
Continuous Group Key Agreement
with Active Security

Joël Alwen1, Sandro Coretti2, Daniel Jost3, and Marta Mularczyk3?

1 Wickr, jalwen@wickr.com
2 IOHK, sandro.coretti@iohk.io

3 ETH Zurich, Switzerland, {dajost, mumarta}@inf.ethz.ch

Abstract. A continuous group key agreement (CGKA) protocol allows a long-lived
group of parties to agree on a continuous stream of fresh secret key material. The
protocol must support constantly changing group membership, make no assumptions
about when, if, or for how long members come online, nor rely on any trusted group
managers. Due to sessions’ long life-time, CGKA protocols must simultaneously
ensure both post-compromise security and forward secrecy (PCFS). That is, current
key material should be secure despite both past and future compromises.

The work of Alwen et al. (CRYPTO’20), introduced the CGKA primitive and
identified it as a crucial component for constructing end-to-end secure group messaging
protocols (SGM) (though we believe there are certainly more applications given the
fundamental nature of key agreement). The authors analyzed the TreeKEM CGKA,
which lies at the heart of the SGM protocol under development by the IETF working
group on Messaging Layer Security (MLS).

In this work, we continue the study of CGKA as a stand-alone cryptographic
primitive. We present 3 new security notions with increasingly powerful adversaries.
Even the weakest of the 3 (passive security) already permits attacks to which all prior
constructions (including all variants of TreeKEM) are vulnerable.

Going further, the 2 stronger (active security) notions additionally allow the
adversary to use parties’ exposed states (and full network control) to mount attacks.
These are closely related to so-called insider attacks, which involve malicious group
members actively deviating from the protocol. Insider attacks present a significant
challenge in the study of CGKA (and SGM). Indeed, we believe ours to be the first
security notions (and constructions) to formulate meaningful guarantees (e.g. PCFS)
against such powerful adversaries. They are also the first composable security notions
for CGKA of any type at all.

In terms of constructions, for each of the 3 security notions we provide a new
CGKA scheme enjoying sub-linear (potentially even logarithmic) communication
complexity in the number of group members. We prove each scheme optimally secure,
in the sense that the only security violations possible are those necessarily implied by
correctness.

? Research was supported by the Zurich Information Security and Privacy Center (ZISC).

Table of Contents

1 Introduction . 3
1.1 Overview and Motivation . 3
1.2 Contributions . 4
1.3 Technical Overview . 5
1.4 Related Work . 7
1.5 Outline . 8

2 Preliminaries . 8
3 Continuous Group Key Agreement . 9

3.1 CGKA Schemes . 9
3.2 CGKA Syntax . 10

4 Modeling Security of CGKA . 10
5 Security of CGKA in the Passive Setting . 12
6 Security of CGKA in the Active Setting . 17
7 Construction for the Authenticated Setting . 21

7.1 TTKEM . 21
7.2 Cross-Group Attacks . 23
7.3 The Protocol P-Pas . 24
7.4 Efficiency . 25

8 Constructions for the Passive Setting . 25
8.1 Basic Modifications of the Passive Protocol . 25
8.2 The Non-Robust Protocol . 26
8.3 The Robust Protocol using NIZKs . 27

9 On the Sub-optimality of Alternative Solutions . 28
9.1 Pairwise Channels . 29
9.2 Key-Homomorphic Encryption . 29

10 Conclusions and Future Directions . 30
10.1 Conclusions . 30
10.2 Future Directions . 30

A Additional Preliminaries . 34
A.1 Additional Notation . 34
A.2 UC Security . 34
A.3 Left-Balanced Binary Trees . 36
A.4 Cryptographic Primitives . 37

B Details of the Security Model . 40
B.1 The Corruption Model . 40
B.2 Restricted Environments . 41
B.3 PKI . 41

C Details of the Construction for the Passive Setting . 42
C.1 Labeled Trees . 42
C.2 The Algorithms of P-Pas . 43

D Proof of Thm. 1: Security in the Non-Programmable ROM . 46
E Proof of Thm. 2: Full UC Security in the Programmable ROM . 51
F Details of the Construction for the Active Setting . 51

F.1 Shared Modifications . 51
F.2 The Non-robust Protocol . 52
F.3 The Robust Protocol . 54

G Proof of Thm. 3: Security of the Construction without Robustness 56
H Proof of Thm. 5: Security of the Construction with Robustness . 60

1 Introduction

1.1 Overview and Motivation

A continuous group key agreement (CGKA) protocol allows a long-lived dynamic group to agree
on a continuous stream of fresh secret group keys. In CGKA new parties may join and existing
members may leave the group at any point mid-session. In contrast to standard (dynamic) GKA,
the CGKA protocols are asynchronous in that they make no assumptions about if, when, or for
how long members are online.4 Moreover, unlike, say, broadcast encryption, the protocol may not
rely on a (trusted) group manager or any other designated party. Due to a session’s potentially
very long life-time (e.g., years), CGKA protocols must ensure a property called post-compromise
forward security (PCFS). PCFS strengthens the two standard notions of forward security (FS)
(the keys output must remain secure even if some party’s state is compromised in the future) and
post-compromise security (PCS) (parties recover from state compromise after exchanging a few
messages and the keys become secure again) in that it requires them to hold simultaneously.

CGKA as a stand-alone primitive was introduced by Alwen et al. in [5]. The authors analyzed
(a version of) the TreeKEM CGKA protocol [11], a core component in the scalable end-to-end
secure group messaging (SGM) protocol MLS, currently under development by the eponymous
Messaging Layer Security working group of the IETF [9].

A SGM protocol is an asynchronous (in the above sense) protocol enabling a dynamic group of
parties to exchange messages over the Internet. While such protocols initially relied on a service
provider acting as a trusted third party, nowadays end-to-end security is the norm, and the provider
merely acts as an untrusted delivery service. SGM protocols are expected to (simultaneously) provide
post-compromise forward security for messages defined analogously to CGKA.5 The proliferation
of SGM protocols in practice has been extensive with more than 2 billion users today.

The primary bottleneck for greater scalability of CGKA/SGM protocols is the communication
and computational complexity of performing a group operation (e.g. agree on a new group key, add
a party, etc.). Almost all protocols, in particular all those used in practice today, have complexity
Ω(n) for groups of size n (e.g. [34, 37, 28]). This is an unfortunate side effect of them being
built black-box on top of 2-party secure messaging (SM) protocols. The first (CGKA) protocol to
break this mold, thereby achieving “fair-weather” complexity of O(log(n)), is the ART protocol
of [20]. Soon to follow were the TreeKEM family of protocols including those in [11, 5, 2] and their
variations used in the different iterations of MLS. By fair-weather complexity we mean that the
cost of the next operation in a session can range from Θ(log(n)) to Θ(n) depending on the exact
sequence of preceding operations. However, under quite mild assumptions about the online/offline
behaviour of participants, the complexity can be kept in the O(log(n)) range.

In [4] the authors modularize and generalize the core MLS design to present a practical,
black-box SGM construction from CGKA (and several other standard primitives). This directly
motivates the study of CGKA by making precise the intuition, put forth in [5], that CGKA captures
the essence of SGM protocol design; specifically, that the CGKA component’s efficiency profile,
asynchronous nature, trust assumptions and security guarantees are all naturally inherited (or
strengthened) by the resulting SGM protocol. Finally, it is worth stating that we believe CGKA will
find further uses beyond SGM, given the significantly more fundamental nature of key agreement.
In a nutshell (and very roughly speaking), CGKA is to SGM what KEM is to public key encryption.

The Security of CGKA. For efficiency reasons, the current design of MLS (and, consequently, the
analysis by [5]) is based on the assumption that the attacker does not forge any ciphertexts in the
time between state compromise and healing through PCS. This assumption — henceforth referred
to as the cannot-inject assumption (CIA) — prevents the attacker from destroying the group state
4 Instead, the protocol must allow parties that come online to immediately derive all new key material

agreed upon in their absence simply by locally processing all protocol messages sent to the group during
the interim. Conversely, any operations they wish to perform (e.g., add/remove a party, or agree on fresh
key material) must be implemented non-interactively by producing a single message to be broadcasted
to the group.

5 As for CGKA, PCFS is strictly stronger than the “non-simultaneous” combination of FS and PCS. That
is, there are protocols that individually satisfy FS and PCS, but not PCFS [5]. Intuitively, an attack on
a session’s current security may require compromising parties both in the past and the future.

3

by sending maliciously crafted ciphertexts and is, therefore, closely related to the issue of insider
security, i.e., security against group members who actively deviate from the prescribed protocol,
which has hitherto been a mostly open problem and remains an ongoing concern for the MLS
working group.6

A second assumption that underlies prior work on secure group messaging is the no-splitting
assumption (NSA): When multiple parties propose a change to the group state simultaneously, the
delivery service (and, hence, the attacker) is assumed to mediate and choose the change initiated
by one of the parties and deliver the corresponding protocol message to all group members. This
(artificially) bars the attacker from splitting the group into subgroups (unaware of each other) and
thereby potentially breaking protocol security. Therefore, the NSA represents a serious limitation
of the security model.

1.2 Contributions

Defining Optimally Secure CGKA. This work proposes the first security definition in the realm of
secure group messaging that does not impose any unrealistic restrictions on adversarial capabilities.
We define optimally secure flavors of CGKA, where the definition requires each produced key be
secure unless information about it leaked is trivially to the attacker due to corruption. However,
our notions are flexible and can be extended to model sub-optimal security.

Our definitions allow the adversary to control the communication network, including the delivery
service, as well as to corrupt parties by leaking their states and/or controlling their randomness.
Furthermore, attackers are not limited by the above assumptions, the CIA and the NSA. Specifically,
two settings, called the passive setting and the active setting, are considered: The passive setting
only makes the CIA (but not the NSA), and hence corresponds to a passive network adversary
(or authenticated channels). It should be considered a stepping stone to the active setting, where
attackers are limited by neither CIA nor NSA. Note that [20, 2, 4] have also considered the setting
without the NSA.

While our active setting does not, per se, formally model malicious parties, it does allow
the adversary to send arbitrary messages on behalf of parties whose states leaked.7 Thus, our
CGKA security definition goes a long way towards considering the insider attacks mentioned above
(cf. Section 4 for more details on the relation to insider security and Section 10 for related open
problems.).

It should be noted that in the 2-party setting, studying optimal security has proven highly
beneficial, irrespective of the lack of practically efficient schemes achieving such a strong notion.
First, from a theoretical point of view, it is typically easier to intuitively weaken a security definition
(e.g. by simply forbidding certain invocation patterns) rather than strengthening one as the latter
typically entails modifying the definition’s high-level interface. Second, defining and naming optimal
guarantees leads to new insights that can guide the design of efficient protocols by raising awareness
for the respective guarantees, identifying primitives and abstraction boundaries, and ultimately
enabling conscious trade-offs.

Flexible Security Definitions. The security definitions in this work are flexible in that several crucial
parts of the definition are generic. For example, following the definitional paradigm of [4], they are
parameterized by a so-called safety predicate that encodes which keys are expected to be secure in
any given execution. In particular, we use the term optimal security (with respect to a particular
security goal and adversarial model) to denote that the safety predicate marks as insecure only
those keys that are trivially computable by the adversary due to the correctness of the protocol.
While the constructions in this work all achieve optimal security (in different settings), sub-optimal
but meaningful safety predicates may also be of interest (e.g. for admitting more efficient protocols).

Composable Security. This work formalizes CGKA security by considering appropriate functionalities
in the UC framework [16]. This framework comes with a composition theorem, stating that UC-
security implies security in an arbitrary environment. In particular, CGKA security phrased, as in
6 Note that the CIA is also implicit in the design of the 2-party SM protocol Signal [34].
7 For example, the adversary is allowed to “bypass” the PKI and add new members with arbitrary keys.

4

this paper, with respect to a single group implies security with respect to many groups, a setting
not formalized until now.

We note, however, that due to so-called commitment problem, some of our statements provide
composition only with respect to a restricted class of environments. However, we believe that
our statements are a solid indication for multi-group security (see below and Section 10 for more
discussion).

Phrasing CGKA security via UC functionalities also allows to abstract away irrelevant aspects
and delegate some tasks to the simulator, which would otherwise require running the actual protocol
as part of the security definition in seemingly unnatural places (or even have special “interpretation”
algorithms as part of the CGKA definition in the active setting).

Protocols with Optimal Security. We put forth three protocols, all with the same (fair-weather)
asymptotic efficiency as the best CGKA protocols in the literature.

Interestingly, even in the passive case, optimal security is not achieved by any existing protocol
— not even inefficient solutions based on pairwise channels (no matter how secure those channels
might be). Instead, we adapt the “key-evolving” techniques of [29] to the group setting to obtain
Protocol P-Pas enjoying optimal security for the passive setting; i.e. against passive but adaptive
adversaries.8

Next, we augment P-Pas to obtain two more protocols geared to the active setting meeting
incomparable security notions. Specifically, Protocol P-Act provides security against both active
and adaptive adversaries but at the cost of a slightly less than ideal “robustness” guarantees. More
precisely, the adversary can use leaked states of parties to inject messages that are processed
correctly by some parties, but rejected by others.

Meanwhile, the protocol P-Act-Rob uses non-interactive zero-knowledge proofs (NIZKs) to
provide the stronger guarantee that if one party accepts a message, then all other parties do but
therefore only against active but static adversaries.

For protocols P-Pas and P-Act we prove security with respect to two models. First, in a relaxation
of the UC framework with restricted environments (this notion achieves restricted composition and
is analogous to game-based notions), we prove security in the non-programmable random oracle
model. Second, we prove full UC security in the programmable random oracle model. For the third
protocol P-Act-Rob, we consider the standard model, but only achieve semi-static security (the
environment is restricted to commit ahead of time to certain information — but not to all inputs).

1.3 Technical Overview

History Graphs. The central formal tool we use to capture CGKA security are so-called history
graphs, introduced in [4]. A history graph is a symbolic representation of the semantics of a given
CGKA session’s history. It is entirely agnostic to the details of a construction, depending only
on the high-level inputs to the CGKA functionality/protocol and the actions of the adversary.
The graph contains the minimal set of information required to formalize the various security
guarantees. It is grown and annotated by the ideal CGKA functionality9 as the session evolves in
order to keep track of the relevant data. This way, at any given point, the functionality can use
the safety predicate (defined over history graphs) to determine wether a particular group key is
to be considered secure or not. Meanwhile, in a security proof for a CGKA protocol, it is the job
of the simulator to interpret the network packets injected by the adversary so as to inform the
CGKA functionality of the effect these packets have on the current history graph.

More concretely, a history graph is an annotated tree, in which each node represents a fixed
group state (including a group key). A node v is annotated with (the semantics of) the group
operations that took place when transitioning from the parent node to v; e.g., “Alice was added
using public key epk. Bob was removed. Charlie updated his slice of the distributed group state.”
The node is further annotated to record certain events; e.g., that bad randomness was used in the
transition or that parties’ local states leaked to the adversary while they are in group state v. To
8 We do place some restrictions on their adaptivity described bellow in the paragraph on the commitment

problem.
9 or by the challenger in the security games of [4]

5

this end, for each party the history graph maintains a pointer indicating at in which group state
the party is (meant) to be in.

Modeling Injections. Our CGKA UC functionalities are designed as “idealized CGKA services”
(much in the way that PKE models an idealized PKE service in [16, 18]). Thus, they offer the
parties interfaces for performing all group operations, but for each operation the attacker then
gets to choose an arbitrary string to represent the corresponding (idealized) protocol message that
would be created for that same operation in the real world. This encodes that no guarantees are
made about protocol messages (e.g., their format) beyond their semantic effects as captured by the
history graph.

Just as for PKE this approach means that the environment must “deliver” the idealized messages
from the party that initiated an operation to all other group members. In particular, this modeling
choice allows us to reuse use the same overall CGKA functionality interface in both the passive
and active settings. In the former, the environment is restricted to only deliver messages previously
chosen to represent a group operation. Meanwhile, in the active setting, the restriction is dropped
instead allowing injection; that is delivery of new messages.

Probably the greatest challenge in defining security for the active setting is how to sensibly
model injected messages in a way that maintains consistency with a real world protocol yet still
provides interesting security guarantees. In more detail, by using the leaked protocol state of a
party and fixing their randomness the environment can “run ahead” to predict the exact protocol
messages a party will produce for future operations. So in particular, it may use an injection to
invite new members to join the group at a future history graph node which doesn’t even exist yet
in the experiment. Yet, existing member might eventually catch up to the new member at which
point their real world protocols will have consistent states (in particular, a consistent group key).

More fundamentally, the functionality can no longer rely on 2 assumptions which have signif-
icantly simplified past security notions (and proofs) for CGKA. Namely A) that injections are
never accepted their receiver and B) that each new protocol message by an honest party always
defines a fresh group state (i.e. history graph node).

So, to begin modeling injections, we create new “adversarial” history graph nodes for parties to
transition to when they join a group by processing an injected message. This means that, in the
active setting, the history graph is really a forest, not a tree. Still, we restrict the environment to a
single “Create Group” call to the CGKA functionality so there is (at most) 1 tree rooted at a node
not created by an injection. We call this tree the honest group and it is for this group that we want
to provide security guarantees.

The above solution is incomplete as it leaves open the question of how to model delivery of
injected protocol messages to members already in a group (honest or otherwise). To this end, the
functionality relies on 2 reasonable properties of a protocol.

1. Protocol messages are unique across the whole execution and can be used to identify nodes.
This means that any pair of parties parties that accept a protocol message will agree on all
(security relevant) aspects of their new group states e.g. the group key and group membership.

2. Second, every protocol message w welcoming a new member to a group in state (i.e. node) vi
must uniquely identify the corresponding protocol message c updating existing group members
to vi. Formally, this is done by having the simulator provide a value for c whenever a new w is
successfully injected by the environment.

The net result is that we can now reasonably model meaningful expectations for how a protocol
handles injections. Suppose an existing group member id1 at a node v1 in some tree accepts an
injected protocol message c. If another party id2 already processed c then simply move id1 to the
same node as id2. Otherwise, check if c was previously assigned to a welcome message w injected
to some id3. If so, we can safely attach the node v3 created for w as a child of v1 and transition id1
to v3. With the two properties above, we can require that id1 and id2 (in the first case) or id1 and
id3 (the second case) end up in consistent states.

Finally, if neither c nor a matching w has appeared before then we can safely create a fresh
“adversarial” node for id1 as a child of v1. We give no guarantees for keys in adversarial nodes (as
secrecy is anyway inherently lost). Still, we require that they do not affect honest nodes.

6

The Commitment Problem. Since universal composition is an extremely strong guarantee and seems
to be impossible for CGKA in the standard model (for reasons similar to the impossibility of UC-
secure key exchange under adaptive corruptions [24]), this work also considers a weaker definition
in which, similarly to [7] and [31], the environment is constrained to not perform corruptions that
would cause the so-called commitment problem. However, this restriction only impacts composition
guarantees, which are not the main aspect of this work. In particular, the weaker statement is
still (at least) as strong as a natural game-based definition (as used by related work) that would
exclude some corruptions as “trivial wins.”

Techniques Used in the Protocols. Our protocol P-Pas for the passive setting is an adaptation of
the TTKEM protocol; a variant of the TreeKEM protocol introduced in [2]). Our protocol uses
hierarchical identity based encryption (HIBE) in lieu of regular public-key encryption and ensures
that all keys are updated with every operation. This helps in avoiding group-splitting attacks, as
it ensures that different subgroups use keys for different HIBE identities.

In the active setting, there are two difficulties to solve. First, to prevent injecting messages
from uncorrupted parties, we use key-updating signatures [29], which provide guarantees similar to
HIBE (preventing injections using state from another subgroup after a split).

Second, we have to ensure that all parties that accept a message transition to compatible states.
As in all CGKA protocols to date, each protocol message consists of a collection of ciphertexts
encrypting related plaintexts. A receiving party, though, can, usually only check consistency of
a subset ciphertexts. This leaves open the possibility of injecting messages with disjoint self-
consistent but otherwise inconsistent subsets of ciphertexts which could lead two distinct parties
both accepting the protocol message but ending up in inconsistent group states thus violating
Property 1 of the protocol required by our functionalities.

We tackle this problem with two different modifications of our P-Pas protocol. Protocol P-Act
uses a simple solution based on a hash function. The mechanism guarantees that all partitions that
accept a message also end up with a consistent state. However, parties may not agree on whether
to accept or reject the injection. So our second protocol P-Act-Rob implements the consistency
using a NIZK proof attached to each message proving its consistency. As a price, we can no longer
model a key part of the consistency relation via a random oracle which means our proof technique
for adaptive adversaries no longer applies. Thus, for P-Act-Rob, we only prove a type of static
security.

1.4 Related Work

2-party ratcheting. The 2-party case has an older, richer history than the group case. 2-party
Ratcheting is a similar primitive to CKA (the 2-party analogue of CGKA). Both were first designed
with secure messaging protocols in mind. However, Ratcheting encompasses significantly more
of an SM protocol than a CKA. A CKA protocol is defined so as to capture the essence of the
efficiency costs in an SM protocol and the root of its security properties. Conversely, Ratcheting
additionally performs tasks like providing multiple FS keys per party at a given history graph
node, ensuring authenticity and turning the stand-alone properties of FS and PCS into the strictly
stronger PCFS property. The Ratcheting protocols in practical SM protocols can be built from
their underlying CKA using, now well understood, mechanism based only on standard symmetric
primitives requiring no further communication and only very minimal computation.

Ratcheting was first investigated as a stand-alone primitive by Bellare et al. [10]. That work
was soon followed by the works of [36] and [29] who considered active security for Ratcheting (the
later in the context of an SM protocol). In particular, the work of Poettring and Rösler [36] can be
viewed as doing for Ratcheting what our work does for the past CGKA results. In contrast, [21, 30]
looked at strong security notions for Ratcheting achievable using practically efficient constructions,
albeit at the cost of losing message-loss resilience. Two-party continuous key agreement (CKA) was
first defined in [1] where it was used build a family of SM protocols generalizing Signal’s messaging
protocol [34].

CGKA. In comparison to the 2-party primitives, SGM and CGKA have received less attention. In
practice, SGM protocols make black-box use of 2-party SM (or at least 2-party Ratcheting) which

7

results in Ω(n) computational and communication complexity in the group size n.[22, 28, 34, 37].
The first CGKA with fair-weather complexity (defined above) was introduced ART protocol by
Cohn-Gordon et al. in [20]. This was soon followed by (several variant of) the TreeKEM CGKA [11].
The RTreeKEM (for “re-randomized TreeKEM”) introduced and analyzed in [4] greatly improves
the FS properties of TreeKEM and ART. However, security is only proven using both the CIA
and NSA and results in a quasi-polynomial loss for adaptive security. Meanwhile, the TTKEM
construction (i.e. “Tainted TreeKEM”) in [2] has the first adaptive security proof with polynomial
loss and only uses the CIA (although it does not achieve optimal security). Finally, the CGKA in
the current MLS draft [8] represents a significant evolution of the above constructions in that it
introduces the “propose and commit” paradigm used in this work and in [5].10 Our construction
build on TTKEM, RTreeKEM and the propose-and-commit version of TreeKEM.

The TreeKEM protocol is moreover related to schemes for broadcast encryption (BE), introduced
by Fiat and Naor [23], and multicast encryption (ME) [35, 19, 15] schemes that improve the efficiency
of BE schemes by explicitly maintaining a group of users who share a common key.

Modeling CGKA. From a definitional point of view, we build on the history graph paradigm of [4].
That work, in turn, can be seen as a generalization of the model introduced by Alwen et al. [5]. To
avoid the commitment problem we adopt the restrictions of environments by Backes et al. [7] to
the UC framework. A similar approach has also been used by Jost, Maurer, and Mularczyk [31] in
the realm of secure messaging.

GKA. Another related primitive to CGKA is Group Key Agreement (GKA) protocols (e.g. [32]).
These allow a group to agree on a shared key. Dynamic GKA (DGKA) (e.g.[13, 12]) also support
joining and leaving the group. However, while some of these protocols do provide FS none are
shown to provide PCS (let alone PCFS). (D)GKA protocols are also interactive precluding their
use in an asynchronous setting like CGKA is designed for while their communication complexity
scales linearly in the group size. We refer to Table 1 in [12] for an overview of some of some recent
DGKA constructions and their efficiency.

1.5 Outline

Some basic preliminaries can be found in Section 2 (further preliminaries are in Appendix A).
Section 3 introduces CGKA schemes and their formal syntax. Section 4 outlines our general security
model. The actual security definitions for the passive and active settings are presented in Sections 5
and 6, accordingly. Our protocol for the passive setting can be found in Section 7, while the two
protocols for the active setting are in Section 8. In Section 9 we explain why some simple solutions
based on existing protocols do not achieve optimal security. Finally, in Section 10 we outline some
potential future work.

2 Preliminaries

Notation. We write N := {1, 2, . . .} and for a, b ∈ N with a ≤ b we write [a] := {1, 2, . . . , a}
and [a, b] := {a, a + 1, . . . , b}. For vectors x = (x1, . . . , xa) and y = (y1, . . . , yb) we denote their
concatenation by x||y := (x1, . . . , xa, y1 . . . , yb), and for a single element z we write x||z :=
(x1, . . . , xa, z). Moreover, we use (associative) arrays11 — i.e. mappings from elements of an
arbitrary index I space to elements from a set X — and use A[i] ← x and y ← A[i] to denote
assignment and retrieval, respectively. We denote the security parameter by κ. All our algorithms
implicitly take as an argument 1κ. For an algorithm A, we write A(·; r) to denote that A is run
with explicit randomness r.

