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Abstract

It is shown that for a class of finite groups, breaking the Diffie-Hellman protocol is
polynomial-time equivalent to computing discrete logarithms. Let G be a cyclic group with
generator g and order |G| whose prime factorization is known. When for each large prime
factor p of |G| an auxiliary group H), defined over GF'(p) with smooth order is given, then
breaking the Diffie-Hellman protocol for G and computing discrete logarithms in G are
polynomial-time equivalent. Possible auxiliary groups H, are elliptic curves over GF'(p)
or over an extension field of GF(p), certain subgroups of the multiplicative group of such
an extension field, and the Jacobian of a hyperelliptic curve. For a list of expressions in
p, including p — 1, p + 1, and the cyclotomic polynomials of low degree in p, it is shown
that an appropriate group H, can efficiently be constructed if one of the expressions in the
list is smooth. Furthermore, efficient constructions of Diffie-Hellman groups with provable
equivalence are described.

1 Introduction

Two challenging open problems in cryptography are to prove or disprove that breaking the
Diffie-Hellman protocol [10] is computationally equivalent to computing discrete logarithms in
the underlying group and that breaking the RSA system [32] is computationally equivalent to
factoring the modulus. In this paper we take a number of steps towards the solution of the first
of these problems.

Let H be a finite group (written multiplicatively), and for g € H, let G = (g) be the cyclic
subgroup generated by g. The discrete logarithm problem for the group H (or G) can be stated
as follows: Given g and a € G, find the unique integer s in the interval [0, |G| — 1] such that
g° = a, where s is called the discrete logarithm (DL) of a to the base g. The discrete logarithm
problem is sometimes also defined as the generally easier problem of finding any s satisfying
g° = a, but if |G| is known then the two problems are equivalent.

The Diffie-Hellman (DH) protocol [10] allows two parties Alice and Bob connected by an
authenticated but otherwise insecure channel (for instance an insecure telephone line where
Alice and Bob authenticate each other by speaker recognition) to generate a mutual secret key



which is computationally infeasible to determine for a passive eavesdropper overhearing the
entire conversation between Alice and Bob.

The protocol works as follows. Let G = (g) be a cyclic group generated by g for which
the discrete logarithm problem is computationally infeasible. Note that it is unknown whether
such a group exists. Specific groups that have been proposed for application in this protocol
are the multiplicative groups of large finite fields (prime fields [10] or extension fields), the
multiplicative group of residues modulo a composite number [23, 25], elliptic curves over finite
fields, the Jacobian of a hyperelliptic curve over a finite field and the class group of imaginary
quadratic fields [6].

In order to generate a mutual secret key, Alice and Bob secretly choose integers s4 and sp,
respectively, at random from the interval [0, |G| —1]. Then they compute secretly a4 = ¢°4 and
ap = ¢g°B, respectively, and exchange these group elements over the insecure public channel.
Finally, they compute aap = a¥j' = ¢°4°8 and apa = a’f = ¢°B°4, respectively. Note that
aAB = apa, and hence this quantity can be used as a secret key shared by Alice and Bob.
More precisely, they need to apply a function mapping elements of G to the key space of a
cryptosystem.

In contrast to digital signature schemes based on the discrete logarithm problem (e.g.,
[11],[35]), it is not required for the Diffie-Hellman protocol that the order of the group be
known. In this case, s4 and sp are chosen from a sufficiently large interval. In fact, it has been
pointed out (e.g., see [25]) that using groups with unknown order may be advantageous, and
the non-interactive public-key scheme of [23] relies crucially on the fact that the group order is
unknown.

Our paper is organized as follows. In Section 2 the general index search problem is inves-
tigated, and a method for computing discrete logarithms is described which is crucial for our
technique. Different types of incomplete DH-oracles are defined in Section 3, and it is shown
that they are (almost) as strong as a perfect oracle. In Section 4 a general technique for ob-
taining equivalence results is presented, using general auxiliary groups, and Section 5 contains
examples of groups which are suitable auxiliary groups, such as elliptic curves or a subgroup
of the multiplicative group of a finite field. In Section 6 we show how to construct DH groups
with provable equivalence of the DH problem and the discrete logarithm problem, and in Ap-
pendix D we obtain a stronger equivalence result under the assumption of DH oracle algorithms
for certain groups.

Considerations on related topics can be found in [34] and [4]. In the latter, the notion of
a black-box field is introduced which makes more explicit our concept of computation with
implicitly represented elements, presented already in [24].

2 The index search problem and methods for computing dis-
crete logarithms

Let A = {ag,...,an—1} be a set such that for a given i it is easy to compute a;. The index
search problem for A, namely the problem of computing for a given b € A the index ¢ such that
b = a;, can trivially be solved by exhaustive search which requires O(n) comparisons. If the set
A has the property that the permutation o : a; — a;41 (where the index is reduced modulo
n) can efficiently be computed, then the search can be sped up by a time-memory tradeoff
known as baby-step-giant-step algorithm. Using a table of size M to store the sorted list of
values b, o(b),...,c™~1(b) one can compute the elements ag, aas, agas, - .. until one of them is

contained in the table.



The discrete logarithm problem in a cyclic group G of order n with generator g is the index
search problem for the set {1,g,...,¢'%~'}. Multiplication with g corresponds to the above
mentioned permutation o. The baby-step-giant-step method and a well-known algorithm due to
Pollard [31] (with no rigorously proven running time) are the fastest known discrete logarithm
algorithms for general groups. For special groups such as the multiplicative group of a finite
field, more efficient algorithms are known. We refer to [26] for a detailed discussion of the
discrete logarithm problem and algorithms for solving it.

We now describe a method due to Pohlig and Hellman [30] which reduces the computation
of discrete logarithms to the index search problem in certain subsets. It plays a central role in
the paper. In particular we will make use of the fact that it requires only group operations and
equality testings of group elements.

Let H be a cyclic group with generator h and order |H| = [];_; qlf ‘. and let a € H be given.
For a = h”, we first compute & modulo g¢;* for all . This is done by determining, modulo g;,
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(indexed by t). Given x modulo ¢;* for all i, Chinese remaindering yields the discrete logarithm

x of @ modulo |H|.
1H]|
For the indexed sets defined above, multiplication with h % corresponds to the cyclic per-

mutation o. Therefore the index search can be sped up by a factor M when a table of size M
is used that can be sorted in time O(M log M ). The complexity of the algorithm is

0 (X fillog | H| +4)) ,
0 (Z fi(log |H| + \/g;log %‘))

when the baby-step-giant-step method with M = ,/g; is used.

The described algorithm is efficient only if | H| is smooth, i.e., if ¢; < B for a small smoothness
bound B. In the worst case we have ¢; = B for all ¢, i.e., the number of factors is log|H|/log B,
and the complexity is

B
log | H|)? log |H
0((0g| ) +10gB og | I),
or

O ((log |H|)? + VBlog |H]|)
when the baby-step-giant-step method is used.



3 Equivalence between various types of Diffie-Hellman oracles

3.1 Introduction

In order to prove equivalence results between breaking the Diffie-Hellman protocol and com-
puting discrete logarithms we assume the availability of an oracle that solves the Diffie-Hellman
problem. However, such an oracle could be defined in several ways, and in this section we
compare various types of such oracles and show their equivalence. The natural definition of a
Diffie-Hellman oracle is the following.

Definition 1 A Diffie-Hellman oracle (DH-oracle for short) for a group G with respect to a
given generator g takes as inputs two elements a,b € G (where a = g* and b = ¢*) and returns
(without computational cost) the element g“?.

In this section we show that certain apparently weaker oracles are almost as strong as a DH-
oracle.

3.2 e-DH-oracles

Definition 2 For £ > 0, an e-DH-oracle is a probabilistic oracle which returns for an input
(g%, g") the correct answer g’ with probability at least e, provided the input is uniformly
distributed over G x G. The error of the oracle’s answer g* to the input (g%, ¢¥) is defined as
t —uv (mod |G|). A translation-invariant e-DH-oracle is an e-DH-oracle whose distribution of
the error is the same for every input (g%, g¥).

A special case of (non-translation-invariant) e-DH-oracles are deterministic oracles answer-
ing correctly for a fraction ¢ of all inputs. We proceed in two steps to prove that an e-DH-oracle
can (normally) be transformed into a perfect DH-oracle. First, the oracle is made translation-
invariant by randomization of the input, and then, the correct answer is detected. We assume
that the given e-DH-oracle is time-invariant, i.e., the error distribution can only depend on the
input but remains the same when the oracle is called several times.

Lemma 1 An e-DH-oracle for a cyclic group G with order |G| can be transformed into a
translation-invariant e-DH-oracle. One call of the latter requires one call to the former and
O(log |G|) group operations.

