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Abstract. We present a simple zero-knowledge proof of knowledge pro-
tocol of which many protocols in the literature are instantiations. These
include Schnorr’s protocol for proving knowledge of a discrete logarithm,
the Fiat-Shamir and Guillou-Quisquater protocols for proving knowl-
edge of a modular root, protocols for proving knowledge of representa-
tions (like Okamoto’s protocol), protocols for proving equality of secret
values, a protocol for proving the correctness of a Diffie-Hellman key,
protocols for proving the multiplicative relation of three commitments
(as required in secure multi-party computation), and protocols used in
credential systems.

This shows that a single simple treatment (and proof), at a high level
of abstraction, can replace the individual previous treatments. Moreover,
one can devise new instantiations of the protocol.

1 Introduction

1.1 Interactive Proofs

A conventional proof of a statement is a sequence of elementary, easily verifiable
steps, which, starting from the axioms (or previously proven facts), in the last
step yields the statement to be proved.

In contrast to a conventional proof, an interactive proof [7] is a protocol that
is defined between a prover, usually called P or Peggy, and a verifier, usually
called V or Vic. More formally, an interactive proof is a pair (P, V ) of programs
implementing the protocol steps Peggy and Vic are supposed to execute. An
interactive proof must be complete and sound. Completeness means that an
honest prover succeeds in convincing an honest verifier, and soundness means
that a dishonest prover does not succeed in convincing Vic of a false statement.

There are several motivations, theoretical and practical, for considering inter-
active proofs as opposed to conventional proofs. One main motivation is that,
in contrast to a conventional proof, an interactive proof can be performed in a
way that transfers only the conviction that the claimed statement is true but
does not leak any further information, in particular not a transferable proof.
More precisely, an interactive proof is called zero-knowledge if the verifier could
simulate the entire protocol transcript by himself, without interacting with the
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prover. In particular, this implies that the transcript is not convincing for any
other party.

There are two types of interactive proofs: proofs of a mathematical statement
and proofs of knowledge. A proof of knowledge proves that Peggy knows a value
satisfying a certain predicate (a witness). Often a proof of a mathematical state-
ment (e.g. that a number is a square modulo an RSA modulus) is carried out as
a proof of knowledge of a witness for the statement (i.e., of a square root).

1.2 Contributions of This Paper

We introduce a new level of abstraction in a general type of proof of knowledge,
namely of a preimage of a group homomorphism, and thereby unify and gen-
eralize a large number of protocols in the literature. We observe that actually
the identical principle has been reused several times, where each result came
with a separate proof. While the similarity of different protocols certainly did
not go unnoticed, a viewpoint that shows them to be instantiations of the same
protocol is new to our knowledge. We call this protocol, described in Section 5,
the main protocol.

The relation of our results to Cramer’s Σ-protocols [2] (see also [3]), also
an abstraction of a general type of proofs of knowledge, will be discussed in
Section 5.3. In short, we go a step further and not only abstract a protocol type,
but actually show that many protocols are the same protocol when seen at the
right level of abstraction.

The advantage of our abstract viewpoint is that one can provide a proof once
and for all, and for each individual instantiation only needs to describe the group
homomorphism underlying the particular example and check the conditions of
Theorem 3, our main theorem. This requires just a few lines for a complete
proof that a given protocol is a zero-knowledge proof of knowledge. Moreover,
this approach leads to new protocols by using new instantiations of the group
homomorphism.

1.3 Outline

The outline of the paper is as follows. In Section 2 we discuss two well-known
examples of interactive proofs. In Section 3 we formalize the concept of a proof
of knowledge. In Section 4 we define what it means for a protocol to be zero-
knowledge. In Section 5 we present our new general protocol, referred to as
the main protocol and prove that it is a zero-knowledge proof of knowledge. In
Section 6 we show that many known and new protocols are instantiations of the
main protocol. Sections 3 and 4 can be skipped if the reader is familiar with the
topic and is just interested in the unified viewpoint.

We use the standard notions of efficient and negligible and point out that such
definitions are asymptotic, i.e., for asymptotic families (of groups) depending
on a security parameter (which we will not make explicit). Efficient is usually
defined as polynomial-time and negligible as vanishing faster than the inverse of
any polynomial. In general, we assume that the reader is familiar with the basic
aspects of interactive proofs and cryptographic thinking.
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Peggy Vic

knows x z = hx

k ∈R Zq

t := hk

�
t

c ∈R C ⊆ [0, q−1]

�
c

r := k + xc (mod q)

�
r

check hr ?
= t · zc

Fig. 1. The Schnorr protocol

2 Two Protocol Examples

In this section we discuss two classical examples of interactive proofs of
knowledge.

