
Byzantine Fault-Tolerance with Commutative

Commands

Pavel Raykov1, Nicolas Schiper2, and Fernando Pedone2

1 Swiss Federal Institute of Technology (ETH)
Zurich, Switzerland

2 University of Lugano (USI)
Lugano, Switzerland

Abstract. State machine replication is a popular approach to increas-
ing the availability of computer services. While it has been largely stud-
ied in the presence of crash-stop failures and malicious failures, all ex-
isting state machine replication protocols that provide byzantine fault-
tolerance implement some variant of atomic broadcast. In this context,
this paper makes two contributions. First, it presents the first byzan-
tine fault-tolerant generic broadcast protocol. Generic broadcast is more
general than atomic broadcast, in that it allows applications to deliver
commutative commands out of order—delivering a command out of or-
der can be done in fewer communication steps than delivering a com-
mand in the same order. Second, the paper presents an efficient state
machine replication protocol that tolerates byzantine failures. Our pro-
tocol requires fewer message delays than the best existing solutions under
similar conditions. Moreover, processing of commutative commands on
replicas requires only two MAC operations. The protocol is speculative
in that it may rollback non-commutative commands.

1 Introduction

State machine replication is a popular approach to increasing the availability of
computer services [1, 2]. By replicating a service on multiple machines, hardware
and software failures can be tolerated. Although state machine replication has
been largely studied in the presence of crash-stop failures and malicious failures,
all existing protocols that provide byzantine fault-tolerance (BFT) (e.g., [3–7])
implement some variant of atomic broadcast, a group communication primitive
that guarantees agreement on the set of commands delivered and on their order.
In this context, this paper makes two contributions.

The first contribution of this paper is a byzantine fault-tolerant generic broad-
cast protocol. Generic broadcast defines a conflict relation on messages, or com-
mands, and only orders messages that conflict. Two messages conflict if their as-
sociated commands do not commute. For instance, two increment operations of
some variable x commute since the final value of x is independent of the execution
order of these operations. Generic broadcast generalizes atomic broadcast—the
two problems are equivalent when every two messages conflict. Previous generic

broadcast protocols appeared in the crash-stop model [8–10]; ours is the first
to tolerate malicious failures. The difficulty with generic broadcast stems from
the need to deliver commutative commands in two communication delays and
ensure that their delivery order, with respect to non-commutative commands,
is the same at all correct processes. To address this challenge under byzantine
failures we define Recovery Consensus, an abstraction that ensures proper or-
dering between conflicting and non-conflicting messages. The proposed protocol
requires n ≥ 5f + 1 replicas to tolerate f byzantine failures. We use Recovery
Consensus at the core of our generic broadcast protocol.

The second contribution of this paper is a state machine replication proto-
col that generalizes and improves current byzantine fault-tolerant state machine
replication protocols. Our protocol builds on our generic broadcast algorithm. A
naive implementation of state machine replication based on generic broadcast to
propagate commands to servers would lead to a best latency of three communi-
cation delays. We rely on speculative execution to provide an efficient algorithm
that executes commutative commands in two communication delays. The algo-
rithm is speculative in that it may rollback commands in some cases (i.e., when
non-commutative commands are issued). To summarize, the principal advantage
of the proposed state machine replication protocol is to allow fast execution of
commutative commands in two message delays. Moreover, when commands com-
mute servers only need to execute two MAC operations per command.

The remainder of the paper is structured as follows. Section 2 defines the
system model. Sections 3 and 4, respectively, present the Recovery Consensus
and generic broadcast protocols. We extend our generic broadcast protocol to
provide state machine replication in Section 5. Section 6 discusses related work
and Section 7 concludes the paper. Correctness proofs of the protocols can be
found in the appendix of the full version of this paper [11].

2 System model and definitions

We consider an asynchronous message passing system composed of n processes
Π = {p1, . . . , pn}, out of which f are byzantine (i.e., they can behave arbitrarily).
A process that is not byzantine is correct. The adversary that controls byzantine
processes is computationally bounded (i.e., it cannot break cryptographic prim-
itives) and cannot change the content of messages sent by one correct process to
another correct process. The network is fully connected and quasi-reliable: if a
correct process p sends a message m to a correct process q, then q receives m.3

We make use of public-key signatures to allow a process to sign a messagem [12].
We denote message m signed by process pi as 〈m〉σi

. We also use HMACs [13]
to establish a bidirectional authenticated channel between any two processes px
and py, with the notation 〈m〉σxy

indicating a message m signed with a secret
key shared between processes px and py.