Proof: Given the group elements a = ¢g* and b = ¢g¥ we can randomize the input by choosing r
and s at random from [0, |G| — 1], providing the oracle with o’ = ag” and b’ = bg® and multiply-
ing the oracle’s answer g(u+7')(v+s)+t — guv+rv+su—|—rs+t with (a—l)s . (b—l)r LgTTS = g—(rv—l—su—i-rs)
to obtain g“?tt. Note that a’ and b’ are random group elements and statistically independent of
a and b. The e-DH-oracle with randomized input is thus a translation-invariant e-DH-oracle. O

Remark: If |G| is unknown the input can also be randomized, where r and s are chosen at
random from a larger interval. The resulting e-DH-oracle is then “almost translation-invariant”
and applicable in the proof of Theorem 1 if the interval is of size at least 2-|G|/(¢? -min{s, 0.1})
(this leads to the larger factor for the number of group operations for this case in Theorem 1).

We now show that a translation-invariant e-DH-oracle can be transformed into an almost
perfect DH-oracle. The straight-forward approach to using a translation-invariant e-DH-oracle
may at first sight appear to be to run it O(1/¢) times until it produces the correct answer.



However, because the Diffie-Hellman decision problem is difficult, a more complicated approach
consisting of two phases must be used. The Diffie-Hellman decision problem is, for given g“,
g¥ and g%, to decide whether g% = g%’ and is of course at most as difficult as breaking the
DH protocol. In a first phase, which is independent of the actual input, the oracle’s error
distribution is determined. In the second phase, the oracle is used for a given input to compute
the correct solution with overwhelming probability. These two phases are described in Appendix
A in the proof of the following theorem.

Theorem 1 For every cyclic group G with generator g and known order |G| and for every 3 > 0
there exists a DH-oracle algorithm which makes calls to an e-DH-oracle and whose answer is
correct with probability at least 1 — 3. The number of oracle calls is O(log(1/B¢)/e*). If the
order of G is unknown but all the prime factors of |G| are greater than (1+s)/e for some s > 0,
then the number of required calls to the e-DH-oracle is

1 1
© (<a2 “min{s, 012 %8 @) '

The number of required group operations is log |G| or log(|G|/(¢? - min{s,0.1})) times the
number of oracle calls, respectively.

Note that such an oracle is virtually equivalent to a perfect DH-oracle for our application
because the correctness of the output of a probabilistic discrete logarithm algorithm can be
tested, and because only a polynomial number of oracle calls is required for the computation
of a discrete logarithm.

Remark: Examples of e-DH-oracles which can not be transformed into perfect oracles with
our method when |G| is unknown are those which answer the input (g%, g") by one of the val-
ues gWTHGl/% where z < 1/e is a factor of |G| and where all the values of i between 0 and
z — 1 are equally likely. If |G| is known, the correct one of the z candidates can be found by
O((log |G|)? /¢ + log |G| /<?) group operations, as described in Appendix A.

3.3 The squaring oracle

We present an example of an oracle that is weaker than an e-DH-oracle because the fraction
of correctly answered inputs is smaller than a constant fraction. Nevertheless, the oracle turns
out to be as strong as the perfect oracle. We call an oracle that answers the input g“ by g(uz)
(where u and u? are in Zg|) a squaring-DH-oracle. Note that this is not an e-DH-oracle for
any constant ¢ > 0 because only one out of |G| inputs is answered correctly, and this fraction
vanishes with increasing |G|.

Let g* and ¢g” be given. One can compute g**? = g - g* and

gt (g(uz))—l _ (g(vz))—l gt vt 2uw (g")? (1)

When given |G|, square roots in G can efficiently be computed. If |G| is odd, the square root
is unique, but if |G| is even, there exist two square roots,

uv

g and ¢

which can be computed by a method of Massey [22] (see also Lemma 2). Let |G| be even and let
2¢ be the maximal power of 2 dividing |G|. From ¢* and ¢”, one can compute u and v modulo



2¢ with O((log |G|)?) group operations by the Pohlig-Hellman method [30], and hence one can
obtain u - v modulo 2¢. Because |G|/2 is not a multiple of 2¢, we have

wv Z uv + % (mod 2°),

and one can determine the correct square root ¢g“¥ by computing the discrete logarithms of
the two square roots modulo 2¢. Hence a squaring-DH-oracle is equally powerful as a perfect
DH-oracle in a group G whose order is known.

A probabilistic squaring-DH-oracle for a group with known order that answers correctly
only with probability e (e-squaring-DH-oracle) can be transformed into a translation-invariant
e3-DH-oracle by randomizing the inputs in (1). The required complexity is O((log |G|)?) group
operations per call. This proves the following theorem.

Theorem 2 For every cyclic group G with generator g and known order |G| and for every 3 > 0
there exists a DH-oracle algorithm which makes calls to an e-squaring-DH-oracle and whose
answer is correct with probability at least 1— 3. The number of oracle calls is O(log(1/8e3)/e'2).
The number of required group operations is (log|G|)? times the number of oracle calls.

3.4 The security of subgroups

In this section we assume that the order of G is known. We address the question whether a
subgroup is more or less secure than the entire group with respect to the DH protocol. Although
the statement of Corollary 5 below is very intuitive (and an analogous result holds trivially for
the computation of discrete logarithms), the proofs of Theorems 3 and 4 are not trivial. First
we state that a subgroup of G with smooth index is at most as secure as G. We need the
following lemma on the computation of roots in cyclic groups.

Lemma 2 Let G be a cyclic group with generator g, and let p be a prime divisor of |G|. One
of the p-th roots of a p-th power in G can be computed in time O((log|G|)? + plog|G]).

Proof: The square root algorithm of Massey [22] can be generalized as follows. Let |G| = p’s
(where 7 > 1 and (p,s) = 1), and let h be a p-th power in G. By the method of Pohlig and
Hellman [30] we can compute the remainder k of the discrete logarithm of & to the base g with
respect to p?. Note that k is a multiple of p because h is a p-th power. Let d = —s~! (mod p).

The element
( s-E-d)_l sd+1
g hor

is a p-th root of h. This algorithm requires O((log |G|)? + plog |G|) operations in G. O

Theorem 3 Let G be a cyclic group with generator g, and let B be a smoothness bound,
polynomial in log |G|. For every B-smooth divisor v of |G| there exists a DH-oracle algorithm
for the group (¢") which makes one call to the DH-oracle for (g) and uses a polynomial number
of group operations per call.

Proof: Letr =[]}, pzf", and let p{* be the maximal powers dividing |G| for i = 1,...,s. The
. 2f 2fs . f fs
oracle for G' answers the input (g™, g"°) by g’"zab =gP 'ps7ab We obtain g = gpll"'ps ab fyy



computing p;-th roots and deciding immediately which of the p; different roots is the correct

one. For fixed ¢ and for some k = 2f; —1,2f; —2,..., f;, assume that we have already computed
fi_ 2f;
gp{I"'piill'p§+l'pi+21+l'"pzfsab = gcpf-‘rlab
)

where ¢ = p{l e p{i‘f . pﬁ’f ... p2fs is explicitly known. According to the above lemma we can

compute the p;-th roots

cp’-"ab—f—j-@ .
g Pi,jg=0,...,p;—1.
Because a and b can be obtained modulo pfi_f * directly from ¢"® and ¢"® by the method of Pohlig
and Hellman [30] and c is explicitly known, and because k > f;, we can compute cpfab modulo
pi. We have j - |G|/pi = 0 (mod p;*) only for j = 0, and the correct root can be determined
by computing the discrete logarithms of the candidates modulo p5*, using the Pohlig-Hellman

method. Finally, we obtain g"®. The running time is polynomial in log |G| if r is B-smooth. O

Conversely, in many cases a DH-oracle for a subgroup of G or a set of such oracles can be
transformed into a DH-oracle for the entire group, and the following theorem gives a criterion
for when this is the case. The proof is given in the next section as a first application of our
concept of computing with implicit representations.

Theorem 4 Let G be a cyclic group with generator g and order |G| = [[i_; pi’, and let B be
a smoothness bound which is polynomial in log |G|. If for certain s; there exist DH-oracles for
the subgroups G; := (¢%) (j = 1,...,t), and if for all p; > B there exists j such that p; does
not divide s;, then there exists a polynomial-time DH-oracle for G with respect to g which calls
each subgroup oracle at most log |G|/ log B times.

The following result is an immediate consequence of the above theorems.

Corollary 5 Consider a group G = (g) and a subgroup H = (g*¥) of G with smooth indez k.
The DH problem for H is polynomial-time equivalent to the DH problem for G.

4 A general technique for obtaining equivalence results

Let G be a cyclic group generated by ¢ for which the prime factorization of the order |G| is
known, and let a = ¢g® be a given group element for which the discrete logarithm s should be
computed using a DH-oracle for G. This can be achieved by computing s modulo each of the
prime factors of |G| (or modulo the prime powers if |G| contains multiple prime factors) and
combining these values by Chinese remaindering. Only large prime factors are relevant because
the Pohlig-Hellman algorithm allows to compute s modulo powers of small prime factors of |G|.