GUC framework. We define security in the global universal composability framework [17], which
extends the UC framework [16] by global setup functionalities, shared between all protocols. Global
functionalities exist both in the real and the ideal world (and the simulator has no control over
10 See Section 3 for more on the paradigm.
11 We note that associative arrays can be efficiently implemented using e.g. hash tables.

8

such setup). For example, a global random oracle corresponds to the standard notion of non-
programmable random oracle, while a local random oracle allows programming by the simulator.
We give a short overview of this framework in Appendix A.

We describe UC functionalities using pseudo-code. The following special statements as used:
assert cond is used to enforce restrictions on the simulator’s inputs, i.e., the simulator is not allowed
to violate cond. More formally, if cond evaluates to false, then the functionality immediately
returns⊥ and shuts down (i.e., stops responding), making it trivial for the environment to distinguish
it from the real-world process. The statement req cond is used to restrict the environment, i.e. the
environment is not allowed to violate cond — see Section 4 for the definition.

Cryptographic primitives. We define syntax and security of the cryptographic primitives used in
our constructions in Appendix A. Whenever our construction uses a non-standard primitive, we
recall the intuition behind it as we go.

3 Continuous Group Key Agreement

3.1 CGKA Schemes

A CGKA scheme aims at providing a steady stream of shared (symmetric) secret keys for a
dynamically evolving set of parties. Those two aspects are tied together by so-called epochs: each
epoch provides a (fresh) group key to a (for this epoch) fixed set of participants. CGKA schemes
are non-interactive — a party creates a new epoch by broadcasting a single message, which can
then be processed by the other members to move along. Rather than relying on an actual broadcast
scheme, CCKA schemes however merely assume an untrusted (or partially trusted) delivery service.
As multiple parties might try to initiate a new epoch simultaneously, the delivery service’s main
job is to determine the successful one by picking an order. As a consequence, a party trying to
initiate a new epoch itself cannot immediately move forward to it but rather has to wait until its
message is confirmed by the delivery service. For simplicity, we assume that the party then just
processes it the same way as any other member.

Evolving the member set: add and remove proposals. During each epoch, the parties propose to
add or remove members by broadcasting a corresponding proposal. To create a new epoch, a party
then selects an (ordered) list thereof to be applied. We say that the party commits those proposals,
and thus call the message initiating the next epoch the commit message and the creator thereof
the committer.

Group policies. A higher-level application using a CGKA scheme may impose various restrictions
on who is allowed to perform which operations (e.g. restricting commits to administrators or
restricting valid proposal vectors within a commit). In this work, we consider a very permissive
setting outlined in Section 4. It is easy to see that any result in the permissive setting immediately
carries over to a more restrictive setting.

PKI. CGKA schemes in many aspects represent a generalization of non-interactive key exchange
(NIKE) to groups. Indeed, adding a new member must be possible without this party participating
in the protocol. Rather, the party should be able to join the group by receiving a single welcome
message that was generated alongside the commit message. Hence, it should not come as a surprise
that CGKA schemes rely on a PKI that provides some initial key material for new members. This
work assumes a simple PKI functionality for this purpose, described in Section 4.

State compromises and forward security. CGKA schemes are designed with exposures of parties’
states in mind. In particular, they strive to provide FS: exposing a party’s state in some epoch
should not reveal the group keys of past epochs. This also implies, that once removed, a party’s
state should reveal nothing about the group keys.

Post-compromise security and update proposals. In addition, CGKA schemes should also provide
PCS. For this, parties regularly send update proposals, which roughly suggest removing the sender
and immediately adding him with a fresh key (analogous to the one from PKI). In addition, the
committer always implicitly updates himself.

9

3.2 CGKA Syntax

A continuous group key-agreement scheme is a tuple of algorithms CGKA = (kg, create, join, add,
rem, upd, commit, proc, key) with the following syntax. To simplify notation, we assume that all
algorithms implicitly know ID of the party running them.

– Group Creation: γ ← create() takes no input and returns a fresh protocol state for a group
containing only the user party running the algorithm. In particular, this represents the first
epoch of a new session.12

– Key Generation: (pk, sk)← kg() samples a fresh public/secret key pair (which will be sent
to the PKI).

– Add Proposal: (γ′, p) ← add(γ, idt, pkt) proposes adding a new member to the group. On
input a protocol state, identity of the new member and his public key (generated by kg), it
outputs an updated state and add proposal message.

– Remove Proposal: (γ′, p) ← rem(γ, idt) proposes removing a member from the group. On
input a protocol state and identity, it outputs an updated state and remove proposal message.

– Update Proposal: (γ′, p)← upd(γ) proposes updating the member’s key material. It outputs
an updated state and an update proposal message.

– Join A Group: (γ′, roster, idi)← join(sk, w) allows a party with secret key sk (generated by
kg) to join a group with a welcome message w. The outputs are: an updated protocol state,
a group roster (i.e. a set of IDs listing the group members), an epoch ID, and the ID of the
inviter (i.e. the party that created the welcome message).

– Commit: (γ, c, w)← commit(γ, ~p) applies (a.k.a. commits) a vector of proposals to a group.
The output consists of an updated protocol state, commit message and a (potentially empty)
welcome message (depending on if any add proposal messages where included in ~p).13

– Process: (γ′, info)← proc(γ, c, ~p) processes an incoming commit message and the corresponding
proposals to output a commit info message info and an updated group state which represents
a new epoch in the ongoing CGKA session. The commit info message captures the semantics
of the processed commit and it has the form:

info = (id, (propSem1, . . . , propSemz))

where id is the ID sender of the commit message the vector conveys the semantics of the
committed add and remove proposals via triples of the form propSem = (ids, op, idt). Here, ids
denotes the identity of the proposal’s sender, op ∈ {"addP", "remP"} is the proposal’s type
and idt is the identity of the proposal’s target (i.e. the partying being added or removed).

– Get Group Key: (γ′,K)← key(γ) outputs the current group key for use by a higher-level
application, and deletes it from the state.

4 Modeling Security of CGKA

This section explains our approach to modeling security of CGKA schemes, outlining some modeling
choices, introducing the UC setting in which a CGKA scheme is executed, and give an outline our
type of security statement.

PKI. CGKA protocols rely on a service that distributes so-called key bundles used to add new
members to the group. (Using the syntax of Section 3, a key bundle is the public key output by
kg.) In order not to distract from the main results and to keep the already considerable definitional
complexity manageable, this work uses a simplified PKI service that generates one key pair for each
identity, making the public keys available to all users. This guarantees to the user proposing to add
someone to the group that the new member’s key is available, authentic, and honestly generated.

We arrive at this PKI model by making 3 simplifications relative to how comparable (CGKA
and SGM) PKI is thought of in practice. Jumping ahead for a moment, joining a group requires
immediately deleting (at least part of) the key bundle’s secret key (for forward secrecy). So, at
12 To create a group, a party adds the other members using individual add proposals.
13 For simplicity, we do assume a global welcome message sent to all joining parties, rather than individual

ones (which could result in lower overall communication).

10

face value, allowing only 1 such key may seem limiting, e.g. parties cannot re-join groups in our
model. However, a more accurate picture is to think of end-users having multiple one-time use
sub-identities. Thus they can always re-join groups using a fresh sub-identity. For simplicity, our
model restricts itself directly to these sub-identities.

The second simplification we make is for key bundles to be generated directly by the PKI rather
than by (honest) parties who then register the public keys with the PKI. Although this seems
to require more trust in the PKI, it is normally effectively realized via an un-trusted key server
by having parties mutually authenticate their key bundles (e.g. via signatures and out-of-band
authentication of the verification key). Here too, we leave the exact mechanism by which our PKI
is ultimately realized outside the scope of our work. 14

Finally, our PKI effectively rules out meaningful corruptions before members join a group. Thus
our model has been simplified to simply not allow such corruptions. However, this is mitigated by
the fact that A) the adversary can corrupt them immediately after they join the group and B) the
adversary can still inject Add proposals with arbitrary keys bundles (e.g. using leaked state of a
current group member). Together these 2 attacks provide the adversary with, essentially, the same
capabilities as obtained when corrupting parties before they join (even before they register their
key-bundles).

Our PKI is defined by the functionality Fpki, and our CGKA protocols are analyzed in the
Fpki-hybrid model. Concretely, Fpki securely stores key bundle secret keys until fetched by their
owner. (Without loss of generality, Fpki also provides parties fresh secret randomness when they
fetch their secret key.) For a formal description of Fpki used in this paper, see Appendix B.3.
Validity of Proposals. When defining the semantics of a propose-then-commit based CGKA scheme,
one must define how applying a vector of proposals ~p affects the group state. Moreover, one might
want to restrict who is allowed to propose (what and when) and who is allowed to commit. In this
work, we take a liberal stance on the latter aspect and leave this to the higher-level protocol.

To simplify the exposition, we however make two basic assumptions: (1) Only current group
members are allowed to propose changes.15 (2) We require that every proposal individually makes
sense, i.e., a party is only allowed to propose to remove or add a party that is currently in,
respectively not in the group. While the second requirement seems justifiable given that proposals
are only ordered once committed, it still leaves the possibility for orderings where some of them
are not applicable, e.g., because ~p contains a remove proposal before an update proposal for the
same person. There, we use the following natural rule: each proposal that can be applied is, and
all others are (silently) ignored. In particular, this means that for two conflicting add proposals
the former counts, while for two update proposals of the same party the latter counts.
Mapping the CGKA syntax to a UC protocol. In order to assess the security of CGKA scheme
as defined in Section 3 relative to an ideal functionality, the CGKA scheme is translated into a
CGKA protocol as follows. The protocol of a user id accepts the following inputs:

– Create: If the party is the designated group creator,16 then the protocol initializes γ using
create().

– (Propose, act), act ∈ {up, add-idt, rem-idt}: If id is not part of the group, the protocol simply
returns ⊥. Otherwise, it invokes the corresponding algorithm add, rem, or upd using the
currently stored state γ. For add, it first fetches pkt for idt from Fpki. The protocol then outputs
p to the environment, and stores the updated state γ′ (deleting the old one).

– (Join, w): If id is already in the group, the protocol returns ⊥. Otherwise, it fetches sk and
fresh randomness r from Fpki, invokes join(r), stores γ, and outputs the remaining results (or
an error ⊥).

14 One-time use sub-identities and out-of-band authentication for realizing trusted PKI quite accurately
reflect the reality of practical CGKA/SGM protocols. The PKI in our work closely models so called
“pre-keys” [34, 37], “ephemeral keys” [28] or “key packages” [8] which are distributed via an un-trusted
PKI. Sub-identity public keys are both authenticated and bound to a long-term super-identity by
associating a single signing key pair with that super-identity. The public key is verified between parties
out-of-band and the signing key certifies sub-identity public keys. [28, 8].

15 Allowing for external add-proposals has been discussed by the MLS working group.
16 Formally, the creator is encoded as part of the SID; upon calling Create, a party checks whether it is

the designated one, and otherwise just ignores the invocation.

11

– (Commit, ~p) and (Process, c, ~p) and Key: If id is not part of the group, the protocol returns ⊥.
Otherwise, it invokes the corresponding algorithm using the current γ, stores γ′, and outputs
the remaining results (or ⊥) to the environment.

– Key: If id is not part of the group, it returns ⊥. Otherwise, it invokes key, stores the updated
state, and outputs the the key (or ⊥) to the environment.

Security via idealized services. This paper captures security of CGKA schemes CGKA by comparing
the UC protocol based on CGKA to an ideal functionality. The ideal functionality models an
idealized “CGKA service” (much in the way that PKE models an idealized PKE service in [16, 18])
rather than some kind of key exchange functionality. For example, when a party wishes to commit
several proposals, the functionality outputs an idealized control message c (and potentially an
idealized welcome message w), which is chosen by the simulator. The functionality does not concern
itself with the delivery of control messages c; this must be accomplished by a higher-level protocol.

To simplify definitions, we identify epochs by the commit messages c creating them. We note
that in reality one would use other epoch identifiers derived from c, e.g., via hashing. Our results
easily extend to such protocols as well.
Modeling corruptions. We start with the (non-standard for UC but common for messaging)
corruption model with both continuous state leakage (in UC terms, transient passive corruptions)
and adversarially chosen randomness (this resembles the semi-malicious model of [6]). Roughly,
we model this in UC as follows. The adversary repeatedly corrupts parties by sending them two
types of corruption messages: (1) a message Expose causes the party to send its entire state to the
adversary (once), (2) a message (CorrRand, b) sets the party’s rand-corrupted flag to b. If this flag
is set, the party’s randomness-sampling algorithm is replaced by asking the adversary to choose the
random values. Ideal functionalities are activated upon corruptions and can adjust their behavior
accordingly. We give a formal description of the corruption model in Appendix B.
Restricted environments. Recall that in the passive setting we assume that the adversary does not
inject messages, which corresponds to authenticated network. However, with the above modeling,
one obviously cannot assume authenticated channels, as is usually done. Instead, we consider a
weakened variant of UC security, where statements quantify over a restricted class of admissible
environments, e.g. those that only deliver control messages outputted by the CGKA functionality.
In other words, we provide no guarantees if the environment is not admissible and it is the task of
a higher-level protocol (or the system designer) to make sure that the protocol’s environment is
admissible.

Whether an environment is admissible or not is defined by the ideal functionality F. Concretely,
the pseudo-code description of F can contain statements of the form req cond and an environment is
called admissible (for F), if it has negligible probability of violating any such cond when interacting
with F. For a formal definition, see Appendix B.

Apart from modeling authenticated channels, we also use this mechanism to avoid the so-called
commitment problem (there, we restrict the environment not to corrupt parties at certain times,
roughly corresponding to “trivial wins” in the game-based language). We always define two versions
of our functionalities, with and without this restriction.
Relation to full insider security. The main difference between our active setting and insider security
(i.e. active party corruptions) is in the incorruptible PKI. For example, in our model, in order
to add a party with maliciously generated public key, the adversary must first corrupt someone
already in the group and inject an add proposal. However, we stress that our model does allow
active corruptions of current group members (who already used up their PKI secret keys). Such an
active corruption corresponds to leaking a member’s state, blocking all communication with him,
and injecting arbitrary messages on his behalf. In fact, our model allows even more — a member
can be “uncorrupted”, in which case he resumes executing the protocol using the state from before
corruption.

5 Security of CGKA in the Passive Setting

The history graph. CGKA functionalities keep track of group evolution using so-called history
graphs (cf. Fig. 1), a formalism introduced in [4]. The nodes in a history graph correspond either

12

A-com

Ptr[A]

B-up

A-add-C

A-up

B-com

Ptr[B]

A-com

Fig. 1: A graphical representation of a history graph with three commit-nodes (circles), where two
of them are child nodes of the first one, and proposal-nodes (rectangles). The proposals belong to
the leftmost commit node, as indicated by the arrows. The labels describe the action that created
the node, e.g. A-add-C means that A proposed adding C and A-com means that A committed.
The dashed and dotted arrows indicate which of the proposals where included in the respective
commits. Observe that although A created one of the commits, her pointer has not moved yet.
Indeed, it is still possible that she moves to the commit node created by B instead.

to group creation, to commits, or to proposals. Nodes of the first two categories correspond to
particular group states and form a tree. The root of the tree is a (in fact, the only) group-creation
node, and each commit node is a child of the node corresponding to the group state from which it
was created. Similarly, proposal nodes point to the commit node that corresponds to the group
state from which they created.

Any commit node is created from a (ordered) subset of the proposals of the parent node; which
subset is chosen is up to the party creating the commit. Observe that it is possible for commit
nodes to “fork,” which happens when parties simultaneously create commits from the same node.

For each party, the functionality also maintains a pointer Ptr[id] indicating the current group
state of the party. This pointer has two special states: before joining the pointer is set to fresh and
after leaving the group to removed. Note that a party’s pointer does not move upon creation of
a new commit node. Rather, the pointer is only moved once the corresponding control message
is input by the party. This models, e.g., the existence of a delivery service that resolves forks by
choosing between control messages that correspond to nodes with the same parent.17

CGKA functionalities identify commit resp. proposal nodes by the corresponding (unique)
control messages c resp. proposal messages p (chosen by the simulator). The arrays Node[·] resp.
Prop[·] map control messages c resp. proposal messages p to commit resp. proposal nodes. Moreover,
for a welcome message w, array Wel[w] stores the commit node to which joining the group via w
leads. Nodes in the history graph store the following values:
– orig: the party whose action created the node
– par: the parent commit node
– stat ∈ {good, bad}: a status flag indicating whether secret information corresponding to the

node is known to the adversary (e.g., by having corrupted its creator or the creator having
used bad randomness).

Proposal nodes further store the following value:
– lbl ∈ {up, add-id′, rem-id′}: the proposed action

Commit nodes further store the following values:
– pro: the ordered list of committed proposals,
– mem: the group members,

17 Note, however, that such behavior is not imposed by the functionality; it is entirely possible that group
members follow different paths.

13

– key: the group key,
– chall: a flag set to true if a random group key has been generated for this node, and to false

if the key was set by the adversary (or not generated);
– exp: a set keeping track of parties corrupted in this node, including whether only their secret

state used to process the next commit message or also the key leaked.

The CGKA functionality Fcgka-auth. The remainder of this section introduces and explains func-
tionality Fcgka-auth, which deals with passive network adversaries, i.e., adversaries who do not
create their own control messages (nor proposals) and who deliver them in the correct order. Active
attackers, which are not restricted to such behavior, are dealt with in Section 6.

Functionality Fcgka-auth offers interfaces for creating groups (to a group creator specified via the
session ID), creating new proposals, creating commits, processing commits, joining, and retrieving
the current group key. It is described in Fig. 2; some tedious functions assisting with bookkeeping
have been outsourced to Fig. 3.

Interaction with parties. The inputs with which uncorrupted parties interact with Fcgka-auth are
described first; the boxed content in Fig. 2 is related to corruption and described later. Initially,
the history graph is empty and the only possible action is for a designated party idcreator to create
a new group with itself in it.

The input Propose allows parties to create new proposals. The functionality ensures that only
parties that are currently in the group can create proposals (line [a]). Recall that the proposal
identifier p is chosen by the simulator (line [b]) but guaranteed to be unique (line [c]). The identifier
is returned to the calling party.

Parties create new commits using the input Commit. As part of the input, the calling party
has to provide an ordered list of proposals to commit to. All proposals have to be well-defined,
belong to the party’s current commit node, and are valid with respect to its member set (line [d]).
Moreover, a party is not allowed to commit to a proposal that removes the party from the group
(line [e]). Once more, the simulator chooses the identifier c for the commit, and, if a new party is
added in one of the proposals, the attacker also choses the welcome message w (line [b]). Both c
and w must be unique (line [c]).

A current group member can move their pointer to a child node c of their current state by
calling (Process, c, ~p) (in case the proposals ~p in c removes the group member, their pointer is set
to ⊥ instead). The functionality ensures a party always inputs the correct proposal array (line [d]).
Moreover, it imposes correctness: while the simulator is notified of the action (line [f]), the pointer
is moved to c and the helper get-output-process returns the proposals true interpretations
irrespective of the simulator’s actions.

A new member can join the group at node Wel[w] via (Join, w). The value Wel[w] must exist
and correspond to a commit node for which the calling party is in the group (line [g]).

Finally, Key outputs the group key for the party’s current node. The keys are selected via
the function set-key(c), which either returns a random key or lets the simulator pick the key if
information about it has been leaked due to corruption or the use of bad randomness (see below).

Corruptions and bad randomness. Generally, keys provided by Fcgka-auth are always uniformly
random and independent unless the information the adversary has obtained via corruption would
trivially allow to compute them (as a consequence of protocol correctness). In order to stay on top
of this issue, the functionality must do some bookkeeping, which is used by the predicate safe to
determine whether a key would be known to the adversary.

First, when a party id is exposed via (Expose, id), the following from id’s state that becomes
available to the adversary:

– Any key material id stored locally in order to process future control messages.
– The current group key, if id has not retrieved it yet via Key. The flag HasKey[id] indicates if id

currently holds the key.
– The key material for update proposals and commits that id has created from its current epoch

(but not processed yet).

The functionality records this symbolically as follows: the pair (id,HasKey[id]) is added to the “cor-
rupted set” exp of id’s current node. To address the third point, the helper function update-status

14

Functionality Fcgka-auth

The functionality expects as part of the instance’s session identifier sid the group creator’s identity idcreator. It is
parameterized in:

– the predicate safe, specifying which keys are leaked via corruptions
– the flag restrict-corruptions, indicating if it restricts the environment (avoiding the commitment

problem), or if it provides full adaptive security.

Initialization

Ptr[·]← fresh
Node[·],Prop[·],Wel[·]← ⊥
RndCor[·],RndPool[·]← good
HasKey[·]← false

Inputs from idcreator

Input Create
if Ptr[idcreator] 6= fresh then return ⊥
stat← rand-stat(idcreator)
Node[ε]← create-root(idcreator, stat)
HasKey[idcreator]← true
Ptr[idcreator]← ε

Inputs from a party id

Input (Propose, act), act ∈ {up, add-id′, rem-id′}
a: if Ptr[id] ∈ {fresh, removed} then return ⊥
b: Send (Propose, id, act) to the adversary and receive p.
c: assert Prop[p] = ⊥

stat← good
if act = up then

stat← rand-stat(id)
Prop[p]← create-prop(Ptr[id], id, act, stat)
return p

Input (Commit, ~p)
a: if Ptr[id] ∈ {fresh, removed} then return ⊥
d: req ∀p ∈ ~p : (Prop[p] 6= ⊥ ∧ valid-proposal(c, p))

mem←members(Ptr[id], ~p)
e: req id ∈ mem
b: Send (Commit, id, ~p) to the adversary and receive (c, w).
c: assert Node[c] = ⊥

stat← rand-stat(id)
Node[c]← create-child(Ptr[id], id, ~p,mem, stat)
assert w 6= ⊥ iff (mem \ Node[Ptr[id]].mem) 6= ∅
if w 6= ⊥ then

c: assert Wel[w] = ⊥
Wel[w]← c

return (c, w)

Input Key
a: if Ptr[id] ∈ {fresh, removed} ∨ ¬HasKey[id] then

return ⊥
if Node[Ptr[id]].key = ⊥ then

set-key(Ptr[id])
HasKey[id]← false
return Node[Ptr[id]].key

Input (Process, c, ~p)
a: if Ptr[id] ∈ {fresh, removed} then return ⊥
d: req Node[c] 6= ⊥ ∧ Node[c].par = Ptr[id]

∧ Node[c].pro = ~p
f: Send (Process, id, c, ~p) to the adversary.

if ∃p ∈ ~p : Prop[p].act = rem-id then
Ptr[id]← removed

else
Ptr[id]← c

rand-stat(id)
HasKey[id]← true

return get-output-process(c)

Input (Join, w)
if Ptr[id] /∈ {fresh, removed} then return ⊥
c←Wel[w]

g: req c 6= ⊥ ∧ Node[c] 6= ⊥ ∧ id ∈ Node[c].mem
Send (Join, id, w) to the adversary

and receive ack.
if Ptr[id] = fresh ∨ ack then

Ptr[id]← c

rand-stat(id)
HasKey[id]← true
return get-output-join(c)

else
return ⊥

Corruptions

Input (Expose, id)
if Ptr[id] ∈ {fresh, removed} then

return
Node[Ptr[id]].exp← Node[Ptr[id]].exp

∪ {(id,HasKey[id])}
update-status-after-expose(id)
RndPool[id]← bad
if restrict-corruptions then

req ∀c, if Node[c].chall = true then safe(c)
else

Send to the adversary
{(c,Node[c].key) : ¬safe(c)}.

Input (CorrRand, id, b), b ∈ {good, bad}
RndCor[id]← b

Fig. 2: The ideal CGKA functionality for the passive setting. The behavior related to corruptions
is marked in boxes. The helper functions are defined in Fig. 3 and the optimal predicate safe used
in this paper is defined in Fig. 4.

15

Helper Functions

helper create-child(c, id, ~p,mem, stat)

return new node with par← c, orig← id, pro← ~p,
mem← mem, stat← stat.

helper create-root(id, stat)

return new node with par← ⊥, orig← id, pro← (),
mem← {id}, stat← stat.

helper create-prop(c, id, act, stat)

return new proposal with par← c, orig← id,
act← act, stat← stat.

helper members(c, ~p)

(G, ·)← apply-proposals(c, ~p)
return G

helper get-output-process(c)

(·, propSem)← apply-proposals(c,Node[c].pro)
return (Node[c].orig, propSem)

helper get-output-join(c)

return (Node[c].mem,Node[c].orig)

helper apply-proposals(c, ~p)

G← Node[c].mem; P ← ()
for p ∈ ~p do

if Prop[p].act = add-id′ ∧ id′ /∈ G then
P ← P ‖ (Prop[p].orig,Prop[p].act)
G← G ∪ {id′}

else if Prop[p].act = rem-id′ ∧ id′ ∈ G then
P ← P ‖ (Prop[p].orig,Prop[p].act)
G← G \ {id′}

return (G,P)

helper valid-proposal(c, p)

return Prop[p].par = c ∧ Prop[p].orig ∈ Node[c].mem
∧ ¬(Prop[p].act = add-id′ ∧ id′ ∈ Node[c].mem)
∧ ¬(Prop[p].act = rem-id′ ∧ id′ /∈ Node[c].mem)

helper set-key(c)

if ¬safe(c) then
Send (Key, id) to the adversary and receive I.
Node[c].key← I
Node[c].chall← false

else
Node[c].key←$ I
Node[c].chall← true

helper rand-stat(id)

if RndPool[id] = good ∨ RndCor[id] = good then
RndPool[id]← good
return good

else
return bad

helper update-status-after-expose(id)

for each p s.t. Prop[p] 6= ⊥ and
(a) Prop[p].par = Ptr[id] and
(b) Prop[p].orig = id and
(c) Prop[p].act = up

do Prop[p].stat← bad
for each c s.t. Node[c] 6= ⊥ and

(a) Node[c].par = Ptr[id] and
(b) Node[c].orig = id

do Node[c].stat← bad

Fig. 3: The helper functions for the CGKA functionality, defined in Fig. 2. The behavior related to
corruptions is marked in boxes.

