Cryptographic Protocols

Spring 2018

Part 1

Cryptographic Protocols

- 1. Interactive Proofs and Zero-Knowledge Protocols Proving without Showing
- 2. Secure Multi-Party Computation Computing without Knowing
- 3. Broadcast Agreeing without Trusting
- 4. Secure E-Voting

Broadcast / Byzantine Agreement

Theorem [LSP80]: Among n players, broadcast is achievable if and only if t < n/3 players are corrupted.

Secure Multi-Party Computation

Secure Multi-Party Computation: Known Results

Adversary types:

passive: plays correctly, but analyses transcript.
 active: cheats arbitrarily.

Types of security:

computational: intractability assumptions
 information-theoretic: ∞ computing power

type of security	adv. type	condition
computational	passive	t < n
computational	active	t < n/2
information-theoretic	passive	t < n/2
information-theoretic	active	t < n/3

						4		
2					1		5	
4	3		7	5		1		2
				7			6	
	5	3				2	4	
	4			1				
3		1		8	2		7	4
	2		9					5
		8						

Formal Proofs (Conventional)

Proof system for a class of statements

- A statement (from the class) is a string (over a finite alphabet).
- The semantics defines which statements are true.
- · A proof is a string.
- Verification function φ : (statement, proof) \mapsto {accept, reject}.

Example: n is non-prime

- \bullet Statement: a number n (sequence of digits), e.g. "399800021".
- Proof: a factor f, e.g. "19997".
- ullet Verification: Check whether f divides n.

Requirements for a Proof System

- Soundness: Only true statements have proofs.
- Completeness: Every true statement has a proof.
- Efficient verifiability: φ is efficiently computable.

Proof System: Sudoku has Solution

Good Proof System

- Statement: 9-by-9 Matrix $\mathcal Z$ over $\{1,\ldots,9,\bot\}$.
- Proof: 9-by-9 Matrix $\mathcal X$ over $\{1,\ldots,9\}$.
- Verification:

1)	
/	
2)	
- /	

Stupid Proof System

- Statement: 9-by-9 Matrix $\mathcal Z$ over $\{1,\dots,9,\bot\}$.
- Proof: "" (empty string)
- Verification: For all possible \mathcal{X} , check if \mathcal{X} is solution for \mathcal{Z} .
- → This is not a proof!

Efficient Primality Proof

An efficiently verifiable proof that n is prime:

- 0. For small n (i.e., $n \leq T$), do table look-up (empty proof).
- 1. The list of distinct prime factors p_1,\dots,p_k of n-1. $(n-1=\prod_{i=1}^k p_i^{\alpha_i})$
- 2. Number a such that

$$a^{n-1} \equiv 1 \pmod{n}$$

and

$$a^{(n-1)/p_i} \not\equiv 1 \pmod{n}$$

 $\text{ for } 1 \leq i \leq k.$

3. Primality proofs for p_1, \ldots, p_k (recursion!).

Two Types of Proofs

Proofs of Statements:

- Sudoku $\mathcal Z$ has a solution $\mathcal X$.
- ullet z is a square modulo m, i.e. $\exists x \ z = x^2 \pmod{m}$.
- The graphs \mathcal{G}_0 and \mathcal{G}_1 are isomorphic.
- The graphs \mathcal{G}_0 and \mathcal{G}_1 are non-isomorphic.
- P = NP

Proofs of Knowledge:

- I know a solution $\mathcal X$ of Sudoku $\mathcal Z$.
- I know a value x such that $z = x^2 \pmod{m}$.
- ullet I know an isomorphism π from \mathcal{G}_0 to \mathcal{G}_1 .
- \bullet I know a non-isomorphism between \mathcal{G}_0 and \mathcal{G}_1 ????
- \bullet I know a proof for either P = NP or P \neq NP.
- $\bullet \ \ {\rm I} \ {\rm know} \ x \ {\rm such \ that} \ z=g^x.$

Static Proofs vs. Interactive Proofs

Static Proof

Prover P

Verifier V

knows statement s, proof p

knows statement s

proor p

Verifier V

Interactive Proof

Motivation for IP's:

Prover P

knows statement s

zero knowledge more powerful

knows statement s, $\ m_1$ kr

 $\begin{array}{c} & m_1 \\ \hline & m_2 \\ \hline & \dots \\ \hline & \\ \hline & \\ & \\ & \\ & \\ & \end{array}$ 3. applications

Interactive Proofs: Requirements

- Completeness: If the statement is true [resp., the prover knows the claimed information], then the correct verifier will always accept the proof by the correct prover.
- Soundness: If the statement is false [resp., the prover does not know
 the claimed information], then the correct verifier will accept the proof
 only with negligible probability, independent of the prover's strategy.