In the sequel we consider the problem of computing s modulo p for a large prime factor p of
|G| (the atypical case of |G| having multiple large prime factors will be considered later). Let x
be the element of GF(p) such that s = z (mod p). The structure of the finite field GF(p) will
be crucial in the arguments below.

4.1 Computations on implicit representations using a DH-oracle

Every element y of the field GF(p) corresponds to an equivalence class of elements of G (con-
sisting of those whose discrete logarithm is congruent to y modulo p). Any member a of the



equivalence class is called an implicit representation of y and, conversely, y is called implicitly
represented by a. We write
Y~ Q.

The following operations on elements of GF(p) can be performed on their implicit represen-
tations, where the result is also obtained only in an implicit representation. Let y and z be
elements of GF(p), with

y~a, z~b.

Because
y = z if and only if alGl/p — plGl/p ,

equality of two implicitly represented elements of GF(p) can be tested by O(log|G|) group
operations. Furthermore we have

y+z ~ a-b
yz ~ DH(a,b)
—y ~ a '=qdC"1,
and these implicit operations in GF(p) require a single group operation in G, a call to the
DH-oracle and O(log |G|) group operations, respectively.

In order to simplify the notation, we also introduce the notion of a power-DH-oracle (PDH,)
that computes an implicit representation of the e-th power of an implicitly represented element.
A possible implementation of a PDH,-oracle is to use a (fixed) algorithm for computing powers
in a group (e.g., ‘square and multiply’) for obtaining an implicit representation of 3¢, denoted
by PDH,(a), by O(loge) calls to a normal DH-oracle (remember that y ~» a). In particular we
can compute inverses of implicitly represented elements because

y~' ~ PDH, s(a) .

We call addition, subtraction, multiplication, division and equality testing in GF(p) alge-
braic operations. Any computation in GF(p) can be performed on implicit representations
whenever it makes use only of algebraic operations. Examples are the evaluation of a rational
function, testing quadratic residuosity of y by comparing

(PDH(P*I)/2(G))|G|/” and g|G\/p,

or the computation of square roots using the algorithm of Peralta [29] or a faster method due
to Massey [22]. We will crucially rely on the fact that algorithms based on exhaustive search
(for example to solve the index search problem, in particular the discrete logarithm problem)
can be executed on implicitly represented arguments.

We now prove Theorem 4 as an application of computations with implicit representations.
Let g* and ¢g¥ be given. We compute g*¥ by using the available oracles for subgroups. Let
m; := pi', M; := |G|/m; and N; := Mi_1 (mod m;). For prime factors p; < B, u and v, and
hence also uv, can be computed in polynomial time modulo m; by the Pohlig-Hellman method
[30]. For a prime factor p; > B let j be such that p; does not divide s;. We apply the oracle
for G to (¢%)* = (¢g*)% and (g% )" to obtain (g% )“?, where u, v and u - v are modulo |G|/s;.
Because s; divides M;, we can compute

M;

U = M) = (ge9) 5

8



where u - v is modulo m;. Finally, ¢*¥ is computable by Chinese remaindering with implicitly

represented arguments by applying only group operations in G:

2

4.2 Auxiliary groups

When given a DH-oracle for GG, the computation of x is shown to work efficiently if an auxiliary
group H over GF(p) with certain properties is given. (Remember that s = z (mod p), where
p is a large prime factor of |G|, and that s is the discrete logarithm we want to compute.)
The basic idea is to embed the unknown x into an implicitly represented element of H and to
compute the discrete logarithm of this element explicitly. We now define some of the required
properties of the auxiliary group H.

Definition 3 A finite (additively written) group H is said to be defined algebraically over
GF(p) if, for some m, the elements of H can be represented as m-tuples of elements of GF(p)
and if the group operation in this representation can be carried out by a polynomial number of
algebraic operations in GF(p). We say that H has the algebraic embedding property if, when
given x € GF(p), an element ¢ € H can be constructed by a polynomial number of algebraic
operations in GF'(p) such that z can be computed efficiently when given c.

In what follows, we neglect the complexity of the computation of x from c. In the auxiliary
groups used in the sequel, = is embedded simply as one of the coordinates of the m-tuple,
possibly shifted by a known offset.

It will be shown that an abelian group H with bounded rank, defined algebraically over
GF(p), with the algebraic embedding property and smooth order can be used as auxiliary
group to reduce the computation of discrete logarithms modulo p in G to breaking the DH
protocol for G. Examples of such auxiliary groups are elliptic curves or subgroups of finite
extension fields, and will be discussed in Section 6.

We assume that an auxiliary group H is given with these properties and B-smooth order.
We treat the cases of cyclic and general auxiliary groups separately.

4.3 Cyclic auxiliary groups

Let the auxiliary group H be cyclic with generator h. We extend the definition of implicit
representations from elements of GF(p) to m-tuples over GF(p) in a natural way. We say that
(a1,...,am) is an implicit representation of (y1,...,¥ym) if and only if y; ~ a; for 1 <i < m.
Using the algebraic embedding property of H, the implicit representation of a group element
¢ € H can be computed by application of a DH-oracle for G such that x can efliciently be
computed from the ezplicit coordinates of c.

We now address the problem of finding ¢ explicitly when given its implicit representation.
This is achieved by computing the discrete logarithm k of ¢ in H to the base h, which is possible
efficiently because |H| is assumed to be B-smooth and H is defined algebraically over GF(p).
The discrete logarithm algorithm of Section 2 uses only group operations and equality testing of
group elements. The (explicit) discrete logarithm k of the implicitly represented group element
c of h can hence be computed by



O(m?(log p)?) operations in H with implicitly represented elements,

(0] (m2 logB log plog |G|) operations in G, and

@) (mz(log p)? + mlog 5 log p) explicit operations in H.

Note that p™ is an upper bound for |H| because H is defined algebraically over GF(p). Using
the time-memory tradeoff, the complexities are

@] (m2(10g )%+ mlg log p) operations in H with implicitly represented elements,

& (m2 1?/5; log plog |G|) operations in G,

@) (m2(log p)? + mlg log p) explicit operations in H, and

O(m~/Blogp) steps for sorting the memory.

Given k, first compute ¢ = k - h, and then z.

4.4 General auxiliary groups

The method also works if H is not cyclic. We assume that H is abelian of rank r, i.e., H is
isomorphic to Zp, X -+ X Zy, for some ni,...,n, satisfying [;_; n; = |H| and such that n;
divides n; for j = 1,...,r — 1 (this representation is unique, see [18]). Let hi,...,h, be a set
of generators of H such that H is the internal product of the cyclic subgroups (h1),..., (hr):

H = (h1) x -+ x (hy).

If no generator set for H is known it can be computed by a method described in Appendix B.
Let ¢ be the element of H into which x is embedded, and of which an implicit representation
is known. The element ¢ € H has a unique representation

T
C:ijhja ngj<nj.
Jj=1

We compute the coefficients k;. The following is repeated for every prime ¢ dividing |H|. We
describe the first and second iteration step of an algorithm that computes k; modulo the highest
power of ¢ dividing n; for all j = 1,...,r. The algorithm uses v; (j = 1,...,r) as local variables
(initialized by v; < 0).

For the first step, let a; be the number of generators h; whose order contains the same
number of factors ¢ as ni. In other words, (n1/q)h; is different from the unity e of H exactly
for j =1,...,a1. Because H is algebraically defined over GF'(p), an implicit representation of

n

—c

q
can be computed from the implicit representation of ¢ by O(log|H|) operations in H with
implicitly represented elements. For all (¢1,...,t4,) € {0,...,q—1}*!, we compute (explicitly)

n n
_1t1h1 + -+ _ltalhoqa
q q

10



transform the coordinates into implicit representations and compare the points with (n;/q)c.
Equality indicates that the t; are congruent to the coefficients k; modulo q. We set v; +— t;
for 1 <j<aj.

For the second step, let ap be the number of points h; whose order contains at most one
factor ¢ less than ny, i.e., (nl/qZ)hj #efor j =1,...,as. Implicit representations of the points

n nq 1 ni
q_Ql(Ulq + tl)hl +eet q_2(va1q + tal)h’al + q_gtaﬁ—lhaﬁ—l +eet q_gta2h042

are computed for all (¢1,...,t,) € {0,...,¢—1}* until equality with the implicitly represented

point
n

—c
PE
holds. Then assign
U.7<_vjq+t3 (j:]-a"'aal)v
v <—t]' (j:a1+1,...,a2).

After repetition of this process up to the maximal g-power ¢9 dividing ni, the resulting v;
satisfy

T

ny ni1

—c= Z —gvjhj ,

—1 ¢

Jj=1

i.e., k; is congruent to v; modulo the highest power of ¢ dividing n; = ord hj for j =1,...,7.
The algorithm can be sped up by a time-memory tradeoff if memory space of size M = 5"

is available. We describe the tradeoff in detail only for the first iteration step. Here the implicit

representations of

n N
et Z —lu]'hj (0<u;<8)
q =1 4

are computed and sorted (‘baby-step’). Then it is checked by exhaustive search which of the

elements
aq

ni q
> tSh (0<t <)
=1 1
is contained in the list in an implicit representation (‘giant-step’).

