input is uniformly distributed over G x G. The offset of the oracle’s
answer g“*T? to the input (g%, g") is defined as ¢ (mod |G|). A translation-
invariant e-DH-oracle is an e-DH-oracle whose offset distribution is the same
for every input (g*, g").

A special case of (not translation-invariant) e-DH-oracles are deterministic
oracles answering correctly for a fraction ¢ of all inputs.

The first step in both reductions mentioned above, which was described
in [32], is to transform the oracle into a translation-invariant oracle by ran-
domizing the input.

Lemma 7 [32] An e-DH-oracle for a cyclic group G with order |G| can be
transformed into a translation-invariant e-DH-oracle. One call of the latter
requires one call to the former and O(log|G|) group operations.

Proof. Given the group elements a = ¢g* and b = ¢g¥ we can randomize
the input by choosing r and s at random from [0, |G| — 1], providing the

oracle with ¢’ = ag" and b = bg® and multiplying the oracle’s answer
g(u—|—'r)(v+s)+t — guv—i—ru—l—su—}-rs—l—t with (a—l)s . (b—l)r LgTTs = g—(r'u—l—su—i-rs) to
obtain g¥’*t!. Note that a’ and b’ are random group elements and statis-

tically independent of a and b. The e-DH-oracle with randomized input is
thus a translation-invariant e-DH-oracle. m|

The straight-forward approach to using a translation-invariant e-DH-
oracle may at first sight appear to be to run it O(1/¢) times until it produces
the correct answer. However, because even the DHD problem is assumed to
be hard in general (see Section 2.2), a more complicated approach must be
used because the correct answer cannot be detected efficiently.

We describe Shoup’s approach [55] to constructing an oracle that answers
correctly with very high probability 1 —q from a translation-invariant e-DH-
oracle. Given the input (g%, g"), the faulty oracle is called ¥ = O(1/¢) times
in order to obtain a list of group elements which contains the correct answer
with probability greater than 7/8. In a second step, z and y are chosen at
random, and the oracle is called with the input ((¢%)*¢¥,g¢"). Again, a list
is generated that contains the correct answer with probability greater than
7/8. Finally, for all pairs of elements (g, g}), where g; and g; come from the
first and second list, respectively, it is checked whether

97 (9")? = g; (3)
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holds. Because
(9"")"(g")¥ = glotolv

equation (3) is satisfied if both g; and g; are the correct answers. If (3) is
satisfied for exactly one pair, then g; is the output of the algorithm, and
otherwise, failure is reported. This algorithm is run O(log(1/«)) times in
order to obtain an almost perfect oracle that answers correctly with proba-
bility at least 1 — c, and the entire algorithm makes O(1/e-log(1/a)) queries
to the translation-invariant e-oracle.

The central argument in the proof of the correctness of the method is
that (3) only holds with very small probability unless g; and g} are correct
answers. Unfortunately, this is true only if the group order contains no small
prime factors. However, if the group order is known, then the “smooth” part
of the group order can be treated separately. More precisely, u - v modulo
the small prime factors can be computed directly from ¢* and g” by the
Pohlig-Hellman method, and by Chinese remaindering in the exponent, the
results of the smooth and the “non-smooth” part can be combined to the
correct answer of the oracle. The only case in which this transformation is
not necessarily successful is when the group order is unknown and contains
at least one prime factor p smaller than some bound of order 1/&2.

The method presented in [36] for correcting a faulty oracle is based on the
following idea. First, the translation-invariant e-oracle is called repeatedly
with the input (¢°, ¢%) in order to determine the distribution of the offset.
In the second phase, the oracle is called repeatedly with the input (g“, g*).
Comparison of the offset patterns leads to the correct answer g“¥ with prob-
ability 1 — «. This method is less efficient than the algorithm of Shoup. For
instance, the faulty oracle must be called O(log(1/ag)/e*) times. On the
other hand, the advantage of this method is that in the case of unknown
group order, the condition concerning small prime factors is weaker: the
method works if all the prime factors of |G| are greater than 1/e. Examples
of “malicious” oracles that cannot be transformed into perfect oracles with
either of the methods when |G| is unknown are those which answer the input
(g%, ¢g%) by one of the values g“*+Gl/% where z < 1/¢ is a factor of |G|, and
where all the values of i between 0 and z — 1 are equally likely.