3 The presented algorithms can trivially be modified to tolerate fair-lossy links, links
that may drop messages but guarantee delivery of a message m if m is repeatedly
sent. We assume quasi-reliable links to simplify the presentation of the algorithms.

Due to the impossibility to solve consensus in asynchronous systems prone
to crash failures [14], it is also impossible to solve atomic broadcast and generic
broadcast [15]. This impossibility is typically overcome by strengthening the
model with further assumptions (e.g., [16–18]). In this paper we assume the
existence of an atomic broadcast oracle [19]. Atomic broadcast is defined by the
primitives A-Bcast(m) and A-Deliver(m), where m is a message. It guarantees
the following properties:

– (Validity) If a correct process p A-Bcasts a message m, then p eventually
A-Delivers m.

– (Agreement) If a correct process pA-Delivers a messagem, then every correct
process q eventually A-Delivers m.

– (Integrity) For any message m, every correct process p A-Delivers m at most
once.

– (Order) If correct processes p and q both A-Deliver messagesm and m′, then
p and q A-Deliver them in the same order.

3 Recovery Consensus

In this section we introduce Recovery Consensus, an abstraction used by generic
broadcast to order messages whose associated commands do not commute, also
denoted as conflicting messages. Below, we provide an implementation of Recov-
ery Consensus that employs digital signatures for message authentication.

3.1 Problem definition

Recovery Consensus allows each process pi to propose a set of non-conflicting
messages NCSeti and a set of conflicting messages CSeti. The set NCSeti is
called non-conflicting since every pair of messages in it does not conflict, and
the set CSeti is called conflicting since for every message m ∈ CSeti there is a
message m′ ∈ NCSeti such that m and m′ conflict. Recovery Consensus ensures
agreement on a set of non-conflicting messages NCSet and on a set of conflicting
messages CSet. Additionally, it guarantees that if nchk − f correct processes pi
propose a message m, i.e., m belongs to either NCSeti or CSeti, where nchk is
a parameter of the problem, m will be part of either NCSet or CSet.

More formally, Recovery Consensus is defined by primitives
proposeRC(NCSeti, CSeti) and decideRC(NCSet, CSet). Provided that
every correct process pi invokes proposeRC(NCSeti, CSeti) and there are no
conflicting messages in NCSeti, the following properties are guaranteed:

– (Termination) Every correct process eventually decides on some pair of mes-
sage sets.

– (Agreement) If two correct processes decide on pairs of message sets (NCSet1,
CSet1) and (NCSet2, CSet2), thenNCSet1 = NCSet2 and CSet1 = CSet2.

– (Validity) If a correct process invokes decideRC(NCSet, CSet), then:

1. NCSet ∩ CSet = ∅.

2. If a message m belongs to nchk − f NCSeti sets of correct processes,
then m ∈ NCSet.

3. No two messages in NCSet conflict.
4. If a message m is in nchk − f sets NCSeti ∪CSeti of correct processes,

then m ∈ NCSet ∪CSet.

3.2 Solving Recovery Consensus

Algorithm Cabsign requires at least nchk correct processes, where nchk ≤ n −
f . It consists of a single task and works as follows. Each process pi starts by
atomically broadcasting the pair (NCSeti, CSeti) signed with pi’s signature—
in the algorithm, the signed message is denoted as 〈NCSeti, CSeti〉σi

(line 2).
Process pi then waits until it A-Delivered nchk unique and valid messages, that
is, messages from distinct sources that do not contain conflicting messages in
NCSetj (line 3). Detecting unique messages is done with signatures: if pi A-
Delivers two messages from the same source pj , then pi discards both messages
since pj is byzantine. By considering the first nchk unique and valid messages,
this ensures that at least nchk − f messages A-Delivered by pi were broadcast
by correct processes.