Predicate safe

helper safe(c)

return ¬∃id s.t. key-and-state-leaked(id, c)

helper key-and-state-leaked(id, c)

return true iff id ∈ Node[c].mem and either
(a) (id, true) ∈ Node[c].exp or
(b) state-leaked(id,Node[c].par) ∧ ¬heals(id, c) or
(c) Node[c].par = ⊥ or
(d) last p ∈ Node[c].pro s.t. Prop[p].act = add-id and

(if there exists one) has Prop[p].stat = adv

helper state-leaked(id, c)

return true iff id ∈ Node[c].mem and either
(a) (id, false) ∈ Node[c].exp or
(b) key-and-state-leaked(id, c)

helper heals(id, c)

if Node[c].orig = id ∧ Node[c].stat = good then
return true

else Let p be the last element in Node[c].pro s.t.
Prop[p].orig = id ∧ Prop[p].act = up
(return false if no such p exists)
return Prop[p].stat = good

Fig. 4: The predicate safe, that determines if the key in a node c is secure. The part in the box is
only relevant in the active setting (Section 6).

16

-after-expose(id) sets the status of all child nodes (update proposals and commits) created by id
to stat = bad, i.e., they are marked as no longer healing the party.

The second avenue for the attacker to obtain information about group keys is when the parties
use bad randomness. Note that this work assumes that CGKA schemes use their own randomness
pool, which is refreshed with randomness from the underlying operating system (OS) before every
use. This guarantees that a party uses good randomness whenever (1) the OS supplies random
values or (2) the pool is currently random (from the attacker’s perspective).

In Fcgka-auth, the flag RndCor[id] records for each party id whether id’s OS currently supplies
good randomness; the flag can be changed by the adversary at will via CorrRand.

Moreover, for each party id, the functionality stores the status of its randomness pool (good or
bad) in RndPool[id]. Whenever id executes a randomized action, the functionality checks whether id
uses good randomness by calling rand-stat(id) and stores the result as the stat flag of the created
node. As a side effect, rand-stat(id) updates the pool status to good if good fresh OS randomness
is used.

The safety predicate. The predicate safe(c) is defined as follows: The key corresponding to c is
secure if and only if it has not been exposed via one of the parties. This can happen in two
situations: either if the party’s state has been exposed in this particular state c while the party
still stored the key ((id, true) ∈ Node[c].exp), or its previous state (not necessary with the key) is
known to the adversary and c did not heal the party. This can also be interpreted as a reachability
condition: the key is exposed if the party has been corrupted in any ancestor of c and there is no
“healing” commit node on the path from this ancestor to c.

The commit c is said to be healing, iff it contains an update by id with good randomness or
id is the committer and used good randomness. Observe that this is optimal as those are the
only operations, that by definition of a CGKA scheme, are supposed to affect the party’s own
key material. Moreover, clearly if there is no such healing operation after a corruption, then an
adversary can still compute the state, including the group key, of the given party by correctness.
Hence, our safe predicate is optimal.

Adaptive corruptions. Exposing a a party’s state may cause safe(c) to change to false for some
nodes c. In other words, some keys that were already output as secure (i.e., random) now become
insecure. A natural solution is to have the functionality send all insecure keys to the adversary.
Unfortunately, because of the commitment problem18 this guarantee turns out to be very strong.
Hence, we define two variants of Fcgka-auth, which differ in the behavior upon exposure (see the
part in the dashed box) — in the weaker notion (the parameter restrict-corruptions = true),
the environment is restricted not to corrupt a party if it would cause a challenged key to become
insecure, while in the stronger notion (restrict-corruptions = false), the adversary is given all
insecure keys.

6 Security of CGKA in the Active Setting

This section introduces the functionality Fcgka, which deals with active network adversaries, i.e.,
it allows the environment to input arbitrary messages. It is defined in Fig. 5, and the differences
from Fcgka-auth are marked in boxes.

On a high level, the main difficulty compared to the passive setting is that Fcgka has to account
for inherent injections of valid control messages, where the adversary uses leaked states of parties.
To this end, Fcgka marks history graph nodes created by the adversary via injections by a special
status flag stat = adv. It maintains the following history graph invariant, formally defined in Fig. 7:

1. Adversarially created nodes only occur if inherent, that is, their (claimed) creator’s state must
have leaked in the parent node. (We explain the special case of creating orphan nodes later.)

2. The history graph is consistent.
18 Roughly, the simulator, having already outputted a commit message that “binds” him to the group key,

now has to produce a secret state, such that processing this message results in the (random) key from
the functionality.

17

Functionality Fcgka

The functionality expects as part of the instance’s session identifier sid the group creator’s identity idcreator. It is
parameterized in:

– the predicate safe, specifying which keys are leaked via corruptions
– the flag restrict-corruptions, indicating if it restricts the environment (avoiding the commitment

problem), or if it provides full adaptive security
– the flag robust, indicating that parties must be able to process “honest” messages.

Initialization

Ptr[·]← fresh
Node[·],Prop[·],Wel[·]← ⊥
RndCor[·],RndPool[·]← good
HasKey[·]← false

Inputs from idcreator

Input Create
if Ptr[idcreator] 6= fresh then return
stat← rand-stat(idcreator)
Node[ε]← create-root(idcreator, stat)
HasKey[idcreator]← true
Ptr[idcreator]← ε

Inputs from a party id

Input (Propose, act), act ∈ {up, add-id′, rem-id′}
if Ptr[id] ∈ {fresh, removed} then return ⊥
Send (Propose, id, act) to the adversary and receive p.
stat← good
if act = up then

stat← rand-stat(id)
if Prop[p] = ⊥ then

Prop[p]← create-prop(Ptr[id], id, act, stat)
else

a: check-prop-consistency(p, id, act, stat)
b: Prop[p].stat← stat

return p

Input (Commit, ~p)
if Ptr[id] ∈ {fresh, removed} then return ⊥
Send (Commit, id, ~p) to the adversary

and receive (ack , c, w).
c: if valid-comm-by-correctness(id, ~p) ∨ ack then

d: fill-proposals(id, ~p)
e: ∀p ∈ ~p : assert valid-proposal(Ptr[id], p)

stat← rand-stat(id)
mem←members(Ptr[id], ~p)
assert id ∈ mem
if Node[c] = ⊥ then

Node[c]← create-child(Ptr[id], id, ~p,mem, stat)
else

a: check-comm-consistency(c, id, ~p, stat,mem)
b: Node[c].stat← stat
f: if Node[c].par = ⊥ then attach(c, id, ~p)

assert w 6= ⊥ iff (mem \ Node[Ptr[id]].mem) 6= ∅
if w 6= ⊥ then

assert Wel[w] ∈ {⊥, c}
Wel[w]← c

g: assert invariant
return (c, w)

else return ⊥

Input Key
if Ptr[id] ∈ {fresh, removed} ∨ ¬HasKey[id] then

return ⊥
if Node[Ptr[id]].key = ⊥ then

set-key(Ptr[id])
HasKey[id]← false
return Node[Ptr[id]].key

Input (Process, c, ~p)
if Ptr[id] ∈ {fresh, removed} then return ⊥
Send (Process, id, c, ~p) to the adversary

and receive (ack, orig′).

c: if valid-proc-by-correctness(id, c, ~p)∨ack then

d: fill-proposals(id, ~p)
e: ∀p ∈ ~p : assert valid-proposal(Ptr[id], p)

mem←members(Ptr[id], ~p)
if Node[c] = ⊥ then

h: Node[c]← create-child(Ptr[id], orig′, ~p,mem, adv)
else

i: check-valid-successor(c, id, ~p,mem)
f: if Node[c].par = ⊥ then attach(c, id, ~p)

if ∃p ∈ ~p : Prop[p].act = rem-id then
Ptr[id]← removed

else
Ptr[id]← c
rand-stat(id)
HasKey[id]← true

g: assert invariant
return get-output-process(c)

else return ⊥

Input (Join, w)
if Ptr[id] 6= {fresh, removed} then return ⊥
Send (Join, id, w) to the adversary

and receive (ack, c′, orig′,mem′).

c: if valid-join-by-correctness(id, w) ∨ ack then
c←Wel[w]
if c = ⊥ then

c← c′

j: Wel[w]← c
if Node[c] = ⊥ then

k: Node[c]← create-child(⊥, orig′,⊥,mem′, adv)
Ptr[id]← c
rand-stat(id)
HasKey[id]← true

g: assert invariant
return get-output-join(c)

else return ⊥

Corruptions

Input (Expose, id)
if Ptr[id] ∈ {fresh, removed} then

return
Node[Ptr[id]].exp← Node[Ptr[id]].exp ∪ {(id,HasKey[id])}
update-status-after-expose(id)
RndPool[id]← bad
if restrict-corruptions then

req ∀c, if Node[c].chall = true then safe(c)
else

Send to the adversary
{(c,Node[c].key) : ¬safe(c)}.

Input (CorrRand, id, b), b ∈ {good, bad}
RndCor[id]← b

Fig. 5: The ideal CGKA functionality for the active setting. The behavior related to injections is
marked in boxes. The corresponding helper functions are defined in Figs. 3 and 6, the invariant in
Fig. 7, and the optimal predicate safe in Fig. 4.

18

Helper Functions

helper fill-proposals(id, ~p)

for p ∈ ~p s.t. Prop[p] = ⊥ do
Send (Proposal, p) to the adversary

and receive (orig, act).
Prop[p]← create-prop(Ptr[id], orig, act, adv)

helper check-prop-consistency(p, id, act, stat)

// Preexisting p valid for id proposing act?
assert Prop[p].orig = id ∧ Prop[p].act = act

∧ Prop[p].par = Ptr[id] ∧ Prop[p].stat = adv
if act = up then

assert stat 6= good

helper check-comm-consistency(c, id, ~p, stat,mem)

// Preexisting c valid for id committing ~p?
check-valid-successor(c, id, ~p,mem)
assert stat 6= good ∧ Node[c].stat = adv

∧ Node[c].orig = id

helper check-valid-successor(c, id, ~p,mem)

// Preexisting node valid for id processing (c, ~p)?
assert Node[c].mem = mem ∧ Node[c].pro ∈ {⊥, ~p}

∧ Node[c].par ∈ {⊥,Ptr[id]}

helper attach(c, id, ~p)

// Attach (detached) node c as successor of id’s current
node with proposals ~p

Node[c].par← Ptr[id]
Node[c].pro← ~p

helper valid-comm-by-correctness(id, ~p)

// Does correctness enforce the commit-call to succeed?
return ∀p ∈ ~p : Prop[p] 6= ⊥ ∧ valid-proposal(Ptr[id], p)

∧ id ∈members(Ptr[id], ~p)

helper valid-proc-by-correctness(id, c, ~p)

// Does correctness enforce the process-call to succeed?
return robust ∧ Node[c] 6= ⊥ ∧ Node[c].stat 6= adv

∧ Node[c].par = Ptr[id] ∧ Node[c].pro = ~p
∧ ∀p ∈ ~p : Prop[p].stat 6= adv

helper valid-join-by-correctness(id, w)

// Does correctness enforce the join-call to succeed?
c←Wel[w]
return robust ∧ Ptr[id] = fresh ∧ c 6= ⊥ ∧ Node[c] 6= ⊥

∧ Node[c].stat 6= adv
∧ id ∈ (Node[c].mem \ Node[c].par.mem)

Fig. 6: The additional helper functions for the CGKA functionality for the active setting, defined
in Fig. 5.

Predicate invariant

Return true if all of the following are true:

– adversarial nodes created only by corrupted parties:
• ∀c, if Node[c].stat = adv then state-leaked(Node[c].par,Node[c].orig)

or Node[c].par = ⊥
• ∀p, if Prop[p].stat = adv then state-leaked(Prop[p].par,Prop[p].orig)

– the history graph’s state is consistent: ∀c s.t. Node[c].par 6= ⊥:
• Node[c].pro 6= ⊥ and ∀p ∈ Node[c].pro Prop[p].par = Node[c].par
• Node[c].mem = members(Node[c].par,Node[c].pro)

– pointers consistent: ∀id s.t. Ptr[id] /∈ {fresh, removed} : id ∈ Node[Ptr[id]].mem
– the graph contains no cycles

Fig. 7: The graph invariant. The predicate exposed is defined as part of the predicate safe in
Fig. 4.

The invariant is checked at the end of every action potentially violating it (cf. lines [g]). We now
describe the changes and some additional checks in more detail.

Injected proposals and commits. First, consider the case where a party calls commit with an injected
proposal p (i.e., Prop[p] = ⊥). In such case, the simulator is allowed to reject the input (if it is
invalid) by sending ack = false. Otherwise, the functionality asks the simulator to interpret the
missing proposals by providing properties (action etc.) for new proposal nodes (line [d]) and marks
them as adversarial by setting their status to adv. (Note that those interpretations must be valid
with respect to the corresponding actions, cf. line [e], as otherwise the simulator must reject the
input.) The behavior of Fcgka in case a party calls process with an injected commit or proposal
message is analogous, except that the simulator also interprets the commit message, creating a
new commit node (line [h]).

While in the authentic-network setting we could enforce that each honest propose and commit
call results in a unique proposal or commit message, respectively, this is no longer the case when
taking injections into account. For example, add proposals are deterministic, so if the adversary
uses a leaked state to deliver an add proposal p, then the next add proposal computed by the
party is p as well. The same can happen with randomized actions where the adversary controls the

19

randomness. Accordingly, we modify the behavior of Fcgka on propose and commit inputs and
allow outputting messages corresponding to existing nodes, as long as this is consistent. That is,
in addition to the invariant, Fcgka at this point also needs to enforce that the values stored as
part of the preexisting node correspond to the intended action, and that this does not happen for
randomized actions with fresh randomness (see lines [a]). If all those checks succeed, the node is
treated as non-adversarial and we adjust its status accordingly (see lines [b]).

Injected welcome messages. If a party calls join with an injected welcome message, we again ask
the simulator to interpret the injected welcome message by providing the corresponding commit
message c (line [j]), which can either refer to an existing node or a new one the simulator is allowed
to set the corresponding values for (line [k]). The main difficulty compared to injected proposals
and commits, however, is that sometimes this node’s position in the history graph cannot be
determined. For example, consider an adversary who welcomes a party id to a node at the end of a
path that he created in his head, by advancing the protocol a number of steps from a leaked state.
Unless welcome messages contain the whole conversation history (and not just e.g. a constant size
transcript hash thereof), it is impossible for any efficient simulator to determine the path.

As a result, Fcgka deals with an injected welcome message w as follows: if the commit node to
which w leads does not exist (c is provided by the simulator), then a new detached node is created,
with all values (except parent and proposals) determined by the simulator. The new member can
call propose, commit and process from this detached node as from any other node, which creates
an alternative history graph rooted at the detached node. Moreover, new members can also join
the alternative graph. The node, together with its alternative subtree, can be attached to the main
tree when the commit message c is generated or successfully processed by a party from the main
tree. The function check-valid-successor, invoked during commit and process (lines [i,a]) verifies
if attaching is allowed.

Security. So far we have explained how the CGKA functionality maintains a history graph, and
enforces its consistency, even when allowing (inherent) injections. It remains to consider how such
adversarially generated nodes affect the secrecy of group keys. First, obviously an adversarial
commit or update does not heal the corresponding party. Note that heals from the safe predicate
(cf. Fig. 4) already handles this by checking for stat = good. Second, for adversarial add proposals
we have to assume that the contained public-key was chosen such that the adversary knows the
corresponding secret key, implying that the adversary can read its welcome message. Hence, both
secret state of the added party and the new group key are considered exposed (see the part (d) in
Fig. 4 marked with a box).

Finally, consider a detached node created by an injected welcome message. Recall that new
members join using a welcome message, containing all the relevant information about the group.
Since our model does not include any long-term PKI, this welcome message is the only information
about the group available to them and we cannot hope for a protocol that detects injected welcome
messages. Moreover, we additionally don’t know where in the history graph a detached node
belongs, and in particular whether it is a descendant of a node where another party is exposed or
not. This means that we cannot guarantee secrecy for keys in detached nodes or their children (the
part (c) of in Fig. 4 marked with a box). Still, we can at least express that this does not affect
the guarantees of existing group members, and in particular, can start considering the subtree’s
security once it is attached to the main tree (e.g. by a party from the main tree moving there).

Robustness. Finally, we consider robustness, i.e., correctness guarantees with respect to honestly
generated ciphertext in a setting where parties might have processed adversarially generated ones
beforehand. We define two variants of Fcgka, which differ in the level of required robustness.
Intuitively, the stronger variant, identified by the parameter robust = true, requires that honestly
generated ciphertexts can always be processed by the intended recipients, while in the weaker
variant with robust = false, the adversary can inject ciphertexts resulting parties to reject
subsequent honest ones.

Formally, consider line [c] of commit first. While we generally allow the simulator to specify
whether the call succeeds, robustness ensures that if all proposals were honestly generated and
valid for this epoch, the call always succeeds. Analogously, for process robustness ensures that when
called with matching honestly generated commit message and proposals, the message is considered

20

correct and can be processed. Finally, robustness enforces that a party who was never in the group
before can actually join it when receiving a respective honestly generated welcome message.

The reason for defining two variants is that any attack on robustness can be emulated by
a network adversary not delivering the message. So, the weaker guarantee may be sufficient in
many scenarios, and can potentially be achieved with more efficient protocols or from weaker
assumptions.

7 Construction for the Authenticated Setting

This section introduces the intuition behind the protocol P-Pas for the authenticated setting. The
formal description, including pseudocode, can be found in Appendix C.

In the following, we first describe the TTKEM protocol [2], which is the basis for our construction.
Then, we explain why TTKEM is not optimally secure due to so-called cross-group attacks, and
how we fix this using HIBE. Additionally, in Section 9 we argue that replacing HIBE by more
efficient primitives (e.g. key-updatable encryption) is unlikely to preserve optimal security. Section 9
also shows that the simple (but inefficient) solution that constructs CGKA from pairwise channels
does not lead to optimal security.

7.1 TTKEM

The distributed group state. The primary object making up the construction’s distributed state
is a labeled left-balanced binary tree (LT) τ .19 We distinguish between the public part of τ which
does not need to be hidden from the adversary and the private part of τ , i.e., labels corresponding
to secret values. Specifically, each node v in LT has 2 public labels epk and taintedby as well as 1
private label esk. In the order listed, the labels contain a public encryption key, the ID of the party
which “tainted” (i.e. sampled) epk and the secret key corresponding to epk. The root of an LT is
special in that instead of the above mentioned labels, it only has a private label grpkey, which
holds the group key of the current epoch.

Private labels will (usually) only be known to a particular subset of the group. Specifically, the
construction assigns each member idi their own leaf and maintains the following invariants:

1. idi knows all public labels;
2. idi knows the private labels for all nodes on its direct path, that is the path from idi’s leaf to

the root;
3. idi at most knows the private labels for nodes that are either on its direct path or on the path

from a node marked as tainted by idi to the root.

Note that Invariants 1 and 2 concern correctness, whereas Invariant 3 concerns security. In particular,
an honest party never explicitly stores private labels off his direct path — nevertheless, corrupting
the party (especially his randomness) might additionally leak those labels to the adversary.

Apart from the LT, the state of each member idi contains secret keys for pending proposals
and commits, i.e. those generated by idi, but not yet processed.
Proposals. Proposals represent suggestions for modifying the current LT (e.g. by adding or removing
nodes and/or modifying labels).

– A Remove proposal suggests deleting all the labels of the specified member’s leaf.
– An Add proposal suggests adding a new leaf assigned to the new member idt. The proposal

contains the epk label for the new leaf, which is fetched from the PKI by the calling protocol, as
well as a public key epk′ to be used to encrypt the respective welcome message while committing
the proposal.

– An Update proposal suggests replacing esk and epk in a user’s leaf by a fresh key pair, with
the public key specified in the proposal.

Each proposal has to be brought forward by a current member of the group ids, the sender.
Add and remove proposals refer to another party idt, the target, while update proposals always
refer to the sender’s key material.
19 See Appendix A.3 for the definition of a left-balanced binary tree.

21

Alice Bob

initial state

Alice Bob Dave

Step 1

Alice Bob

s2

s1

epk1 epk2

epk3

Step 2

Fig. 8: An example: Alice commits adding Dave. The gray nodes are tainted by Alice. In Step 1,
Alice adds a new leaf for Dave, with the epk label containing his public key. In Step 2, she marks all
nodes on Dave’s direct path as tainted by herself and performs rekeying. For this, she partitions the
nodes into two paths, marked by the dashed lines. To re-key the right path, she generates random
s1 and computes s2 = H1(s1). The new keys in vi are computed using the randomness H2(si). The
commit message thus contains the following ciphertexts for the right path: s2 encrypted under
epk3 and s1 encrypted under both epk1 and epk2. Note that for PCS it is crucial that the right
path is first processed, as it is “lower” than the left one, such that the root is encrypted under the
new key derived from s2.

Commits. To commit a sequence of proposals, a user idc first creates the LT for the new epoch and
then computes a commit message that allows all other group members to compute their respective
views of the new LT. An example if depicted in Fig. 8.

In more detail, the committer first creates a fresh copy τ ′ of (their local view of) the LT and
modifies its leaves according to the committed proposals20 This in particular entails replacing keys
of leaves of newly added members and members having proposed an update with the respective
ones stored as part of the proposals. Then, τ ′ is further modified by the committer choosing new
key pairs (described below) for the following additional nodes:

– The root; this refreshes the group secret.
– Nodes on removed members’ direct paths as well as on paths from nodes tainted by them to

the root; by Invariant 3 this replaces all secrets potentially known to the removed members.
– Nodes potentially known (according to Invariant 3), to users who proposed an update (except

their leaves) and the committer; this provides PCS for these users.
– Nodes on added members’ direct paths (except their leaves); this allows the committer to

produce a welcome message that ensures Invariant 2 for the new members.

All those rekeyed nodes are marked as tainted by the committer (to maintain Invariant 3).
The commit message contains all new public keys (for Invariant 1) and a collection of ciphertexts,

both computed during rekeying. Each ciphertext encrypts a different secret which can be used to
re-derive a particular portion of the new secret keys. The secrets are encrypted in such a way that
each group member can decrypt (at least) the secrets needed to ensure that they satisfy Invariant 2,
while not violating Invariant 3, in the new epoch.

Re-Keying. The goal is to generate the new keys in a way that pairs minimizes the number of
ciphertexts each party needs to decrypt (as well as the total number of ciphertexts generated).
This is enabled by two observations. First, the nodes to be rekeyed can be partitioned into a small
number of path segments from a starting node one of its ancestor.21 Second, each user should know
the (upper) part of each segment that is shared with their direct path.
20 See Appendix C for the details on how the protocol interprets the order of proposals.
21 Our construction uses the heuristic of iterating over the tainted nodes in order from deepest to shallowest

and left to right in the tree until no tainted node is left that isn’t already covered in the partition.
At each iteration we add the segment from the current tainted node to root or until another segment
already in the partition is met.

22

As a consequence, the algorithm generates the keys on each segment (u v) by “hashing up
the path”. Namely, it chooses a random secret s← {0, 1}κ and iterates over the nodes in (u v).
At each step it deterministically derives a new key pair for the node using random coins H2(s)
and updates the secret for use with the next node on the path by setting s← H1(s). This way, a
segment’s secret s for a node a can be used to derive new keys for all nodes above a. Hence, each
user only needs one ciphertext for each segment.

It remains to describe under which keys to encrypt those freshly sampled keys. Observe that the
keys we are replacing are exactly those we no longer want to consider secure, in order to achieve
PCS and securely dismiss removed parties. (Recall that the protocol also must provide a PCS
guarantee to the committer.) Hence, we cannot use any of those old keys to encrypt the fresh ones.
Since, however, each fresh key only needs to be known to its descendants, i.e., parties whose leave
have the key as ancestor, we can encrypt it to its children’s secrets (assuming that neither of them
is replaced as well). If a child is part of the same segment, then we don’t need to encrypt the key to
it, as the parties can derive deterministically from the child’s key due to the “hashing up the path”
approach. Care has to be taken, however, in places where two different segments meet, i.e., where
a one’s segment’s node is the parent of another segment’s node. There, we still have to encrypt the
node to the child, yet ensure that the child node’s new key is used. Note that this can be done by
processing the segments from “lower” to “higher”, according to the depth of their end point (when
directed from leaves to root), which is well-defined partial order on the segments.

