Abstract Models of Computation in
Cryptography

Ueli Maurer*

Department of Computer Science,
ETH Zurich, CH-8092 Zurich, Switzerland
maurer@inf.ethz.ch

Abstract. Computational security proofs in cryptography, without un-
proven intractability assumptions, exist today only if one restricts the
computational model. For example, one can prove a lower bound on the
complexity of computing discrete logarithms in a cyclic group if one con-
siders only generic algorithms which can not exploit the properties of the
representation of the group elements.

‘We propose an abstract model of computation which allows to capture
such reasonable restrictions on the power of algorithms. The algorithm
interacts with a black-box with hidden internal state variables which al-
lows to perform a certain set of operations on the internal state variables,
and which provides output only by allowing to check whether some state
variables satisfy certain relations. For example, generic algorithms corre-
spond to the special case where only the equality relation, and possibly
also an abstract total order relation, can be tested.

We consider several instantiation of the model and different types of
computational problems and prove a few known and new lower bounds
for computational problems of interest in cryptography, for example that
computing discrete logarithms is generically hard even if an oracle for
the decisional Diffie-Hellman problem and/or other low degree relations
were available.

1 Introduction and Motivation

1.1 Restricted Models of Computation

Proving the security of a certain cryptographic system means to prove a lower
bound on the hardness of a certain computational problem. Unfortunately, for
general models of computation no useful lower bound proofs are known, and it is
therefore interesting to investigate reasonably restricted models of computation
if one can prove relevant lower bounds for them.

In a restricted model one assumes that only certain types of operations are
allowed. For example, in the monotone circuit model one assumes that the circuit
performing the computation consists only of AND-gates and OR-gates, excluding
NOT-gates. Such a restriction is uninteresting from a cryptographic viewpoint
since it is obvious that an adversary can of course perform NOT-operations.

* Supported in part by the Swiss National Science Foundation.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 1-{I2] 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 U. Maurer

Nevertheless, some restricted models are indeed meaningful in cryptography,
for example the generic model which assumes that the properties of the repre-
sentation of the elements of the algebraic structure (e.g. a group) under con-
sideration can not be exploited. In view of the fact that for some problems, for
example the discrete logarithm problem on general elliptic curves, exploiting the
representation is not known to be of any help and hence generic algorithms are
the best known, such an assumption is reasonable from a practical viewpoint

The purpose of this paper is to provide a simple framework for such restricted
models of computation and to prove some lower bounds. Generic algorithms
are the simplest case. Some of the presented results are interpretations and
generalizations of previous results, for instance of [10] and [4].

1.2 Generic Algorithms and Computing Discrete Logarithms

In order to compute with the elements of a set S (e.g. a group), one must repre-
sent the elements as bitstrings (without loss of generality). A representation is
a bijective mapping from S to the set of bitstrings. A generic algorithm works
independently of the representation. The term generic means that one can not
exploit non-trivial properties of the representation of the elements, except for
two generic properties that any representation has. First, one can test equality of
elements, and second one can impose a total order relation < on any representa-
tion, for example the usual lexicographic order relation on the set of bitstrings.
However, one can generally not assume that the representation is dense or sat-
isfies any regularity or randomness condition.

In order to motivate the model to be introduced, we briefly discuss generic
algorithms for computing discrete algorithms in a cyclic group G. A cyclic group
G of order n, generated by a generator g, is isomorphic to the additive group Z,,.
A generic algorithm for computing the discrete logarithm (DL) z of an element
b = ¢* to the base g in G can be modeled as follows. The algorithm is given a
black-box which contains x. It can also input constants into the boxd and add
values in the box. The only information reported back from the box is when an
equality (collision) between two computed elements occurs. The algorithm’s task
is to extract x by provoking collisions and computing x from the collision pattern.
The order relation allows to establish ordered tables of the generated values and
thus reduces the number of equality tests required, but it does not allow to reduce
the number of computed values and is ignored in most of the following.

If one is interested in proving a lower bound on the number of operations
for any generic algorithm, then one can consider the simpler objective of only
provoking a single collision and that all equalities of elements are reported for
free. Since only additions and the insertion of constants are allowed, every value
computed in the box is of the form ax 4+ b (modulo n) for known values a and

! In contrast, for computing discrete logarithms in Z, for a prime p, quite sophisti-
cated algorithms are known (e.g. index calculus) which exploit that the elements are
integers that can be factored into primes.

