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Abstract

Both uniform and non-uniform results concerning the security of the
Diffie-Hellman key-exchange protocol are proved. First, it is shown
that in a cyclic group G of order |G| = []p;*, where all the multiple
prime factors of |G| are polynomial in log |G|, there exists an algorithm
that reduces the computation of discrete logarithms in G to breaking
the Diffie-Hellman protocol in G and has complexity /max{v(p;)} -
(log |G)°M), where v(p) stands for the minimum of the set of largest
prime factors of all the numbers d in the interval [p—2,/p+1,p+2,/p+
1]. Under the unproven but plausible assumption that v(p) is polyno-
mial in logp, this reduction implies that the Diffie-Hellman problem
and the discrete logarithm problem are polynomial-time equivalent in
G. Second, it is proved that the Diffie-Hellman problem and the dis-
crete logarithm problem are equivalent in a uniform sense for groups
whose orders belong to certain classes: there exists a polynomial-time
reduction algorithm that works for all those groups. Moreover, it is
shown that breaking the Diffie-Hellman protocol for a small but non-
negligible fraction of the instances is equally difficult as breaking it for

*Some results of this paper have been presented at CRYPTO '94 [26] and at
CRYPTO ’96 [30].
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all instances. Finally, efficient constructions of groups are described
for which the algorithm reducing the discrete logarithm problem to
the Diffie-Hellman problem is efficiently constructible.
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1 Introduction

Two challenging open problems in cryptography are to prove or disprove
that breaking the Diffie-Hellman protocol [13] is computationally equivalent
to computing discrete logarithms in the underlying group and that breaking
the RSA system [40] is computationally equivalent to factoring the modulus.
This paper is concerned with the first of these problems.

1.1 The discrete logarithm problem

Let G be a finite cyclic group (written multiplicatively) generated by g. The
discrete logarithm (DL) problem for the group G can be stated as follows:
Given g and a € G, find the unique integer s in the interval [0, |G| — 1] such
that ¢° = a. The number s is called the discrete logarithm of a to the base g.
The DL problem is sometimes also defined as the generally easier problem
of finding any s satisfying ¢g° = a, but if |G| is known the two problems are
equivalent.

1.2 The Diffie-Hellman key-exchange protocol and the Diffie-
Hellman problem

The Diffie-Hellman (DH) protocol [13] allows two parties Alice and Bob,
connected by an authenticated but otherwise insecure channel (for instance
an insecure telephone line over which Alice and Bob authenticate each other
by speaker recognition), to generate a mutual secret key which appears to
be computationally infeasible to determine for an eavesdropper overhearing
the entire conversation between Alice and Bob.

The protocol works as follows. Let G = (g) be a cyclic group generated
by ¢ for which the DL problem is believed to be hard. In order to generate
a mutual secret key, Alice and Bob secretly choose integers s4 and sp,
respectively, at random from the interval [0,|G| — 1]. Then they compute
secretly ag = ¢°4 and ap = g°B, respectively. Note that there exist efficient



algorithms for exponentiation in groups. Finally, they exchange these group
elements over the insecure public channel and compute asp = afBA = g%4%B
and apyq = aff = ¢°B%A_ respectively. Since agp = apa, this quantity can
be used as a secret key shared by Alice and Bob. More precisely, they need to
apply a function mapping elements of G to the key space of a cryptosystem.

It is unknown whether a group exists for which the DL problem is hard,
but several candidate groups have been proposed. Examples are the mul-
tiplicative groups of large finite fields (prime fields [13] or extension fields),
the multiplicative group of residues modulo a composite number [31],[32],
elliptic curves over finite fields [36],[21], the Jacobian of a hyperelliptic curve
over a finite field [20], and the class group of imaginary quadratic fields [7].

The security of the DH protocol is based on the assumptions that the
DL problem is hard to solve in G, and that this implies that it is hard to
compute g°4°B from g4 and g°8. We will refer to the problem of computing
g%48 from ¢g°4 and ¢°B as the Diffie-Hellman (DH) problem. This paper is
mainly concerned with the relationship between the DH and DL problems.
It is clear that the DH problem cannot be more difficult than the DL problem
because exponentiation in a group is efficient. Conversely, even when using
a group for which the DL problem is hard, this does not immediately imply
that the DH protocol is secure when using this group. However, we will
show that for every group whose order is not divisible by the square of a
large prime number, the DH problem cannot be substantially easier than the
DL problem. Moreover, for certain classes of groups an efficient algorithm
reducing the DL problem to the DH problem does not only exist but is
efficiently constructible.

1.3 Outline of the paper

The paper is organized as follows. In Section 2 a general index-search prob-
lem is defined and investigated, and some algorithms for computing discrete
logarithms are described. In Sections 3 and 4 a technique for proving the
equivalence of the DH and DL problems, using so-called auxiliary groups,
is presented, and examples of suitable auxiliary groups, for instance elliptic
curves or subgroups of the multiplicative group of a finite field, are described.
These two sections contain the main results of this paper. More precisely, a
generalization of the result of [26] is proved in Section 3 which states that
the DH and DL problems are equivalent for groups G for which appropriate
auxiliary groups are given. The first result of Section 4 is a non-uniform
reduction of the DL problem to the DH problem: It is shown (under an
unproven but plausible number-theoretic conjecture) that there exists, for



every group whose order does not contain a multiple large prime factor, a
polynomial-time algorithm computing discrete logarithms and making calls
to an oracle solving the DH problem. The second result of Section 4 is a
list of smoothness conditions (depending on |G|) which make the DH and
DL problems equivalent in a uniform sense, i.e., an efficient reduction al-
gorithm does not only exist but can also be found efficiently. In Section 5,
several variants of the DH problem are defined, and it is shown that they
are (almost) as hard as the original DH problem. For instance, breaking
the DH problem with small probability is equally hard as breaking it with
arbitrarily high probability.

In Appendix A an algorithm for finding generating sets of abelian groups
is described. Appendix B contains some basic facts about Grobner basis
computations which are required in Section 4. In Appendix C we obtain
results which are stronger than those of Sections 3 and 4 under the assump-
tion that efficient algorithms exist for solving the DH problem in certain
groups, and in Appendix D, we show how to construct DH groups for which
the DH and DL problems are provably equivalent.

1.4 Related work

Considerations on related topics can be found in [4],[3],[45],[28],[11],[10], and
[42]. In [4], the notion of a black-box field is introduced which makes more
explicit the concept of computation with implicitly represented elements
presented in [26]. Furthermore, the existence of a uniform reduction of the
DL problem to the DH problem of subexponential complexity was proved
in [4], using methods related to those of [26] and of Section 3 and Appendix C
of this paper.

In [45], the hardness of the DH problem (and hence of the DL problem)
is proved in the generic model, i.e., for general-purpose algorithms that do
not exploit any special property of the representation of the group elements.
However, it was shown in [28] that the DH and DL problems are not compu-
tationally equivalent in a generic sense if the group order contains multiple
large prime factors. In [11], the hardness of the DL and DH problems mod-
ulo p is proved in special computational models. For example it was shown
that the DH function cannot be interpolated by a low-degree polynomial.

An alternative construction to that of Section 5 for correcting a faulty
oracle solving the DH problem is described in [45]. Finally, a comparison of
the security of different DL based systems is given in [42].



2 The index-search problem and algorithms for
computing discrete logarithms

2.1 The index-search and DL problems

Let A = (a;)i=1,...n—1 be a list of elements of some set .S such that for a given
1 it is easy to compute a;. We call the problem of computing for a given
b € S an index i such that b = a; the index-search problem. It can trivially be
solved by exhaustive search which requires at most n comparisons. If the list
has the property that the permutation o : a; — a;4+1 (where the index is
reduced modulo n) can efficiently be computed, then the search can be sped
up by a time-memory trade-off known as baby-step giant-step algorithm.
Using a table of size M to store the sorted list of values b, (b), ..., o™ ~1(b),
one can compute the elements ag, aps, a2y, - .. until one of them, say a;prs,
equals an element ¢/ (b) contained in the table. Then the index of b is iM — ;.
For the choice M := [/n], the running time of the algorithm is O(y/nlogn).

The DL problem in a cyclic group H of order |H| with generator h is
the index-search problem for the list (1, h, ..., hl#'=1). Multiplication with
h corresponds to the above-mentioned permutation ¢. Hence the baby-step
giant-step algorithm is applicable for solving the DL problem. It is a general-
purpose algorithm that uses no particular properties of the representation
of the group elements other than the uniqueness of the representation.

2.2 The Pohlig-Hellman algorithm

We describe a generic algorithm due to Pohlig and Hellman [37] which re-
duces the computation of discrete logarithms to the same problem in the
minimal non-trivial subgroups. It plays a central role in the paper.

Theorem 1 [37] Let H = (h) be a cyclic group with order |H| =[];_, qui,
and let a = h* € H be given. The discrete logarithm x of a can be com-
puted by O(>" fi(log |H| + qi)) group operations and equality tests of group
elements. If memory space for storing [\/q] group elements (where q is the
greatest prime factor of |H|) is available, the running time can be reduced

to O3 fi(log [H| + \/gilog 4;)).

Proof. To solve a = h* for x, we first compute z modulo ¢;* for all 7.
This is done by determining, modulo g;, the coefficients z;; of the g;-adic



representation of £ modulo qu ‘

fi—1

x = Z a:iqu (mod ¢;%) .
J=0

The number z; is the discrete logarithm of aHl/e = pzH|/¢ — prio-|H|/gi
in the group H® := (h‘HV‘h) of order g;. Assume now that z;,..., ;%1
have already been computed. The number z;; is the discrete logarithm of

H|/gFt!
Hl/4; :hwik"HVQi

(a ) h_($i0+---+zi,k—1q1{c_1))
in the same group H (9), The computation of a discrete logarithm in H (@)
has complexity O(g;) with exhaustive search and can be sped up by a factor
M when a table of size M is used (that can be sorted in time O(M log M)).

Given z modulo qu ¢ for all 4, Chinese remaindering yields the discrete
logarithm z of @ modulo |H|. The complexity of the entire algorithm is

0 (> fillog |H| +a))

or
0 (3 fillog |H| + Vi log ;)
when the baby-step giant-step algorithm with M = [,/g;] is used. |

The algorithm is efficient only if |H| is smooth, i.e., if ¢; < B for a small
smoothness bound B. If this condition is satisfied we have in the worst case
that ¢; = B for all ¢, i.e., the number of factors is log |H|/log B, and the
complexity is

B
2
0 ((tos 1) + -2 5 g )

or

0 ((log |H|)? 4+ vBlog |H|)

when the baby-step giant-step trade-off is used.