After running the algorithm for all primes ¢ dividing |H|, one can compute the coefficients
k; modulo ord h; by Chinese remaindering, and = can be obtained by computing ¢ explicitly.

The complexity of the computation of x is

O(m?(log p)?) operations in H with implicitly represented elements,

O (m?2-E log plog |G| ) operations in G, and
rlog B

O (mQT(log p)?+m logp%) explicit operations in H.

The complexities when the time-memory tradeoff with S =~ /g is applied are

0 (m2(log p)? + mlog p-YB- operations in H with implicitly represented elements,
&P &P rlog B

(0] (mQQ log plog |G|> operations in G,
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(0] (mQT(log p)?2+m logpl‘o/g;) explicit operations in H, and

(0] (mT‘/ﬁ log p) steps for sorting the memory.

(For r = 1 these are the complexities for the case of a cyclic auxiliary group.) Because H is
defined algebraically over GF(p), the running time is polynomial if B is polynomial in log |G|,
and if r = O(1).

4.5 Summary and generalization to multiple prime factors in |G|

In the previous section, we have assumed that all the large prime factors of |G| are single.
Additional conditions are required in the non-typical case of multiple large prime factors of |G|.
If p® divides |G| (with e > 1), the discrete logarithm s must be computed explicitly modulo p®
instead of modulo p. This can be done, as described below, if either an additional DH-oracle
for a certain subgroup of G is available, or if p-th roots can efficiently be computed in G.

We write = 3¢ ' a;p’ (mod p°) with x; € GF(p) for i = 0,...,e — 1. Let k < e—1,
assume that xg, ..., x,_1 are already computed and consider the problem of computing x;. Let
) s bk y p p p g Tk
a' = a-g T~ ~%%-17""" Then

k\ Tk +p-l
o =(¢")

for some [. From a’, z; can be obtained in either of two ways: If a DH-oracle for one of the
e—1 . . . .
subgroups (g??* ), where d - p¢~! divides |G/|/p, is available, then x; can be computed from

(a,)d.pe—l—k _ (gd.pe—1)$k+p-l

by use of this oracle as described in the previous section (see also [4]). Alternatively, assume
that p-th roots can be computed in G. If a” := g““‘p'l' (for some !') is computed first, x; can
be obtained as usual. In order to get a”, it suffices to compute the p*-th root (k times the p-th
root) of a’. Any pF-th root of a’ is of the required form because p divides |G|/p*.

It is unknown whether a DH-oracle can be transformed into a DH-oracle for a general
subgroup of GG, and whether p-th roots in G can be computed efficiently for a large prime factor
p of |G|. We summarize our results.

Theorem 6 Let G be a cyclic group with generator g, and let B be a smoothness bound,
polynomial in log |G|. Assume that |G| and its factorization |G| = [I;_, p5* are known, that
every prime factor p of |G| greater than B is single and that for every such p, a finite abelian
group Hy, with rank r = O(1), algebraically defined over GF (p) and with the algebraic embedding
property, is given whose order |H,| is B-smooth and known or computable in time polynomial
in logp. Then breaking the Diffie-Hellman protocol for G with respect to g is polynomial-time
equivalent to computing discrete logarithms in G to the base g.

The complezity of the computation of a discrete logarithm modulo p in G is O(m?(logp)?)
operations in Hy, with implicitly represented elements, O(m2B" log plog |G|/ log B) group oper-
ations in G and O(m?(logp)? + mlogp - B"/log B) explicit operations in H,.

In case of a multiple prime factor p greater than B, that is if p© divides |G| for some e > 1,
the desired equivalence holds with respect to a DH-oracle for one of the subgroups (gd'pe_l)
(instead of the DH-oracle for G), where d-p°~' divides |G|/p, or if a polynomial-time algorithm
for computing p-th roots in G is available. O

The complexities stated in the theorem can be reduced by a time-memory tradeoff.
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5 Applicable auxiliary groups over GF(p)

In this section we show that elliptic curves over GF(p) and over an extension field GF(p™) and
certain subgroups of extension fields are suitable auxiliary groups Hp. In [38] the applicability
of Jacobians of hyperelliptic curves (see [17] and [8]) is demonstrated (additional problems arise
here because the representation of elements of Jacobians, which are equivalence classes, is not
unique).

We will give a list of expressions A(p) in p such that an auxiliary group H), with order A(p)
over F;, can efficiently be constructed. Theorem 6 implies that if for each prime factor p of
|G| one of the expressions in this list is smooth, then breaking the DH protocol and computing
discrete logarithms are equivalent for G (if |G| has no multiple large prime factors). Den Boer
has shown in [9] that the list contains A(p) = p — 1 with H, = F;.

5.1 Elliptic curves
5.1.1 Applicability
Let F be a field. The elliptic curve E4 p(F) (with parameters A and B in F) is the set

{(z,y) e F2: y? = 23 + Az + B} U {0}

(the additional point is called ‘point at infinity’). The projective representation of (z,y) is
(x:y:1)=(rxz:ry:r) (for r #0) and O = (0 : 1 : 0). Together with a certain addition of
points, F4 g(F) forms an abelian group of rank at most 2. We refer to [28] for an introduction
to elliptic curves.

We show that an elliptic curve E over the field F, is defined algebraically over F, and has
the algebraic embedding property. Therefore it can be applied as the group H,, in Theorem 6
if it has smooth order. Note that the order of an elliptic curve can be computed in polynomial
time [36], [5].

E is defined over F,, (with m = 2, that is the points of E can be represented as pairs
of Fp-elements), and the group operation can be executed by a constant number of additions,
multiplications, divisions and equality tests in GF(p). From the implicit representations (a1, ag)
and (b1, b2) of two points P and @ of E, an implicit representation of the sum P + @ is thus
computable by O(log |G|) group operations (for the equality test) and O(logp) calls to the DH-
oracle (for the inversions). The group operation in projective coordinates requires no divisions,
but the conversion from projective to affine coordinates of implicitly represented points has a
complexity of O(logp) oracle calls and is required if equality of elements of E has to be tested.

Elliptic curves over F), have the algebraic embedding property. We show directly that, given
a with £ ~» a, one can compute an implicit representation b of y such that (z + d,y) € F for
some known d. First compute ¢ with

22+ Az + B~

by O(log p) group operations in G and two calls to the oracle. One can test quadratic residuosity
of #3 + Az + B € GF(p) by O(log |G|) operations in G and O(logp) oracle calls. If it is not a
quadratic residue, x can be replaced by z +d (d =1,2,...).

Using Massey’s algorithm [22] on implicit representations, the computation of an implicit
representation of a square root of x3 + Ax + B requires O((logp)?) calls to the oracle and
O(log plog |G|) group operations for the equality tests. (The generation of an ezplicit random
point on the elliptic curve takes O((log p)?) multiplications in F.)

13



One can show in a completely analogous manner that an elliptic curve over an extension field
F,» of Fj, can also be used in Theorem 6. It will shown later that computing with implicitly
represented elements of Fy» is possible.

5.1.2 Existence

It is well-known that
p—2yp+1<|Eap(Fp)| <p+2yp+1,

and that for each d € [p —2,/p + 1,p +2,/p + 1], there exists an elliptic curve over GF(p) with
order d. Very little is known about the existence of smooth numbers in the interval of interest
for a given prime p. However, it is known [7] that for every fixed u,

d)(n’nl/u)/n _ u7(1+0(u))u (2)

where 1 (n, y) denotes the number of integers < n with no prime divisor > y. This fact suggests
that for some ¢ > 1 every integer n has the property P, defined below.

Definition 4 An integer n has property P. if there exists an integer d in the interval
[n—2vn+1,n+2y/n+1]
with no prime divisor greater than n®*, where u is defined by u%* = n.

Conjecture There exists a constant ¢ > 1 such that all n have property P..

An even stronger conjecture is that the above conjecture holds for any ¢ > 1 and sufficiently
large n. For example, let n be a 100-digit number and note that 101%0 ~ 3356, Hence, one
can expect to find an integer in the interval [n — 10%°, n + 10%°] with no prime divisor greater
than 10¢00/33 for some ¢. For ¢ = 1.1 and ¢ = 2 this bound is approximately 2000 and 106,
respectively.

The above conjecture implies the existence of an appropriate group H), for each prime num-
ber p. Therefore for every cyclic group G there exists a small piece of information, which
depends on the order of GG, that makes breaking DH and computing discrete logarithms equiva-
lent in G. This information is a string S consisting of the prime factors p; of |G| and appropriate
elliptic curve parameters for all p;.