Process. Most users process the above commit message in the obvious way. The only exception
is the committer themselves. Observe that while for parties with an included update proposal,
their leaves are not part of the rekeyed segments. Rather, they get the get the seed of the direct
parent node encrypted under their new secret key (which they chose themselves). In contrast, the
committer is unable to decrypt even a single one of the included ciphertexts using their current
group state. Instead, they denote τ ′ as “pending” by storing it in a local array pendCom just before
sending out c. That way, if c is delivered to them again by the network (i.e. the adversary) they
simply overwrite their current state with τ ′.22

Welcome Messages. It remains to describe how welcome messages are built and how a group is
joined. Recall that an add proposal contains a CGKA public key for the new member. In TTKEM,
this key consists of two public keys epk and epk′, where the former is placed in the new leaf. A
welcome message prepared by the committer contains the (new) LT τ ′ but with only the public
labels set (so, without the group key and the secret key labels) to ensure Invariant 1.

To ensure Invariant 2, for each freshly added member, the welcome message moreover contains
the secret labels of all nodes on the new member’s direct path (except the leaf) encrypted under
epk′. (Recall that the committer knows all those keys as he just generated them during rekeying.)
The leaf’s secret key is fetched from the PKI and provided to the party as additional argument to
join by the calling protocol.

Security. One can observe that the protocol maintains Invariant 3, as long as all parties process the
same sequence of commit messages. Thus, whenever a commit updates all previously compromised
parties and the committer is using good randomness, then all potentially leaked keys are discarded,
replaced by fresh and independent ones, and encrypted under so far uncompromised keys as part
of the commit message. We refer to [2, 3] for an in-depth security analysis of TTKEM.

7.2 Cross-Group Attacks

The TTKEM protocol is however vulnerable against so-called cross-group attacks. Intuitively,
cross-group attacks are possible against protocols where commits affect only part of the group
state. A simple example of such attack is as follows.

1. Create a group with A,B and C. Move all parties to the same node Node[c0].
22 We recall that Alice can not immediately switch to her new state τ ′ when sending a commit lest another

group member happens to simultaneously perform a commit and the (honest) delivery service selects
the other commit as the first of the two to broadcast to the group. In such a case, Alice applying her
own commit preemptively would mean she has locked herself out of the group.

23

2. Make A send a commit c1 and B send a commit c2, neither containing an update for C.
3. Move C to Node[c1], and A and B to Node[c2].
4. Expose C’s secret state.

In an optimally secure protocol, partitioning the group into C on the one side and A and B on
the other side would be all the adversary could do. Especially, the two sub-groups should then
evolve independently, without the exposure of C in the one branch affecting the security of the
other branch.

In case of TTKEM, however, the group states in epochs c0, c1 and c2 all share the same key
pair for C’s leaf. Moreover, if C is added last, then his node in the tree will be the direct right
child of the root. Thus, when generating c1 and c2, both A and B encrypt the new root secret
under C’s leaf public key.23 Hence, the adversary can derive the group key of Node[c2] by using
C’s leaked secret key to decrypt the corresponding ciphertext in c2.

We note that this cannot be easily fixed by just mixing the old group key into the new one. For
this, we modify the above attack and corrupt B after Step 1. This leaks the old group key. Still,
the key in c2 should be secure, because the commit is supposed to heal B.

7.3 The Protocol P-Pas

To avoid cross-group attacks, we modify TTKEM so that a commit evolves all key pairs in the LT.
For this, we first replace the standard encryption scheme by HIBE. That is, each node, instead of
labels epk and esk, has two public mpk and ~id, as well as one private label hsk. In the order listed,
these labels contain a (master) HIBE public key, and a HIBE identity vector and the corresponding
HIBE secret key for identity ~id. Encryption for a node is done with mpk and ~id. Whenever a new
key pair is created for an internal node (e.g. during rekeying), the node’s ~id is initialized to the
empty string. For leaf nodes, the first ID in the vector ~id is set to the ID of the user assigned to
that leaf.

Second, we can now evolve all keys with every commit: For nodes whose keys does not get
replaced with the commit, we simply append the the hash of the commit message H3(c) to the
HIBE ID vectors, and update all secret keys on the processor’s direct path (known by Invariant 2)
accordingly.

Intuitively, this provides forward secrecy for individual HIBE keys in the LT. First, HIBE
schemes ensure that secret keys for an ID vector can not be used to derive secrets for prefixes of
that ID vector. So, the HIBE key of a node can not be used to derive its keys from previous epochs.
Second, this guarantees in the event the group is split into parallel epochs (by delivering different
commit messages to different group members) that the keys of a node in one epoch can not be
used to derive the keys for that node in any parallel epochs. That is because, more generally, HIBE
schemes ensure that secret keys for an ID vector ~id can not be used to derive keys for any other
ID vector ~id

′
unless ~id is a prefix of ~id

′
. But as soon as parallel epochs are created, the resulting

ID vectors of any given node in both LTs have different commit messages in them at the same
coordinate ensuring that no such vector is a prefix of another.

We prove two statements about the security of our protocol. First, if the hash functions are
modeled as non-programmable random oracles, then the protocol realizes the relaxed functionality
that restricts the environment not to perform certain corruptions. Second, if we do allow pro-
gramming the random oracles, then it achieves full UC security. Formally, we prove the following
theorems.

Theorem 1. Assuming that HIBE and PKE are IND-CPA secure, the protocol P-Pas realizes
Fcgka-auth with restrict-corruptions = true in the (Fpki, GRO)-hybrid model, where GRO denotes
the global random oracle, calls to hash functions Hi are replaced by calls to GRO with prefix Hi and
calls to PRG.eval are replaced by calls to GRO with prefix PRG.

Proof. The proof is presented in Appendix D.

23 This attack can be easily extended to situations where C leaf is not a direct child of the root by
considering internal nodes that don’t get updated.

24

Theorem 2. Assuming that HIBE and PKE are IND-CPA secure, the protocolP-Pas realizes
Fcgka-auth with restrict-corruptions = false in the (Fpki, FRO)-hybrid model, where FRO
denotes the (local) random oracle, calls to hash functions Hi are replaced by calls to GRO with prefix
Hi and calls to PRG.eval are replaced by calls to GRO with prefix PRG.

Proof. The proof is presented in Appendix E.

7.4 Efficiency

The commit messages in P-Pas have fair-weather size logarithmic in group size.24 Additionally, if
the HIBE scheme has constant-size ciphertexts, e.g. [33], then P-Pas has only constant blow-up over
TTKEM (otherwise, the size of packets grows with the number of commits without interaction,
but not with the group size).

For the computation cost, our simplified description of the process algorithm in Appendix C
implies that it requires work linear in group size, since a party updates identities in the whole LT.
We note that this is not inherent. Since all identity vectors are suffixes of a global commit-history,
we only need to store in each node the index when it was created. This makes the computation
cost of a process (and all other algorithms) logarithmic in the group size.

Note, however, that the computation cost of HIBE depends also on the length of identity vectors,
which in our case correspond to the number of messages sent without interaction. In particular,
encryption, which is part of the commit algorithm, is often linear in the identity length. We note
that for some HIBE schemes it may be possible to pre-process the public key for encryption with
given identity vector. This would make it possible to trade off the cost of commit for the cost of
process.

8 Constructions for the Passive Setting

This section explains how to gradually enhance our protocol with passive security from Section 7
to deal with active network adversaries.

8.1 Basic Modifications of the Passive Protocol

Authentication. The goal of the first modification is to prevent injections whenever they are not
inherent given correctness. More precisely, the adversary should be able to make some party accept
a message as coming from id in epoch c only if id’s state in c is exposed (in the sense of the safe
predicate).

We achieve this using key-updatable signatures (KUS) [29], a signature analogon of HIBE, where
verification additionally takes an identity vector and signing keys can be updated to lower-level
ones, for longer identity vectors (just like HIBE decryption keys).25 See Appendix A.4 for the
definition.

We first modify the group state: each leaf in the LT has two additional labels: a KUS verification
key spk and a corresponding signing key ssk for the leafs identity vector ~id (the same one as for
HIBE). The leaf’s KUS keys live alongside its HIBE keys: each update and commit of the user
id assigned to the leaf contains a fresh spk, and whenever id processes a commit message c, he
updates ssk using the identity c. All messages sent by id are signed with his current signing key
and verified by receiving parties using his current verification key and ~id. Accordingly, the PKI key
generation outputs an additional KUS key pair for the new member.

Binding control messages to epochs. Next, recall that Fcgka-auth, apart from guaranteeing au-
thenticated communication, also prevents the environment from using control messages out of
context, e.g., trying to process a commit message that does not originate from the current state, or
24 Actually, our pseudo-code description in Appendix C has logarithmic complexity in the maximal ever

reached group size, as we never prune the tree. This could, however, easily be adopted from [5].
25 Technically, the notion of [29] is weaker, since their EUF-CMA adversary can derive secret keys only

along one path in the identity tree. This weaker notion is exactly what we need in our construction.

25

embedding a proposal belonging to a different epoch in a commit message. In the active setting,
context verification is the role of the protocol. It achieves this as follows.

Each control message (commit or proposal) contains an epoch id epid, which is simply a
hash of the last commit message, i.e., one that created the current epoch. Each commit message
additionally contains a hash of the list of committed proposals. The current epid is stored as part
of the state. The commit algorithm commit, before doing anything else, verifies that all proposals
being committed have epid matching the current one in the state. The process algorithm proc
verifies that the commit has the matching epid and that the proposals match the hash in the
commit message. If any of these checks fail, the protocol immediately returns ⊥.

Proposal validation. Apart from proposals belonging to the correct epoch, protocols realizing
Fcgka-auth could also assume some additional validity conditions of proposals, which now the
protocol has to check: Namely, the commit algorithm has to check that all proposals being
committed to were created by a current member of the group, that add- and remove-proposals
only add and remove parties that are currently not yet in the group, respectively already in the
group, and that the proposals don’t remove the party executing commit from the group (as this
party chooses the next group key). The process algorithm proc executes the analogous checks.

Validating the public state in welcome messages. Recall that Fcgka allows the environment to inject
a welcome message, making a party join a detached node. If afterwards the environment makes
a different party process the corresponding commit message, the node is attached to its parent.
Fcgka requires that in such case the joining and the processing party end up in a consistent state
(e.g. they agree on the member set). Our protocol guarantees this by 1) including in a commit
message a hash H5(τpub), where τpub is the public part of the LT in the new epoch, and 2) including
the whole commit c in the welcome message.

If after processing a commit c the resulting LT doesn’t match the hash, the protocol returns ⊥.
The joining party verifies that τpub in the welcome message matches the hash in the commit c and
computes epid as hash of c.26

8.2 The Non-Robust Protocol

Well-formedness via hashing. The next goal is to prevent the adversary from successfully injecting
(using leaked states) malformed control messages. This is not a problem for our proposal messages,
since they only contain public information, which can be easily verified.27 However, commit and
welcome messages both contain a number of ciphertexts of (supposedly) related data, only part of
which can be decrypted by a given party. The following simple solution to this problem provides
security, but not robustness.

Consider first commit messages, which contain a number of public keys and a number of
ciphertexts, used by a party to derive his slice of corresponding secret keys and the new group key.
While validity of derived secret keys can be verified against the public keys, this is not the case for
the group key. Hence, we add to the message an analogue of a public-key for the group key — we
use hash functions H6 and H7 and whenever a party is ready to send a commit c creating an LT τ ,
it attaches to c a confirmation key H6(c, τ.grpkey) (recall that grpkey is the label in the root of τ).
The actual group key for the new epoch is then defined to be H7(τ.grpkey). The group key and all
derived secret keys are then verified by the proc algorithm against the confirmation key and the
public keys, accordingly.

Second, a welcome message contains the public part of the LT τpub, encryption of the new
member’s slice of the secret part and the commit message c. The join algorithm performs the
same checks as proc: it verifies the decrypted secret keys against the public keys in τpub and the
decrypted τ.grpkey against the confirmation key in c.

Putting it all together. Combining the above techniques results in our first protocol, P-Act. In
particular, a commit in P-Act is computed as follows: (1) Generate the message c as in the
26 Recall that the functionality identifies epochs by c, so in order for the simulator to determine the epoch

for injected welcome messages, it has to contain the whole c.
27 Note that the validity of the public-key contained in add-proposals cannot be verified at all without the

protocol interacting with an identity PKI, which is not considered in our model.

26

protocol with passive security (taking into account the additional KUS labels). (2) Add the hash
of the public state and epoch id: c ← (c, epid,H5(τpub)). (3) Compute the confirmation key as
conf-key = H6(c, τ.grpkey). (4) Output (c, conf-key), signed with the current KUS secret key. (We
note that we use KUS with unique signatures).

Security. We note that the confirmation key has in fact two functions. Apart from guaranteeing that
parties end up with the same group keys, in the random oracle model, it also constitutes a proof
of knowledge of the group key with respect to the commit message. This prevents the adversary
from copying parts of commits sent by honest parties, where he does not know the secrets, into his
injected commits (he cannot copy the honest committer’s confirmation key, because the control
message c no longer matches).

As in the case of protocols with passive security, we prove two statements: if the hash functions
are modeled as non-programmable random oracles, then we achieve security with respect to a
restricted class of environments, while if the random oracles are programmable, we achieve full UC
security.

Theorem 3. Assuming that HIBE and PKE are IND-CCA secure, and KUS is EUF-CMA secure the
non-robust protocol P-Act realizes Fcgka with robust = false and restrict-corruptions = true
in the (Fpki, GRO)-hybrid model, where GRO denotes the global random oracle, calls to hash functions
Hi are replaced by calls to GRO with prefix Hi and calls to PRG.eval are replaced by calls to GRO
with prefix PRG.

Proof. The proof is presented in Appendix G.

Theorem 4. Assuming that HIBE and PKE are IND-CCA secure, and KUS is EUF-CMA secure the
non-robust protocol P-Act realizes Fcgka with robust = false and restrict-corruptions = true
in the (Fpki, FRO)-hybrid model, where FRO denotes the (local) random oracle, calls to hash
functions Hi are replaced by calls to GRO with prefix Hi and calls to PRG.eval are replaced by calls
to GRO with prefix PRG.

Proof. The statement follows by extending the proof of Theorem 3 (cf. Appendix G) in the exact
same way as the proof of Theorem 2 (cf. Appendix E) extends the proof of Theorem 1.

8.3 The Robust Protocol using NIZKs

Unfortunately, the solution with the confirmation key not provide robustness, since a party cannot
verify all ciphertexts, and so it may accept a commit message that will be rejected by another party.
In order to provide robustness, we need a mechanism that allows parties to verify well-formedness
of all ciphertexts in a commit message. For this, we replace the simple method of well-formedness
verification via hashing by a non-interactive zero-knowledge argument (NIZK) (for the definition,
see Appendix A.4).

Well-formedness via NIZK. Let in the following (γ′, c′, w′) = commit′(γ, ~p; r) denote the commit
algorithm from the passive protocol with the basic modifications for active security, but where c′
does not yet contain the signature. Here, r denotes the explicit randomness, γ the committer’s old
state, and γ′ the updated state.

We first add a way for a current group member to verify that c′ was computed correctly. For
this, id attaches to c′ a NIZK proving that that he knows the secret state matching the current
public state (already known to the receiver’s) and randomness used to generate c′. In particular,
we use the NIZK of knowledge for the following relation:

Rc :=
{ (
x = (c′, ~p, τpub), ω = (γ, r)

)
: (·, c′, ·) = commit′(γ, ~p; r) ∧ γ.τ.public = τpub

}
.

Second, we add a way for a joining party idt to verify w′. Here, the problem is that in order
to verify that id run the protocol correctly, idt needs the old tree τpub (he currently only receives
the new one for the epoch he joins). So, we communicate τpub to idt alongside τ ′pub — the commit

27

message contains H5(τpub, τ ′pub) and the welcome message contains both trees. Then id attaches to
w′ a NIZK of knowledge for:

Rw :=
{ (
x = (w′, c′, ~p, τpub), ω = (γ, r)

)
: (·, c′, w′) = commit′(γ, ~p; r) ∧ γ.τ.public = τpub

}
.

We note that, similar to the confirmation key, the NIZKs also proves knowledge of the resulting
group key K of c′ (which can be derived from the state and randomness).

Putting it all together. The commit algorithm of the robust protocol P-Act-Rob generates mes-
sage c′ and w′, the NIZKs πc and πw for relations Rc and Rw, accordingly. It outputs c =
(c′,H5(τpub, τ ′pub), πc) signed with the current KUS key and w = (w′, c, τpub, τ ′pub, ~p, πw).

When executing proc, parties verify the proof using the c′ received, the referenced proposals,
and (the public part of) the LT of their current group state. the joining party verifies that τpub, τ ′pub
and ~p match the values in hashes (the hash of ~p is part of c′).

Security. Given that our protocol relies on NIZKs, our security statements needs to assume common
reference strings (CRS). To this end, we assume a setup functionality Fcrs which outputs to every
party a tuple (crsc, crsw) sampled by NIZKc.gen and NIZKw.gen, which belong to the NIZK systems
NIZKc and NIZKw for Rc and Rw, respectively. Formally, this implies that we have to modify the
syntax of a CGKA scheme and the according embedding as a UC protocol to pass along the CRS
to commit, proc, and join.

Since the above protocol P-Act-Rob requires NIZKs for statements involving hash functions,
we moreover have to prove security in the standard model, rather than the ROM. Unfortunately,
proving adaptive security of P-Act-Rob without random oracles seems unlikely.28 Therefore, we
prove a weaker statement, where the environment has to commit to certain information in advance.
In particular, whenever a party commits and hence determines a new group key, the environment
must specify whether this key is secure or not. We then restrict it to stick to its choice.

Formally, we define a functionality F static
cgka , which differs from Fcgka only on input commit.

Specifically, commit in F static
cgka takes as an additional input a bit secure. Whenever the commit

returns messages (c, w) (and not ⊥), the functionality sets the group key in Node[c] as follows. If
secure = 1 and safe(c), then it sets Node[c].key to a random value and Node[c].chall to true. Else,
it asks the adversary to provide the key. In any case, F static

cgka sends secure to the simulator and
allows him to revise his choice of c — the simulator chooses a new c′ s.t. Node[c] = ⊥ and the
functionality sets Node[c′]← Node[c] and Node[c]← ⊥. Note that this means that set-key helper
is never called. Moreover, our restriction restrict-corruptions to avoid the commitment problem
disables environment’s actions that would contradict the choice of secure. In the real world, the
additional input secure is ignored by our protocol.

Putting it all together, we then obtain the following security statement for the protocol
P-Act-Rob.

Theorem 5. Let NIZKc and NIZKw be two zero-knowledge and simulation-sound extractable NIZK
systems for the relations Rc and Rw, respectively. Moreover, assume that HIBE and PKE are
IND-CCA secure, that KUS is EUF-CMA secure, that HIBE and KUS have an efficiently checkable
one-to-one matching between public- and secret-keys, that PRG is a secure PRNG with input, and
that the hash functions satisfy PRG security. Then, the protocol P-Act-Rob realizes F static

cgka with
robust = true and restrict-corruptions = true in the (Fcrs,Fpki)-hybrid model, where Fcrs
generates the pair of CRS for NIZKc and NIZKw.

Proof. The proof is presented in Appendix H.

9 On the Sub-optimality of Alternative Solutions

In this section we show that several alternative approaches to secure group messaging do not lead
to optimal security, even in the passive setting. In particular, we consider pairwise communication
28 Our protocol involves encrypting keys under different keys, resulting in encryption chains — the setting

of so-called generalized selective decryption (GSD). We are not aware of any efficient reduction for GSD
in the standard model. (Note that we cannot use non-interactive non-committing encryption, as this
would result in a limit on the number of messages we can send without interaction).

28

channels (even optimally secure) and replacing HIBE by key-homomorphic encryption. (The fact
that TTKEM is not optimal already follows from [2]).

9.1 Pairwise Channels
One approach to group communication, implemented for example by Signal, is to use a complete
network of pairwise channels. That is, each pair of parties is connected by a (reasonably) secure
channel, which provides forward secrecy and post compromise security. To send a message to the
group, Alice sends it to each participant separately.

While this does not exactly match the CGKA abstraction, we argue that similar approaches
(e.g. to commit, Alice sends a fresh group key to each other party) do not yield optimal security,
even if the pairwise channels are optimally secure [29, 36]. The reason is that when Alice sends
a message to every other participant, then this cannot affect the channel between, say, Bob and
Charlie (for this, we would need an action from Bob or Charlie). So, an adversary executing the
following sequence of actions breaks optimal security.
1. Create a group with A,B and C. Move all parties to the same node Node[c0].
2. Make A send a commit c1 and B send a commit c2.
3. Move C to Node[c1] and then expose him.

The state of the channel between B and C is not affected by c1 sent by A, so the adversary can
use C’s state to receive B’s message c2 and decrypt the key in Node[c2].

9.2 Key-Homomorphic Encryption
The examples of TTKEM and pairwise channels show that an update should affect the whole
state of a group. Indeed, this is what our protocol achieves with HIBE. However, one may ask if
the same cannot be achieved without such inefficient primitives. This question was raised in the
two-party setting by [21, 30], resulting in efficient, but sub-optimal constructions. We argue that
extending their ideas to the group setting would also yield sub-optimal constructions, at least if we
allow exposing commit randomness.

In particular, consider the following modification of our protocol. Instead of HIBE, we use so-
called key-homomorphic encryption, e.g. ElGamal. Here, public and secret keys are group elements,
and given two keys epk1 and epk2, one can efficiently compute the product key epk1 ∗ epk2,
corresponding to the product secret key esk1 + esk2. Now to commit, a party samples fresh update-
key (epk, esk) and includes (epk, esk) in each ciphertext (so every party learns it). On process,
instead of evolving keys with HIBE, a party updates every ratchet tree node v with the update-key:
v.epk← v.epk ∗ epk and, whenever v.esk is known, v.esk← v.esk + esk.

Intuitively, the problem with this solution is that the group operation on secret keys is efficiently
invertible, at least for all schemes we are aware of (note that this is not the case for HIBE). This
means that if the new key esk is not transmitted securely (e.g., because the randomness leaks),
then given in addition v.esk + esk (e.g., obtained by corrupting a party), the adversary can compute
the previous key v.esk. Concretely, consider the adversary, who executes the following (the history
graph he creates is in Fig. 9):
1. Create a group with A and B. Move both parties to the same node Node[c0].
2. Expose A and make her send a commit c1 with bad randomness.
3. Make A send another commit c2 with good randomness.
4. Move B to Node[c1] and then expose him.
5. Move A to Node[c2] and request the key.

Clearly, safe(c2) = true, since the commit with good randomness heals A. However, the adversary
learns: (1) A’s state and randomness used to compute c1, (2) B’s state from Node[c1]. (1) allows to
compute the secret update-key esk from c1 (since the commit is deterministic) and (2) contains B’s
updated secret keys v.esk + esk. Hence, the adversary can compute B’s keys v.esk in Node[c0], and
use them to process c2. Note that it would not help to e.g. mix a group secret into the update-key,
as this leaks with A’s state.

We note that [5] also applies the techniques of [30] to TreeKEM for better forward secrecy.
However, their protocol does not update the whole ratchet tree (as this would be inefficient), so it
suffers from the same vulnerability as TTKEM.

29

c0

c1

c2

Step 2. bad rand

Step 3. good rand

Step 4. expose B

Step 2. expose A

Fig. 9: The history graph created by the adversary against the scheme using key-homomorphic
encryption.

10 Conclusions and Future Directions

10.1 Conclusions

In our paper, we formally have defined optimal security for continuous group key agreement
(CGKA) schemes. We considered two settings: First, the passive setting, where the adversary
cannot tamper or inject messages but — in contrast to previous work — can freely reorder and
drop messages without being confined to a global order thereof. Second, we considered the active
setting, where the adversary fully controls the network and thus, using a party’s exposed state,
can impersonate that party.

For both of the settings we proposed corresponding schemes. All schemes scale sub-linearly in
the number of parties and polynomially in the security parameter, thus — while not practically
efficient — provide feasibility results for those strong security notions under the basic design
premise of MLS.

10.2 Future Directions

Secure group messaging. The prime application of CGKA is secure group messaging (SGM). It is
therefore an important open problem to define active (and optimal) security of SGM and prove (or
disprove) that the black-box construction of SGM from CGKA from [4] achieves optimal SGM
security assuming optimally-secure CGKA.

Identity PKI and related guarantees. Our treatment does not consider long-term identity keys. As a
consequence, there are a number of related questions that are currently not answered by our work.
First, our ephemeral PKI currently idealizes the guarantees of the identity PKI end ensures that
if Alice wants to add Bob to the group, she will always receive a key actually owned by Bob. At
the same time, however, Bob has no means of checking, first, whether the corresponding welcome
message has actually been sent by Alice and, second, whether he is joined to a legitimate and fresh
state of the group or whether Alice made up all the contained information. Hence, the potential
compromise of long term identity keys and recovery thereof, appears vital to actually guarantee
strong forms of security in practice.

Full insider security. In addition, our overly idealized and incorruptible PKI also separates our
active setting — where the adversary can perform basic operations in the name of a party having
corrupted its state — from true insider security. In particular, the PKI does not allow malicious
parties to upload secret keys which they generated themselves, perhaps without knowing the secret
key or using honest parties’ keys. This means that in order to add a party with a maliciously
generated public key, the adversary must first corrupt someone already in the group and inject an
add proposal. We leave defining security without this restriction as an open problem.