It is crucial in the following that the algorithm is generic, i.e., that it uses
operations in H and equality tests of group elements only. Shoup showed
in [45] that no general-purpose algorithm can solve the DL problem faster
than the Pohlig-Hellman algorithm together with the baby-step giant-step
trade-off. For special groups such as the multiplicative group of a finite
field, more efficient algorithms are known. We refer to [33] for a detailed
discussion of the DL problem and algorithms for solving it.



3 A general technique for reducing the DL prob-
lem to the DH problem

In this section we describe a technique that allows to reduce the DL problem
to the DH problem efficiently in groups G (more precisely, in all groups of
certain orders) which satisfy certain conditions.

In Section 3.1 we define the notion of a Diffie-Hellman oracle, and the
subsequent sections deal with the problem of computing discrete logarithms
in a group G when given such an oracle for G. As a preparation for this,
it is investigated in Section 3.2 what kind of computations are possible in
the exponents (i.e., in the unknown discrete logarithms) of group elements
when given a Diffie-Hellman oracle. In Section 3.3, the concept of auxiliary
groups is defined, and in Sections 3.4 and 3.5 it is shown that these auxiliary
groups are a tool for reducing the DL problem to the DH problem.

3.1 Computing discrete logarithms with an oracle solving
the DH problem

In order to prove results concerning the equivalence of breaking the DH
protocol and computing discrete logarithms we assume the availability of an
oracle that solves the DH problem.

Definition 1 A Diffie-Hellman (DH) oracle for a group G with respect to
a given generator g takes as inputs two elements a,b € G (where a = g* and
b = ¢g¥) and returns the element g“v.

In the following we describe a polynomial-time reduction of the DL prob-
lem to the DH problem for certain classes of groups. Let G be a cyclic group
generated by g for which the prime factorization of the order |G| is known,
and let a = g° be a given group element for which we want to compute the
discrete logarithm s using a DH oracle for G. It is sufficient to compute s
modulo each prime factor of |G| (or modulo the prime powers if |G| contains
multiple prime factors) and to combine these values by Chinese remain-
dering. Only large prime factors are relevant because the Pohlig-Hellman
algorithm allows to compute s modulo powers of small prime factors of |G|.
Hence we can restrict our attention to the problem of computing s modulo
p for a large prime factor p of |G|. We assume that p is a single prime factor
of |G|; the case of |G| having multiple large prime factors is discussed in
Section 3.5. Let = be the element of GF(p) defined by s = z (mod p). In
the following sections, the problem of computing x from the group element
g° is investigated.



3.2 Computing with implicit representations using a DH or-
acle

Every element y of the field GF(p) can be interpreted as corresponding to a
set of elements of GG, namely those whose discrete logarithm is congruent to
y modulo p. Every element of this set is then a representation of the field
element y.

Definition 2 Let G be a cyclic group with a fixed generator g, and let p
be a prime divisor of the group order. Then, a group element a = g is
called an implicit representation (with respect to G and g) of the element
y € GF(p) if y =¢' (mod p). We write y ~ a.

Note that the implicit representation of a field element is not unique if
|G| # p.

The following operations on elements of GF(p) can be performed effi-
ciently on implicit representations of these elements (i.e., by operating in the
group (), where the result is also in implicit form. Let y and z be elements
of GF(p), with

y~a, z~b.

Because
y =z if and only if alGl/P = plCGl/P

equality of two implicitly represented elements of GF'(p) can be tested by
O(log |G|) group operations. Furthermore we have

y+z ~ a-b

yz ~ DHgy(a,b)
(where DH, stands for the DH function with respect to the generator g),
and these implicitly executed operations on G F'(p)-elements require a group
operation in G, a call to the DH oracle, and O(log|G|) group operations,
respectively.

In order to simplify the notation, we also introduce the notion of an e-th-
power-DH-oracle (PDH, . oracle) that computes an implicit representation
of the e-th power of an implicitly represented element. A possible imple-
mentation of a PDH, . oracle is to use a “square and multiply” algorithm
for obtaining an implicit representation of y°, denoted by PDHg.(a), by



O(loge) calls to a normal DH oracle (remember that y ~+» a). In particular
we can compute inverses of implicitly represented elements because

y '~ PDH,, 2(a) .

We call addition, subtraction, multiplication, division, and equality test-
ing in GF(p) algebraic operations. Any efficient computation in GF(p)
can be performed equally efficiently on implicit representations whenever it
makes use only of algebraic operations. Examples are the evaluation of a
rational function, testing quadratic residuosity of 4 by comparing

(PDHg,(p,l)/Q(a))m/p and g\Gl/p ’

or the computation of square roots using an algorithm of Massey [25]. We
will crucially rely on the fact that algorithms based on exhaustive search (for
example generic algorithms for solving the index-search problem, in partic-
ular the DL problem) can be executed on implicitly represented arguments
and lead to explicit results.

3.3 Auxiliary groups

When given a DH oracle for G, the computation of z is shown to work
efficiently if an auxiliary group H over GF'(p) with certain properties exists.
(Remember that s = z (mod p), where p is a large prime factor of |G|, and
that s is the discrete logarithm we want to compute.) The basic idea is to
embed the unknown z into an implicitly represented element ¢ of H and to
compute the discrete logarithm of this element explicitly. We now define a
first required property of the auxiliary group H.

Definition 3 A finite group H is said to be defined (m, a)-algebraically over
GF(p) if the elements of H can be represented as m/-tuples (for some m' <
m) of elements of GF'(p) such that the group operation in this representation
can be carried out by at most « algebraic operations in GF'(p).

We will need the following stronger property for auxiliary groups.

Definition 4 A group H is defined strongly (m, «)-algebraically over GF (p)
if H is defined (m, a)-algebraically over GF(p) and if there exist two algo-
rithms, EMBED and EXTRACT, with the following properties.

1. For all (z,e) € GF(p)? the EMBED algorithm with input (z,e) either
outputs a group element ¢ of H, or reports failure.



2. If the EMBED algorithm is run with the input (z,e) for fixed x and
randomly chosen e until the algorithm does not fail, then the expected
running time until an element ¢ € H is computed is at most « algebraic
operations in GF'(p).

3. If the EMBED algorithm does not fail for the input (z,e), then

EXTRACT(EMBED(z,€),e) =z .

4. The EXTRACT algorithm runs in time at most a.

In the examples considered below, the EMBED algorithm computes a group
element c that contains x + e as a coordinate, and the EXTRACT procedure
outputs this particular coordinate minus e.

In the next section we show how an abelian group H with bounded
rank, defined strongly algebraically over GF'(p), and with smooth order can
be used as an auxiliary group in the reduction of the computation of discrete
logarithms modulo p in G to breaking the DH protocol for G.

3.4 The reduction algorithm

First we extend the definition of implicit representations from elements of
GF(p) to m-tuples over GF(p).

Definition 5 Let p and G be as above and let a; € G and y; € GF(p)
(for i =1,...,m). We say that (ai,...,a,,) is an implicit representation of
(Y1,--yym) if ys ~ a; for 1 <i < m.

Theorem 2 Let P be a fized polynomial. Let G be a cyclic group with gen-
erator g such that |G| and its factorization |G| = [];_, p;* are known. If
there exist m, «, and B, all upper bounded by P(log|G|), such that every
prime factor p of |G| greater than B is single, and for every such p, a finite
abelian group H, with rank r = O(1), defined strongly (m,c)-algebraically
over GF(p), is given whose order |Hp| is B-smooth and known, then break-
ing the DH protocol for G with respect to g is probabilistic polynomial-time
equivalent to computing discrete logarithms in G to the base g.

The expected complexity of the computation of a discrete logarithm in G
when given a DH oracle for G is O(m?B" (log |G|)?/ log B + m%a(log |G|)?)
group operations in G, O(m%a(log|G|)?) calls to the DH oracle for G, and
O(m?a(log |G|)? +maBT (log |G|)?/ log B) field operations in GF(p) for p <
|G|. The complezities can be reduced by a time-memory trade-off.
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Proof.! Let p be a single prime factor of |G| larger than B. Assume that an
auxiliary group H is given that is defined strongly (m, «)-algebraically over
GF(p) with B-smooth order |H| =[] qlf i, It is clear that H has the property
that when given an implicitly represented field element = € GF(p), then an
implicitly represented group element ¢ of H (and an explicit element e of
GF(p)) can be found efficiently with the property that from the explicit rep-
resentation of ¢ (and from e), the EXTRACT algorithm leads to the element
x. The reason is that because the EMBED procedure uses only algebraic
operations, it works also on implicitly represented inputs (where the group
element of the output is also implicitly represented). This fact allows to
reduce the computation of discrete logarithms in G (modulo p) to the same
problem in the group H. The field element x is computed from an implicit
representation of x in four steps.

Step 1. Use the EMBED algorithm to obtain, when given an implicit rep-
resentation of x and a random e € GF(p), an implicit representation of a
group element ¢ of H.

Step 2. Compute the discrete logarithm of ¢ in H (with respect to some
generator set).

Step 8. Compute c explicitly.

Step 4. Use the EXTRACT algorithm to obtain x explicitly:

z = EXTRACT(c, €) .

We have to prove the stated complexity bounds for Step 2. The group H
is abelian of rank r, i.e., H is isomorphic to Zy, X - - xZ,_ for somenqy,...,n,
satisfying []7_, n; = |H| and such that n;;; divides n; for j =1,...,r — 1.
Let hi,...,h, be a set of generators of H such that [(h;)| = n; and H is the
internal product of the cyclic subgroups (h1), ..., (hy):

H = (h1) x -+ x (hy) .

(If no generator set for H is known it can be computed by the method
described in Appendix A.)

'The reader may wish to consult the survey paper [27], where a special case of this
theorem is proved. More precisely, the proof is given under the assumption that all the
auxiliary groups are cyclic elliptic curves over GF(p).
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The element ¢ € H has a unique representation
T

CZijhj OSkj<nj
i=1

(the group H is written additively). We address the problem of computing
the coefficients k;. This can be done by a generalization of the Pohlig-
Hellman algorithm (see Section 2), applied to implicitly represented group
elements. The following is repeated for every prime ¢ dividing |H|. We
describe the first and second iteration step of an algorithm that computes
k; modulo the highest power of ¢ dividing n; for all j = 1,...,r. The
algorithm uses v; (j = 1,...,r) as local variables (initialized by v; < 0).
For the first step, let oy be the number of generators h; whose order

contains the same number of factors ¢ as n;. In other words, (ni/q)h; is
different from the unity e of H exactly for j = 1,..., ;. Because H is
defined algebraically over GF'(p), an implicit representation of

n

—c

q
can be efficiently computed from an implicit representation of c¢. For all
(t1,---,tay) €{0,...,¢— 1}, we compute (explicitly)

n n
_1t1h1 + -+ _ltalhoq )
q q

transform the coordinates to an implicit representation, and test equality
with (n1/q)c. Equality indicates that the ¢; are congruent to the coefficients
k; modulo q. We set v; +— t; for these ¢;, and for 1 < j < 0.