Corollary 7 If the stated number-theoretic conjecture is true, then for every group G = (g),
there exists a side information string S of length at most 3log |G| such that when given S,
breaking the Diffie-Hellman protocol for G and base g is polynomial-time equivalent to comput-
ing discrete logarithms in G to the base g. (In the case of a multiple large prime factor p of
|G|, the equivalence holds with respect to breaking the DH protocol in one of a certain subset of
subgroups of G, or if an algorithm for computing p-th roots in G is given.) O

It need not be assumed that |G| and its factorization are known because this information is
contained in S.

Remark: The group order of Jacobians of hyperelliptic curves of genus 2 varies in a larger
interval of size [n—©(n3/%), n4+0(n3/4)], but the more detailed results about the distribution of
the orders which are proved in [1] are not sufficient to prove the existence of the side information
string without conjecture. The reason is that in [1] the existence of Jacobians with prime order
is proved, whereas in the above corollary Jacobians with smooth order are required.

14



5.1.3 Construction of elliptic curves

For certain expressions A(p), elliptic curves over F,, with order A(p) can explicitly be con-
structed. The curve over F, defined by the equation

y? =12 — Dz (3)
has order p+ 1 if p =3 (mod 4), and the curve
v’ =23+ D (4)

has also order p+ 1 if p = 2 (mod 3). Thus if p Z 1 (mod 12), elliptic curves of order p+ 1 are
explicitly constructable. We will show later that the subgroup of order p 4+ 1 of F;2 is a useful
auxiliary group for all p. The following statements about the orders of curves of the form (3)
or (4) in the case they are not p 4 1 are proved in [16].

If p =1 (mod 4), then p can uniquely be represented as a product in the ring Z[i] of Gaussian
integers as follows:

p=77 = (a+bi)(a—bi)=a®>+b>, 7w=1(mod?2+2i).
The curves y? = > — Dz have the orders
p+1+2a, p+1+2b, (5)

and the four orders occur equally often.
Let w:= (—14+/—3)/2. If p =1 (mod 3), then p can uniquely be represented as a product
in the ring Z[w] as follows:

p=n7=(a+bw)(a—bw)=a®—ab+ b, 7=2 (mod3).
The curves y? = 23 + D have the orders
p+1+2a, p+1+aF2b, p+1+(a+bd), (6)

and the six orders occur equally often.
If p=1 (mod 4) or p =1 (mod 3), curves with the orders listed in (5) and (6) are explicitly
constructable by varying D.

5.2 Subgroups of the multiplicative group of an extension field over GF(p)
5.2.1 Representation

We refer to [21] or [27] for an introduction to finite fields. The group Fj. and hence every
subgroup is cyclic. The field Fy» is an n-dimensional vector space over F, and its elements can
be represented as n-tuples of F,-elements with respect to some basis. Let a be an element of
Fye. Let o := P fori=0,...,n—1. {ag,...,an_1} is called a normal basis if it is linearly
independent in which case « is called a normal element. Let @ := (ag,...,ap—1). The matrix
T in (Fp)™*" satisfying agd = T'd is called the multiplication table of the basis.

Normal bases can be found efficiently by trial and error because, if n < p*, the probability
that a randomly chosen a € Fyn is normal is at least 1/34 (see [27]), and there is a test for
normality: « is normal if and only if

ged(z™ —1,0P" g 4. 4 aPz 4 ) = 1.

The multiplication table can be determined by solving a system of linear equations over F,.
Let H be a subgroup of .. The group operation in H is a multiplication in F, and requires
O(n?) multiplications in F.
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5.2.2 The algebraic embedding property

Membership in H can be characterized by an equation over Fy». Let 8 be an element of F .
Because Fn is cyclic, 8 belongs to the subgroup H if and only if BH = 1. The element 3 can
be represented by its coordinates (yo,y1,-..,Yn—1) (with y; € Fp) in the normal basis, i.e.,

n—1
B=> yio. (7)
i=0

In this representation the characteristic equation of H is equivalent to a system of n polynomial
equations in the y;. The polynomials depend on the multiplication table.

For some orders |H|, the polynomials can easily be computed and have small degree, in
particular when |H| is a sum of p-powers, multiplied with only small factors. The p*-th power
of the sum in (7) is equal to the sum of the p“-th powers of the summands because Fp» has
characteristic p. In addition we have y¥ = y; and of = a;;1 (where the index is reduced modulo
n). Hence BP" is represented by the coordinates (Yn w, Yn wtis---sYnsY0s--->Ynu_1)-

We prove the algebraic embedding property by showing directly that, given an implicit
representation of x, an implicit representation of a point 3 of H can be computed such that
x (or z + d) is one of the coordinates of 3. To do this, we fix some of the other coordinates
(for example by assigning the value 0) and solve the implicitly represented equations to get
implicitly represented values for the remaining coordinates such that [ belongs to H. The
number of unknowns over F), in this system depends on the cardinality of H. If we solve for k
different F,-coordinates simultaneously, then the expected number of trials until an element of
H is found is p" % /|H]|.

5.2.3 The case of one equation and one unknown

It is much easier to solve a univariate polynomial than to solve a system of multivariate poly-
nomials. We give a condition under which it suffices to solve for only one unknown even when
|H|/p™ =~ 1/p* for k > 1. If k divides n, then Fyn is an extension field of Fye. Let I := n/k,
and let {ag,-..,0a;_;} be a normal basis of Fyn over F, . An element (3 of Fyn, represented
by (89, ---,8 1) with 3; € Fy, belongs to H if and only if (Zﬁ;(l) o/)H| = 1. As mentioned
above, the polynomials are easily computable and are of small degree if |H| is a sum of powers
of p*, multiplied with small factors. When computing in F, instead of F), one can solve for k
unknowns of Fx at once, and the cardinality of H must not be much smaller than pnk,

For certain |H| only one equation over F, arises. This is the case when BHI ¢ Fpr C Fyn
for all . Because ap + a1 + -+ + oy_1 (the trace of «y, denoted by Tr(ap)) is an element of
Fpk, all the coeflicients are then automatically equal, and it suffices to solve one instead of [
equations. The condition is

k—1
(ﬁ\Hl)” —1 forall 3,
or, equivalently, that p” — 1 divides (p* — 1) - |[H|, which holds if

(The case |H| = p™ — 1 is not interesting, because smoothness of p” — 1 implies smoothness of
p — 1.) The characteristic equation of the subgroup H with order (8) is

-1 -1 -1
(Z 520‘§+l—1> : (Z 5§a§+l—2> (Z ﬁéOZ;) =1
i=0 i=0 i=0
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(where the indices are reduced modulo ), and the equation from the first coefficient is an -
degree polynomial equation in 3, ..., 8;_; over F,x. We assign the (implicitly represented) z to
one of the k coordinates of 3), and 0 to 31,...,3_, (for example) to get an [-degree polynomial
for §;_, with implicitly represented coefficients. The order of H is such that this polynomial
has one expected solution. (If no solution is found one can vary the coefficients 31,...,3_,.)

The roots of a polynomial f(7) over a finite field F,x can be computed by Berlekamp’s
algorithm (see [27], [21]). The key idea is to factor the polynomial f(v) into

k

gcd(f(7), (y+8)7 —1) and ged(f(7), (v +6

for some ¢ € Fp«. This is repeated with different § and leads to the linear factors of f(v).

The computation of polynomial gcd’s, and thus the entire root-finding algorithm, require
only algebraic operations in F,x, and the latter can be reduced to algebraic operations (and
equality tests) in F, (with respect to a normal basis representation). The implicit represen-
tations of the roots of an implicitly represented polynomial are thus efficiently computable.
The complexity of computing one root is O(nllogllogp - (k? + log|G|)) group operations and
O(n?klogl) calls to the DH-oracle.

We conclude that any H whose order is given by (8), where n is polynomial in log p, fulfills
the requirements of Theorem 6 if its order is smooth.

)p’“_

T4 1)

5.2.4 The case of a system of equations

If |H| is not of the form (8), but a sum of p-powers (with small coefficients), a system of multi-
variate polynomial equations with several unknowns must be solved. Let F'(x) be a polynomial
of positive degree which divides £ — 1. Then there exists a uniquely determined subgroup H
of Fjn with order |H| = F(p).

We need some definitions from algebra. The splitting field (over any field F) of z™ — 1
is called n-th cyclotomic field F (over F). Let K™ be the set of roots of z" — 1 in K®);
the generators of (the group) K are called primitive n-th roots of unity (of which there are
exactly ¢(n)). Let { be a primitive n-th root of unity. ®n(z) := [](;n)=1 (x — ¢°) is called the
n-th cyclotomic polynomial and has degree p(n).

Because cyclotomic polynomials are irreducible and z™ — 1 = Hd‘n ®4(x), at least one cyclo-
tomic polynomial ® divides F', and smoothness of F'(p) implies smoothness of ®(p). Therefore,
we can assume without loss of generality that F' is a cyclotomic polynomial and, again without
loss of generality, that

p(n)
F(z) =®p(x) = ) ¢;al.
=0
Let H be the (unique) subgroup of Fj. with order |[H| = ®,(p). For g = Y iy with

y; € Fp, we have

n—1 )Zfﬁ;) cjpj
=1

fEH <— (Z Y0
=0

- 1 (z) N (Z)

¢j>0 \i=0 ¢;<0 \i=0
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This leads to a system of n polynomials in the y; over F), of degree at most

max{ IS |cj|} < o(n) - max{le| 1§ = 0,... . o(n)} .