2.1 The Schnorr Protocol

Consider a cyclic group H with prime order |H | = q for which computing discrete
logarithms (DL) is considered infeasible. Peggy wants to prove to Vic that she
knows the DL x of an element z to the base h, i.e., that she knows x such that
z = hx. For example, z could be Peggy’s public key and the protocol is then
used as an identification protocol by which Peggy proves knowledge of the secret
key.

The protocol, proposed by Schnorr [12], works as follows (see Figure 1). First,
Peggy chooses k ∈ Zq at random and sends the group element t = hk to Peggy.
Then Vic chooses a challenge value c ∈ C at random from a challenge space
C which is a subset of [0, q − 1]. Then Peggy answers by sending the value
r = k + xc (mod q). Finally, Vic accepts the protocol execution if and only if
hr = t · zc.

Let us analyze the protocol. It is easy to see that if Peggy knows x and
performs the protocol honestly, then Vic will accept (completeness). To argue
about soundness, we observe that unless Peggy knows x, she cannot answer more
than one challenge correctly. This can be seen as follows. If Peggy could answer,
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for a fixed t, two challenges c and c′ by r and r′, respectively, so that Vic accepts,
then she could compute x (and hence knows it).1 This can be shown as follows:
We have hr = t · zc and hr′

= t · zc′ and thus

hr−r′
= zc−c′ = hx(c−c′).

Therefore,
r − r′ ≡ x(c − c′) (mod q),

from which we obtain
x ≡ r1 − r2

c1 − c2
(mod q).

Note that it is important that q is prime since otherwise the inverse of c1 − c2

modulo q may not be defined, unless one restricts C in an artificial way.
One might be tempted to conclude from the above argument that any prover

with success probability at least 2/|C| can answer at least two challenges and
therefore knows x. However, this argument is incorrect since it is not known how
one could construct an efficient knowledge extractor (see Section 3).

Now we argue that the protocol is zero-knowledge. Without knowledge of x,
one can, for any challenge c, generate a triple (t, c, r) with the distribution as it
occurs in the protocol. One can prove (this is not entirely trivial) that even a
dishonest verifier can simulate perfectly the entire transcript he would see in a
protocol execution with Peggy, i.e., with the same probability distribution as it
occurs in the real protocol (see Section 4). However, the simulation is efficient
only if the size |C| of the challenge space is bounded to polynomial size. To obtain
the zero-knowledge property, one may therefore choose |C| to be relatively small
(e.g. on the order of 106), and repeat the protocol several (say s) times. Such a
protocol is zero-knowledge but achieves the soundness guarantees corresponding
to the size of the overall challenge space Cs.

2.2 The Fiat-Shamir and Guillou-Quisquater Protocols

Consider a modulus m which is assumed to be difficult to factor. For concrete-
ness, one can think of m as being an RSA-modulus [11]. For a given exponent
e (with gcd(e, ϕ(m)) = 1), breaking the RSA cryptosystem means to compute
e-th roots modulo m. This is considered hard and, for a generic model of com-
putation, has been proved to be equivalent to factoring m [1]. Unlike for RSA,
in our context e is considered to be prime.

The Guillou-Quisquater (GQ) protocol [8] allows Peggy to prove to Vic that
she knows the e-th root x modulo m of a given number z ∈ Z∗

m, i.e., she knows
x such that xe = z in Z∗

m. (Again, z could be Peggy’s public key for which she
wants to prove knowledge of the corresponding private key.)

The protocol works as follows (see Figure 2). First, Peggy chooses k ∈ Z∗
m

at random and sends the group element t = ke to Peggy. Then Vic chooses a

1 A correct argument is more involved; one has to argue that there exists an efficient
knowledge extractor (see Section 3).
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Peggy Vic

knows x z = gx

k ∈R Z∗
m

t := ke

�
t

c ∈R C ⊆ [0, e−1]

�
c

r := k · xc

�
r

check re ?
= t · zc

Fig. 2. The Guillou-Quisquater (GQ) protocol

challenge value c ∈ C at random from a challenge space C ⊆ [0, e − 1]. Then
Peggy answers by sending the value r = k · xc (in Z∗

m, i.e., modulo m). Finally,
Vic accepts the protocol execution if and only if re = t · zc.

