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Abstract. Let G be an arbitrary cyclic group with generator g and order
|G| with known factorization. G could be the subgroup generated by g
within a larger group H. Based on an assumption about the existence
of smooth numbers in short intervals, we prove that breaking the Diffie-
Hellman protocol for G and base g is equivalent to computing discrete
logarithms in G to the base g when a certain side information string
S of length 2log |G| is given, where S depends only on |G| but not on
the definition of G and appears to be of no help for computing discrete
logarithms in G. If every prime factor p of |G| is such that one of a list of
expressions in p, including p — 1 and p + 1, is smooth for an appropriate
smoothness bound, then S can efficiently be constructed and therefore
breaking the Diffie-Hellman protocol is equivalent to computing discrete
logarithms.

1. Introduction

Two challenging open problems in cryptography are to prove or disprove
that breaking the Diffie-Hellman protocol [5] is computationally equivalent to
computing discrete logarithms in the underlying group and that breaking the
RSA system [17] is computationally equivalent to factoring the modulus. In
this paper we take a significant step towards the solution of the first of these
problems.

Let H be a finite group (written multiplicatively), and for g € H, let G = (g)
be the cyclic subgroup generated by g. The discrete logarithm problem for the
group H (or G) can be stated as follows: Given g and a € G, find the unique
integer x in the interval [0, |G|—1] such that g* = a, where z is called the discrete
logarithm of a to the base g. The discrete logarithm problem is sometimes also
defined as the generally easier problem of finding any x satisfying ¢g* = a, but if
|G| is known then the two problems are equivalent.

The Diffie-Hellman protocol allows two parties Alice and Bob connected by an
authenticated but otherwise insecure channel (for instance an insecure telephone
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line where Alice and Bob authenticate each other by speaker recognition) to
generate a mutual secret key which is computationally infeasible to determine
for a passive eavesdropper overhearing the entire conversation between Alice and
Bob.

The protocol works as follows. Let G = (g) be a cyclic group generated by g
for which the discrete logarithm problem is computationally infeasible. (It should
be pointed out that it is unknown whether such a group exists.) Specific groups
that have been proposed for application in this protocol are the multiplicative
groups of large finite fields (prime fields [5] or extension fields), the multiplicative
group of residues modulo a composite number [10, 11], elliptic curves over finite
fields, the Jacobian of a hyperelliptic curve over a finite field and the class group
of imaginary quadratic fields [2].

In order to generate a mutual secret key, Alice and Bob secretly choose
integers x4 and zp, respectively, at random from the interval [0, |G| — 1]. Then
they compute secretly y4 = g*4 and yp = ¢g”B, respectively, and exchange these
group elements over the insecure public channel. Finally, they compute z4p =
Yyt = g*4%8 and zpa = y3° = g"B74, respectively. Note that zap = zp4a, and
hence this quantity can be used as a secret key shared by Alice and Bob. More
precisely, they need to apply a function mapping elements of G to the key space
of a cryptosystem.

In contrast to digital signature schemes based on the discrete logarithm prob-
lem (e.g., [6],[19]), it is not required for the Diffie-Hellman protocol that the order
of the group be known. In this case, x4 and zp are chosen from a sufficiently
large interval. In fact, it has been pointed out (e.g., see [11]) that using groups
with unknown order may be advantageous, and the non-interactive public-key
scheme of [10] relies crucially on the fact that the group order is unknown.

2. Computing discrete logarithms and breaking the Diffie-
Hellman protocol

An eavesdropper knowing y4 and yp can in principle compute z4p by com-
puting the discrete logarithm x4 of y4 to the base g and then computing
zap = y5*. It is unknown in general whether there exists a faster method for
computing z4p from y4 and yp. This paper investigates the relation between
the two problems. More precisely, we investigate in which cases an efficient sub-
routine breaking the Diffie-Hellman protocol for the group G' and base g could
be used for computing discrete logarithms to the base g in G.

Definition 1. A Diffie-Hellman oracle (DH-oracle for short) for a group G with
generator g takes as inputs two elements a,b € G (where a = ¢® and b = g¥)
and returns the element g*¥.