¢;>0 ¢j<0

Because |H| ~ p?™) we have to solve the (implicitly represented) polynomial equations for
n — ¢(n) unknowns, and the number of equations can be reduced to n — p(n) as well (the
solutions then have to be checked for the other equations).

Grobner bases are a tool for solving systems of polynomial equations. They lead to equiva-
lent systems of equations which have triangular form, such that a method for solving univariate
equations (as Berlekamp’s algorithm) suffices to solve the whole system. For an introduction to
Grobner bases, see [13]. A detailed description of the basic facts about Grobner basis compu-
tations and of our application is given in Appendix C. The idea is to compute the polynomials
(with implicitly represented coefficients) of a Grobner basis of the polynomial ideal generated
by the polynomials of the equations. The algorithm for the Grobner basis computation, due
to Buchberger, requires only algebraic polynomial arithmetic and can therefore be executed on
implicitly represented arguments. The second step is to solve the separated system of implicitly
represented polynomials by Berlekamp’s method for univariate polynomials. For the complexity
of the computations, see Appendix C. Polynomial time complexity is achieved if n = O(1).

We conclude that the subgroup H of F. of order ®,(p), n = O(1), is applicable in Theo-
rem 6 if it has smooth order. For example, smoothness of

Ps(p) = p*—p+1,
Dg(p) 104—I—17 or
Bo(p) = pP+p’+1

implies that an appropriate group H), over GF'(p) is constructable. As mentioned, this is now
proved for F'(p) for any non-trivial polynomial F'(z) dividing ™ —1 if n = O(1). Other examples
are the following alternating sums when [ = O(1):

Pl pg1

5.3 Summary
Theorem 6 now implies the following.

Corollary 8 Let G be a cyclic group with generator g, and let B be a smoothness bound,
polynomial in log|G|. Then there exists a list of expressions A(p) in p with the following
property: if for every prime factor p of |G| greater than B, at least one of the expressions A(p)
is B-smooth, then breaking the Diffie-Hellman protocol in G with respect to g is polynomial-time
equivalent to computing discrete logarithms in G to the base g. (In the case of a multiple large
prime factor p of |G|, the equivalence holds with respect to breaking the DH protocol in one of
a certain subset of subgroups of G, or if an algorithm for computing p-th roots in G is given.)
The list contains the following expressions:

p_lap—l_]-a

p+1+2a, p+1+2b,
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if p=1 (mod 4), where p = a® +b% and a + bi = 1 (mod 2 + 2i),
p+1+2a, p+1Fat+2b p+1+(a+bd),
if p=1 (mod 3), where p=a® —ab+b? and a + bw = 2 (mod 3),

(")t -1
pF—1

where k,1 = O((logp)¢) and ¢ = O(1), and

="+ 4,

@, (p),

where n = O(1), and @, is the n-th cyclotomic polynomial. O

6 Construction of groups for which the Diffie-Hellman problem
is provably equivalent to the discrete logarithm problem

It appears desirable to use a group G in the DH protocol for which the equivalence to computing
discrete logarithms provably holds. However, such reasoning should be used with care because
it is conceivable that knowledge of the auxiliary groups makes computing discrete logarithms
easier. There are three possible scenarios for such an equivalence:

1. When given G it is easy (also for the opponent) to find suitable auxiliary groups.

2. The designer of the group G knows suitable auxiliary groups but they are difficult to find
for an opponent.

3. The designer of the group G knows that suitable auxiliary groups exist, without knowing
them.

In the first case the equivalence holds, whereas in the other two cases breaking the DH protocol
is at least as difficult as computing discrete logarithms when the auxiliary groups are known.
Note that the second case can always be transformed into the first by publishing the suitable
auxiliary groups. Of course, because this information can only help an opponent in breaking
the Diffie-Hellman protocol, there is no reason for the designer of the group to make it public.

Constructing a group G of the third type is trivial: choose a (secret) arbitrary large smooth
number m and search for a prime p in the interval [m —2/m + 1,m + 2y/m + 1]. A group G
whose order contains only such large prime factors satisfies the third property. Note that it is
easy to construct, for a given n, a DH-group G whose order is a multiple of n. One possibility
is to find a multiple [ of n such that [ 4+ 1 is prime and to use G = GF(l + 1)*. An alternative,
which may be more secure, is to use the construction of Lay and Zimmer [19] for finding an
elliptic curve of order n.

The second case is somewhat more involved. Such a group G can be obtained by choosing a
large smooth number m and using the method of Lay and Zimmer [19] for constructing a prime
p together with an elliptic curve of order m.

We now consider efficient constructions for the first case. We generalize a method, presented
in [37] by Vanstone and Zuccherato, for constructing a large prime p such that either a quarter
of the curves y? = 2® — Dz or every sixth curve of the form 32 = 23 + D have smooth order.
First, we construct primes p = a? + (k4 1)? (for a fixed k with [ digits) such that a® + k2, which
is then one of the possible orders of the curves y? = 23 — Dz over F,, (see (5)), is smooth.
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I'-digit numbers x1, T2, y1, and yy are chosen at random. Define
u+vi = (1 + Y1) (22 + y21),
that is
U= T1T2 — Y1Y2, U = T1Y2 + TaYy1-

Typically, u and v have approximately 2/’ digits. If gcd(u, v) divides k (otherwise choose again),
one can compute numbers ¢ and d (of at most 2!’ 4+ digits) such that

cv + du = k.
Define

a = cu — dv,

and restart the process if a is even. Then
a+ki= (c+di)(u+vi) = (c+ di)(z1 + y17)(x2 + yoi)

and
a’ + k= ( + &) (% + y}) (25 + v3).

The process is repeated until a? + k? is s-digit-smooth, which happens with probability approx-

imately
! a2

a4 _a
=5 ) (B)
S S S

(according to (2)), and smoothness can be tested with the elliptic curve factoring algorithm
[20].

Because a and k are odd, exactly one of the expressions a+ (k=+1)i is congruent to 1 modulo
24 2i. Let a:= a + (k + 1)i, respectively. Repeat the computations until

p=aa=d+ (k1)

is prime. According to (5), a quarter of the curves y? = x3 — Dz over F, have smooth order
a? + k2. Hence p is an (8!’ + 2I)-digit prime such that an elliptic curve with s-digit-smooth
order is constructable over F,. The expected number of trials is

al 2T ¥
o (X12) (1) ). o
S S

In a similar way, primes can be constructed such that curves of type y? = 22 + D have smooth
order. More precisely, we generate primes

p=d’—a(k+1)+ (k£1)?
(where k is a fixed number of [ digits and a + (k + 1)w = 2 (mod 3)) such that

a® — ak + k2,
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which is one of the orders of the curves y? = 2% + D over F), (see (6)), is s-digit-smooth. Again,
we choose x1, 2, y1, and yo (of I’ digits) and compute u, v, ', d', ¢, d and a with

utvw = (14 y1w)(r2 + Yow)
do+du = k

d = d,

c = cd+d

a = cu-+dv.
Then

a+kw=(c+dw)(z1 + y1w)(z2 + Yow)

and

a® —ak + k* = (& — cd + d*) (23 — 11 + ¥2) (23 — 2210 + y3).
(Note that N(x + yw) = 22 — zy + y? is the norm of Z[w].) This is repeated until a? — ak + k?
is s-digit-smooth and

p=ad>—ak+1)+(k+1)? (a4 (k+1)w=2 (mod 3))

is prime. The expected number of repetitions is again given by (9).
In case of a small k, an L-digit prime p such that an s-digit-smooth curve is constructable

over F;, can be found by
L
L s
0 ( ) I
( V8- )

()4

trials when varying p among L-digit numbers until p is prime and one of the considered curves
is s-digit-smooth. For example, a 100-digit prime p such that a 10-digit-smooth curve over F,
is constructable can be found by approximately 3 - 108 trials (instead of about 10! trials when
using the straightforward strategy).

trials instead of

7 Concluding remarks

Our results imply that the DH problem is at least as difficult as the DL problem with knowledge
of suitable auxiliary groups. Although it appears unlikely, it is possible that this knowledge
helps computing discrete logarithms.

Throughout this paper, we have assumed to know the group order and its factorization. If
|G| is unknown, it is either computable from the side string S of Corollary 7, or, in case of
efficiently constructable auxiliary groups (when given |G| and its factorization), we can prove
that breaking the DH protocol is at least as difficult as computing discrete logarithms in G when
given |G| and its factorization. It is conceivable that knowledge of |G| could be of some help in
computing discrete logarithms. For example, the algorithm of Pollard [31] requires knowledge
of the group order. For the case of unknown factorization of the group order, note that no
known discrete logarithm algorithm for general (not smooth) groups requires knowledge of the
factors of the group order.
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Let p be a large prime factor of |G|. If an appropriate multiplicative subgroup of an extension
field of F, has smooth order, then p can be found efficiently as a factor of |G| (see [2]). The
parameters of a smooth elliptic curve over F,, do generally not allow to find p efficiently by the
method of [20], because no point can be generated on the curve modulo |G]|.