For the second step, let ap be the number of elements h; whose order
contains at most one factor ¢ less than ny, i.e., (n1/¢*)h; # e exactly for
j=1,...,as. Implicit representations of the group elements

n ni ni ni
q_z(th + Ul)hl +oeeet q_g(toclq + Ual)hal + q_gtocl-l—lhal-l—l +oeeet q_gtazhaz

are computed for all (¢1,...,ts,) € {0,...,¢ — 1}** until equality with the
implicitly represented element

ni

q—2€
holds. Then assign

UJ<_th+U] (j:]-’"'aal)a

12



vi<—1t; (=a+1,...,00).

After repetition of this process up to the maximal g-power ¢ dividing nq,

the resulting v; satisfy
(s
ny n1
—c= E —wvih;
qg = qg 7%

i.e., k; is congruent to v; modulo the highest power of ¢ dividing n; = ord
hjforj=1,...,r.

After running the algorithm for all primes ¢ dividing |H|, one can com-
pute the coefficients k; modulo ord h; by Chinese remaindering. The com-
plexity of the algorithm is

O((log |H|)?) operations in H with implicitly represented elements,

0 (m% log |H|log |G| + alog |G|) operations in G,

O(alog|G|) calls to the DH oracle for G, and
0 (r(log |H|)? + log |H|%) explicit operations in H.

The first part of the number of group operations comes from the compar-
isons of implicitly represented elements of H. Note that |H| < p™ because
H is defined (m, a)-algebraically over GF(p). The implicit and explicit op-
erations in H can be further reduced to operations and DH oracle calls in
G and operations in GF'(p). Then, one obtains the following complexities.

(0] (mQMJOB;B log plog |G| + m?(log p)?alog \G|) group operations in G,

O(m?(log p)2alog |G|) calls to the DH oracle for G, and
0 ((mQ(logp)2 + mlogp“fﬁ) . alogp) field operations in GF(p).

The complexities can be reduced by a time-memory trade-off if memory
space is available. The running time is polynomial in log |G| because m, a,
and B are polynomial in log |G|, and because r = O(1). O

3.5 The case of multiple large prime factors in |G|

In the previous sections we assumed that all the large prime factors of |G|
are single. Under certain additional conditions one can also treat the case

13



of multiple large prime factors of |G|. If p® divides |G| (with e > 1), the dis-
crete logarithm s must be computed explicitly modulo p¢ instead of modulo
p. This can be done if either an additional DH oracle for a certain subgroup
of G is given (Case 1), or if p-th roots can efficiently be computed in G
(Case 2).

Case 1. Assume that a DH oracle for the group (g/®/?) is given. We write

e—1
T = Za:ipi (mod p°)
1=0
with z; € GF(p) fori =0,...,e—1. Let k < e—1, assume that xg,...,z5 1
are already computed (note that xy can be computed as described in the
previous section), and consider the problem of computing z;. Let a' :=
a-g T Tk-17""" Then

P ZTo+Z1p++Te—1p° 1 —@o——Tp_1p*
a =g g

. Tp+p-l
_ gwkpk+wk+1pk+l+"'we—lp v (gpk> kTP

1

for some [. From a', compute

a" = ()l = (gm\/p)” ’

and from a”, z; can be computed as described in the previous section by
using the DH oracle for (g/¢'/?). More generally, this also works when a DH
oracle for any group (gd'pe_1>, where d - p°~! divides |G|/p, is given.

Case 2. Assume that o’ (see Case 1) is computed. If an element a” of
the form

a" = gmk—l—p-l’
for some I’ is computed, z; can again be obtained as in Section 3.4, with
the DH oracle for (g). Such an element a”’ can be obtained by computing
a pF-th root, i.e., k times the p-th root, of a’. Any p*-th root of @' is of the
required form because p divides |G|/p*.

However, it has been shown that in the model of generic algorithms, it
is not possible to compute discrete logarithms in a group G more efficiently
than in time Q(/p) with a DH oracle for G, if p is a multiple prime factor
of |G| [28]. The model of generic algorithms was introduced by Shoup [45].

14



Intuitively, a generic algorithm is a general-purpose algorithm that works for
all groups of a certain order, and that does not make use of any particular
property of the representation of the group elements. Of course this result
implies that in the generic model, a DH oracle cannot be efficiently used
to construct the required subgroup oracles of Case 1 (a result which was
proved already in [45]), and that for large p, p-th roots cannot be computed
efficiently by a generic algorithm in a group of which the order is divisible
by p?, even when a DH oracle is given for this group (Case 2) [28].

4 Applicable auxiliary groups over GF(p)

In this section, two classes of possible auxiliary groups satisfying the re-
quirements specified in the previous section are described: elliptic curves
over finite fields and subgroups of the multiplicative groups of finite fields.
The applicability of Jacobians of hyperelliptic curves (see [20] and [9]) as
auxiliary groups was demonstrated in [48].

Two types of results are derived as a consequence of the applicability of
these classes of groups as auxiliary groups. First, a non-uniform reduction
of the DL to the DH problem is shown. Under an unproven assumption
on the existence of smooth numbers in small intervals, the complexity of
this reduction is polynomial in log |G|, i.e., for every group (if no squares
of large primes divide the order) there exists an algorithm for computing
discrete logarithms in polynomial time if it is allowed to make calls to a DH
oracle for this group. As mentioned already, such a reduction does not exist
(in the model of generic algorithms) if the group order contains multiple
large prime factors.

Moreover, we give a list of expressions A(p) in p with the property that
an auxiliary group H, with order A(p) over GF(p) can efficiently be con-
structed. Theorem 2 then implies that if for each prime factor p of |G| one
of the expressions in this list is smooth, then breaking the DH protocol and
computing discrete logarithms are equivalent for G (if |G| has no multiple
large prime factors). The equivalence of the DH and DL problems holds in
a uniform sense for these groups because an efficient reduction algorithm,
whose existence is guaranteed by the non-uniform result, can even be found
efficiently.
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4.1 Elliptic curves
4.1.1 Applicability as auxiliary groups

Let F be a field (whose characteristic is not 2 or 3) and let A, B € F with
4A%+27B% £ 0 (in F). The elliptic curve E4 5(F) (with parameters A and
B in F) is the set

{(z,y) € F?:y? = 2% + Az + B} U{O}

(the additional point O is called “point at infinity”). Together with a certain
operation on the set of points, E4 g(F) forms an abelian group of rank at
most 2. We refer to [35] for an introduction to elliptic curves.

We show that an elliptic curve E over the field GF(p) is defined strongly
(2, 0((log p)?))-algebraically over GF (p). Therefore it can be used as an aux-
iliary group if it has smooth order. Note that the order of an elliptic curve
can be computed in polynomial time [44],[6]. The points of E can be repre-
sented as pairs of GF'(p)-elements, and the group operation can be executed
in this representation by a constant number of additions, multiplications,
divisions, and equality tests in GF(p). We describe the EMBED algorithm.
Let x,e € GF(p) be given. First the expression D = (z+¢€)® + A(z +e) + B
is computed and its quadratic residuosity is tested. If D is not a quadratic
residue, the algorithm reports failure (and a new value for e is chosen). If
D is a quadratic residue, then a square root y of D is computed by an al-
gorithm due to Massey [25] (see Lemma 3). Then the EMBED algorithm
outputs ¢ = (x + e,y). The necessary executions of the EMBED algorithm
require O((log p)?) algebraic operations in GF(p).

One can show in a completely analogous manner that an elliptic curve
over an extension field GF(p") of GF(p), where n is polynomial in log p,
can also be used as an auxiliary group.

4.1.2 Existence
It is well-known that for any A, B € GF(p)
P—2v/Pp+1<|Esp(GF(p)| <p+2yp+1,

and that for every d € [p—2,/p+1,p+2,/p+1], there exists a cyclic elliptic
curve over GF(p) with order d [41]. This implies the following non-uniform
reduction of the DL problem to the DH problem.

Definition 6 For a number n, let v(n) be the minimum, taken over all d
in the interval [n — 2y/n + 1,n + 2y/n + 1], of the largest prime factor of d.
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Theorem 3 Let P be a fixed polynomial. For every finite cyclic group G
with order |G| = []p;* and such that all multiple prime factors p; of |G| are
smaller than B := P(log |G|), there ezists an algorithm that makes calls to a
DH oracle for G and computes discrete logarithms of elements of G in time

max{v(p;)} - (log |G]) ™) .

The quantity v(p) is directly linked with the existence of a smooth num-
ber in the interval [p — 2,/p + 1,p + 2,/p + 1]. Unfortunately, very little is
known about smooth numbers in such intervals. However, it is known [8]
that for every fixed u,

$(n, 0H/%) = nfultro (1)

where 1(n,y) denotes the number of y-smooth integers < n. This fact sug-
gests that v(n) is polynomial in logn.

Smoothness Assumption. v(n) = (logn)°M).

This assumption implies that the algorithms of Theorem 3 run in time
polynomial in log |G|, and this yields a polynomial-time non-uniform reduc-
tion of the DL problem to the DH problem for all groups whose orders are
free of multiple large prime factors. Moreover, the reduction algorithms are
generic, i.e., they depend only on the group order |G| of G, and they have a
description of length linear in log |G|, namely the large prime factors of |G|
and parameters of suitable elliptic curves.

Corollary 4 Let P be a fized polynomial. If the Smoothness Assumption
is true, then for every group G = (g) whose order is free of multiple prime
factors greater than B := P(log |G|), there ezists a side-information string S
of length at most 3log |G| such that when given S, breaking the DH protocol
for G is polynomial-time equivalent to computing discrete logarithms in G.

Remark. The group order of Jacobians of hyperelliptic curves of genus 2
varies in a larger interval of size [n — ©(n®*),n + ©(n3*)], but the results
about the distribution of the orders which are proved in [1] are not suffi-
cient to prove the existence of the side-information string without unproven
assumption. The reason is that in [1] the existence of Jacobians with prime
order is proved, whereas Jacobians with smooth order are required for our
purpose.
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In the model of generic algorithms the results described in Section 3.5
(see [28],[45]) and in this section imply the following complete characteriza-
tion of group orders n for which there exists an efficient generic algorithm
computing discrete logarithms, making calls to a DH oracle for the same

group.

Corollary 5 If the Smoothness Assumption is true, then there exists a
polynomial-time generic algorithm computing discrete logarithms in cyclic
groups of order n, making calls to a DH oracle for the same group, if and
only if all the multiple prime factors of n are of order (log n)O(l).