A DH-oracle hence allows to multiply two logarithms without knowing them
explicitly but also without receiving the result explicitly. For instance, when
given ¢g” but not x one can use the oracle to compute g(w2), and more gener-
ally g¥® for any polynomial P with integer coefficients. Multiplications and



additions in the exponent are performed by using the oracle and the normal
group multiplication, respectively. Multiplication of the exponent with —1 can
be achieved by an inversion operation in the group. When |G| is known and
ged(z, |G|) = 1 one can compute g* from ¢° such that z = z=! (mod |G|) by
computing g% = g(’”lcl_l) using O(log |G]) calls to the DH-oracle. Hence the DH-
oracle allows one to compute gf(*) for any rational function f(z) with integer
coefficients. More generally, such a DH-oracle can be used to perform any algo-
rithm on implicitly given (but hidden) logarithms, provided that the algorithm
uses only addition, subtraction, multiplication and makes decisions only based
on testing equality of intermediate results.

For instance, one can compute g* from g® where 22 = z (mod |G|) by using
the algorithm of [14]. (A more efficient but unpublished algorithm is due to

Massey [9].) For the case |G| = p with p prime and p = 3 (mod 4) one can

D% " Our proof techniques will exploit these facts.

compute g* = g(*

When proving a reduction of a problem A to another problem B it is impor-
tant to state precisely what type of instances of B are generated by the reduction
process. If, in the process of solving problem A, the instances of problem B that
need to be solved are very special, then the reduction from A to B is not sat-
isfactory because it is conceivable that these special instances are easy to solve
even if the general problem B is nevertheless infeasible. This problem is one of
the reasons for the limited applicability to cryptography of the theory of NP-
completeness. One can show that this problem does not arise in our case because
a Diffie-Hellman oracle that answers correctly for a fraction € of the inputs can
be transformed into a uniform Diffie-Hellman oracle.

We are only interested in groups G for which the discrete logarithm problem
is believed to be intractable. The fastest algorithm for general groups, which is
attributed to Shanks and referred to as the baby-step giant-step algorithm, runs
in time O(y/nlogn) and requires space O(y/n), where n is a known upper bound
on |G|. If |G| is known, an algorithm of Pollard with essentially the same running
time but almost no space requirement can be used. However, its running time
has not been proven rigorously. Furthermore, it is well-known [15] that for an
arbitrary group G, discrete logarithms can be computed in time O(,/q) where ¢
is the largest prime factor of the order |G| of G. For certain specific groups, such
as the multiplicative group modulo p, there exist algorithms which run much
faster than the generic algorithms. We refer to [12] for a detailed discussion of
the discrete logarithm problem and algorithms for solving it.

The first published result on the equivalence between computing discrete
logarithms and breaking the Diffie-Hellman protocol is due to den Boer [4]. He
proved the equivalence for the group Z; when ¢ is a prime such that p(g—1) has
only small prime factors. In order to avoid any confusion it should be pointed
out that this is not equivalent to the condition that ¢ — 1 be smooth, and that
no efficient discrete logarithm algorithm is known for Z; for primes ¢ of the
described special form. In the following we give a generalized description of den
Boer’s idea which will serve as an introductory example for our proof technique.

For simplicity, assume that G is a group with prime order |G| = p where



p—1= H;=1 g; with g; < B for all j for some smoothness bound B, where the
g;’s are pairwise relatively prime. The arguments can easily be generalized to
arbitrary groups with known factorization of the group order, which also need
not be square-free if a DH-oracle for subgroups of G is also available. The group
G can be arbitrary, for instance a subgroup of a multiplicative group modulo a
larger prime (as suggested in [19] and in the recent NIST proposal for a digital
signature standard), or an elliptic curve. Let a = ¢g” be given. The case z = 0 is
easily detected because in this case a is simply the neutral element of G. Let ¢
be a primitive element of F,. Note that such a ¢ can easily be found when the
factorization of p — 1 is known. If z # 0, then we have

x=c¥ (mod p)

for some w satisfying 0 < w < p — 1. Instead of computing z directly we will
compute w by computing w modulo all the g; and using the Chinese remainder
theorem, i.e., by computing wy, ..., w, where

w=w; (mod g)

and 0 <w; < g; for j =1,...,7. We have

-1 -1
w- 2 wj-p (mod (p—1))
4qj 95

and hence
p—1 p—1 .p—1

r4% = ¢ Y = ¢

Thus w; can be determined by computing

=1

ge )
p—1

for t = 0,1,2, ... until this group element is equal to ¢g(* “ ). The latter group

element can be computed by O(logp) applications of the DH-oracle.