Certain oracles answering correctly only for a negligible fraction of the
inputs are as strong as a perfect oracle. An example considered in [36] is
the “squaring-DH-oracle” that answers correctly on the input (g%, g¥) only
if u = v. The reduction exploits that (g*?)2 = g(v+v)* (gu*)~1(g?") L.

A result related to the above has also been shown for the DHD problem
by Naor and Reingold [44]. They proved that the DHD problem in a group
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G with generator g and of prime order is as hard in the average case as it
is in the worst case by giving a method for randomizing the input. When
given the triple (g%, g¢°,¢¢), choose randomly r,s, and ¢ and compute the
group elements g% = (¢%)"¢%, ¢ = ¢’¢%, and ¢¢ = (¢¢)"(¢g%)"t(¢®)*g*. Tt is
not difficult to see that the triple (¢%,¢%,¢¢) has the property that it is a
correct DH triple, i.e., a’-b' = ¢’ (mod |G]), if the same holds for the original
triple, but that it is otherwise statistically independent of (g%, ¢°, g¢). This
randomization is possible only if |G| is a prime.

4.3 The security of subgroups and generator changes

In this section we address the questions whether a subgroup of G is more or
less secure than G with respect to the Diffie-Hellman protocol, and whether
changing the generator of the group can change the complexity of breaking
the DH protocol. We assume here that the order of G is known.

Theorem 8 [33] Let P be a fized polynomial. Let G be a cyclic group with
generator g. If the number r is such that every prime factor of r is either
smaller than B := P(log|G|) or has at least the same multiplicity in r as in
|G|, then there ezists an algorithm solving the DH problem in the group (g")
making one call to the DH oracle for (g) and using a polynomial number of
group operations per call.

Remark. The conditions of Theorem 8 are optimal. Shoup [55] proved that
if the conditions are not satisfied, then the construction of a DH oracle for
(¢") from a DH oracle for (g) is hard in the generic model.

Proof Sketch. Let |G| = []p;" and r = [[p]* (where f; > €;, e; = 0, or
fi = 0 is possible). The algorithm solving the DH problem in the group (¢")
takes as inputs two elements (¢g")? and (¢")® and must output (¢”)%. Using
the DH oracle for the group G = (g) with the same input, one obtains grzab,
i.e., the r-th power of g"®. Now, ¢"% is computed from gr2“b by computing
the r-th root. More precisely, the pzf ‘-th root has to be computed for all ¢
with f; > 0, and the correct root, i.e., the particular root that is a power of
g™ must be determined.

For factors p; with f; > e;, computing the (pz-_f" modulo |G|/p;*)-th
power immediately yields the desired root. If f; < e; and p; < B, a p;-th
root can be computed by a generalization (see [36] or [33]) of a square root
method of Massey [31]. The correct root can be determined by computing
the discrete logarithms of all the roots modulo the smooth part of |G|. O
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In case of a generator change, i.e., if (r,|G|) = 1, it is not even necessary
to know r, as was pointed out by Boneh and Lipton in a preliminary version
of [5]. Let h = ¢", and let DHy; and DH}, be the DH functions in G with
respect to the generator g and h, respectively. Then

1

DHh(ha, hb) — hab — g’r'ab — DHg(g’r'zab’gT_ )
= DH,(DHy(h*, h%),PDH, 4a)-1(h) ,

and the last expression can be computed by O(log|G|) applications of the
oracle with respect to g.

