
ETH Zurich, Department of Computer Science
SS 2017

Dr. Martin Hirt
Chen-Da Liu Zhang

Cryptographic Protocols

Notes 10

Scribe: Sandro Coretti (modified by Chen-Da Liu Zhang)

About the notes: These notes serve as written reference for the topics not covered by
the papers that are handed out during the lecture. The material contained therein
is thus a strict subset of what is relevant for the final exam.

This week, the notes treat the important distributed primitives Broadcast and Consensus as
well as protocols achieving these in the presence of an unbounded attacker corrupting up to
t < n/3 of the parties. Moreover, they contain a proof that information-theoretically secure
broadcast is not achievable if t ≥ n/3.

10.1 Broadcast and Consensus: Definitions

This section presents Broadcast and Consensus. The former is a primitive that allows a certain
player, called sender, to distribute a value to all players with the guarantee that all honest
players receive the same value in the end. Moreover, if the sender is honest, then the players
agree on the value sent by the sender. In Consensus, every player holds an input and the
goal is that, in the end, the honest players agree on a value while preserving so-called pre-
agreement.

More precisely, a broadcast protocol satisfies the following conditions:

• Consistency: All honest players output the same value, i.e., there is agreement at the
end of the protocol.

• Validity: If the sender is honest, the value the honest players decide on is the value sent
by him.

• Termination: All honest players decide on a value at some point.

Finally, a protocol achieves consensus if the follwing conditions are met:

• Consistency: All honest players output the same value, i.e., there is agreement at the
end of the protocol.

• Persistency: If all honest players have the same input, they agree on this value.

• Termination: All honest players decide on a value at some point.

Note that, if t < n/2, broadcast and consensus are equivalent in the sense that a broadcast
protocol can easily be transformed into a consensus protocol and vice-versa:

Broadcast ⇒ Consensus: Each player broadcasts his value and decides on the value received
most often.



Consensus ⇒ Broadcast: The sender sends the value to be broadcast to all players. Then,
the players run consensus, where each player inputs the value received from the sender.

In the following we present the consensus protocol by [BGP89], which provides information-
theoretic security provided that less than a third of the players are corrupted, i.e., t < n/3.
We start out with a protocol that achieves a weak form of consensus and then build from
it a full consensus protocol, which can be transformed into a broadcast protocol as outlined
above.

The protocol by [BGP89] is a binary protocol, i.e., a protocol with input space {0, 1}. A
protocol with a larger input space can, e.g., be achieved by parallel execution of the one-bit
protocol.

10.2 Constructing Consensus

10.2.1 Weak Consensus

In Weak Consensus, each player has an input xi and eventually decides on a value yi ∈ {0, 1,⊥},
where ⊥ is to be considered “invalid.” Weak Consensus achieves a weaker consistency condi-
tion:

Weak Consistency: If some honest player Pi decides on an output yi ∈ {0, 1}, then yj ∈
{yi,⊥} for all honest players Pj .

In other words, no two honest players decide on two different “valid” outputs. A protocol
achieves Weak Consensus if it satisfies weak consistency, persistency, and termination. The
following is such a protocol:

Protocol WeakConsensus (x1, . . . , xn)→ (y1, . . . , yn):

1. ∀Pi: send xi to each Pj

2. ∀Pj : yj =


0 if number of received zeros ≥ n− t

1 if number of received ones ≥ n− t

⊥ otherwise

3. ∀Pj : return yj

Lemma 10.1. If t < n/3, protocol WeakConsensus achieves persistency, weak consistency, and
termination.

Proof. Persistency: If all honest players input the same value x, each honest player receives
x at least n− t times (and at most t < n− t times the value 1− x) and thus decides on x.

Weak Consistency: Suppose an honest player Pi decides on yi. Then, he received the value yi
at least n − t times in step 1. Since at least n − 2t of these messages are from honest players,
it follows that every honest player has received yi at least n− 2t times and thus 1− yi at most
2t < n− t times. Hence, no honest player Pj decides yj = 1− yi.

Termination: Obvious.

10.2.2 Graded Consensus

Each player starts out with an input xi ∈ {0, 1} and eventually decides on a value yi ∈ {0, 1}
and on a grade gi ∈ {0, 1}. The grade gi = 1 is to be considered as “consistency achieved,”
whereas gi = 0 means “not sure consistency is achieved.”



We introduce the following requirements:

Graded Consistency: If some player Pi decides on an output yi ∈ {0, 1} with grade gi = 1,
then yj = yi for all honest players Pj .

1

Graded Persistency: If all honest players Pi have the same input x, they all decide on the
output (yi, gi) = (x, 1).

A protocol achieves Graded Consensus if it satisfies graded consistency, graded persistency, and
termination. Such a protocol can be constructed as follows:

Protocol GradedConsensus (x1, . . . , xn)→ ((y1, g1), . . . , (yn, gn)):

1. (z1, . . . , zn) = WeakConsensus(x1, . . . , xn)

2. ∀Pi: send zi to each Pj .