Algorithm Cabsign
Process pi Recovery Consensus algorithm with atomic broadcast and signatures

1: Procedure proposeRC(NCSeti, CSeti)
2: A-Bcast(〈NCSeti, CSeti〉σi

)

3: wait until [|GS| = nchk : GS
def
= {(NCSetj , CSetj) | A-Delivered unique and

4: valid 〈NCSetj , CSetj〉σj
from pj }]

5: NCSet← {m | ∃
⌈

nchk+1
2

⌉

NCSetj : (NCSetj , ·) ∈ GS and m ∈ NCSetj}
6: CSet← (

⋃

(NCSetj ,CSetj)∈GS
NCSetj ∪ CSetj)rNCSet

7: decideRC(NCSet, CSet)

Any message that appears in a majority of the nchk NCSetj sets will appear
in NCSet (line 5). This guarantees the third validity property, namely that no
two messages in NCSet conflict, since (i) the considered NCSetj sets at line 3
do not contain conflicting messages and (ii) any message in NCSet belongs to
a majority of NCSetj sets.

Let Qnchk−f be a quorum of nchk−f correct processes that propose a message
m as part of NCSeti, and let Qnchk

be a quorum of nchk processes, the number
of unique and valid A-Delivered messages processes consider at line 3. To ensure
that we include m in NCSet if m belongs to nchk − f NCSeti sets of correct
processes, the minimum size of the intersection between Qnchk−f and Qnchk

must
be ⌈nchk+1

2
⌉. Hence, nchk must satisfy inequality (nchk−f)+nchk ≥ n+⌈nchk+1

2
⌉.

Since nchk ≤ n− f , we conclude that Cabsign requires n > 5f .
Finally, the set of conflicting messages CSet consists of messages gathered

using atomic broadcast that are not part of NCSet (line 6). From the total order

property of atomic broadcast, correct processes gather the same set of pairs
(NCSetj , CSetj). Since NCSet and CSet are constructed from the gathered
pairs using a deterministic procedure, all correct processes agree on these two
sets.

4 BFT Generic Broadcast

We present a byzantine fault-tolerant generic broadcast protocol that we de-
note as PGB. This protocol relies on Recovery Consensus to handle conflicting
messages. We first define generic broadcast in our model and then present the
algorithm.

4.1 Generic Broadcast

Generic broadcast is defined by the primitives g-Broadcast(m) and g-Deliver(m),
where m is a message from the predefined set M, to which all messages belong.
We assume that each message broadcast has a unique identifier. Generic broad-
cast is parameterized by a symmetric relation ∼ on M×M. If (m,m′) ∈∼, or
m ∼ m′ for short, we say that m and m′ conflict or are conflicting messages. If
m and m′ conflict, then generic broadcast will order m and m′. If m and m′ do
not conflict, they can be delivered in any order.

Generic broadcast guarantees the following properties, adapted from [10] to
the byzantine failure model:

– (Validity) If a correct process p g-Broadcasts a message m, then p eventually
g-Delivers m.

– (Agreement) If a correct process p g-Delivers a messagem, then every correct
process q eventually g-Delivers m.

– (Integrity) For any message m, every correct process p g-Delivers m at most
once.

– (Order) If correct processes p and q both g-Deliver conflicting messages m
and m′ (m ∼ m′), then p and q g-Deliver them in the same order.

As noted in [10], atomic broadcast is a special case of generic broadcast when
all messages conflict with all messages, that is, ∼ = M × M. Thus, one could
question the difficulty of implementing generic broadcast since we assume the ex-
istence of an atomic broadcast primitive that could be used to implement generic
broadcast. The main idea of our generic broadcast protocol is that it allows fast
delivery (i.e., in two communication delays) of non-conflicting messages, a bound
that no atomic broadcast protocol can achieve in the general case [20].

4.2 Solving Generic Broadcast

The protocol is composed of two phases: an acknowledgment phase (ack) and a
check phase (chk). Consecutive ack and chk phases form a “round”. During the
ack phase processes g-Deliver non-conflicting messages in two message delays.