2 One can also assume that the box contains only 1 and z initially and constants must
be computed explicitly from 1 by an addition-and-doubling algorithm.

Abstract Models of Computation in Cryptography 3

b. For uniform x the probability that two such values ax + b and a’x + b’ collide
is easily seen to be at most 1/¢, where ¢ is the largest prime factor of n. Hence
the total probability of provoking a collision is upper bounded by (S) /q and
therefore the running time of any algorithm with constant success probability is
at least O(y/q).

The simplest non-trivial generic DL algorithm is the so-called baby-step
giant-step algorithm with complexity O(y/nlogn). It need not know the group
order n, an upper bound on n suffices, and it is the best known algorithm when
the group order is unknown. The Pohlig-Hellman algorithm [7] is also generic
and a bit more sophisticated. It makes use of the prime factorization of n and
has complexity O(,/qlogq), which is essentially optimal.

1.3 Discussion and Generalization of the Model

This view of a generic algorithm appears to be simpler than the model usu-
ally considered in the literature, introduced by Shoup [10], where one assumes
that access to group elements is via a randomly selected representation. This
complicates the random experiment in which the algorithm’s success probabil-
ity is to be analyzed. Also, in a realistic setting one has no guarantee that the
representation corresponds in any way to a random mapping.

As a generalization of the described approach, one can also model that one
can exploit certain additional information from the representation of the ele-
ments, for instance that one can test certain relations efficiently. As an example,
one can imagine that one can efficiently test for any three elements =,y and z
whether xy = z, which corresponds to assuming the availability of a decisional
Diffie-Hellman (DDH) oracle. For this setting one can still prove an O(¥/q) lower
bound for the discrete logarithm problem.

2 An Abstract Model of Computation

2.1 The Model

We consider an abstract model of computation characterized by a black-box
B which can store values from a certain set S (e.g. a group) in internal state
variables V1, Vs, ..., V,,. The storage capacity m can be finite or unbounded.

The initial state consists of the values of V¢ := [V,..., V4] (for some d < m,
usually d is 1,2, or 3), which are set according to some probability distribution
Py (e.g. the uniform distribution).

The black-box B allows two types of operations, computation operations on
internal state variables and queries about the internal state. No other interaction
with B is possibleE We give a more formal description of these operations:

3 This model captures two aspects of a restricted model of computation. The com-
putation operations describe the types of computations the black-box can perform,
and the state queries allow to model precisely how limited information about the
representation of elements in S can be used. A quantum computer is another type of
device where only partial information about the state can be obtained, but it could
not be captured in our model.

4 U. Maurer

— Computation operations. For a set IT of operations on S of some arities
(nullary, unary, binary, or higher arity), a computation operations consist of
selecting an operation f € IT (say t-ary) as well as the indices i1, ... 411 <
m of t + 1 state variablesf B computes f(V;,,...,V;,) and stores the result
in Vit+1

— Queries. For a set X of relations (of some arities) on S, a query consist of
selecting a relation p € X' (say t-ary) as well as the indices 41, ...,4 < m of
t state variables. The query is replied by p(V;,,..., V;,).

A black-box B is thus characterized by S, I, ¥, m, and d. As mentioned
above, one can include an abstract total order relation <.

2.2 Three Types of Problems

We consider three types of problems for such black-boxes, where the problem
instance is encoded into the initial state of the device.

— Extraction: Extract the initial value z of V; (where d = 1)[

— Computation: Compute a function f : S — S of the initial state within B,
i.e., one must achieve V; = f(x1,...,xq) for some (known) i, where x1, ..., 24
are the initial values of the state variables V1,..., Vj.

— Distinction: Distinguish two black-boxes B and B’ of the same type with
different distributions of the initial state V¢,

An algorithm for solving one of these problems is typically assumed to be
computationally unbounded, but it is restricted in terms of the number k£ of
interactions with the black-box it can perform. The memory capacity m can
also be seen as a parameter of the algorithm.

