Cryptographic Protocols Exercise 10

10.1 Not Sending Values

Consider the case where the at most t < n/2 corrupted players can withhold information (but do not send wrong values).

For a finite field \mathbb{F} , let $[a] = (a_1, \ldots, a_n)$ be a sharing of a value $a \in \mathbb{F}$ among the players P_1, \ldots, P_n . The share a_i of P_i is a point on some polynomial $f \in \mathbb{F}[X]$ of degree at most t, i.e., $a_i = f(\alpha_i)$, where $\alpha_1, \ldots, \alpha_n$ are distinct values in $\mathbb{F} \setminus \{0\}$.

Devise a protocol that allows the players to reconstruct a share of a corrupted player. Keep in mind that in your protocol up to t < n/2 players can be corrupted and may not send values they are supposed to send.

10.2 ElGamal Commitments

The ElGamal commitment function maps elements of $\mathbb{Z}_q \times \mathbb{Z}_q$ to elements of $G \times G$, where q is a prime number and G is a cyclic group of order q. More precisely, the ElGamal commitment to a value $a \in \mathbb{Z}_q$ with randomness $\alpha \in \mathbb{Z}_q$ is a pair $A := (g^{\alpha}, \gamma^a h^{\alpha})$, where g and γ are (fixed) generators of G and h is a randomly chosen element of G.¹

- a) Show that ElGamal commitments are homomorphic with respect to addition.
- b) Prove that ElGamal commitments are perfectly binding.
- c) Prove that the ElGamal commitment scheme is computationally hiding under the assumption that the decisional Diffie-Hellman (DDH) problem is hard, i.e., under the assumption that it is computationally hard to distinguish (for a fixed generator g) triples (g^u, g^v, g^{uv}) from triples (g^u, g^v, g^w) for randomly chosen exponents u, v, w.

¹Assume that the element h is chosen during a setup phase such that neither the sender nor the receiver knows its discrete logarithm w.r.t. g.

10.3 Multi-Party Computation from Homomorphic Commitments

Consider a (non-interactive) commitment scheme characterized by a function $C: \mathcal{X} \times \mathcal{R} \to \mathcal{B}$, where \mathcal{X} is the space of committable values, \mathcal{R} is the randomness space, and \mathcal{B} is the blob space. Assume that C is homomorphic, i.e., that \mathcal{X} , \mathcal{R} , and \mathcal{B} are groups and that C is a group homomorphism.

The goal of this task is to adapt this commitment scheme such that it can be used in an MPC (cf. Section 8.2 of the lecture notes).

- a) Construct a protocol COMMIT that allows a player P to commit towards all players to some value $x \in \mathcal{X}$.
- b) Provide a protocol OPEN that allows a player P to open a certain commitment to some player P'. Moreover, provide a protocol OPEN' that allows P to open a commitment to all players.
- c) Construct a commitment transfer protocol CTP that allows to transfer a commitment from a player P to some other player P'.
- d) Finally, provide a commitment multiplication protocol CMP.