Desired Property:

• Zero-Knowledge: As long as the prover follows the protocol, the verifier learns nothing but the fact that the statement is true [resp., that the prover knows the claimed information].

The Graph Isomorphism (GI) Problem

Graph Isomorphism – One Round of the Protocol

Setting: Given two graphs \mathcal{G}_0 and \mathcal{G}_1 .

Goal: Prove that \mathcal{G}_0 and \mathcal{G}_1 are isomorphic.

Peggy

Vic

knows
$$\mathcal{G}_0$$
, \mathcal{G}_1 , σ s.t. $\mathcal{G}_1 = \sigma \mathcal{G}_0 \sigma^{-1}$ knows \mathcal{G}_0 and \mathcal{G}_1

pick random permutation π

$$T = \pi \mathcal{G}_0 \pi^{-1}$$

$$c = 0 : \rho = \pi$$

$$c = 1 : \rho = \pi \sigma^{-1}$$

$$c = 0 : \mathcal{T} \stackrel{?}{=} \rho \mathcal{G}_0 \rho^{-1}$$

$$c = 1 : \mathcal{T} \stackrel{?}{=} \rho \mathcal{G}_1 \rho^{-1}$$

Graph-NON-Isomorphism – One Round of the Protocol

Setting: Given two graphs \mathcal{G}_0 and \mathcal{G}_1 .

Goal: Prove that \mathcal{G}_0 and \mathcal{G}_1 are *not* isomorphic.

Peggy

knows \mathcal{G}_0 and \mathcal{G}_1

knows \mathcal{G}_0 and \mathcal{G}_1

$$b \in_R \{0, 1\}, \pi$$
 at random

$$\mathcal{T} \qquad \mathcal{T} = \pi \mathcal{G}_b \pi^{-1}$$

if
$$\mathcal{T} \sim \mathcal{G}_0$$
: $r = 0$,

if
$$\mathcal{T} \sim \mathcal{G}_1$$
: $r=1$

$$\mathcal{T} = \pi \mathcal{G}_b \pi^{-1}$$

if
$$\mathcal{T} \sim \mathcal{G}_1$$
: $r = 1$

$$b \in_R \{0,1\}, \pi$$
 at random

$$\mathcal{T} = \pi \mathcal{G}_b \pi^{-1}$$

if
$$\mathcal{T} \sim \mathcal{G}_1$$
: $r = 1$

$$\mathcal{T} = \pi \mathcal{G}_b \pi^{-1}$$

if
$$\mathcal{T} \sim \mathcal{G}_1$$
: $r = 1$

$$\tau = \pi C_1 \pi^{-1}$$

Fiat-Shamir - One Round of the Protocol

Setting: m is an RSA-Modulus.

Goal: Prove knowledge of a square root x of a given $z \in \mathbb{Z}_m^*$.

Peggy

Vic

knows
$$\mathbf{x}$$
 s.t. $\mathbf{x}^2 = z \pmod{m}$

knows z

$$\mathbf{k} \in_{R} \mathbb{Z}_{m}^{*}$$

$$t = k^2$$

$$r = k \cdot x^c$$

$$r \rightarrow r^2 \stackrel{?}{=} t \cdot z^c$$

Guillou-Quisquater - One Round of the Protocol

Setting: m is an RSA-Modulus.

Goal: Prove knowledge of an e-th root x of a given $z \in \mathbb{Z}_m^*$.

Peggy

Vic

knows
$$x$$
 s.t. $x^e = z \pmod{m}$

knows z

$$k \in_R \mathbb{Z}_m^*$$

 $r = k \cdot x^c$

$$t = k^e$$

$$\begin{array}{c|c} & t & \\ \hline & c & \\ \hline & c \in_R \mathcal{C} \subseteq \{0, \dots, e-1\} \end{array}$$

Schnorr – One Round of the Protocol

Setting: Cyclic group $H = \langle h \rangle$, |H| = q prime.

Goal: Prove knowledge of the discrete logarithm x of a given $z \in H$.

Peggy

Vic

knows
$$\mathbf{x} \in \mathbb{Z}_q$$
 s.t. $h^{\mathbf{x}} = z$

knows z

$$\mathbf{k} \in_R \mathbb{Z}_q$$
,

$$t = h^{k}$$

$$\begin{array}{c|c}
t \\
\hline
c \\
c \in_R C \subseteq \mathbb{Z}_q
\end{array}$$

$$r = k + xc$$

$$r \qquad b^r \stackrel{?}{=} t \cdot z^c$$