Standard model results and impossibilities. Most of our security proofs come in two flavors: UC
security with restricted environments in the non-programmable ROM, and full UC security in the
programmable ROM. An interesting open question is, whether the same level of security, while
preserving logarithmic complexity, could also be achieved in the standard model. We conjecture

30

the impossibility of full UC security in the standard model; but what about UC security with
restricted environments? Note that such a result would not only be of purely theoretic interest, but
for instance also enable us to revisit the result on our protocol using NIZK proofs (which seems to
achieve better security against insider attacks), for which given the incompatibility of NIZK and
the ROM we currently can only prove static security.

Security of detached nodes. Consider the following scenario: a group consists of Alice and Bob,
where Alice is the only exposed party. The adversary uses her state to create a sequence of n epochs
(where Alice is always the committer), where the last epoch adds Charlie. Then Charlie joins and
removes Alice. In principle, Charlie ends up with a secure key. However, our definition does not
guarantee secrecy in this case, since not all ancestors of Charlie’s epoch can be determined. In
particular, how can the functionality, using only its symbolic information, determine whether Bob’s
state in Charlie’s epoch is inherently exposed?

A solution would be to require from the protocol that all ancestors of an epoch can be determined
from the commit message (i.e., the simulator, given an injected welcome message for Charlie,
should be able to determine the ancestor epoch where Alice is exposed). We conjecture that
protocols with such guarantee are inherently inefficient w.r.t size of messages, which now have to
contain information about all ancestors.We leave proving (or disproving) this as an interesting
open problem.

Practical protocols. Our protocols use HIBE, key-updatable signatures and generic NIZKs — it
would be interesting to see whether this is inherent for optimal security, and whether one can
achieve more efficient solutions at the expense of slightly sub-optimal security (as is the case for
2-party messaging [21, 30]).

References

[1] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Security notions, proofs, and
modularization for the Signal protocol. In Yuval Ishai and Vincent Rijmen, editors, Advances in
Cryptology – EUROCRYPT 2019, Part I, volume 11476 of Lecture Notes in Computer Science, pages
129–158. Springer, Heidelberg, May 2019.

[2] Joël Alwen, Margarita Capretto, Miguel Cueto, Chethan Kamath, Karen Klein, Guillermo Pascual-
Perez, Krzysztof Pietrzak, and Michael Walter. Keep the dirt: Tainted treekem, an efficient and
provably secure continuous group key agreement protocol. Cryptology ePrint Archive, Report
2019/1489, 2019. https://eprint.iacr.org/2019/1489.

[3] Joël Alwen, Margarita Capretto, Miguel Cueto, Chethan Kamath, Karen Klein, Guillermo Pascual-
Perez, Krzysztof Pietrzak, and Michael Walter. Keep the dirt: Tainted treekem, an efficient and
provably secure continuous group key agreement protocol. Private communication, 2020.

[4] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Modular design of secure
group messaging. Private communication, 2020.

[5] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Security analysis and im-
provements for the ietf mls standard for group messaging. In Advances in Cryptology – CRYPTO
2020 – 40th Annual International Cryptology Conference, Proceedings, 2020. Full version: https:
//eprint.iacr.org/2019/1189.

[6] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel
Wichs. Multiparty computation with low communication, computation and interaction via threshold
FHE. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EURO-
CRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 483–501. Springer, Heidelberg,
April 2012.

[7] Michael Backes, Markus Dürmuth, Dennis Hofheinz, and Ralf Küsters. Conditional reactive simulata-
bility. In Dieter Gollmann, Jan Meier, and Andrei Sabelfeld, editors, ESORICS 2006: 11th European
Symposium on Research in Computer Security, volume 4189 of Lecture Notes in Computer Science,
pages 424–443. Springer, Heidelberg, September 2006.

[8] R. Barnes, B. Beurdouche, , J. Millican, E. Omara, K. Cohn-Gordon, and R. Robert. The messaging
layer security (mls) protocol (draft-ietf-mls-protocol-09). Technical report, IETF, Mar 2020. https:
//datatracker.ietf.org/doc/draft-ietf-mls-protocol/.

[9] Richard Barnes, Jon Millican, Emad Omara, Katriel Cohn-Gordon, and Raphael Robert. Message
layer security (mls) wg. https://datatracker.ietf.org/wg/mls/about/.

31

https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1189
https://eprint.iacr.org/2019/1189
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/

[10] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors Stepanovs. Ratcheted
encryption and key exchange: The security of messaging. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology – CRYPTO 2017, Part III, volume 10403 of Lecture Notes in Computer
Science, pages 619–650. Springer, Heidelberg, August 2017.

[11] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. Treekem: Asynchronous decentralized
keymanagement for large dynamic groups., May 2018.

[12] Muhammad Bilal and Shin-Gak Kang. A secure key agreement protocol for dynamic group. Cluster
Computing, 20(3):2779–2792, 2017.

[13] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Dynamic group Diffie-Hellman
key exchange under standard assumptions. In Lars R. Knudsen, editor, Advances in Cryptology –
EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 321–336. Springer,
Heidelberg, April / May 2002.

[14] Jan Camenisch, Robert R. Enderlein, Stephan Krenn, Ralf Küsters, and Daniel Rausch. Universal
composition with responsive environments. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances
in Cryptology – ASIACRYPT 2016, Part II, volume 10032 of Lecture Notes in Computer Science,
pages 807–840. Springer, Heidelberg, December 2016.

[15] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast security: a taxonomy
and some efficient constructions. In IEEE INFOCOM ’99. Conference on Computer Communications.
Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies.
The Future is Now (Cat. No.99CH36320), volume 2, pages 708–716, 1999.

[16] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
Annual Symposium on Foundations of Computer Science, pages 136–145. IEEE Computer Society
Press, October 2001.

[17] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable security with
global setup. In Salil P. Vadhan, editor, TCC 2007: 4th Theory of Cryptography Conference, volume
4392 of Lecture Notes in Computer Science, pages 61–85. Springer, Heidelberg, February 2007.

[18] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-ciphertext security. In Dan
Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer
Science, pages 565–582. Springer, Heidelberg, August 2003.

[19] Chung Kei Wong, M. Gouda, and S. S. Lam. Secure group communications using key graphs.
IEEE/ACM Transactions on Networking, 8(1):16–30, 2000.

[20] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner. On ends-to-ends
encryption: Asynchronous group messaging with strong security guarantees. In David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference on Computer
and Communications Security, pages 1802–1819. ACM Press, October 2018.

[21] F. Betül Durak and Serge Vaudenay. Bidirectional asynchronous ratcheted key agreement with linear
complexity. In Nuttapong Attrapadung and Takeshi Yagi, editors, IWSEC 19: 14th International
Workshop on Security, Advances in Information and Computer Security, volume 11689 of Lecture
Notes in Computer Science, pages 343–362. Springer, Heidelberg, August 2019.

[22] Facebook. Messenger secret conversations (technical whitepaper version 2.0), 2016. Re-
trieved 05/2020 from https://fbnewsroomus.files.wordpress.com/2016/07/messenger-secret-
conversations-technical-whitepaper.pdf.

[23] Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stinson, editor, Advances in
Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Computer Science, pages 480–491. Springer,
Heidelberg, August 1994.

[24] Eduarda S. V. Freire, Julia Hesse, and Dennis Hofheinz. Universally composable non-interactive key
exchange. In Michel Abdalla and Roberto De Prisco, editors, SCN 14: 9th International Conference
on Security in Communication Networks, volume 8642 of Lecture Notes in Computer Science, pages
1–20. Springer, Heidelberg, September 2014.

[25] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In Yuliang Zheng, editor,
Advances in Cryptology – ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science,
pages 548–566. Springer, Heidelberg, December 2002.

[26] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures.
In Xuejia Lai and Kefei Chen, editors, Advances in Cryptology – ASIACRYPT 2006, volume 4284 of
Lecture Notes in Computer Science, pages 444–459. Springer, Heidelberg, December 2006.

[27] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In Lars R. Knudsen,
editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer
Science, pages 466–481. Springer, Heidelberg, April / May 2002.

[28] Chris Howell, Tom Leavy, and Joël Alwen. Wickr messaging protocol : Technical pa-
per, 2019. https://1c9n2u3hx1x732fbvk1ype2x-wpengine.netdna-ssl.com/wp-content/uploads/
2019/12/WhitePaper_WickrMessagingProtocol.pdf.

32

https://fbnewsroomus.files.wordpress.com/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://1c9n2u3hx1x732fbvk1ype2x-wpengine.netdna-ssl.com/wp-content/uploads/2019/12/WhitePaper_WickrMessagingProtocol.pdf
https://1c9n2u3hx1x732fbvk1ype2x-wpengine.netdna-ssl.com/wp-content/uploads/2019/12/WhitePaper_WickrMessagingProtocol.pdf

[29] Joseph Jaeger and Igors Stepanovs. Optimal channel security against fine-grained state compromise:
The safety of messaging. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology
– CRYPTO 2018, Part I, volume 10991 of Lecture Notes in Computer Science, pages 33–62. Springer,
Heidelberg, August 2018.

[30] Daniel Jost, Ueli Maurer, and Marta Mularczyk. Efficient ratcheting: Almost-optimal guarantees
for secure messaging. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EURO-
CRYPT 2019, Part I, volume 11476 of Lecture Notes in Computer Science, pages 159–188. Springer,
Heidelberg, May 2019.

[31] Daniel Jost, Ueli Maurer, and Marta Mularczyk. A unified and composable take on ratcheting.
In Dennis Hofheinz and Alon Rosen, editors, TCC 2019: 17th Theory of Cryptography Conference,
Part II, volume 11892 of Lecture Notes in Computer Science, pages 180–210. Springer, Heidelberg,
December 2019.

[32] Jonathan Katz and Moti Yung. Scalable protocols for authenticated group key exchange. Journal of
Cryptology, 20(1):85–113, January 2007.

[33] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In Daniele Micciancio, editor, TCC 2010: 7th Theory of Cryptography
Conference, volume 5978 of Lecture Notes in Computer Science, pages 455–479. Springer, Heidelberg,
February 2010.

[34] M. Marlinspike and T. Perrin. The double ratchet algorithm, 11 2016. https://whispersystems.
org/docs/specifications/doubleratchet/doubleratchet.pdf.

[35] Suvo Mittra. Iolus: A framework for scalable secure multicasting. In Proceedings of the ACM
SIGCOMM ’97 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’97, page 277–288, New York, NY, USA, 1997. Association for Computing
Machinery.

[36] Bertram Poettering and Paul Rösler. Towards bidirectional ratcheted key exchange. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part I, volume
10991 of Lecture Notes in Computer Science, pages 3–32. Springer, Heidelberg, August 2018.

[37] WhatsApp. Whatsapp encryption overview, 2017. Retrieved 05/2020 from https://www.whatsapp.
com/security/WhatsApp-Security-Whitepaper.pdf.

33

https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

A Additional Preliminaries

A.1 Additional Notation

We explain here some notation only used in the various appendices.
In the pseudocode description of algorithms, we sometimes call subroutines with the keyword

try, indicating that if the called function returns ⊥, then the calling algorithm also immediately
halts with output ⊥. Analogously, we parse messages as tuples of values using the keyword parse,
halting the calling procedure with ⊥ if the message was malformated.

To simplify exposition of algorithms we make use of several queues. We write [.] to denote the
empty queue. Further, we write Q.enq(x) for enqueuing x and y ← Q.deq for dequeuing an item
and storing it in y. We use Q.del(x) to denote deleting all occurrences of x from the queue, and
Q.reverse to reverse the order of the queue.

To make the domain and codomain of associative arrays explicit, we denote the creation of of a
new (empty) associative array A mapping I to X by A = array I → X. For reasons of forward
secrecy it is important that our constructions specify when data must be deleted. For an associative
array A we thus write A.clear to denote deleting all entries in the array.

A.2 UC Security

Our results are formulated in the global universal composability (GUC) framework, introduced
by Canetti et al. [17] as an extension to the original universal composability (UC) framework
[16]. Moreover, we use the modification of responsive environments introduced by Camenisch et
al. [14] to avoid artifacts arising from seemingly local operations (such as sampling randomness or
producing a ciphertext) to involve the adversary.

The goal of the UC framework is to capture what it means for a protocol to securely achieve
a given task. To this end, UC compares a real-world process executing the actual protocol to
an ideal-world process where the protocols are replaced by dummy instances making use of an
ideal functionality F that formalizes the security properties. In the following, we present a short
summary of this framework.

Real-world process. The real-world execution consists of an environment Z interacting with an
adversary A and a session of a protocol Π.

Formally, the protocol Π corresponds to an interactive Turing machine (ITM) MΠ , of which at
runtime new instances can be spawned. Each ITM instance (denoted ITI), is defined as the pair
(MΠ , id), where id = (sid, pid) consisting of a session identifier sid and a party identifier pid. A
session of a protocol Π, with respect to a session number sid, is defined as the set of ITIs (MΠ , idi)
with idi = (pidi, sid).

The ITIs of the execution can communicate in various manners. First, the environment can
invoke either of the protocol instances or the adversary as a subroutine. Second, the protocol
instances can exchange messages. The UC model thereby does not give any guarantee for its built-in
network. The network is asynchronous without guaranteed delivery, the messages are visible and
fully controlled by the adversary. That is, the adversary is responsible for delivering messages from
one party to another one.

The UC model follows a token-based activation model. Initially, the environment is activated, and
upon completion of its actions (entering a special state) the adversary is activated next. Afterwards,
the activation token is passed according to natural rules corresponding to the communication
(e.g., when invoking another instance as a subroutine, activation is passed to that instance). The
execution ends by the environment Z outputting a value v, which is assumed to be binary.

We denote by EXECΠ,A,Z(κ, z, r) the resulting output, where κ denotes the security parameter,
z the initial input to the environment, and r the randomness for the whole experiment. Moreover,
let EXECΠ,A,Z(κ, z) denote the probability distribution when r is chosen uniformly at random,
and let

EXECΠ,A,Z :=
{

EXECΠ,A,Z(κ, z)
}
κ∈N,z∈{0,1}∗

denote the respective probability ensemble.

34

Ideal-world process. In the ideal process the environment Z interacts with an ITI F, called ideal
functionality, and an ITI S, called simulator or ideal-world adversary. A bit more formally, the
interaction between the environment and the ideal functionality F happens via so-called dummy
parties, replacing the protocol instances, which are ITI that just forward any of their inputs to F
and the corresponding answers to Z.

Analogous to the real-world process, we can now define the output of the interaction. We
denote by EXECF,S,Z(κ, z, r) the resulting output, where κ denotes the security parameter, z the
initial input to the environment, and r the randomness for the whole experiment. Moreover, let
EXECF,S,Z(κ, z) denote the probability distribution when r is chosen uniformly at random, and
let

EXECF,S,Z :=
{

EXECF,S,Z(κ, z)
}
κ∈N,z∈{0,1}∗

denote the respective probability ensemble.

Hybrid worlds. Setup assumptions are modeled in UC via so-called hybrid worlds, where some
setup functionality is available to the protocol machines. In this work, we make use of two types
of setup functionalities: local ones, i.e., ones that are assumed to be exclusively for the protocol
instance under consideration, and global ones, which are shared across protocol instances and even
different protocols.

For a setup functionality F, the F-hybrid-world process is defined analogous to the real-world
with the following addition: Analogous to the ideal-world, the parties can interact with an instance
of F. However, whereas in the ideal-world one considers dummy parties only, in the hybrid-world
the actual protocol instances interact with F.

If F is a local setup functionality, then the environment can only access F indirectly via the
parties or the adversary. For global setup functionalities, we use the so-called externalized UC
(EUC) model [17], which is a special case of the GUC model. In EUC, the environment is allowed
to interact directly with the setup functionality to model access and influence that other sessions of
the protocol, or other protocols altogether, might have on the setup. For instance, if one thinks of
a concrete hash function such as SHA-256 instantiating the random oracle, then this hash function
is clearly not bound to this protocol session but can be evaluated by everyone in the world.29

Formally, this is achieved by allowing the environment to spawn dummy parties with arbitrary
identities (barring collisions with the ones involved in the protocol execution) that in particular
can belong to different sessions. The interaction with the setup functionality then happens through
those dummy parties. We typically use G to denote global shared functionalities.

We denote the probability ensemble corresponding to such a hybrid-world execution as
EXECFΠ,A,Z in the case of a local setup functionality or EXECGΠ,A,Z in the case of a shared setup
functionality, respectively. Shared setup, moreover, is typically preserved by a protocol also appears
in the ideal-world process. We use EXECGF,S,Z to denote the corresponding probability ensemble.

Secure realization and composition. A protocol Π securely realized an ideal functionality F, if for
every efficient adversary A, there exists an efficient simulator S, such that the real-world and
ideal-world processes are indistinguishable:

EXECΠ,A,Z ≈ EXECF,S,Z ,

defined as

∀c, d ∈ N : ∃κ0 ∈ N : ∀κ > κ0, z ∈
⋃
k≤κd{0, 1}k :∣∣Pr[EXECF,S,Z(κ, z) = 1]− Pr[EXECΠ,A,Z(κ, z) = 1]

∣∣ < κ−c.

Secure realization in a hybrid model is defined analogously by for instance considering the ex-
periments EXECGΠ,A,Z and EXECGF,S,Z , respectively, in the case of a shared setup functionality
G.

The notion of secure realization is composable. That is, if a protocol securely realized F in a
H-hybrid model, and another securely realized H, then the combined protocol securely realized F.
We refer to the literature for more details.
29 Technically, we consider both local and global random oracles, the former representing the programmable

ROM and the latter the non-programmable ROM.

35

A.3 Left-Balanced Binary Trees

All trees in this work are (undirected) binary trees. In fact, every internal node v will always have
both its left child v.lchild and right child v.lchild while leaf nodes have no children. Let τ be such a
tree. We denote its root by τ.root. If v is not the root then we denote by v.sib the other child of
v.parent.

The left (and right) subtrees of a node are the trees rooted at its left (and right) children.30 For
nodes u and v we write (u v) to denote the path from u to v. The length of a path, written∣∣(u v)

∣∣, is the number of edges traversed by the path. The least common ancestor of nodes u
and v is the node furthers from τ.root which traversed by both (u τ.root) and (v τ.root). The
height of a tree with root r is maxv(

∣∣(r v)
∣∣). The full binary FTh is the tree with height h and

2h leaves. For two nodes u and v we denote their least common ancestor by lca(u, v). That is, for
root r the node lca(u, v) is the node where the paths (u r) and (v r) first meet.

Finally, the post-order traversal po-trav(τ) of a tree τ is the list obtained by ordering nodes
from bottom to top and left to right. That is, first sort nodes according to their depth with the
furthest nodes from the root first and the root last. Then, for each given depth sort the nodes from
left to right as they appear in the tree. In particular, the left most leaf of τ will be first and the
root last.

For n ∈ N we write mp2(n) := max{2p : p ∈ N ∧ 2p < n}. We define the following special case
of a binary tree.

Definition 1 (Left-Balanced Binary Tree). For n ∈ N the (nth) left-balanced binary tree is
denoted by LBBTn. Specifically, LBBT1 is the tree consisting of one node. Further, if m = mp2(n)
then LBBTn is the tree whose root has left and right subtrees LBBTm and LBBTn−m.

We remark that for each n there is exactly one such binary tree and it has n leaves while
all internal nodes have both children — see Fig. 10 for a depiction of the first few LBBTs. In
particular, if n is a power of 2 then LBBTn = FTlog2(n).

LBBT1 LBBT3 LBBT5 LBBT7

LBBT2 LBBT4 LBBT6 LBBT8

Fig. 10: The first eight left-balanced binary trees LBBT1 to LBBT8.

30 For completeness, if no such child exists than we consider the corresponding subtree to simply be the
empty tree with no nodes.

36

A basic operation in the CGKA construction in this work requires adding leaves to (data
structures that represent) LBBTs. We describe the algorithm *addLeaf which takes as input an
LBBT and a new leaf inserting it to obtain an output tree LBBTn+1.

Definition 2 (*addLeaf). The algorithm *addLeaf(τ, v) takes input a tree τ with root r and a
fresh leaf v and returns a new tree τ ′. Let τL and τR be the left and right subtrees of r.

– If τ = FTn (for some n ∈ N) then create a new root r′ for τ ′. Attach r as the left child and v
as the right child.

– Otherwise let τ ′ = τ except that τR is replaced by *addLeaf(τR, v).

The following elementary lemma of [5] establishes the correctness of the algorithm.

Lemma 1. τ = LBBTn =⇒ *addLeaf(τ, v) = LBBTn+1.

A.4 Cryptographic Primitives

Public-Key Encryption. A public-key encryption (PKE) scheme is a tuple of algorithms
PKE = (PKE.kg, PKE.enc,PKE.dec), where (epk, esk) ← PKE.kg denotes key generation, c ←
PKE.enc(epk,m) denotes encryption and m← PKE.dec(esk, c) denotes decryption. We require the
standard IND-CPA security notion.

Hierarchical Identity-Based Encryption. An identity-based encryption (IBE) scheme is an
encryption scheme, which allows the owner of the master secret key to derive secret keys for
identities id ∈ {0, 1}∗. A message encrypted for id can be decrypted only using the secret key for id.
Hierarchical identity-based encryption (HIBE) [27, 25] is IBE, which additionally allows delegation

— every secret key corresponds to a vector of identities ~id and can be used to derive keys for vectors
~id ‖ ~id

′
for arbitrary suffixes ~id

′
. The HIBE secret keys can be seen as a tree, where the master

secret key, corresponding to the empty ~id, is the root, and keys at depth k correspond to ~id’s of
length k. A secret key allows to decrypt ciphertexts encrypted for keys in its subtree, and only
those.

Formally, an HIBE scheme is a tuple of algorithms HIBE = (HIBE.setup,HIBE.kg,HIBE.enc,
HIBE.dec) with the following syntax.

– Setup: (mpk, hsk())← HIBE.setup samples a fresh master public key and the corresponding
root secret key.

– Key Generation: hsk~id‖id ← HIBE.kg(hsk~id, id) outputs a lower-level secret key. For com-

pactness, we write hsk~id‖~id′ ← HIBE.kg(hsk~id, ~id
′
) to denote the iterative derivation of hsk~id‖~id′

using each id ∈ ~id
′
.

– Encryption: c← HIBE.enc(mpk, ~id,m) encrypts m for identity vector ~id.
– Decryption: m← HIBE.dec(hsk~id, c) decrypts c.

We require that HIBE schemes satisfy IND-CCA security, as captured by the game depicted in
Fig. 11. It is the standard IND-CCA game for public-key encryption with an additional corrupt
oracle, which outputs secret keys for identity vectors chosen by the adversary. In order to disable
“trivial wins”, the game stores the set Chal-ID of identity vectors used in challenge queries and the
set Rev-ID of identity vectors used in corrupt queries, and checks that a corrupted identity is not a
prefix of a challenged identity. We also define IND-CPA security, where the decryption oracle is
disabled.

Definition 3. Let AdvIND-CCA
HIBE,A := 2 Pr[IND-CCAHIBE,A = true] − 1 denote the advantage of A

against the game defined in Fig. 11. A scheme HIBE is IND-CCA secure, if for all PPT adversaries
A, AdvIND-CCA

HIBE,A is negligible in κ.

Definition 4. Let AdvIND-CPA
HIBE,A := 2 Pr[IND-CPAHIBE,A = true] − 1 denote the advantage of A

against the game defined in Fig. 11 without the Decrypt oracle. A scheme HIBE is IND-CPA secure,
if for all PPT adversaries A, AdvIND-CPA

HIBE,A is negligible in κ.

37

Game IND-CCAHIBE,A

b←$ {0, 1}
(mpk, hsk)← HIBE.setup
Rev-ID,Chal-ID,Ctxts← ∅
b′ ← AChallenge,Corrupt

HIBE (mpk)
if ∃~id ∈ Rev-ID, ~id′ ∈ Chal-ID

s.t. ~id prefix of ~id′

then return false
else return b = b′

Oracle Corrupt(~id)

Rev-ID← Rev-ID ∪ {~id}
return HIBE.kg(hsk, ~id)

Oracle Challenge(~id,m0,m1)

if |m0| = |m1| then
Chal-ID← Chal-ID ∪ {~id}
c← HIBE.enc(mpk, ~id,mb)
Ctxts← Ctxts ∪ {(c, ~id)}
return c

Oracle Decrypt(~id, c)

if (~id, c) /∈ Ctxts then
Rev-ID← Rev-ID ∪ {~id}
return HIBE.kg(hsk, ~id)

Fig. 11: The IND-CCA game for HIBE.

Key-Updatable Signatures. A key-updatable signature scheme, as introduced in [29], is a
signature scheme that additionally allows to repeatedly update the secret key and (independently)
the public key with some arbitrary public identity id ∈ {0, 1}∗. A signing key updated with an
identity vector ~id allows to compute signatures which verify with public updated with vectors
~id ‖ ~id

′
for arbitrary suffixes ~id

′
. Intuitively, key-updatable signature schemes or the signature

analogon to HIBE, which however only guarantee security as long as the signer only follows a
single path.

Formally, a key-updatable signature scheme is a tuple of algorithms KUS = (KUS.kg,KUS.sig,
KUS.vrf,KUS.up-sk,KUS.up-vk) with the following syntax.

– Key Generation: (spk, ssk)← KUS.kg samples a public/secret key pair.
– Updating Keys: ssk′ ← KUS.up-sk(ssk, id) and spk′ ← KUS.up-vk(spk, id) update the secret

and the public key with identity id, respectively.
– Signing: σ ← KUS.sig(ssk,m) signs a message m.
– Verification: v ← KUS.vrf(spk,m, σ) verifies the signature on m.