This protocol is a generalization of the Fiat-Shamir protocol [6,5] which con-
siders the special case e = 2. If |C| (and hence e) is sufficiently large, then a
single execution of the protocol suffices. Otherwise, the protocol is repeated a
sufficient number of times.

It is easy to see that if Peggy knows x and performs the protocol honestly,
then Vic will accept (soundness). To argue about soundness, we observe again
that unless Peggy knows x, she cannot answer more than one challenge correctly.
This can be seen as follows. If Peggy could answer, for fixed t, both challenges c
and c′ by r and r′, respectively (so that Vic accepts), then she could compute x
(and hence knows it). This can be shown as follows: We have (in Z∗

m) re = t · zc

and r′e = t · zc′ and thus
( r

r′
)e

≡ zc−c′ (mod m).

and hence
r

r′
≡ xc−c′ (mod m).

In addition to xc−c′ , Peggy trivially knows another power of x, namely z = xe.
When e is prime, then c−c′ and e are relatively prime. From two different powers
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of x with relatively prime exponents one can compute x. Namely, application of
Euclid’s extended gcd-algorithm yields integers a and b such that

ea + (c − c′)b = 1.

Therefore x can be computed as x = xea+(c−c′)b, i.e., as

x ≡ za ·
( r

r′
)b

(mod m).

2.3 Comparing the Two Protocols

The Schnorr protocol and the GQ protocol have a number of similarities, as
already indicated by the fact that we chose to use the same names (k, t, c, and r)
for the different quantities appearing in the protocol. But nevertheless the two
protocols are quite different. The mathematical structure is different and so is
the argument for proving that from the answers to two different challenges one
can compute x. However, in Sections 5 and 6 we show that there is a level of
abstraction at which the two protocols are identical, i.e., instantiations of the
same protocol, as are many more protocols proposed in the literature.

3 Proofs of Knowledge

In this section we recall the definition of a proof of knowledge due to Feige, Fiat,
and Shamir [5] and state a general theorem that can be used to easily prove that
a protocol is a proof of knowledge.

The above soundness argument, namely that being able to answer two chal-
lenges implies knowledge of the secret value x, must be made more precise. Let
us formalize the concept of a proof of knowledge. What constitutes knowledge,
corresponding to a given value z, is defined by a (verification) predicate2

Q : {0, 1}∗ × {0, 1}∗ → {false, true}.
For a given value (a bit-string) z, Peggy claims to know a value (bit-string) x
such that Q(z, x) = true.

The following classical definition‘[5] captures the notion that being successful
in the protocol implies knowledge of a witness x with Q(z, x) = true.

Definition 1. An interactive protocol (P, V ) is a proof of knowledge for predi-
cate Q if the following holds:

– (Completeness.) V accepts when P has as input an x with Q(z, x) = true.
– (Soundness.) There is an efficient program K, called knowledge extrac-

tor, with the following property. For any (possibly dishonest) P̂ with non-
negligible probability of making V accept, K can interact with P̂ and outputs
(with overwhelming probability) an x such that Q(z, x) = true.3

2 Equivalently, one can consider a relation on {0, 1}∗.
3 K must be able to choose the randomness of P̂ and to reset P̂ .
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We now capture the special property of a protocol which we proved for the
Schnorr and the GQ protocols and which allowed us to argue about soundness.

Definition 2. Consider a predicate Q for a proof of knowledge. A three-move
protocol round (Peggy sends t, Vic sends c, Peggy sends r) with challenge space
C is 2-extractable4 if from any two triples (t, c, r) and (t, c′, r′) with distinct
c, c′ ∈ C accepted by Vic one can efficiently compute an x with Q(z, x) = true.

The following theorem (see also [2,3]) states that for a protocol to be a proof of
knowledge it suffices to check the 2-extractability condition for one (three-move)
round of the protocol.

Theorem 1. An interactive protocol consisting of s 2-extractable rounds with
challenge space C is a proof of knowledge for predicate Q if 1/|C|s is negligible.5

Proof. We need to exhibit a knowledge extractor K. It can be defined by the
following simple procedure:

1. Choose the randomness for P̂ .
2. Generate two independent protocol executions between P̂ and V (with the

same chosen randomness for P̂ ).
3. If V accepts in both executions and the challenge sequences were distinct,

then identify the first round with different challenges c and c′ (but, of course,
the same t). Use 2-extractability to compute an x, and output it (and stop).
Otherwise go back to step 1.

