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Solution to Exercise 11

11.1 Information-Theoretic Commitment Transfer Protocol

a) In protocol Commit the state of the dealer D consists of commit polynomial g, where
the committed value is g(0) = s. Every player Pi stores the commit-share si = g(αi).

b) The commitment transfer protocol CTP allows to transfer a commitment from a
player P to a player P ′ The protocol works as follows:

1. P sends the polynomial g to P ′.

2. Each Pi sends si to P ′.

3. P ′ checks that all but at most t of the received si’s lie on g. If so, he accepts
g(0) as value for s, otherwise he assumes that he did not receive any value for s.

The above protocol is secure for t < n/3:

Privacy: Straight-forward as only P ′ receives values in the protocol and he only
obtains the values which he is supposed to receive.

Correctness: This can be argued along the lines of the correctness of the protocol
Open from the lecture notes: Assume that P sends P ′ some wrong polynomial g′ 6= g.
Then, at most t of the commit shares can lie on polynomial g′. Hence the commit
shares of at least n− t players do not lie on g′. As at most t of those players might
be corrupted, there are at least n− 2t > t players who will send commit shares that
do not lie on g′ to P ′, and therefore P ′ will not accept g(0) as value for s.

In the case that P ′ did not receive a valid value for s, he can accuse P via broadcast
and the whole protocol is repeated, using broadcast instead of sending values.

11.2 Information-Theoretic Commitment Multiplication Protocol

In the following we will use fa and fb to denote the polynomials used in the commitment
sharing protocol (CSP) to share the values a and b, respectively. Furthermore, let
fd := fa · fb.
a) We show that correctness and privacy are satisfied:

Privacy: In steps 1-3, privacy is guaranteed by the privacy of the CSP, i.e., no
information on a, b, and d is revealed in these steps. In step 4, the players only see
values they already know, namely di = ai · bi, hence again no information is revealed.
Finally, the commitments to some ai, bi, and di are opened only if D or the player Pi
is corrupted, which means that the adversary already knows them.

Correctness: Any dealer who is not disqualified must successfully complete the
CSP for values a and b. Thus, every player Pi ends up with shares ai on fa and
bi on fb. Suppose, D commits to a value d′ 6= d and shares it using a polynomial
fd′ 6= fd = fa · fb in protocol CSP.1 Since both fd and fd′ have degree at most 2t,

1Note that the dealer cannot share d′ using fd as can easily be seen by inspecting the CSP.



they can have at most 2t points in common. Thus, there exists at least one honest
player Pi for which d′i 6= aibi, where d′i is his share of d′.2 This player will accuse the
dealer and prove that he is corrupted by opening ai, bi, and di.

b) Let n = 3t, and assume that the players P1, . . . , Pt are corrupted, where P1 plays
the role of D. In order to achieve that at the end of the protocol the players accept
a false d′ 6= ab, the corrupted players have the following strategy:

1. In step 1, D chooses d′ (instead of d) and is commited to it.

2. Step 2 is executed normally, i.e., D invokes the CSP for a and b.

3. In step 3, D invokes the CSP for d′, with the (unique) degree-2t polynomial
fd′(x), such that fd′(0) = d′ and

fd′(αi) = fa(αi) · fb(αi)

for i = t+ 1, . . . , n.

4. The corrupted players do not complain in step 4.

As fd′(x) is chosen such that it satisfies the consistency check for all honest players,
no player will complain and the commitment to d′ will be accepted.

11.3 Commitment Multiplication Protocol for ElGamal

The solution is a particular instantiation of the protocol in Exercise 10.3d).

The commitment multiplication protocol CMP allows a player P that is committed to
some values a and b, to commit to their product d = ab.

Let use denote A = (gα, γahα), B = (gβ, γbhβ) the blobs of a and b.

The inputs of P are a, b, α, β and the inputs of the other players Pi are A,B.

In the first step, P computes D = (gδ, γdhδ), where δ ∈R Zq and broadcasts D. Then,
P proves in zero-knowledge (using the generic zero-knowledge proof of knowledge of a
preimage of a one-way homomorphism we saw in the lecture) that he knows a pre-image
of (A,D) with respect to the homomorphism

ψ : Zq × Zq × Zq → G×G, (a, α, ρ) 7→
(

(gα, γahα), (gaβ+ρ, γabhaβ+ρ)
)
.

The pre-image of (A,D) that P uses in the generic zero-knowledge protocol is (a, α, δ−
aβ). Observe that knowledge of a pre-image of (A,D) corresponds to knowing the
information to open the blobs A and D in a way so that the value d is the product of a
and b.

Observe that even without knowing b and β, any party is able to evaluate the homomor-
phism using B instead, since:

ψ(a, α, ρ) =
(
(gα, γahα), Ba · (gρ, γ0hρ)

)
.

It is easily seen that such a function is a homomorphism and the condition ∃u, l such
that:

1. [u] = (A,D)l.

2. ∀c1, c2 ∈ C with c1 6= c2 gcd(c1 − c2, l) = 1

2The condition t < n/3 implies that there are at least 2t+ 1 honest players.



is satisfied.

We saw that these conditions (plus a suitable challenge space) are sufficient to prove
that the generic protocol is a zero-knowledge proof of knowledge.

A player Pi accepts the protocol if and only if P succeeds in the zero-knowledge proof.
P outputs the randomness δ of D, and the other players Pi output D.

Observe that the zero-knowledge proof has to be done between P and all other parties
Pi. To execute such a distributed zero-knowledge proof, P broadcasts all of his messages.
The challenge has to be chosen between all players. To do that, each player commits to
a random value. Then, the sum of these values is opened and used as the challenge.

Since P broadcasts D as well as all the messages in the zero-knowledge proof and since
the challenge is chosen in a distributed fashion, the honest players agree (by broadcasting
their output) on whether or not the protocol was successful.