The equivalence of the DH and DL problems holds in a strict sense for all cyclic groups with
known factored group order (free of multiple large prime factors) if for any prime number p, an
appropriate auxiliary group over F;, can be constructed, for example if the list of Corollary 8 is
extended in such a way that it always contains a smooth number which can be found efficiently.

In Appendix D we describe a method, presented initially in [38] and independently consid-
ered in [4], for obtaining stronger results under the assumption of efficient DH-oracle algorithms
using algebraic operations for certain groups. The idea is to execute the oracle algorithms on
implicitly represented arguments. This allows to iterate the technique by using computation
with multiply implicitly represented elements. It is then no more necessary that for every large
prime factor p of |G| a smooth auxiliary group Hp is known. For example, a cyclic auxiliary
group H, whose order contains a large prime factor ¢ and a smooth auxiliary group H, over
F, are sufficient under the assumption of a polynomial-time DH-oracle algorithm for H,, using
algebraic operations in F,,.
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Appendix A: Proof of Theorem 1

According to Lemma 1, one can construct a translation-invariant e-DH-oracle which uses
O(log |G|) group operations and one call to a time-invariant e-DH-oracle per call. We proceed
as follows: in a first step, independent of the oracle’s input, we determine the error distribution
of the translation-invariant e-DH-oracle. More precisely, we determine all the errors which are
approximately equally likely as the correct answer. In the second step, the distribution of the
output with the oracle’s input is compared with the reference distribution determined in the
first step. In most cases, the correct answer is now uniquely determined. If not, which can
happen in case of a symmetric error distribution, the correct answer can be found when the
group order |G| is known.

Let o := [e/6. An event with probability at least 1 — o will be called almost certain. Let
§ :=¢/10 and ¢’ := §¢/100 = £2/1000. If  is not known, we take an estimate. (The proof does
not depend on the choice of the constants (e.g., 1/10), which is somewhat arbitrary.) In order
to determine the error distribution, one calls the translation-invariant oracle repeatedly with
the input (g%, g°). Let ¢’ be the fraction of correct answers, and let ¢ be the number of trials
that are needed to assure that the true ¢ lies almost certainly in the interval [¢ — &', &' + §'].
It follows from the asymptotic behavior of the density of the standardized normal distribution
that ¢ is of order O(log(1/a)/8"?).

We now detect almost certainly all the errors e (including e = 0) whose probability is in the
interval [¢' — 4, &’ + 6]. (It could be helpful, but is not necessary, to detect the errors which have
greater probability than the correct answer.) Call the oracle ¢ times again, put the (implicitly
represented) errors ¢g¢ into a sorted list and delete all the entries with a frequency not in the
interval

[€' = (5 +6),e + (6 +6)],
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such that those with probability in the interval [¢' — 6,&" 4 §] are detected with probability at
least (1 — a)?/¢. The actual probabilities of all the remaining errors lie in

[ — (6 +28"),&" + (5 + 26")] (10)

with probability at least (1 — o)%/°.

We now describe the second phase. Let g% and ¢¥ be given. The translation-invariant oracle
is called ¢ times with the input (g%, ¢”) and the answers are listed. Those with frequency not
in [¢' — (0 4 38"),& + (6 + 38")] are deleted. With probability at least (1 — a)%¢, all the errors
that have a probability which lies in the interval (10) belong to the list, and all the errors in
the list have their probability in [¢/ — (§ + 44'),&" + (§ 4+ 46")]. The probability that the first
list contains all the (implicitly represented) errors which have their probability in the interval
[¢' — 6, + 6] and that all the errors of the first list also occur in the second list is at least

(1—04)6/521—6?&:1—ﬁ. (11)

If this is fulfilled but the second list contains more elements than the first one, then almost
certainly there is an error with probability in the set

[ — (6 +4d"), =8| U[e" +6,¢ + (§ +45)]. (12)

In this case replace d by ¢ + 50'. Because the critical sets (12) are disjoint for different § of
distance 50’, and because there are at most 2/ errors with probability at least £/2, the second
list can contain more elements than the first only for one out of 10 choices for 4.

If the lists have the same length ¢, they contain the same (implicitly represented) errors
with probability at least 1 — 3, but the entries of the second list are shifted by ¢"?. In order
to determine this shift, we multiply the first list with each of the entries of the second, sort it
and compare it with the second list. In the (typical) case of a unique element of the second
list for which equality holds, this element is g“¥ with probability at least 1 — (. If there exists
more than one such element, this means that the lists have a non-trivial translation symmetry,
or, more precisely, that they are invariant under a multiplication with |G|/ for a divisor ¢
of ¢ and |G|. Let ¢’ be the maximal number with this property. Note that |G| has a factor
d <e<1/(¢" = (64 248")) in this case. There are ¢’ candidates for g“?, namely

guv, guv—l—‘ci,l’ o guv—l—(c’—l)‘ci,l )

We show that if |G| is known, the correct one of them can be determined. If |G| is not known,
but all the factors of |G| are greater than (1 + s)/e, then one can execute the same procedure
again, choosing a smaller §, such that 1/(¢' — (§+24")) < (1+s)/e, which is satisfied if § < se/2.

Let |G| be known, and let p1, ..., p; be the distinct prime factors of ¢/, i.e., ¢ = [T}, pzfi, and
let d := []._; p&* be the product of the maximal powers of the p; dividing |G|. d is 2/e-smooth
because ¢ < ¢ < 2/e, and u and v, and hence also uv, are computable modulo d from g% and
g" by the Pohlig-Hellman discrete logarithm algorithm [30] with O((log |G|)? + log |G|/¢) group
operations. We can also compute the discrete logarithms of all the candidates modulo d.

The discrete logarithm of exactly one of the candidates has the correct remainder with re-
spect to d. For every i, exactly every p{ i_th candidate has the correct remainder with respect
to p¢*. The primes are distinct, thus relatively prime, and every [T¢_, p{-c ‘-th candidate, that is
exactly one of them, has the correct remainder. We have found ¢g“¥ with probability at least
1-5. O
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Appendix B: Finding generator sets of the auxiliary groups

We show how generator sets can be generated in a finite abelian auxiliary group H with B-
smooth order |H| = ., qu i, If H is cyclic, we determine a generator h by trial and error. The
element h is a generator of H if and only if (|H|/q;)h # e for i = 1,...,l, which can be tested
by O((log | H|)?) operations in H. The expected number of trials is |H|/¢(|H|) = O(loglog |H|)
(see [15]), and the expected complexity is therefore O((log|H|)?loglog |H|) group operations
in H to find a generator. Additionally, an expected number of O(loglog |H|) random points of
H have to be generated.

For the general case, suppose H = Zp, X --- x Zy,_ (such that n;y; divides n; for i =
1,...,r — 1), where the numbers r and nq,...,n, are not known a priori. The maximal order
of an element in H is n; = H£:1 ¢J*. We find such an element by trial and error. The expected
number of trials is n1/¢(n1) = O(loglogni) = O(loglog |H]|).

Let m; denote the canonical projections to the quotient groups. More exactly, m;(u) is the

element of H/(h1,...,h;) containing u. Suppose we have constructed the points h; with order
n; in H/(h1,...,hj—1) for i = 1,...,j — 1. For the construction of h; such that m;_;(h;) has
maximal order in H/(h1,...,hj_1), we choose the same number of points h in H as above at

random and compute ordg s, .. n;_,)Tj—1(h) by comparing

—kﬂ'j,l(h) =1 (n—;h> (fori=1,...,1 and k=g;,¢;—1,...,0)
%

with the unity epy(, .n;_,) of the quotient group. Comparing m;_1(h') and epy(h, h;_,)
is equivalent to deciding if ' € (hy,...,hj—1), which is done by the generalized PH dis-
crete logarithm method described in Section 4. It is efficient because |H| is smooth. If
ord/ihy,...h;_1)Tj—1(h;) does not divide ordgy(p, ... n;_,)Tj—2(hj—1), the process must be restart-
ed. One of the preceding points has not had maximal order. The same holds if j > max{f;}.
The latter is a bound for the rank r of H. The process comes to an end if (h1,...,h,) = H,
that is

H/(h1,...,he) ={e},

and {hi,...,h;} is a generator set of H. An element ¢ of H has a unique representation
c=>"_.ki:h; with k; € {0,...,n; —1}. The expected number of operations in H to determine
j=1"Mg'j J ) y Iy p P

the generator set is
T

VB og |H|>3)

@) (7"2 loglog |H| -
log

(using the time-memory tradeoff in the PH method.) The expected number of random points
that have to be generated in H is O(rloglog |H|).