Algorithm PGB
Process pi generic broadcast algorithm

1: Initialization:
2: Received← ∅, G del← ∅, pending1 ← ∅, gAck del1 ← ∅, k ← 1
3: To execute g-Broadcast(m): {Task 1}
4: send(m) to all
5: g-Deliver(m) occurs as follows:
6: when receive(m) do {Task 2a}
7: Received← Received ∪ {m}

8: when receive(〈k, pendingkj , ack〉σij
) do {Task 2b}

9: Received← Received ∪ pendingkj

10: when receive(k, Sj ,chk) do {Task 2c}
11: Received← Received ∪ Sj

12: when
(

Receivedr (G del ∪ pendingk) 6= ∅

)

do {Task 3}
13: if (∀ m,m′ ∈ (ReceivedrG del) : m 6∼ m′) then
14: pendingk ← ReceivedrG del
15: send(〈k, pendingk, ack 〉σij

) to all processes pj
16: else

17: send(k, (ReceivedrG del),chk) to all ⊲ start of chk phase
18: proposeRC(k, pendingk, (Receivedr (G del ∪ pendingk)))
19: wait until decideRC(k,NCSetk, CSetk)
20: for each m ∈ NCSetk r (G del ∪ gAck delk) do g-Deliver(m)
21: for each m ∈ CSetk r (G del ∪ gAck delk) in ID order do

22: g-Deliver(m)
23: G del← G del ∪NCSetk ∪ CSetk

24: k ← k + 1, pendingk ← ∅, gAck delk ← ∅ ⊲ end of chk phase
25: end if

26: when ∃ m : [for nack processes pj : received 〈k, pendingkj , ack〉σij
{Task 4}

27: from pj and m ∈ (pendingkj r gAck delk) ∩ pendingk] do
28: gAck delk ← gAck delk ∪ {m}
29: g-Deliver(m)

atomic

atomic

In the chk phase, the protocol orders conflicting messages. Notice that PGB
does not require signatures to deliver non-conflicting messages.

Algorithm PGB consists of six concurrent tasks. Each line of the algorithm,
lines 20–24, and lines 26–29 are executed atomically. The following variables are
used by the algorithm: k defines the current round number, Received contains
all the g-Broadcast messages that the process has received so far, G del contains
all the messages that have been g-Delivered in the previous rounds, pendingk

defines the set of non-conflicting messages acknowledged by the process in the
current round, and gAck delk is the set of messages g-Delivered in the ack phase
of the current round.

When a process p wishes to g-Broadcast a message m, p sends m to all
(line 4). When receiving m, a process q adds m to its Received set (line 7) and
eventually checks whetherm conflicts with any message that was received but not

delivered yet (line 13). If it is not the case, then q adds m to its pendingk set and
acknowledges all messages in this set by sending pendingk to all (lines 14–15).4 A
process q g-Delivers m in the ack phase when q receives nack acknowledgments
form (lines 26–29). To prevent conflicting messages from being g-Delivered in the
ack phase despite f byzantine processes, nack must be greater than (n+ f)/2.

It is possible that q receives a message m′ that conflicts with m before re-
ceiving nack acknowledgments for m. In that case, q proceeds to the chk phase.
At this point, processes start by exchanging all messages that they received but
did not deliver in previous rounds (line 17). In doing so, all correct processes
eventually receive m and m′ despite potentially faulty senders, and enter the
chk phase. PGB then relies on Recovery Consensus to ensure agreement on the
set of non-conflicting messages NCSetk that were potentially g-Delivered in the
ack phase, and the set CSetk of conflicting messages to deliver at the end of the
current round. Correct processes invoke proposeRC with round number k, the
set of non-conflicting messages pendingk, and all the other messages that were
received but not delivered so far, denoted as Received r (G del ∪ pendingk)
(line 18), and decide on sets NCSetk and CSetk (line 19). Processes deliver
non-conflicting messages in NCSetk that they had not delivered so far (line 20),
and then deliver conflicting messages CSetk (line 22).

To ensure that if a message m was delivered in the ack phase m will appear
in set NCSetk decided by Recovery Consensus, m must be proposed by nchk−f
correct processes in pendingk at line 18. If m was delivered in the ack phase,
at least nack − f correct processes propose m to Recovery Consensus. Hence, to
maximize resilience we set nack equal to nchk.

Note that Recovery Consensus (Algorithm Cabsign) runs n atomic broadcasts
in parallel. Hence, when conflicting messages are issued, PGB has message com-
plexity n times bigger than a usual atomic broadcast protocol. PGB is optimized
to perform well when non-conflicting messages are broadcast and Recovery Con-
sensus is invoked rarely.