The total computational effort for computing z corresponds to O(log p) ap-
plications of the DH-oracle and O(B(logp)?/log B) group operations. For any
u < B (e.g., u = V/B), a baby-step giant-step-type time-memory tradeoff allows
to reduce the number of group operations by a factor u at the expense of in-
creasing the number of calls to the DH-oracle by a factor u and further requiring
a table of size u, which must also be sorted.

3. Towards an equivalence proof for all groups

The arguments of the previous section only apply to groups G for which
every large prime factor p of |G| occurs only once and is of the special form that
p — 1 is smooth with respect to a small bound B. Although no DL-algorithm is
known for groups of this type that is faster than for general groups of the same



size, it appears to be questionable whether it is secure to use such groups only
for the benefit of being able to prove the equivalence.

In this section we present a proof technique that applies to any group G. It can
be viewed as a generalization of the technique discussed in the previous section
in a similar sense as the elliptic curve factoring algorithm [8] is a generalization
of the (p — 1)-factoring algorithm [16]. In other words, we exploit the fact that
there exist collections of groups defined algebraically over F,, whose orders vary
over a certain interval.

Let the order of the group G be given by

G| =[] ps- (1)
=1

In the (generally unlikely) case that the square of a large prime p; divides |G|
(i-e., e; > 1), one needs a DH-oracle not only for the group G with generator g
but also for subgroups of G of the form (g?:), for z = 1,...,e; — 1. This case
will not be discussed further in this paper.
In the sequel, consider a cyclic group G = (g) and any single prime divisor p
of |G|, i.e., let
IGl=p-h

where ged(p, h) = 1. For instance, |G| may be given by (1) where p = p; and
e; = 1 for some i. Let a € G with a = g* be given and consider the problem of
computing z modulo p, i.e., computing the unique z’ satisfying

z =1z (mod p) (2)

and 0 < 2/ < p.

For any two group elements g% and g we can test whether z = 2’ (mod |G)
simply by testing equality of g* and gZ' in G. In order to test the more general
condition

z=2" (mod p)

we note that this condition is equivalent to
hz = hz' (mod |G|)
which is satisfied if and only if
()" =g" = (¢")" = ¢"*" (3)

Equality of logarithms modulo p can thus be tested by two exponentiations with
exponent h and a comparison in the group.

For the purpose of illustration we describe our proof techniques by applying
an elliptic curve over the field Fp, but it can be generalized to other groups
defined algebraically over F,, such as the multiplicative group of an extension
field or certain subgroups thereof, elliptic curves over extension fields of F, or
the Jacobian of hyperelliptic curves of F,.



Assume now that we know the parameters A and B of a cyclic elliptic curve
E 5(F,) over F,, which is defined as the set of points {(z,y) € F, x F, : y? =
2° + Az + B} together with the point O at infinity, where the order of the curve
is given by

T := #Eap(F,) = [[ 4 (4)
j=1

with ¢; < B for 1 < j <r. It is well-known that

p—2yp+1 < #EAB(F,) < p+2p+1 (5)

and that all orders in this range are taken on for some parameters A and B.
Furthermore, a theorem of Riick [18] implies that for each order in this interval
there exists a cyclic elliptic curve. We also refer to [13] for an introduction to
elliptic curves.

Very little is known about the existence of smooth numbers in the interval
(5) of interest for a given prime p. However, it is known [3] that for every fixed u,

w(n’nl/u)/n — uf(l—i—o(u))u

where 1(n,y) denotes the number of integers < n with no prime divisor > y.
This fact suggests that every integer n has the property P. defined below for
some ¢ > 1.

Definition 2. An integer n has property P, if there exists an integer b satisfying
n—2yn+1<b<n+2y/n+1 with no prime divisor greater than n¢/*, where
u is defined by u?* = n.

Conjecture. There exists a constant ¢ > 1 such that all sufficiently large n have
property P..

An even stronger conjecture is that the above conjecture holds for any ¢ > 1.
For example, let n be a 100-digit number and note that 10%° = 33%. One can
therefore expect to find an integer in the interval [n — 10°°,n + 105°] with no
prime divisor greater than 10°1°9/33 for some ¢. For ¢ = 1.1 and ¢ = 2 this bound
is approximately 2000 and 10°, respectively.

If p has a special form for which an elliptic curve with smooth order can
be constructed efficiently, then our proof technique described below allows to
prove that computing z’ can be reduced efficiently to breaking the Diffie-Hellman
protocol. If p has no special form but has property P, for some small ¢, our proof
technique allows to prove that for a general group G for which p divides |G| there
exists a small fixed piece of information (the elliptic curve parameters) which,
when given, allows to reduce the problem of computing z’ to breaking the Diffie-
Hellman protocol.