3. ∀Pj

yj =

{
0 if #zeros ≥ #ones

1 if #zeros < #ones

gj =

{
1 if #yj ’s ≥ n− t

0 otherwise

4. ∀Pj : return (yj , gj)

Lemma 10.2. If t < n/3, protocol GradedConsensus achieves graded persistency, graded con-
sistency, and termination.

Proof. Graded Persistency: Assume all honest players input the same value x. The persis-
tency of WeakConsensus guarantees that all honest players send x in step 2. Thus, each honest
player Pi receives x at least n− t times (and 1− x at most t times) and thus decides on yi = x
und gi = 1.

Graded Consistency: Suppose honest player Pi outputs gi = 1. Then, he has received yi
from at least n − t players in step 2. Therefore, any other honest player Pj has received yi at
least n − 2t times. Furthermore, since n − 2t > t, at least one honest player obtained yi as
output of WeakConsensus. Therefore, by Weak Consistency, no honest player output 1− yi
in WeakConsensus, from which it follows that Pj received 1− yi at most t < n− 2t times and
therefore outputs yj = yi.

Termination: Obvious.

10.2.3 King Consensus

In King Consensus some player Pk takes over the role of the king. If the king is honest, we
require that the protocol achieve consensus. If the king is corrupted, at least pre-agreement
should be preserved.

Thus, we introduce the following new requirement:

King Consistency: If the king Pk is honest, all players decide on the same value in the end.

A protocol achieves King Consensus if it satisfies king consistency, persistency, and termination.
Such a protocol can be constructed as follows:

1But not necessarily gj = 1.



Protocol KingConsensusPk
(x1, . . . , xn)→ (y1, . . . , yn):

1. ((z1, g1), . . . , (zn, gn)) = GradedConsensus(x1, . . . , xn)

2. Pk: send zk to each player Pj .

3. ∀Pj : yj =

{
zj if gj = 1

zk otherwise

4. ∀Pj : return yj

Lemma 10.3. If t < n/3, protocol KingConsensus achieves persistency, king consistency, and
termination.

Proof. Persistency: If all honest players Pi start the protocol with the same input x, then
graded persistency implies that after step 1, they hold (zi, gi) = (x, 1) and decide yi = zi = x
in step 3.

King Consistency: Suppose the king is honest. If all honest players Pi have gi = 0 in step 1,
then they all take king’s value. Otherwise, let Pj be a player with gj = 1. Graded consistency
implies that in such a case all honest players Pi have zi = zj . In particular, this holds for the
(honest) king Pk. Thus, all players decide on the same output.

Termination: Obvious.

10.2.4 Consensus

Consensus can be achieved from King Consensus by running KingConsensus with t+1 different
kings Pk, which guarantees that at least one of them is honest.

Protocol Consensus (x1, . . . , xn)→ (y1, . . . , yn):

1. for k := 1 to t + 1 do
(x1, . . . , xn) := KingConsensusPk

(x1, . . . , xn)
od

2. ∀Pj : return yj = xj

Lemma 10.4. Protocol Consensus achieves Consensus if at most t < n/3 players are corrupted.

Proof. Persistency: Assume there is pre-agreement at the beginning of the protocol. Then,
the consistency of KingConsensus (Lemma 10.3) immediately implies that it is preserved until
the end.

Consistency: At least one of the kings Pk ∈ {P1, . . . , Pt+1} is honest. Thus, after the execution
of KingConsensusPk

, there is agreement among the honest parties, which is maintained until
the end of the protocol due to the persistency condition.

Termination: Obvious.

10.3 Impossibility of Consensus for t ≥ n/3

Similarly to previous impossibility proofs (cf. Section 7.3 and 9.1), we first consider the setting
t = 1 and n = 3. Then, the general case follows analogously (and is not repeated here).

Towards a contradiction, suppose there exists a Consensus protocol for three parties tolerating
one corruption. Such a protocol is given by three deterministic2 protocol machines Π1, Π2, and

2The argument can be extended to randomized machines.



Π3 for parties P1, P2, and P3, respectively, where each machine expects to be connected to two
other machines.

Assume an attacker corrupts P1 in a normal execution of the protocol and emulates Π1 and Π3

as shown below in Case 1, where the number in the square next to a protocol machine denotes
the machine’s input. The Persistency property of Consensus implies that machine Π2 of P2

(in the bottom left corner) must output 1, since the honest players have pre-agreement.

Case 1 Case 2 Case 3

If the attacker corrupts P2 and emulates Π2 and Π3 as shown in Case 2, then Persistency
implies that machine Π1 of P1 (in the top left corner) must output 0, since the honest players
have pre-agreement.

Finally, suppose the attacker corrupts P3 and emulates two copies of Π3 as shown in Case 3. In
that case, by Consistency, Π1 and Π2 (on the left-hand side) must output equal values.

Note that all three cases are actually one and the same setup:

However, the conditions derived above constitute a contradiction: It is impossible that the
output of Π0 is 0, that of Π1 is 1, and both of them are equal simultaneously. Thus, there exists
no secure consensus protocol for t = 1 and n = 3.

References

[BGP89] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards optimal distributed
consensus (extended abstract). In FOCS, pages 410–415, 1989.