5 State Machine Replication

5.1 A trivial algorithm

Implementing state machine replication [1, 2] using the generic broadcast al-
gorithm of Section 4 is straightforward: each command of the state machine
corresponds to a message in the set M and the conflict relation on messages is
defined such that two messages conflict if and only if their associated commands
do not commute. For instance, if replicas store bank accounts, two deposit com-
mands on the same account commute since their execution order does not have
an effect on the final state of the state machine nor on the respective outputs of
these commands, which in this case only contain an acknowledgment that the

4 To ensure that messages are not acknowledged twice and improve the efficiency of
the algorithm, processes can remember the set of messages that were acknowledged
and only acknowledge them once.

Algorithm SMRclient

Client c algorithm

1: To execute command m:
2: send(〈m〉σc) to all replicas
3: wait until [∃ k, s.t. received from different replicas
4: nack 〈k,m, res(m),ack〉σric

or f + 1 〈k,m, res(m),chk〉σric
]

5: return res(m)

operations were successfully executed. Clients can then directly broadcast com-
mands to replicas using Algorithm PGB. Once replicas deliver a command, they
execute it and send back the result to the client. When f + 1 identical replies
are received by the client, the result of the command is known. This technique
guarantees a form of linearizability [21, 22].

5.2 An optimal algorithm

The above algorithm allows clients to learn the outcome of a command cmd in
three communication delays if cmd commutes with concurrent commands. As
we show next, a lower latency can be achieved by modifying Algorithm PGB
and speculatively executing commands.

Before presenting the algorithm, we extend the system model of Section 2. We
assume a population of n replicas, aforenamed processes, and a set of clients.
Any number of clients may be byzantine and f bounds the number of faulty
replicas. The latter execute a command cmd of the state machine by invoking
execute(cmd). This invocation modifies the state of the replica and returns a re-
sult. Commands are deterministic, that is, they produce a new state and a result
only based on the current state. Our protocol speculatively executes commands
and may require rolling back some commands if their speculative order does
not correspond to their definitive order. The effect of operation rollback(cmd)
is such that if a sequence of commands Seq is executed between execute(cmd)
and rollback(cmd) then the replica’s state is as if only commands in sequence
Seq were executed. Notice that although replicas may rollback some commands,
clients always see the definitive result of a command (i.e., clients do not perform
rollbacks).

The protocols for clients and replicas are presented in Algorithms SMRclient

and SMRreplica respectively. The replica’s algorithm is similar to PGB, except
for the handling of acknowledgment messages, which is moved to the client. We
highlight in gray the differences between SMRreplica and PGB. Similarly to
PGB, replicas do not need to sign any messages when clients issue commutative
commands.

When a client c invokes a command m, c sends 〈m〉σc
to all replicas

(SMRclient, line 2). A replica includes message 〈m〉σc
in the Received set at

lines 4,6,8 if m’s signature is valid. When m arrives at a replica r, one of two
things can happen: either (a) m does not conflict with any other command that

Algorithm SMRreplica

Replica r algorithm (the differences with Algorithm PGB are highlighted in gray)

1: Initialization:
2: Received← ∅, G del← ∅, pending1 ← ∅, k ← 1, Res← ∅

3: when receive(〈m〉σc) do {Task 1a}
4: Received← Received ∪ {〈m〉σc}

5: when receive(k, pendingkj , ack) do {Task 1b}
6: Received← Received ∪ pendingkj

7: when receive(k, Sj ,chk) do {Task 1c}
8: Received← Received ∪ Sj

9: when
(

Receivedr (G del ∪ pendingk) 6= ∅

)

do {Task 2}
10: if (∀ m,m′ ∈ (ReceivedrG del) : m 6∼ m′) then
11: for each m ∈ (Receivedr (G del ∪ pendingk)) do

12: res(m)← execute(m), Res← Res ∪ (m, res(m))
13: send(〈k,m, res(m),ack〉σrc) to client(m)
14: pendingk ← ReceivedrG del
15: send(k, pendingk, ack) to all replicas
16: else

17: send(k, (ReceivedrG del),chk) to all replicas ⊲ start of chk phase
18: proposeRC(k, pendingk, (Receivedr (G del ∪ pendingk)))
19: wait until decideRC(k,NCSetk, CSetk)
20: for each m ∈ pendingk rNCSetk do

21: rollback(m), remove(m, res(m)) from Res
22: for each m ∈ NCSetk rG del do
23: if m 6∈ pendingk then res(m)← execute(m)
24: send(〈k,m, res(m),chk〉σrc) to client(m) ⊲ res(m) is retrieved from

Res if needed
25: in ID order: for each m ∈ CSetk rG del do
26: res(m)← execute(m), send(〈k,m, res(m),chk〉σrc) to client(m)
27: G del← G del ∪NCSetk ∪ CSetk

28: k ← k + 1, pendingk ← ∅, Res← ∅ ⊲ end of chk phase
29: end if

r received in the current round or (b) m conflicts with a command received in
the same round.