The problem of constructing an oracle for the entire group from a set of
oracles for subgroups has been studied in [33] and [35]. It is not difficult to
see that ¢g"¥ can be computed efficiently from ¢“?|G!/? for all the maximal
powers p¢ of |G| of the large prime factors p. This works by Chinese remain-
dering in the exponent. The required group elements can be obtained from
g"* and ¢g¥ by DH oracles for subgroups (g°) if for each large prime factor p
of |G| there exists such an oracle for an s that is not a multiple of p. This
directly yields a criterion for when a set of subgroup oracles can be used to
construct an oracle for G efficiently. It was shown in [35] that this condition
is not only sufficient but also necessary unless special assumptions on G are
made.

The following intuitive statement follows from the above results. Of
course an analogous result holds for the DL problem.

Theorem 9 [33] Consider a group G = (g) and a subgroup H = (g*) of G
with smooth index k. Then (and without any assumptions on G only then)
the DH problem for H is equivalent to the DH problem for G.

4.4 The hardness of the most significant bits

A typical way of using the Diffie-Hellman protocol is to take a part of the
generated secret key as the session key for encryption with a conventional
block cipher. This key is usually shorter than the Diffie-Hellman key, and a
natural method is to use the block consisting of its first k£ bits in a binary
representation, the so-called most significant bits. However, it is conceiv-
able that an adversary who is not able to break the Diffie-Hellman protocol
can nevertheless compute these bits efficiently. Boneh and Venkatesan [6]
investigated the security of the most significant bits in the Diffie-Hellman
protocol (and other schemes) in the groups Zj for prime numbers p. They
considered the following two functions (where p and k are fixed).
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Definition 7 For any a, h € Z, let
Ng,h(x) := msby(a - ¥ mod p)

and
Dk(gaagb) = mek‘(gab) 3

where msbj, denotes the k most significant bits.

They study the following hidden number problem. Given an oracle that
computes the function N¥, (z) for unknown «, find a. Note that the input
to the function that comf)utes msby(ah® mod p) is x, not h*. The same
problem when given an oracle for msby(at mod p) for chosen t is easy even
for £k =1.

It is not difficult to see that a probabilistic polynomial-time solution of
the hidden number problem proves that the k£ most significant bits together
are equally hard as the entire key because

Nk‘

9"%,9" (‘,E) = Dk(gu+$79v) ’

i.e., when given g% and ¢¥, an oracle for the function D* can immediately be
used for computing N* with o = ¢g*?, and a solution of the hidden number
problem hence yields g*?.

The question remains for which k£ the hidden number problem can be
solved in probabilistic polynomial time. Boneh and Venkatesan proved the
following result by using rounding techniques in lattices, based on methods
of Lenstra, Lenstra, and Lovasz [29] and Babai [2].

Theorem 10 [6] Let p be prime, n = [logp]|, and let G = Z;. For k =
[v/n] + [logn], it is computationally equivalent to compute all the k most
significant bits of the Diffie-Hellman key simultaneously and to solve the DH
problem. For any € > 0 and sufficiently large p, this holds for k = ¢ -+/log p.

A variant of the Diffie-Hellman protocol is described in [6] which is at most
as secure as the original protocol, and for which the most significant bit is
hard (i.e., k = 1). It is an open problem if the same result also holds for the
original DH problem, or whether a faulty oracle for the k most significant
bits also helps recovering the Diffie-Hellman secret efficiently.
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5 Direct security results in restricted computa-
tional models

Under certain special conditions on the computational model, one can prove
directly that it is hard to break the Diffie-Hellman protocol. Such results
have been derived by Shoup [55] and by Coppersmith and Shparlinsky [14].