Appendix C: Using Grobner bases for proving the applicability
of certain subgroups of finite fields

We describe Grobner bases and use them to show the applicability of the subgroup with order
®,,(p) of Fjn as an auxiliary group (if n = O(1)).

Let R be the ring F[z1, ..., z,] of multivariate polynomials, where F is a field. The elements
of R are referred to as polynomials. Let



be a system of polynomial equations (we write P = 0, where P := {p;}). Any different basis
of the generated ideal (P) in the ring R is an equivalent system of equations. Grobner bases
with respect to the lexicographic term ordering are such that the system can be solved. The
lexicographic term ordering is defined as follows:

HZI?;]<H.Z‘J-J = zjzz;- for j=1,...,1 —1and i; < i for some .

We motivate the definition of Grobner bases. Let f and g be polynomials, and let ¢ be
the leading term of g. One can reduce f modulo g if any monomial of f is a multiple of ¢,
f = at+ r. The reduction of f modulo g is then

at

f M) Y (13)
where M(-) denotes the leading monomial. Let @ be a set of polynomials. The reducer set of
the polynomial f with respect to @ are the polynomials g in @ such that the leading monomial
of f can be reduced modulo g. There exists a simple algorithm for a maximal reduction of
a polynomial f modulo a set @ of polynomials based on (13). Since R is not a principal
ideal domain (if n > 1), the maximal reduction is not unique, and an element ¢ of (Q) may
be irreducible modulo Q. Groébner bases (with respect to a term ordering) are defined and
characterized by the following equivalent conditions:

1. Uniqueness of maximal reductions modulo G.
2. If f € (G), then f reduces to 0 modulo G.
3. For all f and g in G,

Icm (M(f),M(g)) . (W - m) = S'pOIY(f’g)

reduces to 0 modulo G.

For given P, the third criterion leads to a simple algorithm, due to Buchberger, for the compu-
tation of a Grébner basis G of (P) by extending P.

Algorithm (Buchberger) Choose any pair (fi, f2) in P x P and compute a mazimal P-
reduction of s-poly(fi, f2). If it is different from zero, extend P by adding this polynomial. Re-
peat the process for all pairs, including the pairs with components added to P during the process.

This algorithm can be improved by criteria deciding a priori whether s-poly(f, g) will reduce
to 0, such that the number of s-polynomial reductions is decreased. The complexity of Grébner
basis computations is still a field of research. If the system P = 0 has only finitely many
solutions over C, the computation of a lexicographic Grobner basis for (P) has complexity
O(d"z), where n is a bound for the number of variables and polynomials and d is the maximal
degree. The degrees of the polynomials in the Grobner basis are bounded by O(d'), where

& = (nd)+0*"

and s is the dimension of the ideal, s < n.
The following are key properties of Grobner bases for solving equations. Let P be a set of
polynomials and G a monic Grobner basis for (P).
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Property 1 P =0 has a solution if and only if 1 € G.

Property 2 Let H be the set of all leading terms occuring in G. Then the following are
equivalent:

e P has finitely many solutions over C,

e For all i, there exists m; such that (x;)™ € H.

The first property is a criterion for solvability, and the second one implies, when using the
lexicographic ordering, that a subset of the equations of the Grobner basis has triangular form
and can be solved if the same holds for univariate equations. The fact that (x;)™ is the leading
term of a polynomial implies that the variables x1,...,2;—1 do not occur in the polynomial.
For example the polynomial with (z,)™" as leading term is univariate (with the only variable
%), and similarly it follows that there is a polynomial containing x,_1 and z, only, etc.

In order to solve our system of n — p(n) equations and unknowns, the Grébner basis has to
be computed with implicitly represented polynomial coefficients, because we have to assign the
implicitly represented z to one of the variables before this computation, such that the system
has a finite number of solutions over C only.

Buchberger’s algorithm (which is built of polynomial reductions and comparisons) as well
as the reduction of the resulting set of polynomials (see [13]) contain elementary polynomial
arithmetic only and work with implicitly represented arguments.

The following are worst case bounds for the complexity of the Grébner basis computation
(with implicitly represented polynomial coefficients) for the system of equations characterizing
the subgroup H of F;. with order ®,(p), where ®,(z) = Ef:(?) ciz® is the n-th cyclotomic
polynomial:

0 (((p(n) -max{|¢|:i=0,... ,ap(n)})(n_“’("))2 -log |G\) operations in G and

0 ((cp(n) -max{|¢|:1=0,... ,<p(rL)})(T““’(”))2 -logp) calls to the oracle.

If no solution exists (the first property above provides an efficient test), one replaces = by z + d
or varies the other coordinates.

We solve the implicitly represented polynomial equations for n —¢(n) unknowns. According
to the result of Gianni and Kalkbrener (see [13]), it suffices to solve a subset of n — ¢(n)
equations (of triangular form and degree O(d')), which is done by Berlekamp’s algorithm. The
first polynomial has to be solved once, the second one O(d') times (in the worst case, the
first polynomial has O(d') different solutions), the third one O((d’)?) times, etc. This yields
(0] ((d' )"“"(")) executions of Berlekamp’s algorithm. The effective number of executions will be
much smaller in a typical case, since only about one solution is expected. Hence the complexity
of embedding (the implicitly represented) z into a group element c is then O(log plog |G|) group
operations in G and O(logp) calls to the oracle if n = O(1). (Using the same method explicitly,
points in H can efficiently be generated.)

Appendix D: DH-oracle algorithms using algebraic operations

Stronger equivalence results can be obtained under the assumption that not only a DH-oracle
for the group G = (g), but also DH-oracle algorithms, using algebraic operations, for certain
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cyclic auxiliary groups are given.
Assume first that DH-oracles for the groups F; are given by a polynomial-time algorithm
using algebraic operations in F,. The idea is to perform the oracle algorithm with implicitly
represented arguments. Let again B be a smoothness-bound, polynomial in log |G|, py a prime
factor of |G| greater than B, and let p; be the only prime factor of pg — 1 greater than B.
Assume further that p; is the only prime factor of p; 1 — 1 greater than B for all ¢ = 2,... k,
and that py — 1 =: T = []; " is B-smooth, where k = O(1). Given a = ¢°, it is now possible
to compute zg = s (mod py), o € Fp,, in polynomial time when given a DH-oracle for G. Let
_ Gl _ pi-1—1

ho : , hi:——

fori=1,...,k), and F; = (¢;) (for i =0,...,k—1).
o P ( ) i = (i) ( )

If 2y # 0, then zop = ¢;° (in Fp,), and ¢° as an implicit representation of zy. Since py — 1
has a large prime factor p;, wy modulo p; cannot be obtained directly. =1 = wp (mod p1)
(with 21 € Fp,) can be written as 1 = ¢ (in F,, if 21 # 0), and ¢° is a ‘double-implicit’
representation of z;. Our assumptions allow efficient computation with these elements of Fp,
which are ‘double-implicitly’ represented. For example, an addition of two F, -elements requires
multiplication of the corresponding implicitly represented F -elements and can be obtained
by a call to the DH-oracle for G. A multiplication in Fj is done by an oracle call for Fp
with implicitly represented arguments and an implicitly represented answer. This works (in
polynomial time) because of the stated properties of the DH-oracle algorithm for Fp.-

Finally computation with (k + 1)-times implicitly represented arguments is possible in the
smooth group F, . The index search problem for the set

T

=t

hkC]:l

hoct1l
0 . — R
g 0o :1=0,...,m7,—1
and the element
—w
hkc” k
hlcl.“
hocg

9

which can be obtained in polynomial time by computation with multiply implicitly represented
arguments, is solved and leads to wy modulo r;. When this is done for all prime powers 7;",
wy, 18 computable modulo T'. Then x; = cf’“ (in Fpk), and one can get wg_1 modulo py_1 — 1
in polynomial time because the other prime factors of py_1 — 1 are smaller than B. Finally, we
obtain wg modulo pg — 1 and xg.

The process works in an analogous way if some of the used groups are cyclic elliptic curves
or Jacobians, provided a DH-oracle algorithm with the same properties exists for these groups.

Corollary 9 Let G be a cyclic group with the property that for all prime factors py of |G| greater
than a smoothness bound B, polynomial in log |G|, there exist k (bounded by some constant
independent of po and |G|) , numbers l; (fori = 1,...,k + 1) and primes p; (i = 1,...,k)
such that p; is the only prime factor of l; greater than B for i =1,...,k and lx4+1 ts B-smooth,
where l; (fori=1,...,k+1) is either equal to p;—1—1 or to the order of a constructable cyclic
elliptic curve or Jacobian over Fy,_, such that a polynomial-time DH-oracle algorithm using
group operations and algebraic operations in Fy, | is known for the constructable group over
F,,_,. Assume further that all the prime factors greater than B of the group orders are single.
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Then, breaking the Diffie-Hellman protocol and computing discrete logarithms are polynomial-

time equivalent in G. O
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