One is often only interested in the computation queries, especially when
proving lower bounds, and can then assume that, for every (say t-ary) relation
p € X, B provides all lists (i1, ...,4;) such that p(u;,,...,u;,) for free. We prove
lower bounds in this model.

The success probability of an algorithm is taken over the choice of the initial
state V1, ..., Vy and the (possible) randomness of the algorithm. The advantage
of a distinguisher is defined as usual.

3 Concrete Settings

In this section we consider a few concrete instantiations of the model which are
of interest in cryptography.

4 This information is the input to B.

5 A special case are constant functions, i.e., the operation of setting an internal state
variable V; to a particular value ¢ € S. If m is unbounded, then one can assume
without loss of generality that each new result is stored in the next free state variable.

5 More generally, one could consider the problem of extracting more general informa-
tion about the initial state. This can be formalized by a function g : S — Q for
some Q, where the task is to guess g(Vi,..., V).

Abstract Models of Computation in Cryptography 5

3.1 Notation

We introduce some notation. Let C denote the set of constant (nullary) opera-
tions, which correspond to inserting a constant into the black-box. For a ring
S, let £ denote the set of linear functions (of the form a1V; + -+ 4+ a4Vy) on
the initial state V<. For a multiplicatively written operation (e.g. of a ring) S,
let square denote the binary relation {(z,y) : y = 22}, let power(e) denote
{(z,y) : y = ¢}, and let prod denote the ternary relation {(z,y, z) : z = xy}.

For a given set IT of operations, let II be the set of functions on the initial
state that can be computed using operations in II.

3.2 Extraction Problems with Constant and Unary Operations

The simplest case of an extraction problem to consider is when IT = C and
Y = {=}, i.e.,, one can only input constants and check equalityEl It is trivial
that the best strategy for the extraction problem is to randomly guess, and the
success probability of any k-step algorithm is bounded by k/|S], i.e., the com-
plexity for achieving a constant success probability is O(]S|). This bound holds
independently of whether one counts equality checks or whether one assumes a
total order < on S. This bound is trivially achievable with constant memory m.

If one would also allow to check a more general relation than equality (i.e.,
X = {=, p} for some p), then better algorithms may exist. But the above upper
bound generalizes easily to kd/|S|, where

d=max|{v €S :upvVvpu}|
u€sS

is the maximal vertex degree of the relation graph. Note that d = 1 for the
equality relation. If d is large, there can exist efficient algorithms. For example,
if X = {=,<} and S is totally ordered by the relation <, then one can use the
binary search algorithm with running time O(log |S|), which is optimalﬁ It may
be interesting to consider other relations.

We return to the case X' = {=} but now allow some unary operations.

Theorem 1. Let x be a group operation on S, let II =CU{x— z*xa|a € S}
consist of all constant functions and multiplications by constants, and let X =
{=}. The success probability of every k-step algorithm for extraction is upper
bounded by 1k*/|S|, and by km/|S| if m is bounded.

Proof. We use three simple general arguments which will be reused implicitly
later. First, we assume that as soon as some collision occurs (more generally, some
relation in X is satisfied for some state variables) in the black-box, the algorithm

" This corresponds to a card game where one has to find a particular card among n
cards and the only allowed operation is to lift a card, one at a time.

8 Note that the previously discussed order relation < can not be used to perform
a binary search because it is not known explicitly, but only accessible through an
oracle.

6 U. Maurer

is successfull One can therefore concentrate on algorithms for provoking some
collision by computing an appropriate set of values in the black-box.

Second, we observe, as a consequence of Lemma 2lin Appendix Bl that if the
only goal is to provoke a deviation of a system from a fixed behavior (namely
that it reports no collisions), then adaptive strategies are not more powerful than
non-adaptive ones.

Third, for lower-bound proofs we can assume that an algorithm can not only
perform operations in IT but can, in every step, compute a function in IT (of
the initial state V). This can only improve the algorithm’s power. Without
loss of generality we can assume that only distinct functions are chosen by the
algorithm.

