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Cryptographic Protocols

1. Interactive Proofs and Zero-Knowledge Protocols

Proving without Showing

2. Secure Multi-Party Computation

Computing without Knowing

3. Broadcast

Agreeing without Trusting

4. Secure E-Voting

Broadcast / Byzantine Agreement
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Theorem [LSP80]: Among n players, broadcast is achievable

if and only if t < n/3 players are corrupted.

Secure Multi-Party Computation
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Secure Multi-Party Computation: Known Results

Secure MPC: Summary of known results

Adversary types:
• passive : plays correctly, but analyses transcript.
• active : cheats arbitrarily.

Types of security:
• computational : intractability assumptions
• information-theoretic : ∞ computing power

type of security adv. type condition
computational passive t < n
computational active t < n/2
information-theoretic passive t < n/2
information-theoretic active t < n/3
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Formal Proofs (Conventional)

Proof system for a class of statements
• A statement (from the class) is a string (over a finite alphabet).

• The semantics defines which statements are true.

• A proof is a string.

• Verification function ϕ: (statement, proof) 7→ {accept, reject}.
Example: n is non-prime
• Statement: a number n (sequence of digits), e.g. ”399800021“.

• Proof: a factor f , e.g. ”19997“.

• Verification: Check whether f divides n.

Requirements for a Proof System
• Soundness: Only true statements have proofs.

• Completeness: Every true statement has a proof.

• Efficient verifiability: ϕ is efficiently computable.

Proof System: Sudoku has Solution

Good Proof System
• Statement: 9-by-9 Matrix Z over {1, . . . ,9,⊥}.
• Proof: 9-by-9 Matrix X over {1, . . . ,9}.
• Verification:

1)

2)

Stupid Proof System
• Statement: 9-by-9 Matrix Z over {1, . . . ,9,⊥}.
• Proof: “” (empty string)

• Verification: For all possible X , check if X is solution for Z.

→ This is not a proof!
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Efficient Primality Proof

An efficiently verifiable proof that n is prime:

0. For small n (i.e., n ≤ T ), do table look-up (empty proof).

1. The list of distinct prime factors p1, . . . , pk of n− 1.

(n− 1 =
∏k
i=1 p

αi
i )

2. Number a such that

an−1 ≡ 1 (mod n)

and
a(n−1)/pi 6≡ 1 (mod n)

for 1 ≤ i ≤ k.

3. Primality proofs for p1, . . . , pk (recursion!).

Two Types of Proofs

Proofs of Statements:
• Sudoku Z has a solution X .
• z is a square modulo m, i.e. ∃x z = x2 (mod m).
• The graphs G0 and G1 are isomorphic.
• The graphs G0 and G1 are non-isomorphic.
• P = NP

Proofs of Knowledge:
• I know a solution X of Sudoku Z.
• I know a value x such that z = x2 (mod m).
• I know an isomorphism π from G0 to G1.
• I know a non-isomorphism between G0 and G1 ????
• I know a proof for either P = NP or P 6= NP.
• I know x such that z = gx.

Often: Proof of knowledge→ Proof of statement (knowledge exists)

Static Proofs vs. Interactive Proofs

Static Proof

Prover P Verifier V
knows statement s,
proof p

knows statement s

-p (s, p)→ {accept, reject}

Interactive Proof

Prover P Verifier V
knows statement s, knows statement s-m1

�m2

. . .

-m` (s,m1, . . . ,m`)→ {accept, reject}

Motivation for IP’s:

1. zero knowledge
2. more powerful
3. applications

Interactive Proofs: Requirements

• Completeness: If the statement is true [resp., the prover knows the

claimed information], then the correct verifier will always accept the

proof by the correct prover.

• Soundness: If the statement is false [resp., the prover does not know

the claimed information], then the correct verifier will accept the proof

only with negligible probability, independent of the prover’s strategy.

Desired Property:

• Zero-Knowledge: As long as the prover follows the protocol, the

verifier learns nothing but the fact that the statement is true [resp., that

the prover knows the claimed information].



The Graph Isomorphism (GI) Problem
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1 0 1 1 1 0
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Graph Isomorphism – One Round of the Protocol

Setting: Given two graphs G0 and G1.

Goal: Prove that G0 and G1 are isomorphic.

Peggy Vic

knows G0, G1, σ s.t. G1 = σG0σ−1 knows G0 and G1

pick random permutation π

T = πG0π−1 -T
� c

c ∈R {0,1}

c = 0 : ρ = π

c = 1 : ρ = πσ−1 -ρ
c = 0 : T ?

= ρG0ρ−1

c = 1 : T ?
= ρG1ρ−1

Graph-NON-Isomorphism – One Round of the Protocol

Setting: Given two graphs G0 and G1.

Goal: Prove that G0 and G1 are not isomorphic.

Peggy Vic

knows G0 and G1 knows G0 and G1

� T
b ∈R {0,1}, π at random

T = πGbπ−1

if T ∼ G0: r = 0,

if T ∼ G1: r = 1 -r
r

?
= b

Fiat-Shamir – One Round of the Protocol

Setting: m is an RSA-Modulus.

Goal: Prove knowledge of a square root x of a given z ∈ Z∗m.

Peggy Vic

knows x s.t. x2 = z (mod m) knows z

k ∈R Z∗m,

t = k2 -t

� c
c ∈R {0,1}

r = k · xc -r
r2

?
= t · zc

Guillou-Quisquater – One Round of the Protocol

Setting: m is an RSA-Modulus.

Goal: Prove knowledge of an e-th root x of a given z ∈ Z∗m.

Peggy Vic

knows x s.t. xe = z (mod m) knows z

k ∈R Z∗m,

t = ke -t

� c
c ∈R C ⊆ {0, . . . , e− 1}

r = k · xc -r
re

?
= t · zc

Schnorr – One Round of the Protocol

Setting: Cyclic group H = 〈h〉, |H| = q prime.

Goal: Prove knowledge of the discrete logarithm x of a given z ∈ H.

Peggy Vic

knows x ∈ Zq s.t. hx = z knows z

k ∈R Zq,

t = hk -t

� c
c ∈R C ⊆ Zq

r = k+ xc -r
hr

?
= t · zc