It is not very difficult to show that the expected running time of the knowledge
extractor is polynomial if the success probability of P̂ is non-negligible.

4 Zero-Knowledge Protocols

We now discuss the zero-knowledge property of a protocol. Informally, a protocol
between P and V is zero-knowledge if even a dishonest V , which for this reason
we call V̂ , does not learn anything from the protocol execution which he did not
know before. This is captured by the notion of simulation [7]: V̂ could simulate
a protocol transcript by himself which is indistinguishable from a real transcript
that would occur in an actual protocol execution between P and V̂ .

Definition 3. A protocol (P, V ) is zero-knowledge if for every efficient program
V̂ there exists an efficient program S, the simulator, such that the output of
S is indistinguishable from a transcript of the protocol execution between P
and V̂ . If the indistinguishability is perfect,6 i.e., the probability distribution of
the simulated and the actual transcript are identical, then the protocol is called
perfect zero-knowledge.
4 It is also often called special soundness [2,3] when the challenge space is large.
5 The last point implies that every particular challenge sequence c1, . . . , cs has negli-

gible probability of being selected by an honest verifier.
6 The indistinguishability could also be statistical or computational.
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We now capture the special property of a protocol round, called c-simulatability,
which is required to construct the zero-knowledge simulator.

Definition 4. A three-move protocol round (Peggy sends t, Vic sends c, Peggy
sends r) with challenge space C is c-simulatable7 if for any value c ∈ C one can
efficiently generate a triple (t, c, r) with the same distribution as occurring in the
protocol (conditioned on the challenge being c).

The following theorem states that for a protocol to be zero-knowledge it suffices
to check the c-simulatability condition for one round of the protocol.

Theorem 2. A protocol consisting of c-simulatable three-move rounds, with
uniformly chosen challenge from a polynomially-bounded (per-round) challenge
space C, is perfect zero-knowledge.

The proof of this theorem is not entirely trivial. We just describe the basic idea
of the simulator. It simulates one round after the next. In each round (say the
i-th), the simulator chooses a uniformly random challenge ci, generates a triple
(ti, ci, ri) using the c-simulatability, and then checks whether V̂ would actually
issue challenge ci if it were in the corresponding state in round i. If the check
succeeds, then this round is appended to the simulated transcript as the i-th
round, otherwise the simulation of the i-th round is restarted.8

5 Proving Knowledge of a Preimage of a Group
Homomorphism

5.1 One-Way Group Homomorphisms

We consider two groups (G, �) and (H,⊗), where we intentionally use special
symbols for the group operations, avoiding the addition and multiplication sym-
bols “+” and “·”. We assume that the group operations � and ⊗ are efficiently
computable.

A function f : G → H is a homomorphism if

f(x � y) = f(x) ⊗ f(y).

We will consider the case where f is (believed to be) a one-way function, such
that it is infeasible to compute x from f(x) for a randomly chosen x.9 In this case
it is meaningful for a prover Peggy to prove that she knows an x such that for
a given value z we have z = f(x). To simplify the notation we write [x] instead
of f(x).10 We can consider [x] to be an embedding of x ∈ G in H . We point out
7 This is sometimes also called special honest-verifier zero-knowledge [2,3].
8 This requires access to the strategy of V̂ , or V̂ must be rewindable.
9 Note, however, that our treatment and claims do not depend on the one-way prop-

erty. Should f not be one-way, then the protocols are perhaps less useful, but they
still have the claimed properties.

10 When we define a group homomorphism in terms of a given group homomorphism
(denoted [·]), then we write [[·]] to avoid overloading the symbol [·].
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Peggy Vic

knows x z = [x]

k ∈R G

t := [k]

�
t

c ∈R C ⊆ N

�
c

r := k � xc

�
r

check [r]
?
= t⊗zc

Fig. 3. Main protocol: Proof of knowledge, for a given value z, of a value x such that
z = [x], where x �→ [x] is a (one-way) group homomorphism

that f need not be bijective and therefore a value z = [x] does not necessarily
determine x. But it is well-defined for which values x we have z = [x].