One can explicitly construct certain super-singular elliptic curves with known
order. For example, the curves defined over F, for p = 3 (mod 4) by the equation
y? = 23 + az have order p+ 1 as do the curves defined over F,, for p = 2 (mod 3)
by the equation y2 = x2 + b. An alternative group for exploiting the smoothness
of p+1 is the subgroup of order p+1 of F 2. This group can also be constructed



for that quarter of the primes (namely those with p # 1 (mod 12)) for which no
appropriate super-singular elliptic curve can be obtained.

Let us assume for now that a cyclic elliptic curve E = E4 g(F,) with smooth
order T = [[j_, q]fj is given and that we wish to compute z' according to (2)
where a = ¢* in G. Let P = (u,v) be a generator of E. We can consider z’ to
be the z-coordinate of a point on E4 g(F,). If there exists no such point, i.e., if
2% + Az + B is a quadratic non-residue modulo p, then an expected number of
only two random choices d € F,, is required until for 2" = z+d, (z")*+ Az" + B
is a quadratic residue modulo p. Let y be one of the corresponding y-coordinates,
i.e., let (z”,y) be a point on E. This point can be written as some multiple of
the generator P of E:

(", y)=w- P. (6)

If we can determine w, then we can compute z'" and hence z’ because we know d.

We now describe an efficient algorithm using the DH-oracle for computing w
from a = g%. Note first that we can compute g* = g% +42+B by two applications
of the DH-oracle and O(log A + log B) = O(logp) group operations. Here z is a
quadratic residue modulo p if and only if 2(P~1/2 =1 (mod p). This condition
is equivalent to

hz®=Y/2 = p (mod |G])
and thus also to

ghz(p—l)/z _ (g(z(p—l)/2)>h = g

Testing quadratic residuosity of z modulo p is thus equivalent to testing equal-
ity in G of two elements of G, which can be computed from g* by O(logp)
applications of the DH-oracle and O(logh) = O(log|G|) group operations. If
z is not a quadratic residue modulo p we can perform the same check for
g*t? for randomly selected d’s, until it is successful. For the first d for which
2z = (z +d)®+ A(z + d) + B is a quadratic residue modulo p we can compute g¥
from g* where y? = z (mod p) by using the DH-oracle in a modular square root
algorithm [9, 14]. Hence (z + d,y) is a point on E. This step requires O(log p)
calls to the DH-oracle.

We further note that for given pairs (¢“*,¢%*) and (g“2, g*2), where (u,v1)
and (uz,vs) are points on E (not known explicitly), we can compute the pair
(9“3, ¢"®) such that (uz,vs) = (u1,v1) + (uz2,v2) on E. This is achieved by using
a standard algorithm for addition on elliptic curves [13], where multiplications
modulo p are replaced by calls to the DH-oracle. Note that w1, v, us and v2 need
not be, and that u3 and vs generally will not be, in reduced form modulo p. If the
points on E are represented in affine coordinates as shown here, one such hidden
elliptic curve addition requires O(logp) calls to the DH-oracle. However, if the
points on E are represented in projective coordinates, only a constant number
of oracle calls are needed. The conversion from projective to affine coordinates
requires O(log p) oracle calls.

In order to compute z” (which satisfies z + d = z” (mod p)) we compute w
defined by (6) where y is such that (z + d,y) is a point on E (see above). Let



wjy for 1 < 3 <rand 0 <k < f; be defined uniquely by 0 < w;, < g; and

fi—1
w= Z wjkqf (mod g;”).
k=0

The number w can easily be computed from the w;;’s using the Chinese remain-
der theorem.

Consider a specific j for which we wish to determine wjo,...,wj 1. We
have
T
—w = — wjp (modT)
q; q;

and therefore

W) = Tow') = (Zw)-p = (Dup)-r

a; qj j

on E. We can thus compute (g% ,¢%") from (g* ,g¥) by using O(logp) oracle
calls (for projective coordinates, O(log® p) for affine coordinates). Using “nor-
mal” group operations we can now compute (gh“', g’“"). We further compute
(ghw'  g"v¥) for t = 0,1,2,. .., where

T
o) = (1) P
q;

on E, using normal operations in G, and compare the pairs (¢"* , g"*"') and
(g", g"") as suggested by (3), until a match is found for some ¢, which is set
equal to wjo. Note that ¢ < g;, that is at most g; trials are needed.