4.1.3 Construction of elliptic curves

For certain expressions A(p), elliptic curves over GF (p) with order A(p) can
explicitly be constructed. The curve over GF(p) defined by the equation

yv? =2 — Dz (2)
has order p + 1 if p = 3 (mod 4), and the curve
=23+ D (3)

has also order p+1 if p =2 (mod 3). Thus if p # 1 (mod 12), elliptic curves
of order p + 1 are explicitly constructible over GF(p). (We will show in the
next section that the subgroup of order p+1 of GF(p?)* is a useful auxiliary
group for all p.) The following statements about the orders of curves of the
form (2) or (3) in the case they are not p + 1 are proved in [19].

If p=1 (mod 4), then p can uniquely be represented as the sum of two
squares, i.e., p = a® + b%. Then the curves y?> = 23 — Dz have the orders

p+1+2a, p+1+2b, (4)

and the four orders occur equally often over the choices of D.

If p=1 (mod 3), then p can uniquely be represented as p = a? — ab+ b?
with @ = 2 (mod 3) and b = 0 (mod 3). Then the curves y? = x3 + D have
the orders

p+1+2a, p+1+taF2b, p+1+(a+bd), (5)

and the six orders occur equally often over the choices of D.
If p=1 (mod 4) or p =1 (mod 3), curves with the orders listed in (4)
and (5) are explicitly constructible by varying D.
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4.2 Subgroups of the multiplicative group of an extension

field of GF(p)

In this section we investigate under what conditions a subgroup H of GF (p™)*
satisfies the properties of an auxiliary group in the technique for reducing
the DL problem to the DH problem.

4.2.1 Representation with normal bases

We refer to [24] or [34] for an introduction to finite fields. For a prime
power g, the field GF(¢™) is an n-dimensional vector space over GF'(q) and
hence its elements can be represented as n-tuples of GF(g)-elements with
respect to some basis. Let o be an element of GF(g"), and let a; := a9
for i = 0,...,n — 1. Then {ag,...,an_1} is called a normal basis if it
is linearly independent in which case « is called a normal element. Let
a = (ag,...,an—1). The matrix T in (GF(q))"*" satisfying apd = aT is
called the multiplication table of the basis.

Normal elements can be found efficiently by trial and error, and when
given ¢, n, and a normal element o € GF(¢"), the multiplication table can
be determined by solving a system of linear equations over GF(q).

4.2.2 The use of subgroups H of GF(p")* as auxiliary groups

Let H be a subgroup of GF(p™)*. We derive conditions under which such
subgroups are defined strongly algebraically over GF(p). The group oper-
ation of H is a multiplication in GF(p"™)* and requires, in a normal basis
representation, O(n3) multiplications in GF(p). We conclude that every
subgroup of GF(p™)* (for n polynomial in logp) is defined (n, (logp)?M)-
algebraically over GF(p). For all n, GF(p™)* is a cyclic group. This implies
that a subgroup of GF(p™)* is uniquely determined by its order |H|, or
more precisely, for every divisor d of |H| there exists exactly one subgroup
of GF(p™)* with |H| = d. Furthermore, all these subgroups are cyclic.

The next theorem states conditions on n and |H| under which H is
defined strongly algebraically over GF(p).

Theorem 6 Let P be a fized polynomial and ¢ be a fized constant. Let H
be the subgroup of GF(p™)* of order |H|. Then H is defined strongly (m, a)-
algebraically over GF(p) for m,a = (logp)°") if one of the following two
conditions is satisfied.
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Condition 1. n < P(logp), and there exists a divisor k < n of n such
that

n

—1
|H|:])Ic—:pn—k+pn—2k+___+pk+1'
pt—1
Condition 2. n < ¢, and there ezxists a non-constant polynomial f(x) (with
integer coefficients) dividing ™ — 1 such that |H| = f(p).

Remark. An alternative formulation of Condition 2 is that |H| is a multi-
ple of ®,(p) for some n = O(1), where ®, stands for the n-th cyclotomic
polynomial (see [24] and Appendix B). Examples are

g(p) = p*—p+1,
Pg(p) = p'+1,
Bo(p) = pP+p’+1.

The alternating sums
P2 pd iy pit

also satisfy Condition 2 for [ = O(1).

Proof. We show that if one of the conditions is satisfied there exists an
EMBED algorithm that takes as input two elements z and e of GF(p)
and computes coordinates (31,..., 8,1 (still in the normal basis represen-
tation) in GF(p) by a polynomial number of algebraic operations such that
B=(z+epr,...,00-1) € H.

One possibility of designing the EMBED algorithm is to express mem-
bership of an element 5 = (0, ..., H,—1) to the subgroup H by an equation
(or a system of equations) in the coordinates. Then, the element = + e can
be assigned to one of the coordinates, say 3y, and the equation is solved for
the remaining coordinates (by using only algebraic operations in the field
GF(p))-

For an element 3 of GF(p™)*, we have that 8 € H if and only if 81#| = 1.
Clearly, this equation corresponds to a set of polynomial equations (with
coefficients in GF'(p)) in the coordinates f;.

We will show that if the first condition is satisfied, then it is sufficient to
solve one univariate polynomial equation over a subfield GF(p*) of GF(p")
for finding such a 3, and that this can be reduced to a polynomial number
of algebraic operations in the field GF(p). The situation when the second
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condition is satisfied is more difficult. Here, a system of multivariate poly-
nomial equations over GF'(p) has to be solved by algebraic operations. This
can be achieved by Grébner basis computations. The proof that Condition 2
is sufficient is given in Appendix B.

Proof that Condition 1 is sufficient. The EMBED algorithm works as follows
in this situation. Let z,e € GF(p) be given. For | := n/k let {ag,..., 0 1}
and {af,...,a) ,} be normal bases of GF(p*) over GF(p) and of GF(p")
over GF(p*), respectively. For an element 8 = (f,...,0-1) € GF(p")
(with 8; € GF(p*)), we have that 3 € H is equivalent to

5(1)"—1)/(17’“—1) -1. (6)

Equation (6) is equivalent to

pU=Dk =2k 4 k1 q
) —1. (7)

=
(Z Bic
i=0

Now, we have (3;)?"" =1 (because §; € GF(pF)) and (/)" = @i, ; (Where
the index is reduced modulo [) by the definition of the normal basis. Hence
(7) is equivalent to

-1 -1 -1
(Z ﬁia;‘+l—1> . (Z /Bia;'-i—l—Q) (Z /Bia;) =1 (8)
i=0 i=0 i=0

(where the indices are reduced modulo 7).

Because (3®"—D/(P*=Dyp* =1 — gp"=1 — 1 g@"-1)/(P"~1) ig an element
of the subfield GF(p*) of GF(p"). Such elements are easy to characterize
in terms of their coordinates. An element (vp,...,7—1) is an element of
GF(p*) c GF(p™) if and only if 79 = 71 = --- = ,_1. The reason for this
fact is that o, + o} +...+aj_; (the trace Tr(a) of a) is also an element of
GF(p*). Because both BP"=1)/(P*~1) 3nd 1 are elements of GF(p*), they are
equal if and only if their first coordinates are equal. The equation coming
from (8), restricted to the first coordinate, is equivalent to

9(Bos---,Bi-1) = 1/Tr(ap) (9)

for some I-degree polynomial g with G F (p*)-coefficients.
The construction of a group element 8 of H with the desired property
now works as follows. Let the first coordinate By of Gy (note that g;
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corresponds to a k-tuple (B0, ..., 0ik—1) of GF (p)-elements with respect to
the normal basis ag,...,a, 1) be equal to z + e. Choose the coefficients
Bo,15---,00,k—1 and the coefficients i, ..., 8—2 randomly in GF(p) and in
GF(p*), respectively. Then (9) is equivalent to a polynomial equation for
B;_1 with coefficients in G F(p*).

The roots of a polynomial f(v) over a finite field GF(p*) can be com-
puted in probabilistic polynomial time by the Cantor-Zassenhaus algorithm
(see [34],[24]). The key idea of this algorithm is to factor the polynomial

f(v) into

pP-1

ged(f(7), (v +6) "7 —1) and ged(f(7), (v +8)° 7" +1)

for random § € GF(p*). This is repeated with different § and leads to the
linear factors of f(7).

The computation of polynomial gcd’s, and thus the entire root-finding
algorithm, require only algebraic operations in GF(p*), and the latter can be
reduced to algebraic operations (and equality tests) in GF(p) (with respect
to the normal basis representation). The expected number of solutions for
;1 is roughly 1 because |H|/p™ ~ 1/p*. If no solution is found, then failure
is reported.

Because the Cantor-Zassenhaus algorithm has probabilistic running time
polynomial in n and logp and uses only algebraic operations in GF'(p), the
required executions of the EMBED procedure run in a probabilistic polyno-
mial (in log |G|) number of algebraic operations if n is polynomial in log p. O

4.3 Summary

The following corollary is an immediate consequence of Theorem 2, combined
with the results of this section.

Corollary 7 Let P be a fized polynomial, let G be a cyclic group with gen-
erator g, and let B := P(log|G|). Then there exists a list of expressions
A(p) in p with the following property: if every prime factor p of |G| greater
than B is single and if for every such prime factor at least one of the ez-
pressions A(p) is B-smooth, then breaking the DH protocol in G with respect
to g is polynomial-time equivalent to computing discrete logarithms in G to
the base g. The list contains the following expressions:

p_17p+1a
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p+1+2a,
if p=1 (mod 4), where p = a® + b2,
p+1+2a,p+1Fat+2b, p+1+(a+bd),
if p=1 (mod 3), where p = a®>—ab+b?, a =2 (mod 3), and b= 0 (mod 3),

(pk)l -1k k
where k,1 = (log p)°"), and
f(p)
where f(z) € Z[z] is a non-constant polynomial dividing ™ — 1 for some
n=0(1). O

5 Equivalence between variants of the DH prob-
lem

5.1 Introduction

In the previous sections we have proved results concerning the relationship
between the security of the DH protocol and the hardness of the DL problem.
However, in order to prove that the DH protocol is secure for a group in
which the DL problem is hard, one has to show that the DH problem cannot
be solved efficiently even with small probability of, say, 1%. Motivated by
this, we show in this section that the assumption of a perfect DH oracle for
the reduction process is unnecessarily strong and can be relaxed in many
ways. In 5.2 we prove that a (probabilistic) DH oracle answering correctly
with small probability is virtually as strong as a perfect DH oracle. For
example, an oracle answering correctly with probability 1% can efficiently
be transformed into an oracle that answers correctly with arbitrarily high
probability.