We require that key-updatable signature schemes have unique signatures (see [29] for the precise
definition) and that they provide unforgeability (EUF-CMA), as captured by the game depicted
in Fig. 12. The EUF-CMA game allows the adversary to interact with the scheme by requesting
signatures and updating the signing key. At some point, the adversary can obtain the secret key
via a corrupt query. His goal is to forge a signature that cannot be computed using the corrupted
key (condition (b) in Fig. 12), on a message/identity pair that has not been signed by the sign
oracle (condition (a)).

Definition 5. Let AdvEUF-CMA
KUS,A := Pr[EUF-CMAKUS,A = true] denote the advantage of A against

the game defined in Fig. 12. A key-updatable signature scheme KUS is EUF-CMA secure if for all
PPT adversaries A, AdvEUF-CMA

KUS,A is negligible in κ.

We note that while [29] only defines one-time signatures, in our protocols we sign multiple
messages. The construction from [29] can easily be extended to allow this.

PRNG with Input. We use (a variant of) PRNG with input to model the randomness pool used
by our protocols. Intuitively, such PRNG has a secret state and repeatedly takes inputs, which
refresh the state and produce an additional (pseudorandom) output. The guarantee that we need
in this paper is that if either the state or the additional input is secret and uniformly random
(from adversary’s point of view), then both the next state and the output are uniformly random.
Formally, we have a pair of algorithms PRG = (PRG.init,PRG.eval) with the following syntax.

– Initialization: pool← PRG.init samples a fresh state pool.

38

Game EUF-CMAKUS,A

~id← ()
~idc ← ⊥
Sigs← ∅
(spk, ssk)← KUS.kg
(σ,m, ~id)← ASign,Update,Corrupt

KUS (spk)
for id ∈ ~id do spk← KUS.up-vk(spk, id)
if either

(a) (m, ~id) ∈ Sigs or
(b) ~idc prefix of ~id or
(c) ¬KUS.vrf(spk,m, σ) then

return false
else return true

Oracle Sign(m)

σ ← KUS.sig(ssk,m)
Sigs← Sigs ∪ {(m, ~id)}
return σ

Oracle Update(id)

ssk← KUS.up-sk(ssk, id)
~id← ~id ‖ id

Oracle Corrupt

if ~idc = ⊥ then
~idc ← ~id
return ssk

Fig. 12: The EUF-CMA game for key-updatable signatures.

Game PRNGPRG,A

pool← PRG.init
corr← false
b←$ {0, 1}
b′ ← AEvaluate,Challenge,Corrupt

PRG
return b = b′

Oracle Evaluate(x)

x← sam-if-nec(x)
(pool, y)← PRG.eval(pool, x)
return y

Oracle Corrupt

if ¬corr then
corr← true
return pool

Oracle Challenge(x)

x← sam-if-nec(x)
if ¬corr then

(pool, y)← PRG.eval(pool, x)
if b = 1 then y ←$ Y
return y

Helper sam-if-nec(x)

if x = ⊥ then
x←$ X
corr← false

return x

Fig. 13: The security game for PRNG with input.

– Evaluate: (pool′, y)← PRG.eval(pool, x), on input a state and a value x, outputs a refreshed
state and a value y.

For the security notion, depicted in Fig. 13, we adapt the definition of [1] (see that paper for the
construction).

Non-Interactive Zero Knowledge Proofs. We define (multi-theorem) non-interactive zero-
knowledge (NIZK) proofs following Groth [26]. Let R be an NP relation, and let LR = {x :
∃ω (x, ω) ∈ R} be the corresponding language. A non-interactive zero knowledge (NIZK) argument
for R is a triple of algorithms NIZK = (NIZK.gen,NIZK.prove,NIZK.vrfy) with the following syntax.

– CRS generation: The algorithm NIZK.gen, on input a security parameter 1κ, outputs a
common reference string crs.

– Proving: π ← NIZK.prove(crs, x, ω) generates an argument π that x ∈ LR, using a witness ω.
– Verification: v ← NIZK.vrfy(crs, x, π) verifies if the argument π is correct (where v = 1 means

“accept” and v = 0 means “reject”).

We require perfect completeness, as well as the zero-knowledge and simulation-sound extractability
properties.

39

Definition 6 (Perfect completeness). For all adversaries A we have

Pr
[
crs← NIZK.gen(1κ); (x, ω)← A(crs);π ← NIZK.prove(crs, x, ω) :

NIZK.vrfy(crs, x, π) = 1 if (x, ω) ∈ R
]
.

Definition 7 (Zero-knowledge). Let NIZK be a non-interactive proof system for a relation R
and let S = (S1, S2) be a pair of PPT algorithms, called simulator. Further let S′(crs, τ, x, ω) =
S2(crs, τ, x) for (x, ω) ∈ R, and S′(crs, τ, x, ω) = failure for (x, ω) /∈ R. We define the zero-
knowledge advantage of an adversary A as

Advnizk-ZK
NIZK,S,A := Pr

[
crs← NIZK.gen(1κ) : ANIZK.prove(crs,·,·)(crs) = 1

]
− Pr

[
(crs, τ)← S1(1κ) : AS

′(crs,τ,·,·)(crs) = 1
]
.

We call (NIZK.gen,NIZK.prove,NIZK.vrfy, S1, S2) a non-interactive zero-knowledge proof system
for R if Advnizk-ZK

NIZK,S,A is negligible for all non-uniform PTT A.

Definition 8 (Simulation-sound extractability). Let NIZK be a proof system for a relation R
and let E = (E1, E2) and S = (S1, S2) be pairs of PPT algorithms, called knowledge extractor and
simulator, respectively. For a probabilistic algorithm A, we define

Advnizk-ssExt1
NIZK,E,A := Pr

[
crs← NIZK.gen(1κ) : A(crs) = 1

]
− Pr

[
(crs, ξ)← E1(1κ) : A(crs) = 1

]
,

and, for SE1 being an algorithm that outputs (crs, τ, ξ) such that it is identical to S1 when restricted
to the first two parts (crs, τ),

Advnizk-ssExt2
NIZK,S,E,A := Pr

[
(crs, τ, ξ)← SE1(1κ); (x, π)← AS2(crs,τ,·)(crs, ξ);
ω ← E2(crs, ξ, x, π) :
NIZK.vrfy(crs, x, π) = 1 ∧ (x, ω) /∈ R ∧ (x, ω) /∈ Q

]
.

We call (NIZK.gen,NIZK.prove,NIZK.vrfy, S1, S2, E1, E2) a simulation-sound extractable NIZK
proof system for R if Advnizk-ssExt1

NIZK,E,A and Advnizk-ssExt2
NIZK,S,E,A are negligible for all non-uniform PPT A.

B Details of the Security Model

B.1 The Corruption Model

Recall that we consider two types of corruptions: state leakage and adversarial randomness. Overall,
our corruption model is reminiscent of the one with semi-malicious adversaries, introduced by
Asharov et al. [6]. On a technical level, we however do not follow their exposition due to a number
of subtle differences in the requirements. Hence, we briefly outline the formal corruption model
below.

In the UC framework, the adversary corrupts a party by sending a corruption message to
the party’s backdoor tape. Handling of this message is not hard-coded by the framework, but
rather delegated to the so-called protocol shell, a wrapper around the actual protocol, which can
be defined in different ways to model different corruption types. (Notably, the the composition
theorem is agnostic of the type of shell.)

For this work, we introduce the following type of shell. Upon receiving any corruption message,
the environment is immediately notified thereof, learning the corrupted ITI’s identity.31 The shell
handles two types of corruption messages: state exposures and randomness corruptions, identified by
keywords Expose and CorrRand, respectively. Upon processing Expose, the ITI writes its current
state but without its randomness tape onto the backdoor tape. (Recall that we assume perfectly
erasable memory.) Note that this corruption is not persistent, i.e., if the state is updated, then
another corruption message is required to leak it. Messages CorrRand contain an additional boolean
31 That is, the shell is so-called standard f-revealing.

40

flag, allowing the corruption to be toggled on and off. The shell behaves then as follows: whenever
the protocol wants to access its randomness tape, the shell checks whether the randomness is
currently corrupted. If so, it asks the adversary to provide the randomness instead (as an urgent
request as introduced by Camenisch et al. [14]). Otherwise, it provides the regular randomness.
We assume here the randomness tape to be read-once.

As customary in UC, in hybrid- or ideal-world processes, corruptions are routed via the ideal
functionality. That is, the adversary has to announce a corruption to the functionality that then
notifies the corresponding (dummy) party.

B.2 Restricted Environments

In our work, we consider a weakened variation of UC security with restricted environments. To this
end, we adopt the approach by Backes, Dürmuth, Hofheinz, and Küsters [7] originally developed for
the Reactive Simulatability framework. Note that a similar approach has been used by Jost, Maurer,
and Mularczyk [31] in the realm of ratcheting in the Constructive Cryptography framework.

More formally, we make secure realization statements that only quantify over admissible
environments. Whether an environment is admissible or not is defined by the ideal functionality F.
More concretely, the pseudo-code description of our ideal functionalities can contain statements of
the form req cond. An environment is then called admissible for F, if it has negligible probability
of violating any of those conditions cond when interacting with the ideal functionality F. So far,
this however does not allow us to disable corruptions: Given that corruptions are triggered by the
adversary and not the environment, if our functionality were to use req to disallow corruptions, then
such a secure realization statement would become trivial — the simulator could just immediately
trigger such a prohibited corruption, disqualifying all environments. To remedy this issue, we only
consider corruption respecting adversaries that trigger a corruption if and only if instructed by the
environment.32

We then say that a protocol Π securely realized an ideal functionality F under restricted
environments, if for every corruption respecting adversary A, there exists a corruption respecting
simulator S, such that

EXECΠ,A,Z ≈ EXECF,S,Z ,

for all (with respect to F) admissible environments Z. For hybrid-world statements, the environment
has to be admissible with respect to both the ideal, as well as the hybrid functionality.

We note that our results live in the global UC (GUC) framework [17], and are proven in the
externalized UC (EUC) framework, relying on the well-known lifting from EUC to GUC. There is
no reason to assume our workaround for the commitment problem should affect this lifting result.

B.3 PKI

In Fig. 14, we define the functionality Fpki used in this paper, corresponding to the service that
distributes authenticated one-time key bundles for new group members. This abstraction captures
both authenticity guarantees, which in the real world are usually provided by a PKI, and availability
guarantees, provided by a delivery service. Moreover, since we do not consider corruptions before
joining the group, Fpki additionally implements secure key storage and randomness source, both of
which can only be accessed once (this will be done while joining).

We stress that Fpki is uncorruprible and always generates keys with good randomness. Also,
each party gets only one key pair. (This is done to prevent parties from abusing the PKI as an
incorruptible randomness source and secret-key storage throughout the protocol.) While this means
that parties cannot re-join the group, we note that one can deal with this by assigning to a user
many identities. We refer to Section 4 for additional discussion.

32 Thus, immediately notifying the environment of a corruption would no longer be required. We, however,
chose to still define our corruption model in the standard manner, for it to be usable with regular UC
security.

41

Functionality Fpki

The functionality is parameterized by a key generation algorithm kg().

Initialization

PK[·], SK[·]← ⊥

Inputs from a party id

Input (GetPK, id′)
if PK[id′] = ⊥ then

(PK[id′], SK[id′])← kg()
Send (PK[id′], id′) to the adversary

return PK[id′]

Input GetSK
if SK[id] = ⊥ then return ⊥
sk← SK[id]
seed←$ {0, 1}κ
SK[id]← ⊥
return (sk, seed)

Fig. 14: The ephemeral-PKI functionality.

C Details of the Construction for the Passive Setting

We begin the formal definition of the passively secure protocol P-Pas by defining labeled LBBTs
(the core object making up group states). Next we define several simple but useful operations on
an such a group state. This lays the foundations for the pseudocode specifying the higher level
algorithms instantiating the CGKA syntax (in Fig. 15) and the helper functions they use (in
Figs. 16 and 17).

C.1 Labeled Trees

The primary object making up the construction’s (distributed) state γ is a labeled left-balanced
binary tree (LT) τ . We distinguish between the public part of τ which does not need to be hidden
from the adversary and the private part of τ , i.e., those labels corresponding to secret values. In
particular, private labels will (usually) only be known to a particular subset of the group. So, while
the tree structure (i.e. the set of nodes and edges) as well as labels holding public keys are all
public and known to all group members, other labels holding the matching secret keys are private.
A group member’s view of the LT consists of both the public and their private part of LT.

Recall that the sessions evolve in epochs which are initiated by processing an incoming commit
message. Each epoch has a fixed LT. Proposals represent suggestions for modifying the current
LT (e.g. by adding or removing nodes and/or modifying labels). To produce a commit message
the committer gathers such proposals, applies the changes to the current LT resulting in a new
LT. Next, they compute and distribute a message to all other group members allowing them to
compute their respective views of the new LT.

Labels. In more detail, an LT is an LBBT on n nodes (for some value n which changes as the group
evolves). The value of n (and thus the entire tree structure of LT) is public. Each node v in LT has
3 public mpk, ~id and taintedby as well as 1 private label hsk. In the order listed, the public labels
contain a HIBE master public key, a HIBE ID (vector) and the ID of the party which “tainted”
(i.e. sampled) mpk. Finally, hsk contains a HIBE secret key the ID ~id under master public key mpk.
Besides the node labels an LT has a private label grpkey which holds the value of the group key for
the current epoch.

Each group member idi is assigned their own leaf which is denoted by setting the first identity
in that leaf’s ID vector to be ~id = (idi, . . .). A leaf which has not been assigned a group member is
called blank (denoted by setting the first identity in the leaf’s ID vector to be the special symbol ε.
More generally, an internal node u is called blank if all leaves of the subtree rooted at u are blank.

42

We use standard object oriented notation to denote the labels, parents and children of given
nodes.33 In addition we make use of the following helpful methods associated with nodes and LT
trees.

v.isroot Returns true iff v = τ.root.
v.inuse Returns true iff v.~id 6= ε and the remaining 3 labels are not ⊥.

v.clearlabs() If v is a leaf node or both children of v are not in use, then sets v.~id← ε and
the remaining 3 labels of v to ⊥, then recurses on the parent of v.

v.labelleaf(id) Sets v.taintedby ← id, v.~id ← (id), (v.mpk, hsk) ← HIBE.setup and v.hsk ←
HIBE.kg(hsk, id).

τ.nodes Returns the set of nodes in τ .
τ.leaves Returns the set of leaves in τ .
τ.public Returns copy of τ but with private labels set to ⊥.

τ.leafof(id) Returns (left most) leaf with v.~id = (id, . . .) or ⊥ if none exists.
τ.lca(id0, id1) Returns the least common ancestor of the leaves of id0 and id1.
τ.roster The IDs of group members; i.e. {id : τ.leafof(id) 6= ⊥}.

τ.taintedby(id) Returns the queue of all nodes in τ tainted by id enqueued according to the
post-order (i.e., bottom-up) traversal of τ .

τ.retaint(id0, id1) Modifies τ by setting all of its nodes with v.taintedby = id0 to have v.taintedby←
id1 instead.

Getting a New Leaf. To add a new member to a group we must assign them an unused leaf. Either
we return the left most blank leaf or, when no blank leaves exist, we add a leaf to the LT and
return the new leaf. More precisely (τ ′, v)← *getLeaf(τ) first scans the leaves of τ from left to
right. If it finds a blank leaf v it returns the pair (τ, v). Otherwise (when no blank leaf is found) it
creates a new leaf node u, inserts it into τ by running τ ′ ← *addLeaf(τ, u) and returns (τ ′, u)

C.2 The Algorithms of P-Pas

The construction makes black-box use of the following primitives:

– A public key encryption scheme PKE = (PKE.kg,PKE.enc,PKE.dec).
– A HIBE HIBE = (HIBE.setup,HIBE.kg,HIBE.enc,HIBE.dec).
– A PRG with input PRG = (PRG.init,PRG.eval).
– Three hash functions H1, H2, H3.

CGKA state. The CGKA state γ of a party id contains the following variables. For ease of notation,
in the following algorithms we treat them as global variables leaving the passing of γ is an argument
and return value implicit.

id The identity of the state’s owner.
τ An LT tree.

pool The internal state of a PRG with input.
pendUp An associative array mapping a HIBE public key to its secret key. Intuitively, these

hold the secret keys or proposed updates that haven’t been committed yet.
pendCom An associative array mapping a commit message to an LT tree. Intuitively, this stores

the new CGKA state defined by a commit message while it awaits confirmation.
ctr A counter for uniquely identifying propositions.

Paths. To facilitate operations on the underlying binary tree we use path objects representing
segments along paths from a leaf to the root. Let u be a node in the LT and v be a node on the
33 E.g. v.mpk denotes the HIBE public key of node v, v.parent is its parent node while v.lchild and v.rchild

denotes its left and right children. If v has no parent, left or right child then the respective terms are
defined to be ⊥.

43

path (u τ.root). A new path object representing the path (u v) is created using the notation
φ← path(u v). The start of the path is φ.source = u and its end is φ.sink = v. For node w we
denote by φ.traverses(w) the boolean indicating whether φ traverses w. (In particular if w = u or
w = v then φ.traverses(w) is true.) For 2 path objects φ and ψ we write meets(φ, ψ) to denote a
boolean indicating whether the paths have any nodes in common. If they do, then meetsAt(φ, φ)
denotes the node furthest from the root amongst all nodes the paths have in common.

Randomness. For all constructions in this work, we assume that parties are initialized upon the
first create or join call with a uniform randomly sampled entropy pool; i.e. a string pool←$ {0, 1}κ.
Then, whenever any fresh random bits are required during the execution (e.g. by a key generation
algorithms) the bits are sampled as follows. First, sample κ bits r uniformly at random. Next, mix
them into the pool by calling (pool, r′)← PRG.eval(pool, r) and finally, return r′ as (pseudo)random
bit to the calling procedure.

The algorithms. Next we describe the algorithms implementing the CGKA syntax. To help with
readability we wrap some of the details in helper functions described after the main algorithms.
Some of these functions may return ⊥ to indicate an error has occurred (due to malformed inputs).
Thus, we use the keyword try when calling such functions from within the construction’s main
algorithms to indicate that if ⊥ is returned then the calling algorithms unwinds all changes made
to any global variables (i.e. the protocol state) before halting with output ⊥.

Protocol P-Pas

create

Set id to the owners ID
ctr← 0
τ ← new LT(LBBT1)
τ.root.labelleaf(id)
τ.grpkey←$ {0, 1}κ

kg

(epk, esk)← PKE.kg
(mpk, hsk′)← HIBE.setup
hsk← HIBE.kg(hsk′, id)
return (pk, sk) = ((epk,mpk), (esk, hsk))

add(idt, pk)

return p = ("addP", id, ctr++, idt, pk)

rem(idt)

return p = ("remP", id, ctr++, idt)

upd

(mpk, hsk′)← HIBE.setup
hsk← HIBE.kg(hsk′, id)
pendUp[mpk]← hsk
return p = ("updP", id,mpk)

commit(~p)

try (τ ′, newLvs, .)← *apply-props(id, τ, id, pendUp, ~p)
(mpks,~c, newSec)← *rekey(id, τ ′)
c← ("commit", id,mpks,~c)
τ ′ ← *evolve-sks(τ ′,H3(c))
pendCom[c]← τ ′

if newLvs 6= ∅ then
w ← *wmsg(τ ′, id, newLvs, newSec,H3(c))

else w ← ⊥
return (c, w)

join(sk, w)

parse ("welcome", idi, τ, e, nonce)← w
(esk, hsk)← sk
v ← τ.leafof(id)
v.hsk← hsk
for (u, ctxt) ∈ e[v] do

s← PKE.dec(esk, ctxt)
if u.isroot then

τ.grpkey← H1(s)
else

u.~id← ε
(u.mpk, u.hsk)← HIBE.setup(H2(s))
u.taintedby← id

τ ← *evolve-sks(τ, nonce)
return (τ.roster, idi)

proc(c, ~p)

if pendCom[c] 6= ⊥ then
τ ← pendCom[c]

else
parse ("commit", idc,mpks,~c)← c
try (τ, ., info)← *apply-props(id, τ, idc, pendUp, ~p)
if id ∈ τ.roster then

τ ← *apply-rekey(id, τ, idc,mpks,~c)
τ ← *evolve-sks(τ,H3(c))

else
τ ← ⊥

pendUp.clear
pendCom.clear
return info

key

K ← τ.grpkey
τ.grpkey← ⊥
return K

Fig. 15: Protocol P-Pas: CGKA protocol with optimal safe predicate against adaptive adversaries
in the passive setting.

44

Protocol P-Pas: Helper Functions

*apply-props(id, τ, idc, pendUp, ~p)

τ̄ ← τ
newLvs← ∅
info← [.]
while ~p 6= [.] do

p← ~p.deq
parse (., ids, . . .)← p
if p = ("addP", ids, ., idt, pk) ∧ idt /∈ τ̄ .roster then

(τ̄ , `)← *getLeaf(τ̄)
`.~id← (idt)
newLvs← newLvs ∪ {(idt, `, epk)}
parse (mpk, epk)← pk
`.mpk← mpk
`.taintedby← idt
`.parent.taintedby← idc
info.enq((ids, add-idt))

if p = ("remP", ., ., idt) ∧ idt ∈ τ̄ .roster then
`← τ̄ .leafof(idt)
`.clearlabs()
τ̄ .retaint(idt, idc)
info.enq((ids, rem-idt))

if p = ("updP", ids,mpk) ∧ ids ∈ τ̄ .roster then
τ̄ .retaint(ids, idc)
`← τ̄ .leafof(ids)
`.~id← (ids)
`.taintedby← ids
`.mpk← mpk
if ids = id then

`.hsk← pendUp[mpk]
return (τ̄ , newLvs, info)

*evolve-sks(τ̄ , nonce)

for v ∈ τ̄ .nodes s.t. v.inuse do
v.~id← v.~id||nonce
if v.hsk 6= ⊥ then

v.hsk← HIBE.kg(v.hsk, nonce)
return τ̄

*set-public-labels(τ̄ ,mpks, idc)

P ← *to-be-rekeyed(τ̄ , idc)
while P 6= [.] do

ψ ← P.deq
u← ψ.source
repeat

u.~id← ε
u.mpk← mpks[u]
u.taintedby← idc
u← u.parent

until u = ψ.sink.parent
return τ̄

*wmsg(τ ′, ids, newLvs, newSec, nonce)

e = array : τ ′.leaves→ queue of (node, string) pairs
for (., `, epk) ∈ newLvs do

a← `.parent
repeat

ctxt← PKE.enc(epk, newSec[a])
e[`].enq((a, ctxt))
a← a.parent

until a = ⊥
w ← ("welcome", ids, τ ′.public, e, nonce)
return w

Fig. 16: Protocol P-Pas: Helper functions.

Protocol P-Pas: Helper Functions for Re-Keying

*rekey(id, τ̄)

newSec = array : τ̄ .nodes→ {0, 1}κ
mpks,~c = array : τ̄ .nodes→ {0, 1}∗
P ← *to-be-rekeyed(τ̄ , id)
while P 6= [.] do

s←$ {0, 1}κ
args← (id, P.deq, s,mpks,~c, newSec)
(mpks,~c, newSec)← *rekey-path(args)

return (mpks,~c, newSec).

*rekey-path(id, ψ, s,mpks,~c, newSec)

v ← ψ.source
repeat

newSec[v]← s
l← v.lchild
r ← v.rchild
if l 6= ⊥ ∧ l.inuse ∧ ¬ψ.traverses(l) then

~c[l]← HIBE.enc(l.mpk, l.~id, s)
if r 6= ⊥ ∧ r.inuse ∧ ¬ψ.traverses(r) then

~c[r]← HIBE.enc(r.mpk, r.~id, s)
if v.isroot then

v.grpkey← H1(s)
else

v.~id← ε
(v.mpk, v.hsk)← HIBE.setup(H2(s))
v.taintedby← id
mpks[v]← v.mpk

s← H1(s)
v ← v.parent

until v = ψ.sink.parent
return (mpks,~c, newSec)

*apply-rekey(id, τ̄ , idc,mpks,~c)

P ← *to-be-rekeyed(τ̄ , idc)
φ← path(τ.leafof(id) τ.root)
while P 6= [.] do

ψ ← P.deq
if meets(ψ, φ) then

a← meetsAt(ψ, φ)
if φ.traverses(a.lchild) then b← a.lchild
else b← a.rchild
s← HIBE.dec(b.hsk,~c[b])
repeat

if a.isroot then
a.grpkey← H1(s)

else
(a.mpk, a.hsk)← HIBE.setup(H2(s))
s← H1(s)

a← a.parent
until a = ψ.sink.parent

return *set-public-labels(τ̄ ,mpks, idc)

*to-be-rekeyed(τ̄ , idc)

rekeyed, P ← [.]
T ← τ̄ .taintedby(idc)
while T 6= [.] do

u← T.deq
vnext ← u
repeat

v ← vnext
rekeyed← rekeyed ∪ {v}
T.del(v)
vnext ← v.parent

until vnext = ⊥ ∨ vnext ∈ rekeyed
P.enq(path(u v))

P.reverse
return P

Fig. 17: Protocol P-Pas: Helper functions for re-keying during commit (and process).

45

D Proof of Thm. 1: Security in the Non-Programmable ROM

Theorem 1. Assuming that HIBE and PKE are IND-CPA secure, the protocol P-Pas realizes
Fcgka-auth with restrict-corruptions = true in the (Fpki, GRO)-hybrid model, where GRO denotes
the global random oracle, calls to hash functions Hi are replaced by calls to GRO with prefix Hi and
calls to PRG.eval are replaced by calls to GRO with prefix PRG.