Given embedded values [x] and [y] we can efficiently compute

[x � y] = [x] ⊗ [y],

without knowing x or y, due to the homomorphism.

5.2 The Main Protocol

The protocol in Figure 3, which we call the main protocol, is a proof of knowledge
of a value x such that z = [x], for a given value z, provided that the two conditions
stated in the following theorem are satisfied. Note that G and H need not be
commutative. The challenge space can be chosen as an arbitrary subset of N. If
it is chosen to be small,11 then one needs several (three-move) rounds to reduce
the soundness error to be negligible.

Theorem 3. If values � ∈ Z and u ∈ G are known such that

11 There can be at least two reasons for choosing a small challenge space. First, a larger
space may not work, for example if e is small in the GQ protocol. Second, one may
want the protocol to be zero-knowledge, which generally does not hold for large
(per-round) challenge space.
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(1) gcd(c1 − c2, �) = 1 for all c1, c2 ∈ C (with c1 �= c2), and
(2) [u] = z�,

then the three-move protocol round described in Figure 3 is 2-extractable. More-
over, a protocol consisting of s rounds is a proof of knowledge if 1/|C|s is negli-
gible, and it is zero-knowledge if |C| is polynomially bounded.

Proof. 2-extractability can be proved as follows: From r and r′ such that [r] =
t ⊗ zc and [r′] = t ⊗ zc′ for two different challenges c and c′ we can obtain x̃
satisfying [x̃] = z, as

x̃ = ua �
(
r′−1 � r

)b
,

where a and b are computed using Euclid’s extended gcd-algorithm such that

�a + (c − c′)b = 1.

We make use of

[r′−1 � r] = [r′−1] ⊗ [r] = z−c′ ⊗ t−1 ⊗ t ⊗ zc = z−c′ ⊗ zc = zc−c′

to see that [x̃] = z:

[x̃] = [ua � (r′−1 � r)b]
= [u]a ⊗ [r′−1 � r]b

= (z�)a ⊗ (zc−c′)b

= z�a+(c−c′)b = z.

Theorem 1 implies directly that the protocol is a proof of knowledge, and
Theorem 2 implies that it is zero-knowledge if |C| is polynomially bounded since
it is c-simulatable. This is easy to see: Given z and a challenge c, one chooses r
at random and computes t as t = [r] ⊗ z−c.

5.3 Comparison with Other Work

Our result should be contrasted with another approach, due to Cramer [2] (see
also [3]) to abstracting a general type of proofs of knowledge. Cramer introduced
the notion of Σ-protocols which are basically three-move protocols, as discussed
in this paper, which are both 2-extractable and c-simulatable. All the protocols
we consider are Σ-protocols. However, we go further in that we show that a
large class of protocols are not only of the same protocol type, but are actually
the same protocol, thus requiring only one proof of the claimed properties. In
order to apply our Theorem 3 one only needs to specify the groups G and H ,
the homomorphism, and check the two conditions of Theorem 3.

6 Special Cases of the Main Protocol

In this section we describe a number of protocols as instantiations of our main
protocol.
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6.1 Schnorr and GQ as Special Cases

The Schnorr protocol is the special case where (G, �) = (Zq , +) (with addition
modulo q in Zq) and H is a group of order q with the group operation written
as multiplication (i.e., “·”, which can also be omitted). The (one-way) group
homomorphism is defined by

G → H : x �→ [x] = hx.

The challenge space C can be an arbitrary subset of [0, q−1]. The two conditions
of Theorem 3 are satisfied for � = q (if q is prime) and u = 0. Note that
gcd(c1 − c2, �) = 1 for all distinct c1, c2 ∈ C, and [u] = [0] = 1 = z� since every
element of H raised to the group order |H | = q is the neutral element of H .

The GQ protocol is the special case where (G, �) = (Z∗
m, ·) = (H,⊗). The

one-way homomorphism is defined by

G → H : x �→ [x] = xe.

The challenge space C can be an arbitrary subset of [0, e − 1], provided e is
prime. The conditions of Theorem 3 are satisfied for � = e and u = z. Note that
gcd(c1 − c2, �) = 1 for all distinct c1, c2 ∈ C, and [u] = [z] = ze = z�.