The numbers w;j,, for m > 1 can be computed by a generalization of the
described method. This allows to prove the following theorem.

Theorem 1. Let G = {(g) be an arbitrary cyclic group with order |G| = [1;_, p{'.
If for each prime p; the parameters A; and B; of a cyclic elliptic curve E4, g, (pi)
with smooth order for a smoothness bound B are given, then discrete logarithms
in G can be computed using O(log® |G|) calls to the DH-oracle and O((B/ log B)
log? |G|) group operations. If e; > 1 for some i, then a DH-oracle for subgroups
of G is also required.

Corollary 2. For groups whose order is such that for every p; one can con-
struct an elliptic curve according to Theorem 1 (or another cyclic group with
smooth order defined algebraically over Fp, ), breaking the Diffie-Hellman proto-
col is equivalent to computing discrete logarithms. Among these groups are those
for which either p; — 1 or p; + 1 is smooth for all i.

Corollary 3. If the stated number-theoretic conjecture is true, then for every
group G = {g) with known order |G| there exists a side information string S
of length at most 2log |G| such that when given S, breaking the Diffie-Hellman
protocol for G and base g is polynomial-time equivalent to computing discrete
logarithms in G to the base g. If |G| contains multiple prime factors greater



than (log|G|)* for some fized k, then the equivalence only holds with respect to
breaking the Diffie-Hellman protocol for certain subgroups of G.

Remarks.

(1) The string S consists of appropriate elliptic curve parameters for all prime
divisors of |G|. It need not be assumed in Corollary 3 that |G| be known because
it can also be computed from S. Note that the order of G and its factorization are
known in many proposed cryptographic applications. In fact, it is often suggested
to use a group (or subgroup) of prime order.

(2) When the order of G is not known, it is conceivable that giving |G| could
be of some help in computing discrete logarithms in G. However, in those cases
where |G| is known, there seems to be no reason to believe that knowledge of S
could reduce the difficulty of the discrete logarithm problem, but this has not
been proved.

4. Concluding remarks

Let p be a prime factor of |G|. The proof technique presented in this paper
applies to any cyclic group F' (with generator f) with smooth order which is
defined algebraically over F, and whose elements are represented by vectors over
F,, provided it is possible to determine (by an algebraic computation) explicitly
an element of F' when the value of one of the coordinates is fixed. The idea is to
assign to this coordinate the (hidden) logarithm z implicitly given by ¢® and to
perform a computation using the DH-oracle to obtain the hidden values of the
other coordinates. This results in the disguised version of an element P of F.
The next step is to compute certain powers of f (in disguised form) using normal
group operations in GG, and to compare this disguised element of F’ with another
disguised element of F' obtained from P by calls to the DH-oracle. These tests
allow to compute explicitly the logarithm w of P (in F') to the base f. Given w
and f we can explicitly compute the group element containing z as one of the
coordinates. Examples considered in this paper were the multiplicative group of
F, proposed initially in [4] and elliptic curves over F,. The equivalence holds
in a strict sense (without side information S) only if the group F with smooth
order can be constructed explicitly.

It is conceivable that the application of hyperelliptic curves or some higher-
degree Abelian varieties could allow to remove the plausible but unproven number-
theoretic assumption from Theorem 3 because the relative sizes of the corre-
sponding intervals for the orders of the groups are much larger than for elliptic
curves. This would be similar to the generalization of the Goldwasser-Kilian
elliptic curve primality test [7] to hyperelliptic curves [1], which allowed to set-
tle the last unproven details in [7] and resulted in the first rigorously proven
polynomial-time primality test.

Corollary 2 implies that if one could explicitly construct elliptic curves with
smooth order for a given prime, then breaking the Diffie-Hellman protocol would
be equivalent to computing discrete logarithms for all groups, without side in-
formation S. However, because the solution of the same problem for composite



moduli would immediately yield an efficient factoring algorithm based on [§],
it appears quite unlikely that this problem can be solved efficiently for prime
moduli.

The results of this paper suggest to construct groups of prime order p for
use in the Diffie-Hellman protocol in a manner that an explicit group (defined
modulo p) with smooth order is known. Note that the description of the group
need not be published but only built into the system design in a secret manner.
However, it appears questionable whether using a group G with prime order
|G| = p such that p— 1 or p+ 1 is smooth is a good idea, although no efficient
discrete logarithm algorithms are known in this case. To find such an algorithm
is suggested as an open problem.
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