Cryptographic Protocols

Spring 2018

Part 4

One-Way Group Homomorphisms (OWGH)

Setting: Groups $\langle G, \star \rangle$ and $\langle H, \otimes \rangle$

Definition: A group homomorphism is a function f with:

$$f: G \to H, f(a \star b) = f(a) \otimes f(b)$$

Notation: We write [a] for f(a), hence

$$[\,]:\ G\to H,\ [a\star b]=[a]\otimes [b]$$

Examples

• $G = \langle \mathbb{Z}_q, + \rangle$, $H = \langle h \rangle$ with |H| = q, $[a] = h^a$:

$$[a+b] = h^{a+b} = h^a \cdot h^b = [a] \cdot [b]$$

• $G = H = \langle \mathbb{Z}_m^*, \cdot \rangle$, $[a] = a^e$:

$$[a \cdot b] = (a \cdot b)^e = a^e \cdot b^e = [a] \cdot [b].$$

PoK of Pre-Image of OWGH - One Round of the Protocol

Setting: Groups G and H, group homomorphism $[]: \langle G, \star \rangle \mapsto \langle H, \otimes \rangle$. **Goal:** Prove knowledge of a pre-image x of $z \in H$.

Peggy

Vic

knows $\mathbf{x} \in G$ s.t. $[\mathbf{x}] = z$

knows $z \in H$

 $\mathbf{k} \in_R G$,

t = [k]

 $r = k \star x^c$

 $r \longrightarrow [r] \stackrel{?}{=} t \otimes z^{c}$

2-Extractability of OWGH PoK

Theorem 1.5: The protocol round is 2-extractable if

$$\exists \ell \in \mathbb{Z}, u \in G \text{ s.t. } \text{ (1) } \forall c_1, c_2 \in \mathcal{C}, c_1 \neq c_2 : \gcd(c_1-c_2,\ell) = 1$$

$$\text{ (2) } [u] = z^\ell$$

Proof: Given ℓ and u as above and triples (t,c_1,r_1) and (t,c_2,r_2) with $c_1 \neq c_2$ satisfying the verification test, extract x' with [x'] = z as follows:

2. Extended Euclidean Algorithm $\Rightarrow a,b$ with $a\ell+b(c_1-c_2)=1$

3.
$$z = z^1 = z^{a\ell+b(c_1-c_2)} = z^{a\ell} \otimes z^{b(c_1-c_2)}$$

 $= (z^{\ell})^a \otimes (z^{c_1-c_2})^b = [u]^a \otimes [r_1 \star r_2^{-1}]^b = [\underbrace{u^a \star (r_1 \star r_2^{-1})^b}_{x'}]$

OWGH PoK for Schnorr and Guillou-Quisquater

Schnorr

- $G = \mathbb{Z}_q$, cyclic group $H = \langle h \rangle$, |H| = q prime
- []: $G \to H$, $x \mapsto [x] = h^x$.
- Thm 1.5: $\ell = q, u = 0$: $z^{\ell} = 1 = [0]; q \text{ prime} \Rightarrow \gcd(c_1 c_2, \ell) = 1.$

Guillou-Quisquater

- $G = H = \mathbb{Z}_m^*$.
- [] : $G \to H$, $x \mapsto [x] = x^e$.
- $\bullet \text{ Thm 1.5: } \ell=e, u=z \text{: } z^\ell=z^e=[z] \text{; } e \text{ prime} \Rightarrow \gcd(c_1-c_2,\ell)=1.$

Further Examples

• see paper, lecture, and exercise.