In Section 5.3, it is shown that the same holds for a DH oracle that
answers correctly for the input (g%, g¥) only if u = v. Finally, the relationship
between the DH problem in G and in subgroups of G is investigated in
Section 5.4.

5.2 e-DH-oracles

This section deals with DH oracles that answer correctly only with small
(but non-negligible) probability. It is shown that such oracles are virtually
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as strong as perfect DH oracles. The problem of correcting faulty DH oracles
was considered independently by Shoup [45], who described a quite different
approach. We introduce the notion of an e-DH-oracle for a cyclic group G
with respect to a generator g. Note that such an “oracle” is probabilistic in
general rather than deterministic.

Definition 7 For ¢ > 0, an e-DH-oracle is a probabilistic oracle which
returns for an input (g%, g¥) the correct answer g*¥ with probability at least
¢ if the input is uniformly distributed over G x G.

The offset of the oracle’s answer g' to the input (g%, gV) is defined as
t —uv (mod |G|). A translation-invariant e-DH-oracle is an e-DH-oracle
whose offset distribution is the same for every input (g%, g*).

A special case of (non-translation-invariant) e-DH-oracles are determin-
istic oracles answering correctly for a fraction € of all inputs. We proceed
in two steps to prove that an e-DH-oracle can be transformed into a vir-
tually perfect DH oracle. First, the oracle is made translation-invariant
by randomization of the input, and then, the translation-invariant oracle is
“amplified” to an (almost) perfect oracle.

Lemma 1 An e-DH-oracle for a cyclic group G with order |G| can effi-
ciently be transformed into a translation-invariant e-DH-oracle. More pre-
cisely, implementing one call to the latter requires one call to the former and
O(log |G|) group operations.

Proof. Given the group elements a = ¢g* and b = ¢g¥ we can randomize
the input by choosing r and s at random from [0, |G| — 1], providing the

oracle with ¢’ = ag" and ¥ = bg® and multiplying the oracle’s answer
g(u+r)(v+s)+t — guv—f—rv—f—su—f—rs—l—t with (a—l)s . (b—l)r LgTT = g—(rv—l—su—}—rs) to
obtain ¢g%’t!. Note that a’ and b' are random group elements and statis-

tically independent of @ and b. The e-DH-oracle with randomized input is
thus a translation-invariant e-DH-oracle. O

Remark. If |G| is unknown the input can also be randomized, where the
random numbers are chosen from a larger interval. The resulting e-DH-
oracle is then “almost translation-invariant” and applicable in the proof of
Theorem 8 if the interval is of size at least 2 - |G|/(¢? - min{s,0.1}) (where
s is as in Theorem 8). This is the reason for the greater number of group
operations for this case in Theorem 8.
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In the proof of Theorem 8 it is shown that a translation-invariant e-DH-
oracle can be transformed into an almost-perfect DH oracle. The straight-
forward approach to using a translation-invariant e-DH-oracle may at first
sight appear to be to run it O(1/¢) times until it produces the correct answer.
However, because the Diffie-Hellman decision problem is difficult, a more
complicated approach must be used. (The Diffie-Hellman decision problem,
which was first mentioned in [5], is, for given g%, g%, and g%, to decide
whether g = ¢g*?, and is of course at most as difficult as the DH problem.)

Theorem 8 For every cyclic group G with generator g and known order
|G| and for every B > 0 there exists an algorithm for solving the DH prob-
lem in G which makes calls to an e-DH-oracle and whose answer is cor-
rect with probability at least 1 — 3. The number of required oracle calls is
O(log(1/B¢)/e*). If the order of G is unknown, then the reduction is also
possible if all the prime factors of |G| are greater than (1 + s)/e for some
s > 0. The number of required calls to the e-DH-oracle is then

? (<52 TTERNER Bi) |

The number of required group operations is O(log |G|) times the number of
oracle calls if |G| is known and O(log(|G|/(¢?-min{s, 1}))) times this number
if |G| is not known, respectively.

For the proof of Theorem 8 we need the following lemma.

Lemma 2 Let X1, Xo, X3,... be independent binary random variables with
identical distribution Px, with Px,(1) = p. Let further «,6' > 0. If t is the
smallest number such that the event
X 4+---4+ X
At t LTIy S T
has probability at least 1 — «, then t = O(log(1/a)/8").

Proof. Since the random variables X; are independent, we have

Var(X1 + -+ Xt) . t- Var(Xi)
t N 12

= 0(1/1).

Hence the number of standard deviations corresponding to ¢’ is of order
©(6'v/t). The normal approximation of the binary distribution (see for ex-
ample [15]) leads to 6’/ = ©((log(1/a))'/?) or t = O(log(1/a)/d"?). O
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Proof of Theorem 8. The basic idea of the amplification of the DH ora-
cle is as follows. In a precomputation phase, which is independent of the
actual input, the oracle’s offset distribution is determined. Then, the or-
acle is called with the given input to compute the correct solution with
overwhelming probability.

More precisely, the reduction from an e-DH-oracle to an oracle answer-
ing correctly with high probability consists of the following steps which we
first describe intuitively.

Step 1. The e-DH-oracle is transformed into a translation-invariant e-DH-
oracle.

Step 2. We compute an estimate €’ for the probability that the (translation-
invariant) oracle answers correctly.

Step 3. A list Ly of group elements ¢¢ is computed with the property that
g¢ is contained in L if and only if the probability of the offset e is close to &’.

Step 4. A second list Lo of group elements is generated which contains
exactly those group elements that occur with frequency close to ¢’ when the
oracle is called with the input (g%, g*).

Step 5. The lists L; and Ly have (with high probability) the property
that the elements of Lo are exactly the elements of L; multiplied by the
group element ¢g"¥ (which is itself contained in Ly). In order to determine
this switch element, the lists aL; are generated for all elements a in Lo (the
list aL; contains exactly the elements aly, where [; is contained in L1). The
list Lo is compared to all the lists a1, and equality yields a candidate a for

gU/U .

Step 6. In case of one single candidate a for g“¥, this is the output of
the algorithm. In the case of several candidates and if the group order |G|
is known, the discrete logarithms of all the candidates and of g* and gV are
determined modulo the smooth part of |G|. This yields the correct candi-
date for g*¥, which is then the output of the algorithm.

Note that the first three steps are a precomputation which is indepen-
dent of the particular input (g%, ¢g"). The list L; which is generated in these
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steps is a reference list describing the offset behavior of the faulty oracle.
We describe the steps in detail and analyze their correctness and efficiency.

Step 1. According to Lemma 1, one can construct a translation-invariant
e-DH-oracle which uses O(log|G|) group operations and one call to an e-
DH-oracle per call if |G| is known. If |G| is unknown, the number of group
operations is O(log(|G|/(? - min{s, 1}))).

Step 2. Let a := [¢/8. An event with probability at least 1 — o will
be called almost certain. Let 6 := €/10 and §' := de/100 = £2/1000.? If € is
not known, we take a lower bound. In order to determine the probability of
a correct answer, the translation-invariant oracle is called repeatedly with
the input (g%, ¢%), and &’ is the fraction of correct answers g°. The number
t of oracle calls is such that the true probability of a correct answer lies
almost certainly in the interval [¢/ — ¢',¢’ + §']. It follows from Lemma 2

that ¢t = O(log(1/a)/6").

Step 3. In this step the reference list L is generated as follows. The faulty
oracle is called ¢ times (for the same value of ¢ as in the previous step), and
all the occurring group elements are stored. Let the list L; consist of those
group elements whose fraction in the set of all answers lies in the interval
[ — (6 +6"),&" + (6 + d")]. According to Lemma 2, and because 2/¢ is an
upper bound on the number of offsets occurring with probability at least
£/2, with probability (1 — a)%/¢ the following two statements are both true.

1. If e is an offset with probability in [¢' — §, &’ + §], then ¢° is contained
in Ll.

2. If g¢ is in Ly, then the offset e has probability in [¢/ — (§ + 247),&’ +
(6 + 28")].

Step 4. The translation-invariant faulty oracle is called repeatedly with the
input (g%, g"), where (g%, g") is the input to the DH algorithm for G. Let
the list Lo then consist of those group elements which occur as answers of
the oracle with a frequency in [¢' — (6 + 3¢"),¢’ + (6 + 36')]. Then, for the
same number of trials ¢ as in the previous step, with probability at least
(1 — @)*/# the following statements are true.

>The proof does not depend on the choice of the constants (e.g., 1/10), which is some-
what arbitrary. Intuitively, we need that § < ¢ and §' < &6.
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1. If e is an offset with probability in [¢' — (§ + 2¢"),&" + (6 + 24")], then
g“vt¢ is contained in Lo.

2. If gu"T€ is in Lo, then the offset e has probability in [¢/ — (§ +44"),¢’ +
(6 + 48")].

Step 5. With high probability, the list Lo is equal to L, switched by ¢g“"
(which is itself in Ly). This allows to determine g“’. More precisely, it
follows from the above that the probability that Ly contains all the offsets
which have their probability in the interval [¢' — §, &’ + §], that all the offsets
of Ly also occur in L9, and that all the offsets of Lo have probability in
[/ — (6 +4¢"),e" + (6 +40")] is at least

(1—a)8/521—8?a:1—5. (10)

If this is fulfilled, then Lo contains more elements than L; only if there exists
an offset whose probability is in the set

[€'— (6 +48"),e =) U + 6, + (6 +48")] . (11)

In this case we replace § by § + i - 58’ (for an integer 4 randomly chosen
in [-2/e,2/€]), leave ¢’ unchanged, and run the entire algorithm (except
Steps 1 and 2) again. Because the sets (11) are disjoint for different 4, and
because there can be at most 2/e offsets with probability at least £/2, L;
and Lo contain the same number of elements for at least half of the possible
choices for 1.

If the lists L1 and Lo have equal length, then with probability at least
1 — B we have that ¢“? is contained in Lo and Lo = g"*Y L1, i.e., Ly contains
exactly the elements ¢g“?ly for Iy in L;. The lists aL; are computed for all
elements a of Ly and compared to Lo. If equality holds, then a is a candidate
for g"*.

Step 6. Let ¢ be the number of elements of I.; and Ly. If there exists
only one candidate for g“¥, then this group element is the output of the
algorithm. If there exist several such elements, this means that the lists
have a non-trivial translation symmetry, or more precisely, that they are
invariant under a multiplication with gl//¢ for a divisor ¢ of ¢ and |G|. Let
¢ be the maximal number with this property. Note that |G| has a factor
d <e<1/(e" = (6§ +20")) in this case. There are ¢’ candidates for g“,
namely

uv uv+|ci,‘ uv+(c'—1) el

g g yeren g o
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We show that if |G| is known, the correct one of them can be determined.
Let p1,...,p; be the distinct prime factors of ¢’ (they can be found in time
O((log(1/€))?/¢) because ¢ = O(1/¢)), i.e., ¢ = Hézl p{ Let further d =
Hézl p;" be the product of the maximal powers of the p; dividing |G|. The
number d can be computed in time O((log |G|)?) and is (2/¢)-smooth because
< ¢ <2/e. Hence u and v (and consequently uv) are computable modulo d
from g% and g% by the Pohlig-Hellman algorithm by O((log |G|)? +1log |G|/¢)
group operations. Analogously, we can also compute the discrete logarithms
of all the candidates modulo d.