In case (a), r speculatively executes m, stores the result in set Res, and
sends the result back to the client as an acknowledgment message (SMRreplica,
lines 10–12). We use a function client(m) defining for a given message m the
client that issued m. If client c receives nack identical acknowledgment messages
form, c learns the result of commandm (SMRclient, lines 3–5)—this is a similar
condition under which a process can g-Deliver a message in the ack phase of
Algorithm PGB.

In case (b), command m conflicts with a command received in the current
round. Similarly to PGB, each replica r uses Recovery Consensus to order these
commands. For each command m′ that was received by r in the ack phase
but that does not appear in the decided NCSet, r rollbacks m′ and deletes

the corresponding entry from Res—the speculative execution order of m′ differs
from its final execution order (SMRreplica, line 21).

Then, commands in NCSet are executed if they were not acknowledged in
the ack phase, and the results of these commands are sent to the corresponding
clients (lines 22–24). Similar actions are done for the conflicting commands of
CSet (lines 25–26). A client learns the result of a command m that was executed
in the chk phase after receiving f+1 identical replies for m (SMRclient, line 4).

5.3 Optimizations

We briefly discuss two optimizations allowing Algorithms SMRclient and
SMRreplica (a) to achieve the optimal latency of two communication delays
in executions without contention, defined next, and (b) to avoid message signing
by clients.

No contention. Assume that pending sets contain the order in which commands
were received and executed by the replicas; essentially, a pending set becomes
a command sequence. We say that two pending sets conflict if they contain two
conflicting messages executed in a different order. When no pending sets conflict,
we say that there is no contention.

The main idea behind this optimization is that now we consider the conflicts
between pending sets instead of the conflicts between individual messages. In
the optimized Algorithm SMRclient, a client c learns the result res(m) of the
execution of command m if: (1) c received nack non-conflicting pending sets with
res(m) or (2) c received f + 1 chk messages with res(m). A replica enters the
chk phase if: (1) it has received two conflicting pending sets or (2) it has received
a chk message indicating that some other replica entered the chk phase in the
current round.

Since conflicting commands can be executed in the ack phase, provided that
they are executed in the same order, replicas include the execution order of com-
mands in sets NCSeti proposed to Recovery Consensus. Hence, the Recovery
Consensus algorithm must be modified and NCSet essentially contains com-
mands proposed by ⌈nchk+1

2
⌉ replicas ri as part of NCSeti, such that no two

pending sets containing m include two non-commutative commands m1 and m2

that were executed before m and in different orders.

Avoiding message signing by clients. Digital signatures based on asymmetric
cryptography can be expensive to generate or verify, let alone the problem of
distributing and refreshing key pairs. Instead of signing a message m, clients can
use an authenticator (a list of HMACs) to authenticate m [5].

We modify Algorithm SMRreplica as follows: (1) during the ack phase
replica rj puts message m at lines 4,6,8 in the Received set only if m’s au-
thenticator contains a valid HMAC entry for rj ; (2) during the chk phase, we
change the way CSet is built in the underlying protocol Cabsign: message m is
included in CSet only if it belongs to f + 1 different NCSetj ∪ CSetj . This

Protocol PBFT [5] Zyzzyva [3] HQ [6] Q/U [4] Aliph [7] this paper

Resilience f < n/3 f < n/3 f < n/3 f < n/5 f < n/3 f < n/5

Best-case latency 4 3 4 2 2 2

Best-case latency bf bf bf bf bf bf
in the absence of... slow links contention contention contention contention

slow links

MAC operations at 2+8f 2+3f 2+4f 2+4f 25 2
bottleneck server

Command classification read-only/ read-only/ read-only/ read-only/ none by conflict
mutative mutative mutative mutative relation ∼

Client-based recovery no yes yes yes yes no

Table 1. Byzantine fault-tolerant replication protocols (“bf”:“byzantine failures”).

guarantees that only client c can issue commands with c’s identifier, i.e., it is
impossible to impersonate client c.