In the setting under consideration, the composition of two operations in I7 is
again in I, i.e., Il = II. For all x € S and distinct a and b we have zxa # = xb.
Thus collisions can occur only between operations of the form = — x x a and
constant operations. Let u and v be the corresponding number of operations
the algorithm performs, respectively. Then the probability of a collision is upper
bounded by uv/|S|. The optimal choice is u = v ~ k/2, which proves the first
claim.

If m is finite, then in each of the k steps the number of potential collisions is
at most m — 1. The total number of x for which any of these collisions can occur
is at most k(m — 1). A

The implied lower bound & = O(y/n) for constant success probability can
essentially be achieved even by only allowing a certain single unary operation,
for example increments by 1 when S = Z,, ie., IT = CU{z — xz + 1}. This
is the abstraction of the baby-step giant-step (BSGS) algorithm: One inserts
equidistant constants with gap ¢ & /n and increments the secret value x until
a collision with one of these values occurs. If one considers a total order relation
=< one can generate a sorted table of stored values 1

3.3 The Group {0,1}*

We consider the group {0,1}* with bit-wise XOR (denoted @) as the group
operation. As an application of Theorem [l we have:

Corollary 1. For S = {0,1}, IT = CU{®} and X = {=} the success probability
of every k-step extraction algorithm is upper bounded by ik22*£.

Proof. Any sequence of operations is equivalent wither to a constant function
or the addition of a constant, i.e., the set II of computable functions is IT =
CU{r®a|ac {0,1}*}. Hence we can apply Theorem [II A

9 Phrased pictorially, we assume a genie who provides z for free when any collision
occurs.

10 Note that the BSGS algorithm can also be stated as an algorithm for a group with
group operation x, where IT = {1,*}, ¥ = {=, =<}, and the addition operation is
needed to compute other constants from the constant 1.

Abstract Models of Computation in Cryptography 7

It is easy to give an algorithm essentially matching the lower bound of O(2¢/2)
implied by the above corollary.

3.4 Discrete Logarithms in Cyclic Groups

We now consider the additive group Z,. The extraction problem corresponds to
the discrete logarithm (DL) problem for a cyclic group of order nl

In the sequel, let p and g denote the smallest and largest prime factor of n,
respectively.

Theorem 2. For S =Z,, Il = CU{+} and ¥ = {=} the success probability
of every k-step extraction algorithm is upper bounded ékz/q and by km/q if the
memory m is bounded.

Proof. We have IT = L = {ax + b | a,b € Z,}. As argued above, we need to
consider only non-adaptive algorithms for provoking a collision. Consider a fixed
algorithm computing in each step (say the ith) a new value a;x+b;, keeping m—1
of the previously generated values in the state. A collision occurs if a;x + b; =,
a;x +b; for some distinct ¢ and j, i.e., if (a; — a;)x + (b; — b;) =, 0. Considered
modulo ¢, this congruence has one solution for z (according to Lemma [IJ). The
total number of x for which any collision modulo ¢ (which is necessary for a
collision modulo n) can occur is bounded by k(m—1). If m is unbounded (actually
O(,/q) is sufficient), then the number of such z is bounded by (g) A

The case of unbounded m corresponds to the results of Nechaev [6] and
Shoup [10], but the proof in [10] is somewhat more involved because a random
permutation of the group representation is explicitly considered and makes the
random experiment more complex. The Pohlig-Hellman algorithm requires k =
O(,/qlog q) operations and essentially matches this bound. If the equality checks
are also counted in k and no order relation is available, then k = O(n) is required.

It is worthwhile to discuss the bounded-memory case. The theorem implies
that the complexity of every algorithm achieving a constant success probability
is O(n/m), which is linear in n for constant m. Since memory is bounded in
reality and m = O(,/q) is typically infeasible, it appears that this result is a
significant improvement of the lower bound over the unbounded memory case.
However, this is in conflict with the fact that the Pollard-p algorithm [§] requires
constant memory and also has (heuristic) complexity O(,/q). The reason is that
when a representation for S is explicitly available, then one can explicitly define
a function on S, for example to partition the set S in a heuristically random
manner into several subsets (three subsets in case of the Pollard-p algorithm).
It is interesting to model this capability abstractly in the spirit of this paper.

1 For other groups, such as {0, 1}Z discussed in the previous section, the extraction
problem can be seen as a generalization of the DL problem.