The discrete logarithm of exactly one of the candidates has the correct
remainder with respect to d. This is true because for every i, exactly every
pi ‘-th candidate has the correct remainder with respect to p;’. The primes
are distinct, thus the p;* are relatively prime, and hence every Hézl pi ‘-th
candidate, that is ezactly one of them, has the correct remainder. This
group element is the output of the algorithm.

In the case where |G| is not known, this last step of finding the correct
candidate does not work. The only possibility is to choose a smaller value
for d. This is always successful if all the prime factors of |G| are greater than
(1 + s)/e for some positive s. Then § must be chosen smaller than se/2,
such that 1/(e" — (6 +24")) < (1 + s)/e holds. The last inequality implies
that such a symmetry of the lists L1 and Lo (this symmetry is a necessary
condition for the case of more than one candidate for g*”) is not possible. O

Remark. Examples of e-DH-oracles which can not be transformed into per-
fect oracles with our method when |G| is unknown are those which answer
the input (g%, g”) by one of the values g*0TGl/% where z < 1/¢ is a fac-
tor of |G|, and where all the values of ¢ between 0 and z—1 are equally likely.

Note that a DH oracle as obtained in Theorem 8 is virtually equivalent to
a perfect DH oracle in a polynomial-time (or subexponential-time) reduction
of the DL to the DH problem because the correctness of the output of a
probabilistic algorithm computing discrete logarithms can be tested, and
because only a polynomial (or subexponential) number of oracle calls is
required for the computation of a discrete logarithm.

5.3 The squaring oracle

We describe an example of an oracle that is weaker than an e-DH-oracle
with respect to the fraction of correctly answered inputs. Nevertheless, the
oracle turns out to be as strong as the perfect oracle. We call an oracle that
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answers the input g* by g(“2) (where u and u? are in Z ) a squaring-DH-
oracle.

From g% and g% one can compute g¥*? = g% - ¢V, and with the squaring-
DH-oracle

g+ (g(u2))‘1 . (g<v2>)‘1 _ gt _ poue ()2 ()

When given |G|, the square root g*¥ of (g“¥)? can efficiently be computed.
If |G| is odd, the square root is unique, but if |G| is even, there exist two

square roots,
uv

g and ¢

which can be computed efficiently (see Lemma 3). Let |G| be even, and let 2¢
be the maximal power of 2 dividing |G|. From g* and g”, one can compute u
and v, and hence uv, modulo 2¢ with O((log|G|)?) group operations by the
Pohlig-Hellman algorithm. Because |G|/2 is not a multiple of 2¢, we have

wv # uv + % (mod 2°) ,
and one can determine the correct root g*¥ by computing the discrete loga-
rithms of one of the roots modulo 2¢. Hence a squaring-DH-oracle is equally
powerful as a perfect DH oracle in a group G whose order is known.

A probabilistic squaring-DH-oracle for a group with known order that
answers correctly only with probability € (an e-squaring-DH-oracle) can be
transformed into a translation-invariant ¢>-DH-oracle by randomizing the
inputs in (12). The complexity is O((log|G|)?) group operations per call.
This proves the following theorem.

Theorem 9 For every cyclic group G with generator g and known order
|G| and for every B > 0 there exists an algorithm solving the DH prob-
lem in G which makes calls to an e-squaring-DH-oracle and whose answer
is correct with probability at least 1 — 3. The number of oracle calls is
O(log(1/Be%)/e'2). The number of required group operations is O((log|G|)?)
times the number of oracle calls.

5.4 The security of subgroups

Throughout this section we assume that the order of G and its factorization
are known. We address the question whether a subgroup is more or less
secure than the entire group with respect to the DH protocol. Although the
statement of Corollary 12 below is very intuitive (and an analogous result
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holds for the computation of discrete logarithms), the proofs of Theorems
10 and 11 are not trivial. First we give a criterion when a DH oracle for (g)
can be efficiently transformed into a DH oracle for (g"). More precisely, we
will show that a subgroup of G is at most as secure as G with respect to the
DH protocol if every large prime factor of the index of the subgroup occurs
with the same multiplicity in the index and in the group order. We need
the following lemma on the computation of p-th roots in a cyclic group G if
p is a multiple prime factor of |G|. Note that for single prime factors p of
|G|, a p-th root can be obtained by computing the z-th power for z := p~!
(mod |GI/p).

Lemma 3 Let G be a cyclic group with generator g, and let p be a multiple
prime divisor of |G|. One of the p-th roots of a p-th power in G can be
computed in time O((log|G|)? + plog|G]).

Proof. The square root algorithm of Massey [25] can be generalized as
follows. Let |G| = p’s (where j > 2 and (p,s) = 1), and let h be a p-th
power in G. By the Pohlig-Hellman algorithm we can compute the remainder
k of the discrete logarithm of h to the base g with respect to p’. Note that
k is a multiple of p because h is a p-th power. Let d := —s~! (mod p). The

element
s kg1 sd+1
(g7) 0"

is a p-th root of h. This algorithm requires O((log |G|)? + plog |G|) opera-
tions in G. m|

Remark. When memory space is available, this algorithm can be sped up
to O(/p - (log |G)°(M) by the baby-step giant-step trade-off in the Pohlig-
Hellman algorithm. This running time is optimal: it was shown in [28] that
no generic algorithm can compute p-th roots substantially faster in a group
whose order is divisible by p? (even when given a DH oracle for this group).

Theorem 10 Let P be a fized polynomial. Let G be a cyclic group with
generator g. If the number r is such that every prime factor of r is either
smaller than B := P(log|G|) or has at least the same multiplicity in r as in
G, then there exists an algorithm solving the DH problem in the group (g"),
making one call to the DH oracle for (g) and using a polynomial number of
group operations per call.

Remark. Again, the conditions of the theorem are optimal. Shoup [45] has
shown that if the conditions are not satisfied, then the construction of a
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subgroup oracle from an oracle for G is hard in the generic model.

Proof. Let |G| = []p;* and r = [[p;* (where f; > €;, ¢, = 0, or f; =0
is possible). The DH algorithm for the group (¢”) takes as inputs two ele-
ments (¢7)® and (¢")? and must output (g")?. Using the DH oracle for the
group G = (g) with the same input, one obtains gr%b, i.e., the r-th power of
g"%®. Now, ¢"% is computed from gT2“b by computing the r-th root. More
precisely, the p;*-th root of gr2ab has to be computed for all ¢+ with f; > 0,
and the correct root, i.e., the particular root that is a power of ¢g"®, must

be determined. Assume that we have already computed
fi, fim1 2fi | 2fs 2f;
wpliT 12 2 s 0 2igh _.
gp1 ;1 P; ps Sab __ gcpz ab _. dz' ,

where ¢ is explicitly known. We describe the computation of the correct
pi ‘-th root of this group element separately for the cases f; > e; and p; < B.

Case 1: f; > e;. We compute z with
(pf)™" (mod |G|/p{)

and df, which is the desired group element. First, it is a pzf ‘-th root of d;.

zZ

Additionally, it is the only p;*-th root of this element which is a power of

fi ) .
gPi" (the p{* — 1 different roots are

geP: bz +il Gl /p?
fori=1,...,p;" — 1, and they are not even powers of gp?).
Case 2: p; < B and f; < e;. Here we repeat the following two steps f; times.
Step 1. Compute the p;-th roots of the group element.

Step 2. Decide which of the roots is a power of ¢"® and continue with
this element.

Assume for some k = 2f; — 1,2f; — 2,..., f; that we have already computed

fic1 & 2f; 2
gpfl---pi_ll-pi+1-pi+1+1---psfsab _ gc’pf“ab ’

where ¢ is explicitly known. Then the two steps work as follows.
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Step 1. According to Lemma 3 we can compute a p;-th root of the group
element in time O((log|G|)? + p; log |G)).

Step 2. Because a and b can be obtained modulo pfﬁf ¢ directly from g™
and ¢"® by the Pohlig-Hellman algorithm and ¢’ is explicitly known, and
because k > f;, we can compute c’pfab modulo pj*. From the root obtained
in Step 1, all the roots

Ik N . .
g PGl (=0, pi—1)

can be computed. We have j - |G|/p; = 0 (mod p;*) only for j = 0, and the
correct group element gc'pf % can be determined by computing the discrete
logarithms of the candidates modulo p;’, using the Pohlig-Hellman algo-

rithm.

The entire procedure, executed for all prime factors p; of r, ends up with

g™, and the running time of the algorithm is polynomial in log |G/ O

Remark. It has been pointed out in a preliminary version of [4] that in
case of a generator change, i.e., if (r,|G|) = 1, it is not even necessary to
know r. Let h = ¢", and let DH, and DHj, be the DH functions in G with
respect to the generator g and h, respectively. Then

1

DHh(ha, hb) — hab — g'rab — DHg(grzab’gr_ )
= DHQ(DH!](haahb)apDHg,wﬂGDfl(h’))7

and the last expression can be computed by O(log|G|) applications of the
oracle with respect to the basis g.

In many cases a DH oracle for a subgroup of G or a set of such oracles
can be transformed into a DH oracle for the entire group, and the following
theorem gives a criterion for when this is the case.

Theorem 11 Let P be a fized polynomial. Let G be a cyclic group with
generator g and order |G| = [[;_, p;*, and let B := P(log|G|) be a smooth-
ness bound. If for all p; > B a number s;, where p; does not divide s;, and
a DH oracle for the group (g°) is given, then there exists a polynomial-time
algorithm solving the DH problem in G with respect to g which calls each
oracle for such a subgroup once.

Proof. Let g* and g” be given. We compute g*¥ using the available oracles
for subgroups. Let m; := p$*, M; := |G|/m;, and N; := M; ! (mod m;).
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For prime factors p; < B, u and v, and hence also uv, can be computed in
polynomial time modulo m; by the Pohlig-Hellman algorithm. For a prime
factor p; > B, assume that a DH oracle for the subgroup (g®) is given,
where p; does not divide s;. We apply the oracle for (g%) to (¢%)* = (g*)%
and (¢%)? to obtain (g% )“", where u, v and u - v are modulo |G|/s;. Let
! (mod m;) and

Zi =8,
U; = (gsi(“'”))Mi% = gMi'(u-U) )

where u-v is modulo m;. Finally, g“* is computable by Chinese remaindering
with implicitly represented arguments by applying only group operations in

G:
; MiN;(uv) _ N;
guv:gEZMN(uv)_HUi .
1

O
The following result is an immediate consequence of the above theorems.