Proof. We introduce the simulator gradually, with a sequence of hybrids.

Hybrid 1. This is the real world. We make a syntactic change: the simulator S1 interacts with a
dummy functionality Fdummy, which routs all inputs and outputs through S1, who executes the
protocol.

Hybrid 2. This change concerns correctness. The simulator S2 still executes the protocol but now
interacts with Fcgka-auth, but with the safe predicate redefined as safe(·) := false. That is,
the simulator sets all keys in the history graph.

Hybrid 3. This change concerns the randomness pool. When randomness for a party id is sampled
while rand-stat(id) = good, the simulator S3 uses fresh independent value instead of calling
GRO.

Hybrid 4. This change concerns encrypting welcome messages. Whenever a party id commits
while rand-stat(id) = good, the simulator S4 replaces the ciphertexts in the welcome message
by encryptions of 0 and computes the initial state of the new members using the information
that would be encrypted directly.

Hybrid 5. This change concerns the group keys. Fcgka-auth uses the original safe predicate. (The
simulator remains unchanged.) This is the ideal world.

It is clear that Hybrids 3 and 4 are indistinguishable by IND-CPA security of the encryption
scheme (note that in both hybrids parties use fresh encryption randomness and the simulator has
never to output the corresponding decryption key). We now prove the remaining game hops.

Claim. No efficient distinguisher can distinguish between Hybrids 1 and 2.

Proof: Observe that the functionality Fcgka-auth, with safe(·) := false, still asks the simulator for
all outputs. The two main differences are: First, it performs additional assert checks based on the
history graph and related state it maintains. If the simulator were to violate any of those checks,
the functionality would be trivially distinguishable from Hybrid 1. Second, the functionality only
asks once for the key per group state, i.e., all members in the same group state must agree on the
same key.

The assert checks enforce uniqueness per message type. For deterministic actions, the protocol
enforces this via including the sender and a counter per sender. For update and commit messages,
this follows from include fresh keys derived via the randomness pool — i.e., even if the adversary
provides the same randomness, the pool (in the ROM) ensures that with overwhelming probability
those keys are derived with independent randomness. Moreover, it follows by simple inspection of
the protocol that all party having processed the same sequence of commit messages agree on the
same (public) group state, and in particular on the same group key. �

Claim. No efficient distinguisher can distinguish between Hybrids 2 and 3.

Proof: Observe that the calls to rand-stat(id) in Fcgka-auth correspond exactly to id’s calls
(pool, r′)← PRG.eval(pool, r) with a newly-sampled r. Let t be an upper bound on the number of
such rand-stat/PRG calls. We consider a sequence of t hybrids, where in hybrid i the outputs
(pool, r′) of the first i PRG calls with rand-stat(id) = good (where id is the calling party) are
replaced by independent random values. Now consider hybrids i− 1 and i, which differ in the i-th
PRG call with rand-stat(id) = good. We have the following cases:

– The party id calling PRG is not randomness-corrupted. Since PRG is modeled as a random
oracle, the advantage in distinguishing hybrids i− 1 and i is upper-bounded by the probability
of guessing r, which is negligible.

46

– Else, we must have RndPool[id] = good (recall the definition of rand-stat and that we assume
that it returns good).
Now RndPool[id] is set to bad initially and when id is exposed, and it is only set to good on
a rand-stat call when id is not randomness-corrupted. So, there must exist a j < i s.t. the
current value pool is the output of the j-th PRG call with rand-stat(id) = good and id was
not exposed since that call.
Since j < i, pool is replaced by an independent random value in both hybrids. Hence, the
distinguishing advantage, upper-bounded by the probability of guessing pool, is negligible. �

Claim. Assuming the HIBE scheme is IND-CPA secure, Hybrids 4 and 5 are indistinguishable.

Proof: The proof is a reduction to IND-CPA security of HIBE, in the non-programmable ROM.
The main difficulty, as in the case of TTKEM, is that the commit messages contain encryptions
of (the seeds used to generate) secret keys. This means that each (seed used to generate) group
key is encrypted under a number of public keys, where secret keys are encrypted under a number
of other public keys and so on. We note that the simple solution where the simulator replaces
these ciphertexts by encryptions of 0 does not work, since a party may be corrupted after the
commit message is sent (note that the new group key is generated only once the commit message
is processed). This situation is exactly the commitment problem, but on the encryptions of new
secret keys.

We prove our statement by adapting the strategy used in the security proof for TTKEM [3]34.
There, the authors observe that the above problem has already been studied as the generalized
secure decryption (GSD) security of symmetric encryption. To prove security of TTKEM, they
define GSD for public-key encryption, show that a winner against TTKEM implies a GSD winner,
and finally use a GSD winner to break IND-CPA. The last reduction is efficient only for certain
GSD winners, which happen to include those induced by TTKEM. In the following, we do the
same for HIBE.

GSD for HIBE. Roughly, in the GSD game there are N key pairs and the adversary is allowed to
see the encryptions of some secret keys under others (the graph corresponding to the observed
encryption dependencies is called the GSD graph). An encryption scheme is GSD-secure if a
challenge secret key (for which the public key has not been used) cannot be distinguished from a
fresh one.

The GSD game for the setting of HIBE is defined in Fig. 18. It maintains a multi-graph with N
nodes, each storing a HIBE master key pair (initially neither secret nor public keys are revealed).
The adversary makes the following queries:

– Encrypt the master secret key in node v under the public key in node u and identity vector
~id. The game creates a new edge from u to v with label ~id and gives to the adversary the
ciphertext and the master public key in u.

– Obtain a secret key derived from the master secret key in a node v with identity ~id.
– Challenge a node q and receive either a fresh master secret key, or the one from q.

In order to disable trivial wins, we require that the predicate safe is always true. In particular, any
challenge node q must be a sink (else, the adversary could verify against the public key revealed
via encrypt) and must not be reachable from a node u, where master secret key can be decrypted
given encrypt and corrupt queries. For the latter, we use the predicate exposed(u): the key in u
can be decrypted if the adversary obtained (1) an encryption of the key in u under a key in v and
identity ~id and (2) the secret key derived from v with a prefix of ~id.

Definition 9. Let AdvGSD
HIBE,A := 2 Pr[GSDHIBE,A = true]− 1 denote the advantage of A against

the game defined in Fig. 18. A scheme HIBE is GSD secure, if for all PPT adversaries A, AdvGSD
HIBE,A

is negligible in κ.

GSD with hashes. While the GSD game assumes that all keys are independent, our protocol derives
keys using a hash chain of path secrets. To account for this, we modify the GSD game the same
way as [3]. Let H1 and H2 be random oracles.
34 [3] improves on [2] by having a polynomial instead of a quasi-polynomial security reduction for TTKEM.

47

Game GSDHIBE,A

The game is parameterized by the number of nodes N and the security parameter κ.
G = (V,E) denotes a labeled multi-graph with vertex set V and edge set E. The elements of E are triples
(u, v, l), denoting an edge from u to v with label l.

b←$ {0, 1}
for each v ∈ [N] do (mpkv, hskv)←$ HIBE.setup
G = (V,E)← ([N],∅)
Corr,Chal← ∅
b′ ← AEncrypt,Corrupt,Corrupt

HIBE ()
if ¬safe then return false
else return b = b′

Oracle Encrypt(u, v, ~id)

E ← E ∪ {(u, v, ~id)}
return (mpku,HIBE.enc(mpku, ~id, hskv))

Oracle Corrupt(v, ~id)

Corr← Corr ∪ {(v, ~id)}
return HIBE.kg(hskv, ~id)

Oracle Challenge(v)

Chal← D ∪ {v}
if b then

(mpk, hsk)← HIBE.setup
return hsk

else
return hskv

helper safe

if G contains a cycle then
return false

else if ∃q ∈ Chal s.t. either
(a) q is not a sink or
(b) ∃u s.t. exposed(u) and q reachable from u

then return false
else return true

helper exposed(u)

if ∃v, ~id, ~id
′

s.t. (u, v, ~id) ∈ E and (u, ~id
′
) ∈ Corr and

~id
′

prefix of ~id then return true
else return false

Fig. 18: The GSD game for the setting of HIBE.

– The secret keys for nodes are generated dynamically when they are first used by an oracle.
– Secret keys are replaced by random seeds: Every node u stores a seed su, and its key pair is

computed as HIBE.setup(H2(su)). The encrypt oracle encrypts su not the secret key and the
challenge oracle returns su (or a random value).

– In addition to Encrypt, there is an oracle Hash(u, v) with the following behavior. If there is no
seed sv stored in v, then sv is computed as sv = H1(su) and an edge (u, v, ()) is added. The
oracle outputs the public key in v.

In the rest of this proof, we only consider this modified GSD game.

Reduction to GSD. Let D be a distinguisher for Hybrids 3 and 4. Let N be a bound on the number
of master key pairs generated in an execution with D. We construct an adversary A against the
GSD game with N nodes. It is important to note that A will only create GSD graphs with in-degree
2 (this is needed later in the reduction to IND-CPA of HIBE).

On a very high level, A emulates the execution for D by running the protocol, except that
for master key pairs created using good randomness A uses keys from the GSD game. Moreover,
when D requests a key for which safe is true, A responds using his challenge oracle. In more
detail, A executes the code of Fcgka-auth, except that in each commit node of the history graph he
additionally stores the protocol state, represented by a ratchet tree. Moreover, each node v for
which the secret key is not known to D given corruptions has v.hsk = ⊥ and is associated with a
node in the GSD game, gsd-node(v). A outputs whatever D outputs. He processes D’s queries by
executing the code of Fcgka-auth, except the following.

– On input (Propose, act) from id, A generates p by executing the protocol, except the following.
• If act = upd and stat = bad, use D’s randomness to derive the new key pair and store the

keys in Prop[p].
• If act = upd and stat = good, include in the message a HIBE public key from an unused

GSD node (to get the key, request an encryption of 0 from the game), and store the GSD
node in the proposal node Prop[p].

• If act = add-idt, do as follows. If this is the first message adding idt, include in the message
the HIBE key from a new GSD node and store the GSD node in Prop[p]. Else, let p′ be

48

v4

v3

v2

u2 v1

u3

u4

To compute *rekey-path(v1, v4, . . .), the reduction A does:
• i∗ = 3 — the devil knows hsk in u3.
• A associates new GSD nodes with v1, v2 and v3. He calls Hash

with GSD nodes for v1 and v2, and then for v2 and v3.
• A calls Corrupt on v3’s GSD node and gets the seed s3. He

uses it to compute s4.
• Since u2’s secret key is unknown to the devil, A can use the

GSD oracle to get the encryption of s2 (which he doesn’t
know) under u2.mpk.

• Finally, A encrypts s3 under u3.mpk and s4 under u4.mpk
himself.

Fig. 19: An example of how the reduction A executes *rekey-path.

the first message adding idt. Include in p the HIBE key from p′ and store in Prop[p] the
GSD node from Prop[p′].

– On input (Commit, ~p) from id, A first processes ~p. This is done as in the protocol, except for
each p that modifies the ratchet tree node v, if Prop[p] stores the secret key or the GSD node,
use them to set v.hsk or gsd-node(v), accordingly.
Then, if stat = bad, A computes the ratchet tree for the new node and the commit message c
by executing the protocol using D’s randomness.
Else, he modifies the way *rekey-path(v1, vt, . . .) generates public keys and ciphertexts as
follows (see Fig. 19 for an example).
• Let v1, . . . , vt be the nodes on the path (v1 vt), and let i∗ be the smallest index such

that vi∗−1.sib.hsk 6= ⊥ (or t if no such i∗ exists).
• Generate seeds: Associate v1, . . . , vi∗ with new GSD nodes gsd-node(v1), . . . , gsd-node(vi∗).

For i = 2..i∗, call Hash(gsd-node(vi−1), gsd-node(vi)). Corrupt gsd-node(vi∗) with identity
~id = () and receive the seed si∗ . Compute the seeds for nodes vi∗ , . . . , vt using si∗ and H1.

• Update labels: The ~id-labels of the new nodes are computed as in the protocol. For
i < i∗, vi.mpk is obtained from the hash oracle (see above) and vi.hsk = ⊥. For i ≥ i∗,
vi.mpk and vi.hsk are computed from the seed, except in the root vt they are empty.

• Generate ciphertexts for co-path: Let u2, . . . , ut denote the nodes on the co-path.
Observe that by definition of i∗, we have ui.hsk = ⊥ for all i < i∗.
Hence, for i < i∗ the ciphertext can be obtained by calling the GSD encrypt oracle on
input (gsd-node(ui), gsd-node(vi), ui.~id). For i ≥ i∗, A encrypts the seeds himself.

• If v1 is an internal node, A encrypts it for the children: For each v s.t. v.parent = v1, he
uses the encrypt oracle or encrypts himself, depending on whether v.hsk = ⊥.

– On input (Expose, id) while id is in a commit node c, update HIBE secret keys in c and its
children as follows. For each node v in c’s ratchet tree s.t. v is on id’s path to the root and
v.hsk = ⊥, do:
• Corrupt (gsd-node(u) with v.~id and receive hsk.
• For each child c′ of c and each node u in c′’s ratchet tree s.t. u.mpk = v.mpk, derive u.hsk

as HIBE.kg(hsk, ~id
′
), where ~id

′
is the path (c c′).

– On input Key from id, if safe is true in id’s history graph node, then A calls his challenge
oracle on the GSD node corresponding to the root of id’s ratchet tree. Else, A uses the seed
stored in the ratchet tree, corrupting the GSD node corresponding to the root, if necessary.

Clearly, if in the GSD game b = 0, then the simulation proceeds as in Hybrid 5 (the ideal world
with random group keys), and if b = 1, it proceeds as in Hybrid 4 (the real world with encrypted
seeds). It is left to show that if D does not violate safe in Fcgka-auth, then safe is not violated in
the GSD game induced by the execution with A.

Consider safe in Fig. 18. Clearly, A creates no encryption cycles and condition (a) is satisfied,
because all challenges concern ratchet tree roots, for which are not used to derive more seeds (no
Hash calls), and which have no public keys (no Encrypt calls). Now assume that condition (b) is
false. This means that A challenges a node qch, corrupts a node qcor, and qch is reachable from qcor.
Now qch must correspond to a root of a ratchet tree in a commit node cch with safe(cch) = true
(else, A would not challenge). To show that this contradicts corrupting qcor, we consider two cases,
depending on when qcor is corrupted.

49

1. During an expose. Here, A corrupts qcor with an identity (c1, . . . , cl), corresponding to a
path in the history graph, where commit c1 creates qcor, and a party id in the subtree of the
ratchet tree node that stores qcor is corrupted in cl. Moreover, (b) being false implies that
– A queried encrypt with qcor, qpar and an identity (c1, . . . , cl, cl+1, . . . , cm), corresponding

to an extension of the first path. The way we defined A, this must have been during a
commit cm+1, in which qpar was created for the ratchet-tree parent of qcor’s node.

– There is a GSD path from qpar to qch. Then there is a history graph path (cm+1, . . . , cn, cch).
Overall, we have a party id such that either (id, state) ∈ Node[cl].exp or (id, full) ∈ Node[cl].exp
and a path (cl cn), and none of the nodes cl+1, . . . , cm has heals(id, ci) = true. The reason
is that any commit by id or, one that contains id’s update, would result in assigning to the
ratchet tree node storing qcor a fresh GSD node (chosen during *rekey-path by the committer),
and hence qcor wouldn’t be used in cm+1. Then, cm+1 cannot heal id either, because qcor is
used as one of the co-path keys to encrypt qpar. Now any update from id would replace either
qcor before creating qpar, or qpar (depending on which is refreshed first). Finally, any healing
commit on the cm+1-cch path would replace qpar. Hence, we have safe(cn) = false.

2. During a commit with good randomness. Here, A chooses a ratchet tree node vi∗ so that
ui∗ .hsk 6= ⊥, where ui∗ = vi∗−1.sib (note that vi∗ is an internal node). He creates qcor using a
hash query and corrupts it with empty identity. He updates gsd-node(vi∗) to qcor and vi∗ .hsk
to qcor’s seed.
Now ui∗ .hsk can switch to 6= ⊥ for two reasons: either a party in ui∗ ’s subtree is exposed, or a
party refreshes it during a commit with bad randomness.
In the first case, we have the following commit nodes:
– cexp: the node where idexp in ui∗ ’s was exposed.
– ccor: the commit by idgood when qcor is corrupted and vi∗ .hsk is updated to qcor’s seed. ccor

is a descendant of cexp.
There is no node c on the cexp-ccor path with heals(idexp, c) = true, since in such c the
committer would refresh ui∗ and replace ui∗ .hsk. Moreover, there is a path (ccor cch). Again,
there is no healing c on this path, as the committer would refresh the ui∗-root path, which
would break the GSD path (the nodes qcor and its hash-descendants are deleted).
In the second case we notice that the committer must have been exposed (else, his pool would
be secret). We use the following nodes:
– cexp: the node where the committer idexp was exposed.
– cref : the commit by idexp, an ancestor of cexp, setting ui∗ .hsk using bad randomness.
– ccor: as before.

There is no node c on the cexp-cref path with heals(idexp, c) = true, because any action with
good randomness would heal idexp’s pool. After cref , vi∗ is tainted by idexp, so any commit c
on the cref -ccor path that contains idexp’s update or where idexp is the committer would refresh
ui∗ .hsk. Finally, the ccor-cch path cannot contain a healing update either: since ui∗ is tainted
by idexp, any such c would refresh the whole ui∗ -root path, which would break the GSD path.

Reduction to IND-CPA. Finally, we apply the following lemma.

Lemma 2. Assume H1,H2 are modeled as a random oracles. If there exists a GSD adversary Agsd
with advantage ε against the game who only creates graphs with maximum in-degree k, then there
exists an IND-CPA adversary Acpa with advantage 2k2Nk+1ε and similar running time.

Proof. The proof is essentially the same as in [3], except that we re-define reachability in the
GSD graph to our reachable(u, v) predicate from Fig. 18. Accordingly, we re-define the challenge
sub-graph of the GSD graph as all nodes u such that reachable(u, q), where q is the challenge
node. It is easy to see that if safe is true in the GSD game, then (1) for every edge between nodes
in the challenge sub-graph, the corresponding IND-CPA challenge query is allowed, and (2) for
every GSD corrupt query, the corresponding IND-CPA query is allowed as well.

This concludes the proof of the last claim and, thus, the overall proof of the theorem. ut

50

E Proof of Thm. 2: Full UC Security in the Programmable ROM

Theorem 2. Assuming that HIBE and PKE are IND-CPA secure, the protocolP-Pas realizes
Fcgka-auth with restrict-corruptions = false in the (Fpki, FRO)-hybrid model, where FRO
denotes the (local) random oracle, calls to hash functions Hi are replaced by calls to GRO with prefix
Hi and calls to PRG.eval are replaced by calls to GRO with prefix PRG.

Proof (Sketch). Notice that the only difference from the setting with restricted corruptions is
that when a party is exposed, the functionality may now send to the simulator a group key for a
node where safe switched from true to false (restricting corruptions guaranteed that there are no
such nodes). The (final) simulator from the proof of Theorem 1 (the same statement for the non-
programmable ROM) does not work in this situation because of the so-called commitment problem.
Namely, the environment already obtained the key K, sampled independently by Fcgka-auth, and
now the simulator outputs the exposed state, which allows the environment to decrypt the root
seed sroot (which the simulator chose according to the protocol) and check if H1(sroot) = K. Since
sroot was chosen independently of K, this is most likely not the case.

The crucial difference in PROM is that the environment can no longer compute the hash
H1(sroot) without involving the simulator to emulate the RO. By IND-CPA, such query can happen
only after the exposure (else, the environment must have computed sroot from a ciphertext without
knowing the secret key). Hence, our new simulator can simply reply to this query with the value
K obtained from Fcgka-auth.

Overall, our simulator is the same as the one for Theorem 1, except:

1. He emulates the RO by lazy sampling (both for the protocol it runs and to answer the
environment’s queries), except for the root seeds chosen when emulating the protocol for
commits with safe(c) true.

2. When Fcgka-auth asks the simulator to choose the output of Key for a node with safe false, he
queries the (emulated) RO on the corresponding root seed and sends the resulting output.

3. When a party is corrupted, the simulator receives from Fcgka-auth the key K for each node c,
whose key has been already output to the environment and for which safe(c) now switches
from true to false. For each such c, he takes the corresponding root seed sroot he generated
before and programs the random oracle such that H1(sroot) = K. If this would be inconsistent,
i.e., if this position of the random oracle has been queried before, then the simulator halts.

We only have to show that if the simulator halts in Step 3, then the environment D can be used
to break IND-CPA. To this end, let id be the party that chose the group key under consideration
by committing the respective message c. Note that the key of c is only considered secure firsthand
if rand-stat(id) = good. Hence, id uses fresh and uniform randomness for the corresponding
encryptions of the seeds s1, . . . , sroot. Say that the corresponding encryption keys and identities
are called mpki and ~idi, respectively. If D has not queried RO on one of the seeds used to generate
mpki, then from his point of view they are generated using fresh randomness and querying the RO
on sroot implies inverting the encryption of some si. Else, he queried the RO on a seed s′i used
to create some mpki. Now this must have happened while creating a parent node c′ with good
randomness and safe(c′) = true (else, we would have safe(c) = false, the way safe is defined).
We repeat the same argument inductively and finally find an encryption using a key generated
using fresh (from D’s perspective) randomness, that D inverted. ut

F Details of the Construction for the Active Setting

In this section, we provide formal definitions of our two actively secure protocols P-Act and
P-Act-Rob.

F.1 Shared Modifications

Protocol state. The protocol state γ is the same as in the passive protocol from Appendix C with
the following additions:

51

– Each leaf of the labeled tree τ now additionally stores a (private) signing- and (public)
verification-key pair of a KUS scheme.

– The state contains a so-called epoch id epid — a hash of the last commit message c.

The keys of the KUS scheme are updated according to the HIBE identity vector ~id. Note that
in contrast to HIBE, the KUS scheme requires to also update the verification keys rather than just
the signing keys, which is done as part of the *evolve-sks helper function. Since all of them are
updated with the same identity in each step, this (analogous to the identity vectors) could be done
lazily to avoid the linear complexity.
Key generation. The key bundles produced by kg (and stored in the PKI) are enhanced by a KUS
key pair. To enable a joining party to verify that the public keys he was added with actually
matches the secret keys passed into join, we include the public key in the secret key.
Basic checks. Since we no longer want to trust the delivery service (i.e., restrict the environment on
the technical level) our protocol must include some basic sanity checks not necessary in the passive
protocol. First, both proposals and commit messages include the current epoch id epid, preventing
them from being used out of context. Second, proposals and commit messages are signed using
the party’s current KUS key. The signature and epid are verified for each proposal message during
commit and process (the latter also verifies these values for the commit message).

When creating a proposal, the helper function *prep-prop is used to attach epid and the
signature, and *parse-and-verify-prop to verify them. The helper *parse-and-verify-prop is
invoked from the helper *apply-props, which in turn is used by both commit to create the commit
message as well as by proc to process the commit message. The helper *apply-props also checks
the validity of proposals with respect to the conditions outlined in Section 4, i.e., that the sender
of a proposal is in the current member set, that a remove proposal only removes parties that are
in the current member set, and that add proposals only suggest parties not yet in the member
set. Moreover, proc checks that the proposals attached to a commit message do not remove the
committer from the group.

To allow newly joining parties to verify the public group state, such as the member set, commit
includes a hash H5(τ ′.public) of the new public state in each commit messages, and includes the
full corresponding commit message as part of welcome messages. (This is anyway needed as our
security definition identifies states by the full commit message, which the simulator needs to be
able to deduce from the welcome message.) In addition to fresh parties in join, other parties in
proc must verify the hash as well.

Finally, the active protocols need to deal with the possibility of (IND-CCA secure) HIBE or
PKE decryption failing on injected ciphertexts in proc and join, respectively.

F.2 The Non-robust Protocol

The non-robust protocol is depicted in Fig. 20 (the main protocol) and Fig. 21 (the helpers).
Additionally to the already described changes to the passive protocol, it also uses so-called
confirmation keys to allow parties to check they got the correct group key.

A bit more precisely, commit includes a hash H6 of the new group key as part of the commit
message c, which is then checked against the derived one in proc and join, ensuring that all parties
in a given state agree on the group key. As such a hash reveals information about τ ′.grpkey (allows
to verify guesses), the protocol furthermore derives the actual group key using an independent
hash function H7.

To ensure that whenever the adversary injects his own confirmation key he must actually know
the group key (and thus cannot e.g. just copy a confirmation key), those hashes also include the
commit message.

Note that the H6 hashes the commit message without the signature, to allow the signature to
actually include this hash without creating recursive dependencies. Since we use unique signatures,
this is however not a problem. In contrast, H7 can include the full commit message to derive
the group key, which is actually needed as freshly joining parties cannot verify the signature.
Hence, this guarantees that if the adversary tampers with a welcome message by only replacing
the signature of the included commit message (by an invalid one), then the party will join but use
an independent group key.