6.2 Proof of Knowledge of Several Values

Let

Gi → Hi : x �→ [x](i)

for i = 1, . . . , n be (possibly distinct) group homomorphisms for which, for the
same �, there exist u1, . . . , un and z1, . . . , zn satisfying condition (2) in Theo-
rem 3, i.e., [ui](i) = z�

i for i = 1, . . . , n. Then also

G1 × · · · × Gn → H1 × · · · × Hn :

(x1, . . . , xn) �→ [(x1, . . . , xn)] =
(
[x1](1), . . . , [xn](n)

)

is a one-way group homomorphisms.12 Therefore the main protocol proves in one
stroke the knowledge of x1, . . . , xn such that for given z1 ∈ H1, . . . , zk ∈ Hn we
have z1 = [x1](1), . . . , zn = [xn](n). This can be seen by setting u = (u1, . . . , un)
and z = (z1, . . . , zn) since

[u] =
(
[u1](1), . . . , [un](n)

)
=

(
z�
1, . . . , z

�
n

)
= z�.

A typical application of this protocol is for proving knowledge of several dis-
crete logarithms in (possibly distinct) groups of prime order q.

12 The group operations in G1×· · ·×Gn and H1×· · ·×Hn are defined component-wise.



Unifying Zero-Knowledge Proofs of Knowledge 283

6.3 Proof of Equality of Embedded Values

Let again
G → Hi : x �→ [x](i)

for i = 1, . . . , n be one-way group homomorphisms as in the previous section,
but with u1 = · · · = un = u. Then also

G → H1 × · · · × Hn : x �→ [x] =
(
[x](1), . . . , [x](n)

)

is a group homomorphisms (but not necessarily one-way). Therefore the main
protocol proves the knowledge of x that is simultaneously a preimage of all n
homomorphisms. More precisely, it proves knowledge of x such that for given
z1 ∈ H1, . . . , zk ∈ Hk we have z1 = [x](1), . . . , zk = [x](k).13 This can be seen by
setting z = (z1, . . . , zn). A typical application of this protocol is for proving that
several discrete logarithms in groups of prime order q are identical.

6.4 Proof of Knowledge of a Representation

Consider again a group H with prime order q, and let several generators
h1, . . . , hm of H be given. A representation of an element z ∈ H is a list
(x1, . . . , xm) of exponents such that z = hx1

1 hx2
2 · · ·hxm

m . (Note that such a rep-
resentation is not unique.) We want to prove knowledge of a representation of a
given element z.

For the special case m = 2, a protocol for this purpose was proposed by
Okamoto [9]. This is of interest, among other reasons, since Pedersen commit-
ments [10] have this form.14

A protocol for proving knowledge of a representation can be obtained as an-
other simple instantiation of our main protocol, using the homomorphism

Zm
q → H : (x1, . . . , xm) �→ [(x1, . . . , xm)] = hx1

1 · · ·hxm
m .

The conditions of Theorem 3 are satisfied for the choice � = q and u := (0, . . . , 0)
since [(0, . . . , 0)] = h0

1 · · ·h0
m = 1 = z� for every z ∈ H .

6.5 Proof of Knowledge of a Set of Linear Representations

One can actually prove more general statements about the knowledge of rep-
resentations, namely knowledge of values x1, . . . , xr that simultaneously satisfy
several representation equations with respect to generators h1, . . . , hm. Such pro-
tocols appear, for example, in the literature on credential systems.

For example, consider generators h1, h2, h3 of H . For given values z1, z2 ∈ H
we can prove knowledge of values x1, x2, x3, x4 ∈ Zq satisfying z1 = hx3

1 hx1
2 and

13 Note that if the homomorphisms are bijective, then this protocol not only proves
knowledge of x, but actually that all embedded values are identical.

14 One commits to a value x by choosing a random r and sending hx
1hρ

2 as the commit-
ment (see also Section 6.7). This commitment scheme is information-theoretically
hiding (but only computationally binding).
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z2 = hx2
1 hx4

2 hx1
3 . The reader can figure out as an exercise how the homomorphism

must be chosen such that our main protocol provides such a proof.
More generally, one can prove knowledge of x1, . . . , xr such that for given

values z1, . . . , zs and, for sm linear (over GF (q)) functions φ11, . . . , φsm from
GF (q)r to GF (q), we have

zi = h
φi1(x1,...,xr)
1 · hφi2(x1,...,xr)

2 · · ·hφim(x1,...,xr)
m

for i = 1, . . . , s. The group homomorphism Zr
q → Hs is defined as

[(x1, . . . , xr)] =

⎛
⎝

m∏
j=1

h
φ1j(x1,...,xr)
j , . . . ,

m∏
j=1

h
φsj(x1,...,xr)
j

⎞
⎠ .