Corollary 12 Consider a group G = (g) and a subgroup H = (g*) of G
with (log |G|)°M -smooth index. The DH problem for H is polynomial-time
equivalent to the DH problem for G.

6 Concluding remarks

We have presented a technique for reducing the DL problem in a group G
to the DH problem in the same group efficiently when suitable auxiliary
groups are given. One conclusion of this fact is that, under a plausible but
unproven assumption on the existence of smooth numbers, for every group
whose order does not contain a multiple large prime factor there exists a
polynomial-time algorithm computing discrete logarithms and making calls
to a DH oracle for the same group. In the generic model, it was proven
that such a reduction cannot exist for groups whose order is divisible by the
square of a large prime. A second conclusion is that solving the DH and
DL problems is computationally equivalent for many classes of groups in a
uniform sense. These are the groups for which suitable auxiliary groups can
be efficiently constructed.

Throughout this paper, we have assumed to know the group order and
its factorization. Let p be a large prime factor of |G|. If an appropriate
auxiliary group over GF(p) such as a subgroup of the multiplicative group
of a finite field or an elliptic curve is given that has smooth order, then p can
be found efficiently as a factor of |G| (see [23] and [2]). This fact indicates
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a close relationship between the problems of integer factoring and proving
the equivalence between the DH and DL problems.

In Appendix C we describe a technique, presented in [48] and indepen-
dently considered in [4], for obtaining stronger results under the assumption
that efficient algorithms exist for solving the DH problem in certain groups,
and which use only algebraic operations. The idea is to execute these al-
gorithms on implicitly represented arguments. This allows to iterate the
technique by computing with multiply implicitly represented elements. It is
then no longer necessary that for every large prime factor p of |G| a smooth
auxiliary group H,, is known. For example, a cyclic auxiliary group H),
whose order contains a large prime factor ¢ and a smooth auxiliary group
H, over GF(q) are sufficient under the assumption that a polynomial-time
DH algorithm exists for H, which uses only algebraic operations in GF(p).
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Appendix A: Finding generator sets of the auxiliary
groups

We show how a generator set can be found efficiently in a (additively written)
finite abelian group H of rank r and with B-smooth order |H| = Hi-:l qif
Suppose H = Z,,, x -+ x Z,, (such that n;y; dividesn; forj =1,...,r—1),
where the numbers r and n1, . ..,n, are not known a priori, and suppose that
we have already found n; and points h; with order n; in H/(h1,...,h;—1) for
i=1,...,j— 1. Let ny = []¢¥, and let 7j_; denote the canonical projec-
tion to the quotient group H/(hi,...,h;—1), i.e., mj_1(u) is the element of
H/(h1,...,h;j—1) containing u. For the construction of h; such that m;_;(h;)
has maximal order in H/(h1,...,h;_1), we choose O(loglog|H|) points k in
H at random and compute ordgy(s,,...h;_,)Tj—1(h) by comparing

Mrici(h) =i (”—;h) (fori=1,...,0 and k=gigi—1,...,0)

q; 4q;

with the unity ez s,,...n;_,) of the quotient group. Comparing m;_1(h') and
€H/(hy,...h;_1) 1S €quivalent to deciding ifh' € (h1,...,hj_1), which is done by
the generalized Pohlig-Hellman DL algorithm described in Section 3. This
leads to an element h; with maximal order in H/(h1,...,hj_1).

It is possible that the algorithm makes a mistake here, i.e., that the
generated element does not have maximal order. Such an error occurs only
with probability exponentially small in the number of trials and can be
detected as follows. In the case where ordg(,, . .n,_)Tj—1(h;) does not
divide ordg/(p,,....h;_,)Tj—2(hj—1), the process must be restarted because one
of the preceding points has not had maximal order. The same holds if
j > max{f;}. The latter is a bound for the rank r of H.

The algorithm stops if (h1,...,h,) = H, that is

H/<h1,...,h7«> = {6} )

and {hi,...,h,} is then a generator set of H. Every element ¢ of H has a
unique representation ¢ = »7%_; kjh; with k; € {0,...,n; — 1} with respect
to this set. The expected number of operations in H to determine the
generator set is

2 VBT 3
) (7‘ log log | H| logB(log|H|) )

(using the time-memory trade-off in the Pohlig-Hellman algorithm).
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Appendix B: Grobner basis computations and the
completion of the proof of Theorem 6

The goal of this appendix is to complete the proof of Theorem 6, i.e., to
show that the second condition also implies that H is defined strongly alge-
braically over GF'(p). In the first part of the proof of Theorem 6 (given in
Section 4.2), the key argument was that the Cantor-Zassenhaus algorithm
allows to solve a univariate polynomial equation over a finite field efficiently
and with algebraic operations only. This led to an EMBED algorithm with
the required properties.

For the second part of this proof the result is required that a system of
such equations can be solved. In Section B.1 we shortly describe the concept
of Grobner bases, which are a tool for solving such systems. Section B.2
completes the proof of Theorem 6.

B.1 Grobner bases

Let F be a field and R be the ring F[z1,...,z,] of the polynomials in
Z1,...,2, over F. Let further p; = 0 (where ¢ = 1,...,l and p; € R for
all i) be a system of polynomial equations. We also write P = 0, where
P := {p;}. Every basis of the generated ideal (P) in the ring R leads
to an equivalent system of equations. Grobner bases with respect to the
lexicographic term ordering have the property that the system can be solved
if univariate equations can be solved. The lexicographic term ordering is

defined as follows: ;
g ’j
1127 <c 11+

if and onmly if i; =4} for j =1,...,1 — 1 and 4; < 4 for some [.

We motivate the definition of Grébner bases®. Let f and g be polyno-
mials, and let ¢ be the leading term of g. One can reduce f modulo g if a
monomial of f is a multiple of ¢, f = at + r. The reduction of f modulo g

is then
at

f—m‘ga (13)

where M(g) denotes the leading monomial of g. Let @ be a set of poly-
nomials. The reducer set of the polynomial f with respect to () are the
polynomials g in @ with the property that the leading monomial of f can
be reduced modulo g. There exists a simple algorithm for a maximal reduc-
tion of a polynomial f modulo a set @ of polynomials based on (13). Since

3For an introduction to Grébner bases, see for example [16].
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R is not a principal ideal domain (if n > 1), the maximal reduction is not
unique, and an element g of (Q)) can be irreducible modulo ). A Grobner
basis G (with respect to a term ordering) is defined and characterized by
the following equivalent conditions:

1. Maximal reductions modulo G are unique.
2. If f € (G), then f reduces to 0 modulo G.
3. For all f and g in G,

lem (M(f), M(g)) - (% - %) =: s-poly(f, 9)

reduces to 0 modulo G.

For given P, the third criterion leads to a simple algorithm for the compu-
tation of a Grobner basis G of (P) by extending P.

Algorithm (Buchberger) Choose any pair (f1, f2) in P x P and compute
a mazimal P-reduction of s-poly(f1, f2). If it is different from zero, extend
P by this polynomial. Repeat the process for all pairs, including the pairs
with components added to P during the execution of the algorithm.

This algorithm can be improved by criteria stating whether s-poly(f, g)
reduces to 0, such that the number of s-polynomial reductions is decreased.
The complexity of Grobner basis computations is a subject of ongoing re-
search. If the system P = 0 has only finitely many solutions over C, the com-
putation of a lexicographic Grobner basis for (P) has complexity O(D"z),
where n is a bound for the number of variables and polynomials and D is
the maximal degree. The degrees of the polynomials in the Grobner basis
are of order O(D'), where

25-‘,—1

D' := (nD)™)" (14)

and s is the dimension of the ideal, s < n.

The following are key properties of Grobner bases. Let P be a set of
polynomials and G a monic Grébner basis for (P) (where monic means that
the coefficients of the leading monomials of all the polynomials are 1).

Property 1. P =0 has a solution if and only if 1 ¢ G.

Property 2. Let H be the set of all leading terms occurring in G. Then the
following statements are equivalent:
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1. P has finitely many solutions over C,

2. For all i, there exists m; such that (z;)™ € H.

The first property is a criterion for solvability, and the second property
implies, when using the lexicographic ordering, that a subset of the equations
coming from the polynomials of the Grobner basis is a system of triangular
form and can be solved if univariate polynomial equations can be solved.
The fact that (z;)™ is the leading term of a polynomial implies that the
variables z1,...,x;—1 do mot occur in the polynomial. For example the
polynomial with (z,,)™" as leading term is univariate (with the only variable
Zn). Analogously, there is a polynomial containing z,, 1 and z,, only, etc.

B.2 Completing the proof of Theorem 6

Proof that Condition 2 is sufficient. Let |H| = f(p) for some non-constant
polynomial (with integer coefficients) f(x) dividing ¥ —1, where N = O(1).

We show first that we can assume without loss of generality that f(x)
equals a cyclotomic polynomial ®,(z) for some n = O(1). The cyclotomic
polynomials are the irreducible factors of the polynomials ¥ — 1 over the
ring Z of integers (see for example [24]). More precisely, we have

¥ —1=]] ®u(=),

d|N

and the polynomials ®, are irreducible over Z. The degree of @, (x) is ¢(N),
where ¢ is Euler’s totient function. Because the cyclotomic polynomials are
irreducible over Z, the (non-constant) polynomial f(z) (that divides 2V —1)
must be a multiple of at least one cyclotomic polynomial ®,(z).

We show that a subgroup H of GF(p™)* with |H| = &, (p) (forn = O(1))
is defined strongly (n, a)-algebraically over GF(p) for some a = (logp)°().
This proves the second part of Theorem 6, because a group which has a sub-
group with this property has the property itself (the same EMBED algorithm
can be used). Let

p(n)

@y (z) = Z ijj
=0

(with ¢; € Z). Let further ayg,...,a,—1 be a normal basis of GF(p") over
GF(p).
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We describe the EMBED algorithm for H. Let z,e € GF(p) be given.
We compute, by a polynomial number of algebraic operations in GF(p), an
element 8 = (0y,...,0p—1) such that = + e is one of the coordinates of 3,
for instance z + e = [y. Again, we need an alternative characterization of
the fact that 8 € H in terms of the GF(p)-coordinates of 3. The following
conditions are equivalent for § =) f;«;.