5.1 Generic algorithms

Shoup proved in [55] that no general-purpose (or generic) algorithm can
break the DH protocol in G faster than the Pohlig-Hellman method (see
Section 2.3). Intuitively, a generic algorithm is an algorithm that does not
make use of any property of the representation of the group elements other
than the fact that each group element has a unique representation (by some
binary string). More precisely, a generic algorithm for the group Z, is a
probabilistic algorithm that takes as input a list (o(x1),...,0(z;)), where
the z; are elements of Z,, and ¢ is a random encoding of the group elements,
i.e., a random mapping Z,, — S (S is a set of size n of binary strings). The
generic algorithm is allowed to make calls to an oracle that can compute the
functions add/sub: S x S — S with add/sub(o(z),0(y)) = o(z £ y). The
following theorem implies that a generic algorithm which breaks the DH
protocol with substantial probability cannot run considerably faster than in
time O(,/p), where p is the largest prime factor of the group order. Note
that the combination of the Pohlig-Hellman and the baby-step giant-step
methods is a generic algorithm and matches this bound, which is hence
tight.

Theorem 11 [55] Let n and S be as above, and let p be a prime factor of
n. Let further a generic algorithm for Z, (and S) be given that makes at
most m oracle queries. The probability that the algorithm answers the input
(0(1),0(z),0(y)) by o(zy) is at most (m? + 5m+10)/2p when z, y, and the
encoding function o are chosen randomly.

Proof Sketch. Assume for simplicity that n = p. By the m oracle calls, the
algorithm can compute the encodings oy, ...,om,m+3 of linear expressions in
z and y (including the input (1), o(z), and o(y)). Unless o; = o; for some
1 # 7, all the algorithm sees are distinct random elements of S. Hence the
only information the algorithm obtains is that o; # o for all © # j. The
probability of the events o; = o, cannot exceed 1/p. This holds because
the probability that a (non-zero) linear expression r + sX + tY (mod p)
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vanishes for random values (z,y) is 1/p (or 0). Thus the probability, taken
over random (z,y) and random coin tosses of the algorithm, that o; = o;
for some i # j is at most D/p, where D := (m + 3)(m + 2)/2 is the number
of two-sets {7,j}. The probability of guessing o(zy) correctly if o; # o for
all 4 # j is small. More precisely, one can show that the algorithm answers
correctly with probability at most [(m + 3)(m + 2)/2 + 2]/p. O

Clearly, this result also implies the same lower bound for generic algo-
rithms solving the DL problem. Hence the DH problem and the DL problem
have the same complexity, at least in the generic model. Shoup also proved
that the DHD problem in a group G cannot be solved faster than in time
©(y/q) by a generic algorithm, where here ¢ stands for the smallest prime
factor of |G|.

The methods of [55] can also be used to prove a lower bound on the
complexity of generic reductions from the DL to the DH problem and in
particular a lower bound on the number of required DH oracle calls in such
a reduction [35], [59].

5.2 Approximation by polynomials and other classes of func-
tions

Coppersmith and Shparlinsky [14] proved the impossibility of approximating
the discrete logarithm function ¢* — z (modulo p) and the function g% —
g“”2 (modulo p) by certain simple classes of functions such as low-degree
polynomials. We state one of their results which claims that a polynomial
that interpolates the function g% — 95”2 (note that computing this function
and breaking the Diffie-Hellman protocol are equivalent) for a substantial

fraction of the inputs must be of very high degree.

Theorem 12 [14] Let g be a generator of GF(p)*, and let f(x) be a poly-
nomial such that

2
g* = f(g")
for x € S, where S C {N +1,...,N + H} has cardinality |S| = H — s for
some N,H <p—1ands. Thendeg f > H — 2s — 3.

Proof. If f(g*) = g“”2 holds for H — s different values z with N + 1 <
z < N + H, then there must be at least H — 1 — 2s values x such that
both f(g%) = ¢°" and f(g°t!) = g@tD?* = g%* . (¢%)2 . g hold. Hence the
polynomial

h(u) = f(g-u) = f(u) v’ g
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has at least H — 1 — 2s different roots, is obviously not identical to zero, and
has hence degree at least H — 1 —2s. Therefore, deg f > (H —1—2s) —2 =
H —2s—3. O

A variety of different results are proved in [14] concerning the difficulty
of approximating the solutions of the DH problem and the DL problem
by polynomials, algebraic functions, Boolean circuits, and linear recurring
sequences.
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