6.6 Proof of Correctness of Diffie-Hellman Keys

Let H be a group with prime order |H | = q and generator h used in the Diffie-
Hellman protocol [4]. As for the Schnorr protocol, we define a homomorphic
embedding by

G → H : x �→ [x] = hx.

Recall that in the Diffie-Hellman protocol, Alice chooses an a ∈ Zq and sends
[a] = ha to Bob and, symmetrically, Bob chooses a b ∈ Zq and sends [b] = hb

to Alice. The common secret key is [ab] = hab. It is believed that for general
groups it is computationally hard to decide whether or not a given key K ∈ H
is the correct key, i.e., whether K = hab. This is known as the Decisional Diffie-
Hellman (DDH) problem. For example, if a very powerful organization were
willing to compute Diffie-Hellman keys as a commercial service (returning [ab]
when given [a] and [b]), then the customer could not verify that the key is
correct. In this context, as well as in other contexts, it is useful to be able to
prove the correctness of a Diffie-Hellman key in zero-knowledge, in particular
without leaking any information about a or b. This is again achieved by a simple
instantiation of our main protocol.

Let values A = [a], B = [b] and C = [c] be given. We wish to prove that
c = ab (mod q), i.e., that A, B, and C form a so-called Diffie-Hellman triple. For
this purpose we define the following one-way group homomorphism which we
denote by [[·]] and which is defined in terms of the homomorphism [·] and of B:

Zq → H × H : x �→ [[x]] = ([x], [xb]) = (hx, Bx).

Note that [xb] can be computed efficiently from B = [b] and x without knowing
b. This yields, as a special case of the main protocol for the homomorphism
x → [[x]], the desired proof: One proves knowledge of a preimage x (namely
x = a) such that

[[x]] = (A, C).

Due to the particular choice of the homomorphism, this implies that c = ab.
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While the protocol proves that the prover Peggy knows a, it does not prove
that she knows b or c. (This does not contradict the fact that the claim c = ab is
indeed proved.) If desired, a proof of knowledge of b (and hence also of c) could
be linked into the above proof using the technique of Section 6.3.

6.7 Multiplication Proof for Pedersen Commitments

An important step in secure multi-party computation (MPC) protocols is for a
party to commit to the product of two values it is already committed to, and to
prove that this product commitment is correct. We show how such a proof can
be given for Pedersen commitments.

Recall that in the Pedersen commitment scheme one commits to a value x ∈
Zq by choosing ρx ∈ Zq at random and sending the value gxhρx . (To avoid
unnecessary indices we denote here the two generators as g and h instead of h1

and h2.) We consider the commitment one-way homomorphism

Zq × Zq → H : (x, ρx) �→ [(x, ρx)] = gxhρx .

Since this commitment scheme is information-theoretically hiding, the value x is
not determined by the commitment. What counts is how the committing party
can open the commitment.

Let three commitments A, B, C ∈ H by Peggy be given. In the following we
assume that it is clear from the context that Peggy can open B as (b, ρb). If
this were not the case, one could incorporate such a proof using the technique
of Section 6.3. We describe a protocol that allows Peggy to prove that she can
open A as (a, ρa) and C as (c, ρc) with c = ab.

For this purpose we define the following one-way group homomorphism:

Z3
q → H × H : (x, ρx, σx) �→ [[(x, ρx, σx)]] = ([(x, ρx)], [(xb, xρb + σx)]),

where the second component can be computed as

[(xb, xρb + σx)] = Bxhσx

without knowledge of b and ρb (with B = [(b, ρb)]).
The desired proof can now be obtained as a special case of the main protocol:

Peggy proves that she knows a triple (x, ρx, σx) such that

[[(x, ρx, σx)]] = (A, C).

As can easily be verified, this proof is successful for the choice

(x, ρx, σx) = (a, ρa, ρc − aρb).

7 Conclusions

Our main protocol for proving knowledge of a preimage of a group homomor-
phism is the abstraction of a large class of protocols. The presented list of exam-
ples is by no means exhaustive. We encourage the reader to find other protocols
in the literature which can be described as an instance of the main protocol.
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