12 If no collision has occurred, one could allow the algorithm one more guess among the
values still compatible with the observation of no collision, but this can be neglected.

8 U. Maurer

3.5 The DL-Problem with a DDH-Oracle or Other Side Information

Let us consider the following natural question: Does a DDH-oracle help in com-
puting discrete logarithms? Or, stated differently, can one show that even if the
DDH-problem for a given group is easy, the DL-problem is still hard for generic
algorithms. It turns out that the DDH oracle can indeed be potentially helpful,
but not very much so.

Theorem 3. For S = Z,, II = CU{+} and X = {=,prod,} the success
probability of every k-step extraction algorithm is upper bounded by 2k + §k2.
Every algorithm with constant success probability has complexity at least O(¥/q).

Proof. Each computed value is of the form a;x + b; for some a; and b;. The
product relation is satisfied for three computed values if

(a3 + b;)(ajx + b;) = arx + by
for some 1, j, k, which is equivalent to
aiasz + (aibj -+ (Zjbi — ak)x + bzbj — bk = 0,

a quadratic equation for which has two solutions modulo g. There are k3 such
triples i, j, k. When also counting the potential collisions for the equality relation,
the number of x modulo ¢ for which one of the relations holds is bounded by
2k% + (5). A

A similar argument shows that when one considers a relation involving more
than three variables, then the complexity lower bound decreases. For example,
if we consider an oracle for the triple-product relation {(w,z,y, z) : z = wzy},
then we get a lower bound of O(y/q). It would be interesting to show that these
bounds can be (or can not be) achieved.

A similar argument as those used above shows that when an oracle for the
e-th power relation (i.e., z; = z¥) is available, then every generic algorithm has

complexity O(1/q/e).
3.6 Product Computation in Z,, and the CDH Problem

We now consider the computation problem for the product function (z,y) — xy
in Z,. This corresponds to the generic computational Diffie-Hellman (CDH)
problem in a cyclic group of order n analyzed already in [10]. Essentially the
same bounds can be obtained for the squaring function = — 22 in Z,. This
theorem shows that for generic algorithms, the DL and the CDH problems are
essentially equally hard.

Theorem 4. For S =Z,, Il =CU{+} and X = {=} the success probability of
every k-step algorithm for computing the product function is upper bounded by
; (k? 4+ 3k)/q.

Abstract Models of Computation in Cryptography 9

Proof. Again, to be on the safe side, we can assume that as soon as a collision
occurs among the values a;x + b;, the algorithm is successful. In addition, we
need to consider the events a;x + b; =, zy (for some i). For every ¢ there
are two solutions modulo ¢ (according to Lemma [I]). Hence the total number
of (modulo ¢) for which one of the collision events occurs is bounded by
(5) + 2k = L (k> + 3k). A

One can also show a O({/n) generic lower bound for the CDH-problem when
given a DDH-oracle.

3.7 Decision Problems for Cyclic Groups
We consider the decision problem for the squaring and product relations in Z,.

Theorem 5. For S =Z,, I =CU{+} and ¥ = {=} the advantage of every
k-step algorithm for distinguishing a random pair (z,y) from a pair (x,x?) is
upper bounded by k2 /p.

Proof. Again we can assume that as soon as a collision occurs among the values
a;x + b;, the algorithm is declared successful. Hence it suffices to compute the
probabilities, for the two settings, that a collision can be provoked, and take the
larger value as an upper bound for the distinguishing advantage. For the pair
(z,2?) the set of computable functions is {az? + bz + ¢ | a,b,c € Z,}, i.e., the
1th computed value is of the form

a; 7% + b + ¢

(in Z,) for some a;,b;,c;. For any choice of (a;,bi,c;) # (aj,b;,c¢;) we must
bound the probability that

a;? + bz +c¢ =, ajx2 +bjz+c
for a uniformly random value x. This is equivalent to
(a; —aj)z® + (bi — bj)z + (c; — ¢;) =n O.

There must be at least one prime factor p of n (possibly the smallest one) such
that (as, b, ¢;) and (a;, bj, ¢;) are distinct modulo p. The number of solutions x
of the equation modulo p is at most 2 (according to Lemma/[I]). Hence the total
probability of provoking a collision modulo p (and hence also modulo n) is upper
bounded by (S)Q/p < k?/p.