BeH & pfl=1

n—1 Y eipi
o (z @-ai) 1

i=0
©(n) n—1 P\ 7
=4 (Z ﬂZOAZ> =1
j=0 \ \i=0
o(n) /n—1 G
Aad (Z ﬁz‘az‘ﬂ) =1
j=0 \i=0
n—1 ¢ n—1 —G
o 11 (z @-aiﬂ-) I (z ﬁ,-am-) 0.
;>0 \i=0 ;<0 \i=0

In the fourth step, we have made use of ﬁlpj = 0; (because 8; € GF(p))

and of ' = a;yj (by the definition of the normal basis). The last condition
corresponds to a system of n polynomial equations (with GF(p)-coefficients)
in the G;, where the maximal degree D of the polynomials is bounded by

D < max C; s < -max|c;| .
<maxd 36, 3 lol { < pln) - max]c
c; >0 c; <0

As in the first part of the proof, the EMBED algorithm assigns x + e to one
of the (;’s, random values to some of the other (3;’s, and solves the arising
equations over GF(p) for the remaining §;’s. Because |H|/p" ~ 1/p"~—#("),
i.e., approximately every p" #("-th element 8 of GF(p") is also an element
of H, we have to solve the equations for n — ¢(n) different coordinates
B; simultaneously in order to have an expectation of one solution. (If no
solution is found, the algorithm reports failure.)

Using Grobner bases, this system of polynomial equations can now be
transformed into an equivalent system of triangular form (see Section B.1).
The computation of the Grobner basis uses only algebraic operations in
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GF(p), and its complexity is of order O(D"") (see [16]). The triangular
system of equations can be solved by the Cantor-Zassenhaus algorithm for
solving univariate polynomial equations (see in the first part of the proof of
Theorem 6).

According to the result of Gianni and Kalkbrener (see [16]), it suffices to
solve a subset of n — p(n) equations. The first polynomial has to be solved
once, the second one D' times (where D' is defined as in (14); the reason is
that in the worst case, the first polynomial has D’ different solutions), the
third one (D')? times, etc. This yields O((D')") executions of the Cantor-
Zassenhaus algorithm. (The effective number of executions will be much
smaller in a typical case, since only about one solution is expected.)

The expected complexity of the required executions of the EMBED algo-

rithm is polynomial in logp (and the algorithm uses only algebraic opera-
tions in GF(p)) if n = O(1). a

Appendix C: Algebraic algorithms solving the DH
problem

The results described in this appendix are based on the following observa-
tion. Assume that not only a DH oracle for a group G, but also an efficient
algorithm which solves the DH problem in an entire class of groups, such
as elliptic curves over a finite field or the groups GF(p)*, is given. If this
algorithm additionally has the property that it uses only algebraic opera-
tions in the underlying field, then it can be executed on inputs that are
not explicitly known, but only implicitly represented (in the sense of Sec-
tion 3). This allows to iterate the reduction algorithm described in Section 3,
i.e., computing discrete logarithms in G is reduced to the same problem in a
group GF'(p)*, which is further reduced to the DL problem of another group
GF(q)*, and so on.

We give an example. Assume that polynomial-time algorithms exist for
solving the DH problem in all the groups GF'(p)*, and that these algorithms
use algebraic operations in GF(p) only. Let again B = (log|G|)°™) be a
smoothness-bound, py a prime factor of |G| greater than B, and let p; be
the only prime factor of py — 1 greater than B. Assume further that p; is
the only prime factor of p;_1 — 1 greater than B for all ¢ = 2,...,k, and
that py —1 =: T =[], ;" is B-smooth, and k = O(1). Given a = g¢°, it is
possible to compute xg = s (mod py), xg € GF(pg), in polynomial time as
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follows when given a DH oracle for G. Let

1 —1
hO::@’ hz:lei (fOI"I::].,...,k),
bo Di
and let

GF(pi)* = (ci) (fori=0,...,k—1).

If zyp # 0, then zp = ¢y° (in GF(po)), and ¢° is an implicit representation
of zy. Since pg — 1 has a large prime factor p;, wg modulo p; cannot be
obtained directly. But z; = wq (mod p1) (with x; € GF(p1)) can be written
as 1 = ¢;* (in GF(p1), if 1 # 0), and ¢° is a “double-implicit” representa-
tion of 1. Our assumptions allow efficient computation with these elements
of GF(p1) which are “double-implicitly” represented. For example, an ad-
dition of two GF'(p1)-elements requires multiplication of the corresponding
implicitly represented GF'(pg)*-elements and can be obtained by a call to
the DH oracle for G. A multiplication in GF(p;)* is done by an oracle
call for GF(pg)* with implicitly represented arguments and an implicitly
represented answer. This works (in polynomial time) because of the stated
properties of the DH algorithm for GF (pg)*.

Analogously, computation with (k+1)-times implicitly represented argu-
ments is possible in the smooth group GF(pg)*. The index-search problem
for the list T,

(3

hic

hjc
gh’OCO 1
t=0,...,r;—1

and the element -
T, Yk
h 2
hlcl"' kk
hocy

9

which can be obtained in polynomial time by computation with multiply im-
plicitly represented arguments, is solved and leads to wy modulo r;. When
this is done for all prime powers r;", wy is computable modulo 7. Then
zp = ¢, * (in GF(py)), and one can get wy,_; modulo p;_1 —1 in polynomial
time because the other prime factors of py_1 — 1 are smaller than B. Finally,
we obtain wy modulo pg — 1 and xy.

Remark. The reason for assuming that p;_1 — 1 has only one large prime
factor p; is that otherwise it would not be possible to find the factors of
pi—1 — 1 in polynomial time. When these factors are given, then the condi-
tion is unnecessary.
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Theorem 13 Let P be a fized polynomial. Let G be a cyclic group with the
property that all prime factors py of |G| greater than B := P(log|G|) are
single, and that for all such prime factors there exist k = O(1) and primes p;
(i=1,...,k) such that p; is the only prime factor of pj_1 —1 greater than B
fori=1,...,k, and pp — 1 is B-smooth. Assume further that a polynomial-
time algorithm is given which solves the DH problem in the groups GF(p)*
and uses algebraic operations in GF (p) only. Then, breaking the DH proto-
col and computing discrete logarithms are polynomial-time equivalent in G.

O

The process works in an analogous way if some of the used groups are cyclic
elliptic curves or Jacobians, provided an efficient algebraic (with respect to
the underlying field GF'(p)) DH algorithm is given for these groups.

Appendix D: Construction of groups for which a
reduction of the DL problem to the DH problem is
efficiently constructible

It appears desirable to use a group G in the DH protocol for which the
algorithm reducing the DL problem to the DH problem can easily be found.
However, such reasoning should be used with care because it is conceivable
that knowledge of the auxiliary groups makes computing discrete logarithms
easier. There are three possible scenarios:

1. When given G it is easy (also for the opponent) to find suitable aux-
iliary groups.

2. The designer of the group G knows suitable auxiliary groups but they
are difficult to find for an opponent.

3. The designer of the group G knows that suitable auxiliary groups exist,
without knowing them.

Note that the second case can always be transformed into the first by pub-
lishing the suitable auxiliary groups. Of course, because this information
can only help an opponent in breaking the DH protocol, there is no reason
for the designer of the group to make it public.

Constructing a group G of the third type is not difficult: choose a (secret)
arbitrary large smooth number m and search for a prime p in the interval

46



[m—2y/m+1,m+2y/m+1]. A group G whose order contains only such large
prime factors satisfies the third property. Note that it is easy to construct,
for a given n, a group G for the DH protocol whose order is a multiple of
n. One possibility is to find a multiple [ of n (where [/n is small) such that
I +1 is prime and to use G = GF(l + 1)*. An alternative is to use the
construction of Lay and Zimmer [22] for finding an elliptic curve of order n.

The second case is somewhat more involved. Primes p for which the
designer knows an auxiliary group over GF'(p) can be obtained by choosing
a large smooth number m and using the method of Lay and Zimmer [22]
for constructing a prime p together with an elliptic curve of order m. When
given such prime factors of the group order, a group G can be found as
described.

We now consider efficient constructions for the first case. We generalize
an algorithm, presented in [47] by Vanstone and Zuccherato, for constructing
a large prime p such that either a quarter of the curves y? = 22 — Dz or
every sixth curve of the form y? = 23 + D have smooth order. First, we
construct primes p = a? + (k &+ 1)? (for a fixed k with [ digits) such that
a® + k2, which is then one of the possible orders of the curves y?> = 23 — Dz
over GF(p) (see (4)), is smooth.

Let I'-digit numbers 1, x2, y1, and yo be chosen at random. Define

u+ vt = (.1'1 + ylz')(xg + yQi) ,
that is

U =TTy — Y1Y2, UV = T1Y2 + Tay1 -

Then u and v have at most 2!’ digits. If ged(u, v) divides k (otherwise choose
again), one can compute numbers ¢ and d (of at most 2I" + [ digits) such
that

cv+du=k.

Define
a:=cu—dv,

and restart the process if a is even. Then
a+ki=(c+di)(u+vi) = (c+di)(z1 + y1i)(x2 + y2i)

and
a® + k2 = (& + &) (2} + v?) (23 + v3) -

47



The process is repeated until a? + k2 is s-digit-smooth, which happens with
probability approximately

4’ 421 21’ 21’
A"+ 20\ 20\ 7= [2'\ "~
=) G ()
(according to (1)), and smoothness can be tested with the elliptic curve
factoring algorithm [23]. Because a and k are odd, exactly one of the ex-
pressions a + (k £+ 1)i is congruent to 1 modulo 2+ 2i. Let o :=a+ (k£ 1)1,
respectively. Repeat the computations until

p:=aa=a’+ (k+1)?

is prime. According to (4), a quarter of the curves y? = x3 — Dx over GF(p)
have smooth order a? + k2. Hence p is an (8! 4 2I)-digit prime such that
an elliptic curve with s-digit-smooth order is constructible over GF'(p). The
expected number of trials is

al’ al’

o[ (42 f’.(zl')s.(sml) | (15)

S S

In a similar way, primes can be constructed such that curves of type
y? = 2% + D have smooth order. More precisely, one can generate primes
p=a?—a(k £1) + (k £1)? such that a®> — ak + k? is one of the possible
orders of the curves y? = 22 + D over GF(p) (see (5)) and s-digit-smooth.

In case of a small k, an L-digit prime p such that an s-digit-smooth curve

is constructible over GF'(p) can be found by

trials instead of

trials when varying p among L-digit numbers until p is prime and one of
the considered curves is s-digit-smooth. For example, a 100-digit prime p
such that a 10-digit-smooth curve over GF'(p) is constructible can be found
by approximately 3 - 108 trials (instead of about 10! trials when using the
straightforward strategy).
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