Unfortunately these modifications are more difficult to apply in Recovery
Consensus. To avoid expensive signing during Recovery Consensus one could
use matrix signatures [23] or employ the approach described in [6] for signing
certificates, both of which essentially trade off signatures for additional network
delays.

Digital signatures scale better than authenticators, whose size grows lin-
early with the number of replicas, so deciding which technique to apply de-
pends on the specific system settings. In any case, we note that by design, Al-
gorithms SMRreplica and SMRclient optimize the ack phase, since this is the
case we expect to happen more often.

6 Related work

In the following we compare our BFT state machine replication protocol to the
related work (see Table 1). To the best of our knowledge, this paper is the first
to present an implementation of byzantine generic broadcast. All BFT state
machine replication protocols we are aware of have a “fast mode”—analogous
to the ack phase, where messages are delivered fast under certain assumptions
(also called “best-case”), and a recoverymechanism to switch to a “slowmode”—
analogous to the chk phase that resolves possible problems, usually contention
or failures. Despite these similarities, existing protocols differ from each other in
a number of aspects:

– PBFT was the first practical work on BFT state-machine replication. The
best-case latency of four message delays is achieved when there are no byzan-
tine failures. For read-only operations, the protocol can be optimized to
achieve a latency of two message delays.

5 In Table 2 of paper [7], Aliph’s latency and throughput represent two different sub-
protocols: Chain and Quorum. We here show the number of MAC operations that
Quorum uses since only Quorum achieves the best-case latency of two network de-
lays.

– Zyzzyva employs tentative execution to improve the best-case delay of PBFT.
It executes commands in three network delays when there are no byzantine
failures and links are timely. Otherwise, the protocol requires five network
delays. Like PBFT, it can be optimized to execute read-only operations in
two message delays.

– HQ, a descendant of PBFT, is optimized to execute read-only commands in
two message delays and update commands in four message delays when the
execution is contention-free.

– Q/U was the first protocol to achieve the best-case latency of two network
delays for all commands when replicas are failure-free and updates do not
access the same object concurrently.

– In [7], the authors propose a modular approach to build BFT services based
on the concept of abstract instances. An abstract instance is a BFT replica-
tion protocol optimized for specific system conditions that can abort com-
mands. In this context, the authors propose Aliph, a composition of three
abstract instances: Quorum, Chain, and PBFT. Quorum is optimized for
latency and allows command execution in two network delays when links are
timely and the execution is contention- and failure-free. Chain, on the other
hand, is optimized for throughput and achieves a latency of f + 2 network
delays when there are no failures.

The protocol presented in this paper is the first to achieve a latency of
two network delays when the execution is failure-free but concurrent commuta-
tive commands are submitted. Under the same conditions, PBFT and Zyzzyva
achieve latency of four and three message delays respectively, while HQ, Q/U
and Aliph run an additional protocol to resolve contention.

Q/U [4] and HQ [6] proposed a simplified version of the conflict relation: all
commands are either reads or writes [6] (respectively, queries and updates in
[4]); reads do not conflict with reads, and writes conflict with reads and writes.
This is more restrictive than a conflict relation, as mutative operations on the
same object do not necessarily conflict (e.g., incrementing a variable).

Zyzzyva, Q/U, and Aliph, more specifically the Quorum instance, do not use
inter-replica communication to agree on the order of commands; instead they
assume that it is the client’s responsibility to resolve contention by collecting
authenticated responses from replicas and distributing a valid certificate to the
replicas. PBFT and the state machine replication protocol presented in this
paper rely on inter-replica communication to serialize commands, which allows
a lightweight protocol for clients. HQ uses a hybrid approach: it uses inter-replica
communication only when clients demand to resolve contention explicitly, while
in the “fast case” clients coordinate the execution.

Finally, we note that although [24] executes commutative commands in par-
allel, all commands are totally ordered using PBFT, resulting in a higher latency
than our protocol in the aforementioned scenario.