This should be compared to the case where the pair (x,y) consists of two
independent random values. The number of solutions (x,y) of

(@i —a;)y + (bi —bj)x + (ci —¢j) =40

for any choice of (a;, bi,¢;) # (a;, b4, ¢;) is at most p. Hence the collision prob-
ability is, for all generic algorithms, upper bounded by (g) /p < §k2 /p. This
concludes the proof. A

10 U. Maurer

A very similar argument can be used to prove the same bound for the decision
problem for the product relation, which corresponds to the generic decisional
Diffie-Hellman (DDH) problem in a cyclic group of order n (see also [10]). To
illustrate our approach we prove a lower bound for the DDH problem, even when
assuming an oracle for the squaring relation.

Theorem 6. For S =Z,, Il =CU{+} and X = {=, square,} the advantage
of every k-step algorithm for distinguishing a random triple (x,y, z) from a triple
(z,y,xy) is upper bounded by gk2/p.

Proof. We only analyze the case where the initial state is (x,y,zy). The set IT
of computable functions is {ax + by + cxy + d | a,b,¢c,d € Z,}, i.e., the ith
computed value is of the form

a;ix + by + civy + d;

for some a;,b;,¢;, d;. For any choice of (a;,bi,ci,d;) # (aj,b5,¢j,d;) we must
bound the probability that

a;r+by+cry+di =, ajr+bjy+ cjry +d;

or that
(aix+biy+cixy+di)2 =, a;x +bjy+cijry +d;

The latter is a polynomial relation of degree 4 that is non-zero if (a;, b;, ¢;, d;) #
(aj,bj,cj,dj), except when a; = b; = ¢; = aj = bj = ¢; = 0 and d? =, d;.
However, we need not consider this case since it is known a priori that such a
relation holds for all and y The fraction of pairs (z,y) for which one of these

relations can be satisfied modulo p is at most 5(’;) /D A

3.8 Reducing the DL-Problem to the CDH-Problem

If one includes multiplication modulo n in the set IT of allowed operations for
the generic extraction problem, i.e., one considers the extraction problem for the
ring Z,,, then this corresponds to the generic reduction of the discrete logarithm
problem in a group of order n to the computational Diffie-Hellman problem for
this group. The Diffie-Hellman oracle assumed to be available for the reduction
implements multiplication modulo n. There exist an efficient generic algorithm
for the extraction problem for the ring Z,, [3] (see also [5]) for most cases. For
prime n the problem was called the black-box field problem in [I].

Acknowledgments

I would like to thank Dominic Raub for interesting discussions and helpful
comments.

13 More formally, this can be taken into account when defining the system output
sequence to be deviated from according to Lemma

Abstract Models of Computation in Cryptography 11

References

1. D. Boneh and R. J. Lipton, Algorithms for black-box fields and their application to
cryptography, Advances in Cryptology - CRYPTO ’96, Lecture Notes in Computer
Science, vol. 1109, pp. 283—-297, Springer-Verlag, 1996.

2. W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Transactions
on Information Theory, vol. 22, no. 6, pp. 644-654, 1976.

3. U. Maurer, Towards the equivalence of breaking the Diffie-Hellman protocol and
computing discrete logarithms, Advances in Cryptology - CRYPTO 94, Lecture
Notes in Computer Science, vol. 839, pp. 271-281, Springer-Verlag, 1994.

4. U. Maurer and S. Wolf, Lower bounds on generic algorithms in groups, Advances
in Cryptology - EUROCRYPT 98, Lecture Notes in Computer Science, vol. 1403,
pp. 72-84, Springer-Verlag, 1998.

5. U. Maurer and S. Wolf, On the complexity of breaking the Diffie-Hellman protocol,
SIAM Journal on Computing, vol. 28, pp. 1689-1721, 1999.

6. V. I. Nechaev, Complexity of a deterministic algorithm for the discrete logarithm,
Mathematical Notes, vol. 55, no. 2, pp. 91-101, 1994.

7. S. C. Pohlig and M. E. Hellman, An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance, IEEE Transactions on Information
Theory, vol. 24, no. 1, pp. 106-110, 1978.

8. J. M. Pollard, Monte Carlo methods for index computation mod p, Mathematics
of Computation, vol. 32, pp 918-924, 1978.

9. J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identi-
ties, Journal of the ACM, vol 27, no. 3, pp. 701-717, 1980.

10. V. Shoup, Lower bounds for discrete logarithms and related problems, Advances
in Cryptology - EUROCRYPT ’97, Lecture Notes in Computer Science, vol. 1233,
pp. 256-266, Springer-Verlag, 1997.

A Polynomial Equations Modulo n

We make use of a lemma due to Schwartz [9] and Shoup [10] for which we give
a simple proof.

Lemma 1. The fmction of solutz’ons (x1,...,2k) € Zy, of the multivariate poly-
nomial equation p(x1,...,x5) =, 0 of degree d is at most d/q, where q is the
largest prime factor of n-

Proof. A solution of a multivariate polynomial equation p(x1,...,x) =, 0 over
Z,, is satisfied only if it is satisfied modulo every prime factor of n, in particular
modulo the largest prime ¢ dividing n, i.e., p(z1,...,25) =¢ 0. It follows from
the Chinese remainder theorem that the fraction of solutions (1, ...,z)) in Z&
is upper bounded by the fraction of solutions (z1,...,xx) in Z’;.

Note that Z, is a field. It is well-known that a univariate polynomial (i.e.,
k = 1) of degree < d over a field F' has at most d roots, unless it is the 0-
polynomial for which all field elements are roots. The proof for multivariate

' The degree of a multivariate polynomial p(x1,...,zs) is the maximal degree of an
additive term, where the degree of a term is the sum of the powers of the variables
in the term.

12 U. Maurer

polynomials is by induction on k. Let e be the maximal degree of xj; in any
term in p(x1,...,2x). The polynomial p(x1,...,xx) over Z, can be considered
as a univariate polynomial in x of degree e with coefficients of degree at most
d — e in the ring Z,[21, . ..,2k—1]. By the induction hypothesis, for any of these
coefficients the number of (x1,...,75_1) for which it is 0 is at most (d —e)g*~2,
which is hence also an upper bound on the number of tuples (x1,...,25_1) for
which all coefficients are 0, in which case all values for x; are admissible. If one
of the coefficients is non-zero, then the fraction of solutions for zj is at most
e/q. Thus the total number of solutions (z1,...,xx) in Z4 is upper bounded by

(d—e)d" 2 g+ (g—d+e)gd" % e<dg" ! A

B A Simple Lemma on Random Systems

Consider a general system which takes a sequence Xj, Xs,... of inputs from
some input alphabet X and produces, for every input X;, an output Y; from
some output alphabet). The system may be probabilistic and it may have
state.

Lemma 2. Consider the task of provoking, by an appropriate choice of the in-
puts X1,..., Xy, that a particular output sequence y* := [y1,...,yx] does not
occur. The success probability of the best non-adaptive strategy (without access
to Y1,Ys,...) is the same as that of the best adaptive strateqy (with access to
Y1,Y2,...).

Proof. Any adaptive strategy with access to Y7,Ys,... can be converted into an
equally good non-adaptive strategy by feeding it, instead of Y7, Ys, . . ., the (fixed)
values y1, ..., yk. As long as the algorithm is not successful, these constant inputs
Y1, Y2, . .. correspond to what happens in the adaptive case. A

	Introduction and Motivation
	Restricted Models of Computation
	Generic Algorithms and Computing Discrete Logarithms
	Discussion and Generalization of the Model

	An Abstract Model of Computation
	The Model
	Three Types of Problems

	Concrete Settings
	Notation
	Extraction Problems with Constant and Unary Operations
	The Group {0,1}
	Discrete Logarithms in Cyclic Groups
	The DL-Problem with a DDH-Oracle or Other Side Information
	Product Computation in Zn and the CDH Problem
	Decision Problems for Cyclic Groups
	Reducing the DL-Problem to the CDH-Problem

	Polynomial Equations Modulo n
	A Simple Lemma on Random Systems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