7 Final remarks

This paper introduces the first generic broadcast algorithm that tolerates byzan-
tine failures. Generic broadcast is based on message conflicts, a notion that is
more general than read and write operations [4, 6]. The proposed algorithm is
modular and relies on an abstraction called Recovery Consensus, used to en-
sure that correct processes (i) deliver the same set of non-conflicting messages in
each round, and (ii) agree on the delivery order of conflicting messages. A mod-
ular approach facilitates the understanding of the ack phase and chk phase
of Algorithm PGB, and allows to explore various implementations of Recovery
Consensus. We provided an implementation of Recovery Consensus that is based
on atomic broadcast and digital signatures and requires at least 5f+1 processes.
Finally, we extended the proposed generic broadcast algorithm to provide state
machine replication. The resulting protocol, with its optimizations, can execute
commands in two message delays under weaker assumptions than state-of-the-art
algorithms.

The Aliph protocol [7] opened new directions in the development of state
machine replication protocols: it is now possible to combine different protocols
in one that switches through given implementations of state machine replication
under certain policies to speed up the execution. Hence, it could be an interesting
task to implement the protocol proposed in this paper as an Abstract instance
(Generic) and see the behavior of the resulting algorithm (e.g., Generic-Chain-
Quorum-Backup).

References

1. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21 (1978) 558–565

2. Schneider, F.B.: Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. 22 (1990) 299–319

3. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative
byzantine fault tolerance. ACM Transactions on Computer Systems 27 (2009)
1–39

4. Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.: Fault-
scalable byzantine fault-tolerant services. In: SOSP ’05: Proceedings of the twenti-
eth ACM symposium on Operating systems principles, New York, NY, USA, ACM
(2005) 59–74

5. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems 20 (2002) 398–461

6. Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: HQ replication: a
hybrid quorum protocol for byzantine fault tolerance. In: OSDI ’06: Proceedings
of the 7th symposium on Operating systems design and implementation, Berkeley,
CA, USA, USENIX Association (2006) 177–190

7. Guerraoui, R., Knežević, N., Quéma, V., Vukolić, M.: The next 700 bft protocols.
In: EuroSys ’10: Proceedings of the 5th European conference on Computer systems,
New York, NY, USA, ACM (2010) 363–376

8. Aguilera, M., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Thrifty generic broad-
cast. In: Proceedings of DISC’00, Springer-Verlag (2000) 268–283

9. Lamport, L.: Generalized consensus and paxos. Technical report, Microsoft Re-
search MSR-TR-2005-33 (2005)

10. Pedone, F., Schiper, A.: Handling message semantics with generic broadcast pro-
tocols. Distributed Computing 15 (2002) 97–107

11. Raykov, P., Schiper, N., Pedone, F.: Byzantine fault-tolerance with
commutative commands. Technical report, University of Lugano,
http://www.inf.usi.ch/faculty/pedone/Paper/2011/2011OPODIS-full.pdf (2011)

12. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 26 (1983) 96–99

13. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Proceedings of the 16th Annual International Cryptology Conference
on Advances in Cryptology. CRYPTO ’96, London, UK, Springer-Verlag (1996)
1–15

14. Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed consensus with
one faulty process. Journal of the ACM 32 (1985) 374–382

15. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43 (1996) 225–267

16. Ben-Or, M.: Another advantage of free choice (extended abstract): Completely
asynchronous agreement protocols. In: PODC ’83: Proceedings of the second an-
nual ACM symposium on Principles of distributed computing, New York, NY,
USA, ACM (1983) 27–30

17. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. Journal of the ACM 35 (1988) 288–323

18. Toueg, S.: Randomized byzantine agreements. In: PODC ’84: Proceedings of the
third annual ACM symposium on Principles of distributed computing, New York,
NY, USA, ACM (1984) 163–178

19. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous
broadcast protocols. In: Advances in Cryptology — CRYPTO 2001. Volume 2139
of Lecture Notes in Computer Science., Springer Berlin / Heidelberg (2001) 524–
541

20. Lamport, L.: Lower bounds for asynchronous consensus. Distributed Computing
19 (2006) 104–125

21. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12 (1990) 463–492

22. Malkhi, D., Reiter, M., Lynch, N.: A correctness condition for memory shared by
byzantine processes. Unpublished manuscript (1998)

23. Aiyer, A.S., Alvisi, L., Bazzi, R.A., Clement, A.: Matrix signatures: From macs to
digital signatures in distributed systems. In: DISC ’08: Proceedings of the 22nd
international symposium on Distributed Computing, Berlin, Heidelberg, Springer-
Verlag (2008) 16–31

24. Kotla, R., Dahlin, M.: High-throughput byzantine fault tolerance. In: International
Conference on Dependable Systems and Networks (DSN). (2004)