52

Protocol P-Act

create

Set id to the owners ID
ctr← 0
epid←$ {0, 1}κ

τ ← new LT(LBBT1)
τ.root.labelleaf(id)
τ.grpkey←$ {0, 1}κ

kg

(epk, esk)← PKE.kg
(mpk, hsk′)← HIBE.setup
hsk← HIBE.kg(hsk′, id)
(spk′, ssk′)← KUS.kg
spk← KUS.up-vk(spk′, id)
ssk← KUS.up-sk(ssk′, id)
pk← (epk,mpk, spk)
sk← (esk, hsk, ssk,mpk, spk)
return (pk, sk)

add(idt, pk)

p′ ← ("addP", ctr++, idt, pk)
return p = *prep-prop(τ, id, epid, p′)

rem(idt)

p′ ← ("remP", ctr++, idt)
return p = *prep-prop(τ, id, epid, p′)

upd

(mpk, hsk′)← HIBE.setup
hsk← HIBE.kg(hsk′, id)
(spk′, ssk′)← KUS.kg
ssk← KUS.up-sk(ssk′, id)
spk← KUS.up-vk(spk′, id)
pendUp[mpk, spk]← (hsk, ssk)
p′ ← ("updP",mpk, spk)

return p = *prep-prop(τ, id, epid, p′)

commit(~p)

try (τ ′, newLvs, ·)← *apply-props(id, epid , τ, id, pendUp, ~p)

if id /∈ τ ′.roster then
return ⊥

(mpks,~c, newSec)← *rekey(id, τ ′)
v′ ← τ ′.leafof(id)
(spk′, ssk′)← KUS.kg
v′.ssk← KUS.up-sk(ssk′, id)
v′.spk← KUS.up-vk(spk′, id)
c′′ ← ("commit", id, epid ,mpks, v.spk ,~c)
τ ′ ← *evolve-sks(τ ′,H3(c′′))
c′ ← (c′′,H5(τ ′.public))
conf-key← H6(c′, τ ′.grpkey)
σ ← KUS.sig(τ.leafof(id).ssk, (c′, conf-key))
c← (c′′, conf-key , σ)

τ ′.grpkey← H7(c, τ ′.grpkey)

pendCom[c]← τ ′

if newLvs 6= ∅ then
w ← *wmsg(τ ′, id, newLvs, newSec, c)

else w ← ⊥
return (c, w)

key

K ← τ.grpkey
τ.grpkey← ⊥
return K

join(sk, w)

parse ("welcome", idi, τ ′, e, c)← w

parse (c′, conf-key , σ)← c

parse (c′′, pubhash)← c′

if id /∈ τ ′.roster then
return ⊥

v ← τ ′.leafof(id)
(esk, hsk, ssk,mpk, spk)← sk
if v.mpk 6= mpk ∨ v.spk 6= spk then

return ⊥
v.ssk← ssk
v.hsk← hsk
for (u, ctxt) ∈ e[v] do

try s← PKE.dec(esk, ctxt)
if u.isroot then

u.grpkey← H1(s)
else

u.~id← ε
(u.mpk, u.hsk)← HIBE.setup(H2(s))
u.taintedby← id

τ ′ ← *evolve-sks(τ ′,H3(c′′))
if H5(τ ′.public) 6= pubhash then

return ⊥
if conf-key = H6(c′, τ ′.grpkey) then

τ ′.grpkey← H7(H7, τ
′.grpkey)

else
return ⊥

epid← H4(c)
τ ← τ ′

return (τ.roster, idi)

proc(c, ~p)

if pendCom[c] 6= ⊥ then
τ ′ ← pendCom[c]

else
parse (c′, conf-key , σ)← c

parse (c′′, pubhash)← c′

parse ("commit", idc, epidc ,mpks, spk ,~c)← c′′

v ← τ.leafof(idc)
b← KUS.vrf(v.spk, (c′, conf-key), σ)
if ¬b ∨ idc /∈ τ.roster ∨ epid 6= epidc then

return ⊥
try (τ ′, ·, info)← *apply-props(id, epid , τ, idc, pendUp, ~p)
try τ ′ ← *apply-rekey(id, τ ′, idc,mpks,~c)
if idc /∈ τ ′.roster then

return ⊥
v′ ← τ ′.leafof(idc)
v′.spk← spk
τ ′ ← *evolve-sks(τ ′,H3(c′′))
if H5(τ ′.public) 6= pubhash then

return ⊥
if conf-key = H6(c′, τ ′.grpkey) then

τ ′.grpkey← H7(c, τ ′.grpkey)
else

return ⊥
if id ∈ τ ′.roster then

τ ← τ ′

epid← H4(c)
else

τ ← ⊥
epid← ⊥

pendUp.clear
pendCom.clear
return info

Fig. 20: Protocol P-Act: CGKA protocol with optimal safe predicate, but not robustness, against
adaptive adversaries in the active setting. The main (non syntactical) differences with respect to the
passive protocol, i.e., Fig. 15, are highlighted by boxes. Solid boxes refer to the basic modifications,
whereas dashed boxes are specific to the non-robust protocol.

53

Protocol P-Act: Helper Functions

*apply-props(id, epid , τ, idc, pendUp, ~p)

τ̄ ← τ
newLvs← ∅
info← [.]
while ~p 6= [.] do

p← ~p.deq
try (ids, p′)← *parse-and-verify-prop(τ, epid, p)
if p′ = ("addP", ·, idt, pk) then

if idt ∈ τ.roster then
return ⊥

else if idt ∈ τ̄ .roster then
skip

(τ̄ , `)← *getLeaf(τ̄)
`.~id← (idt)
newLvs← newLvs ∪ {(idt, `, epk)}
parse (mpk, epk, spk)← pk
`.mpk← mpk
`.spk← spk
`.taintedby← idt
`.parent.taintedby← idc
info.enq((ids, add-idt))

if p′ = ("remP", ·, idt) then
if idt /∈ τ.roster then

return ⊥
else if idt /∈ τ̄ .roster then

skip
`← τ̄ .leafof(idt)
`.clearlabs()
τ̄ .retaint(idt, idc)
info.enq((ids, rem-idt))

if p′ = ("updP",mpk, spk) then
if ids /∈ τ̄ .roster then

skip
τ̄ .retaint(ids, idc)
`← τ̄ .leafof(ids)
`.~id← (ids)
`.taintedby← ids
`.mpk← mpk
`.spk← spk
if ids = id then

(`.hsk, `.ssk)← pendUp[mpk, spk]
return (τ̄ , newLvs, info)

*evolve-sks(τ̄ , nonce)

for v ∈ τ̄ .nodes s.t. v.inuse do
v.~id← v.~id||nonce
if v.hsk 6= ⊥ then

v.hsk← HIBE.kg(v.hsk, nonce)
if v.spk 6= ⊥ then

v.spk← KUS.up-vk(v.spk, nonce)
if v.ssk 6= ⊥ then

v.ssk← KUS.up-sk(v.ssk, nonce)
return τ̄

*apply-rekey(id, τ̄ , idc,mpks,~c)

P ← *to-be-rekeyed(τ̄ , idc)
φ← path(τ.leafof(id) τ.root)
while P 6= [.] do

ψ ← P.deq
if meets(ψ, φ) then

a← meetsAt(ψ, φ)
if φ.traverses(a.lchild) then b← a.lchild
else b← a.rchild
try s← HIBE.dec(b.hsk,~c[b])
repeat

if a.isroot then
a.grpkey← H1(s)

else
(a.mpk, a.hsk)← HIBE.setup(H2(s))
s← H1(s)

a← a.parent
until a = ψ.sink.parent

return *set-public-labels(τ̄ ,mpks, idc)

*prep-prop(τ, id, epid, p)

v ← τ.leafof(id)
p′ ← (id, epid, p)
σ ← KUS.sig(v.ssk, p′)
return p′′ = (σ, p′)

*parse-and-verify-prop(τ, epid, p′′)

parse (σ, p′)← p′′

parse (ids, epids, p)← p′

v ← τ.leafof(ids)
b← KUS.vrf(v.spk, p′, σ)
if ¬b ∨ ids /∈ τ.roster ∨ epids 6= epid then

return ⊥
else

return (ids, p)

Fig. 21: Protocol P-Act: Modified helper functions. The other helpers remain unchanged from the
passive protocol, i.e., Figs. 16 and 17.

F.3 The Robust Protocol

Well-formedness via NIZK. The robust protocol, depicted in Fig. 22, relies on two NIZK systems
NIZKc = (NIZKc.gen,NIZKc.prove,NIZKc.vrfy) and NIZKw = (NIZKw.gen,NIZKw.prove,NIZKw.vrfy)
for the relations

Rc :=
{ (
x = (c′, ~p, τpub), ω = (γ, r)

)
: (·, c′, ·) = commit′(γ, ~p; r) ∧ γ.τ.public = τpub

}
,

and

Rw :=
{ (
x = (w′, c′, ~p, τpub), ω = (γ, r)

)
: (·, c′, w′) = commit′(γ, ~p; r) ∧ γ.τ.public = τpub

}
,

respectively, where commit′ is defined in Fig. 22.
The commit′ algorithm essentially corresponds to the passive protocol with the shared modifi-

cations — such as binding control messages to epochs and verifying proposals — for the two active
protocols applied. Note that, however, the returned c′ of commit′ is not yet signed, as the protocol
signs the overall message including the NIZK proof at the end; since we assume unique signatures
and verify the signature, there is no need to include the signature in the NIZK proof.

54

Protocol P-Act-Rob

create and kg

// as in non-robust protocol

add(idt, pk), rem(idt), and upd

// as in non-robust protocol

commit(~p, crs)

parse (crsc, crsw)← crs
γ ← (id, τ, epid, pendUp)
r1 ←$ {0, 1}κ
r2 ←$ {0, 1}κ
r ← (r1, r2)
(τ ′, c′, w′)← commit′(γ, ~p; (r1, r2))
xc ← (c′, ~p, τ.public)
xw ← (w′, c′, ~p, τ.public)
ω ← (γ, ~p, r)
πc ← NIZKc.prove(crsc, xc, ω)
πw ← NIZKw.prove(crsw, xw, ω)
σ ← KUS.sig(τ.leafof(id).ssk, (c′, πc))
c← (c′, πc , σ)
if newLvs 6= ∅ then

w ← (w′, c, τ.public , τ ′.public, ~p, πw)
else w ← ⊥
pendCom[c]← τ ′

return (c, w)

join(sk, w, crs)

parse (w′, c, τ ′par τ ′, ~p, πw)← w

parse ("welcome", idi, e)← w′

parse (c′, ., .)← c
parse (c′′, pubhash)← c′

if id /∈ τ ′.roster then
return ⊥

v ← τ ′.leafof(id)
(esk, hsk, ssk,mpk, spk)← sk
if v.mpk 6= mpk ∨ v.spk 6= spk then

return ⊥
v.ssk← ssk
v.hsk← hsk
for (u, ctxt) ∈ e[v] do

try s← PKE.dec(esk, ctxt)
if u.isroot then

u.grpkey← H1(s)
else

u.~id← ε
(u.mpk, u.hsk)← HIBE.setup(H2(s))
u.taintedby← id

τ ′ ← *evolve-sks(τ ′,H3(c′′))
if H5(τ ′par.public , τ ′.public) 6= pubhash then

return ⊥
parse (., crsw)← crs
xw ← (w′, c′, ~p, τ ′par.public)
if ¬NIZKw.vrfy(crsw, xw, πw) then

return ⊥
epid← H4(c)
τ ← τ ′

return (τ.roster, idi)

proc(c, ~p, crs)

if pendCom[c] 6= ⊥ then
τ ′ ← pendCom[c]

else
parse (c′, πc , σ)← c

parse (c′′, pubhash)← c′

parse ("commit", idc, epidc,mpks, spk,~c)← c′′

v ← τ.leafof(idc)
b← KUS.vrf(v.spk, (c′, πc), σ)
if ¬b ∨ idc /∈ τ.roster ∨ epid 6= epidc then

return ⊥
try (τ ′, ·, info)← *apply-props(id, epid, τ, idc, pendUp, ~p)
try τ ′ ← *apply-rekey(id, τ ′, idc,mpks,~c)
if idc /∈ τ ′.roster then

return ⊥
v′ ← τ ′.leafof(idc)
v′.spk← spk
τ ′ ← *evolve-sks(τ ′,H3(c′′))
if H5(τ.public , τ ′.public) 6= pubhash then

return ⊥
parse (crsc, .)← crs
xc ← (c′, ~p, τ.public)
if ¬NIZKc.vrfy(crsc, xc, πc) then

return ⊥
if id ∈ τ ′.roster then

τ ← τ ′

epid← H4(c)
else

τ ← ⊥
epid← ⊥

pendUp.clear
pendCom.clear
return info

key

// as in non-robust protocol

commit′(γ, ~p; r)

parse (id, τ, epid, pendUp)← γ
parse (r1, r2)← r
try (τ ′, newLvs, ·)← *apply-props(id, epid, τ, id, pendUp, ~p)
if id /∈ τ ′.roster then

return ⊥
(mpks,~c, newSec)← *rekey(id, τ ′; r1)
v′ ← τ ′.leafof(id)
(spk′, ssk′)← KUS.kg(r2)
v′.ssk← KUS.up-sk(ssk′, id)
v′.spk← KUS.up-vk(spk′, id)
c′′ ← ("commit", id, epid,mpks, v.spk,~c)
τ ′ ← *evolve-sks(τ ′,H3(c′′))
c′ ← (c′′,H5(τ.public, τ ′.public))
w′ ← *wmsg(id, newLvs, newSec)
return (τ ′, c′, w′)

Fig. 22: Protocol P-Act-Rob: CGKA protocol with optimal safe predicate and robustness, against
static adversaries in the insecure communication model. The protocol is based on the one of
Fig. 20 (without the parts marked in dashed boxes there), with changes marked with boxes. The
commit′ algorithm is the same as used in the definitions of the NIZK relations. Most helpers remain
unchanged from P-Act, with the ones modified to use explicitly passed randomness depicted in
Fig. 23.

55

Protocol P-Act-Rob: Modified Helper Functions

*rekey(id, τ̄ ; r)

newSec = array : τ̄ .nodes→ {0, 1}κ
mpks,~c = array : τ̄ .nodes→ {0, 1}∗
P ← *to-be-rekeyed(τ̄ , id)
while P 6= [.] do

(r, s)← PRG.eval(r, 0)
args← (id, P.deq, s,mpks,~c, newSec)
(mpks,~c, newSec)← *rekey-path(args)

return (mpks,~c, newSec).

*wmsg(ids, newLvs, newSec; r)

e = array : τ ′.leaves→ queue of (node, string) pairs
for (., `, epk) ∈ newLvs do

a← `.parent
repeat

(r, s)← PRG.eval(r, 0)
ctxt← PKE.enc(epk, newSec[a]; s)
e[`].enq((a, ctxt))
a← a.parent

until a = ⊥
w′ ← ("welcome", ids, e)
return w

Fig. 23: Protocol P-Act-Rob: Modified helper functions that take explicit randomness r.

For a joining party to be able to verify the NIZK proof of the welcome message, he needs the
parent public state τpar, which is hence included as part of w. To correctly bind the commit and
welcome messages, the hash in c moreover also includes the parent public state.

Common reference strings. The commit, proc, and join algorithms of the robust protocol require
the pair of CRS for NIZKc and NIZKw as additional input. They are generated by the functionality
Fcrs shown in Fig. 24, and assumed to be fetched and passed along by the corresponding UC
protocol for the robust CGKA scheme.

Functionality Fcrs

The functionality is parameterized by two algorithms NIZKc.gen and NIZKw.gen.

Initialization

crsc ← NIZKc.gen()
crsw ← NIZKw.gen()

Inputs from a party id

Input GetCRS
return crs = (crsc, crsw)

Fig. 24: The CRS functionality.

G Proof of Thm. 3: Security of the Construction without Robustness

Theorem 3. Assuming that HIBE and PKE are IND-CCA secure, and KUS is EUF-CMA secure the
non-robust protocol P-Act realizes Fcgka with robust = false and restrict-corruptions = true
in the (Fpki, GRO)-hybrid model, where GRO denotes the global random oracle, calls to hash functions
Hi are replaced by calls to GRO with prefix Hi and calls to PRG.eval are replaced by calls to GRO
with prefix PRG.

Proof. We introduce the simulator S gradually, together with a sequence of hybrids.

Hybrid 1. This is the real world. We make a syntactic change: the simulator S1 interacts with a
dummy functionality Fdummy, which routs all inputs and outputs through S1, who executes the
protocol.

Hybrid 2. This change concerns the randomness pool. The simulator S2 computes rand-stat(·)
as in Fcgka. When randomness for a party id is sampled while rand-stat(id) = good, the
simulator uses fresh independent value instead of calling GRO.

56

Hybrid 3. This change concerns the guarantees on the history graph. S3 interacts with the
original Fcgka, except that Fcgka uses safe(c) := false and always allows injections (formally,
it skips the first invariant condition from Fig. 7). S3 computes all messages c and p outputted
by Fcgka according to the protocol. He sends ack = false if some CGKA function outputs ⊥,
and deduces the semantics of injected messages (e.g. the sender and commit node for welcome
messages) from the messages (the values are always included). He sets all group keys.

Hybrid 4. This change concerns signing. Fcgka uses the original invariant.
Hybrid 5. This change concerns welcome messages. Whenever a party id commits with good

randomness, i..e, while rand-stat(id) = good, the simulator S5 modifies the welcome message
by replacing each ciphertext encrypted under a key from PKI (i.e. the add proposal is not
injected) by an encryption of 0. S5 computes the initial state of new member using the
information that would be encrypted directly.

Hybrid 6. Fcgka uses the original safe predicate. This is the ideal world.

The proof that Hybrids 1 and 2 are indistinguishable is the same as in the proof for the passive
setting (Appendix D).

Claim. Hybrids 2 and 3 are indistinguishable.

Proof: We first prove that the history graph is well formed, and then verify the consistency
requirements on this graph.

– The history graph has well defined nodes (i.e. each two outputted messages are different). This
is true, because each message contains (1) the sender’s identity and (2) a random value (or
a counter). Now (1) guarantees that messages sent by different parties are different, and (2)
guarantees that a party never sends two identical messages. For the latter, recall that the
randomness is sampled using the pool, as a hash chain of RO calls. The probability of repeating
a value in such chain is negligible.

– The history graph has well defined edges (i.e. one parent per node). This is implied by including
epid (the hash chain of the history of all past c’s) in a commit c — parties accepting c agree
on current epid, so they agree on the whole history of commits, which is equivalent to being in
the parent of c.

– Each node has well defined labels. The labels of a proposal node (the sender and the action) are
included in the message p, so clearly they are well defined. For a commit node, we additionally
have:
• The group key. Recall that the group key is computed as H7(s), where s is the seed in the

ratchet tree root. Moreover, c contains the confirmation key H6(s). Clearly, finding a c s.t.
two parties output different keys H7(s) 6= H7(s′) requires finding a collision on H6.

• The proposal list. A commit c contains a hash of the committed proposal list ~p, so c binds
to ~p (unless we find collisions). In particular, every call to process with c and a different
list results in output ⊥.

– Welcome messages. The only guarantee we need is that a welcome message uniquely identifies
the commit node (we do not provide robustness), which follows from including epid.

– The graph invariant: the graph’s state is consistent. The first point follows from including epid
in each proposal message and the protocol checking it it in commit (for honestly generated
commit messages) and proc (for injections). For the second property, observe that the member
set is computed by the protocol and functionality in the same way from the parent’s member
set and the proposal list (which is consistent, as proved above). Finally, observe that attaching
an initially detached node cannot violate the consistency of the group state with respect to
the member set. To see this, observe that the welcome message w contains the corresponding
commit message c. Moreover, c contains a hash of the resulting public part of the ratchet tree,
from which the member-set can be uniquely deduced, an which is checked by both the proc
and join algorithms when moving to the epoch identified by c.

– The graph invariant: no cycles. Attaching a detached node cannot lead to cycles. To this end,
observe that the commit messages form a hash chain. The probability of efficiently finding a
cycle in the random oracle model is negligible.

57

The fact that the rest of the invariant (except the disabled anti-injections checks) and the additional
assert-checks are preserved follows easily by inspection. �

Claim. Hybrids 3 and 4 are indistinguishable, if KUS is EUF-CMA secure.

Proof: Assume D is a distinguisher for Hybrids 3 and 4. We construct an adversary A against
EUF-CMA security (Fig. 12) of KUS: A behaves as Hybrid 3, except he tries to extract a forgery
from D as follows.

Embed the instance. First, note that a new KUS key pair is generated on each update, add and
commit. So, A first guesses an index i, smaller than the maximum total number of such inputs.
Then, for the i-th such input he uses spk from his EUF-CMA instance (if during this query we
have rand-stat(id) = good, A aborts). For each other such input, A uses his own key.

Answer D’s queries. Assume the i-th query created the key spk for id (i.e., id updated, committed
or was added), while he was in node c0. The corresponding secret key ssk exists only in id’s state,
and only in the path (c0 ct) taken by id (where ct replaces the key, i.e., id updates, commits
or is removed). So, A computes signatures as follows: whenever id sends a message while on the
path (c0 ct), A computes the signature using his sign oracle. Whenever id moves from ck to
ck+1, A calls update with identity ck+1. If id is exposed in ck, then A queries corrupt with identity
(c1, . . . , ccorr) and later signs himself.

Extracting the forgery. Assume D (1) injects a message and (2) it’s not allowed in Hybrid 4 (this
is the only difference between hybrids, so D’s distinguishing advantage is upper-bounded by the
probability of this event). (1) means D created a node Node[c∗] or Prop[p∗], where c∗ or p∗ was
not outputted by the functionality. If the created node is a child of some cforge, then A parses the
injected message as (m,σ) and submits his forgery (m,σ, (c1, . . . , cforge)). Else, A aborts.

Now assume the forgery is invalid. We know that the signature verifies (else, the message
would be rejected by the simulator) and that A didn’t use the sign oracle on m, since all (honest)
messages are unique. Hence, it must be that A corrupted an identity (c1, . . . , ccorr), a prefix of
(c1, . . . , cforge). But this means that D corrupted id in ccorr, an ancestor of cforge, which contradicts
(2) (see the invariant Fig. 7 and the exposed predicate Fig. 4). �

Claim. Hybrids 4 and 5 are indistinguishable, if PKE is IND-CCA secure,

Proof: Assume D is a distinguisher for Hybrids 4 and 5. We construct a multi-user IND-CCA
adversary A that uses the public key from the i-th instance for the PKI public key of the i-th user.
For welcome messages created with good randomness, A uses his corresponding challenge oracles.
Injected welcome messages are decrypted using A’s corresponding decrypt oracles. �

Claim. Hybrids 5 and 6 are indistinguishable, if HIBE is IND-CCA secure.

Proof: The difference from the proof of passive security (c.f. Appendix D) is that now the distin-
guisher can inject messages coming from corrupted parties (signatures are of no use here). We note
that injections are not a problem for the simulator, who uses real ratchet-tree keys and can simply
process them. Proving that injected messages do not harm the secrecy of group keys is part of the
reduction to IND-CCA, which we show next.

We consider a CCA version of the HIBE GSD game from Fig. 18. In particular, we add the
oracle Decrypt(p, c, ~id), which decrypts c under the secret key derived from the master key in node
p, using identity ~id. Decryption is allowed as long as p is not a challenge (p /∈ Chal-ID) and c was
not obtained from Encrypt(p, ·, ~id). We can easily extend the reduction Lemma 2 to prove that
IND-CCA security of HIBE implies CCA-GSD security (the reduction simply forwards decryption
queries to HIBE CCA oracles).

Now assume D distinguishes Hybrids 5 and 6. The CCA-GSD adversary A is the same as for
the passive protocol (c.f. Appendix D), except it handles injected messages from D as follows.

Injected proposals. Proposals can be injected with inputs commit and process. (Any malformed
proposals, in particular proposals with wrong epid, are ignored.) First, consider an injected update
proposal p with correct epid, coming from id. To be considered an injection, p must contain an mpk

58

that was not generated by id for this epoch, or a wrong counter (we assumed that the signature
scheme KUS has unique signatures). For unknown mpk, A stores it mpk. Now id will never process
p, unless D at some later point provides bad randomness that causes him to do so. If this happens,
A uses this randomness to compute hsk and stores it. Otherwise, we call updates with unknown
secret key (and without a GSD node, as in honest updates) “hijacked”.

Similarly, for injected add proposals with public keys that do not match PKI, A simply stores
mpk and we call such adds hijacked. When generating honest commits (c.f. the passive proof), A
treats hijacked nodes as those for which D knows the secret state.

Injected commits. Consider D making a party id process an injected commit c with proposals ~p. To
simulate D’s experiment, A has to first determine if (the simulator on behalf of) id accepts c, and
if so, build the ratchet tree for the new node.

To this end, A first processes the proposals ~p, as in the proof of the passive protocol. If ~p
contains a “hijacked” update from id, A immediately rejects the commit. Then, A executes id’s
process algorithm, except whenever id would decrypt a ciphertext ci, A does:

1. Notation: let u be the ratchet tree node with the key used to decrypt ci. Note that u either
has a GSD node, or u.hsk 6= ⊥. Indeed, this is not the case only if u is a leaf created with
a hijacked update or add. However, id only decrypts under his own leaf and never processes
hijacked updates or adds that affect his leaf.

2. If u.hsk 6= ⊥, then A decrypts ci with u.hsk.
3. Else, if ci has not been generated by one of his calls to the encrypt oracle, then he queries the

decrypt oracle on (gsd-node(u), ci, u.~id). (Since u is used to decrypt, it is not the root, so it’s
not challenged.)

4. Else, A must have called Encrypt(gsd-node(u), ·, u.~id). This could happen only while generating
a commit c′ with good randomness. Moreover, using the same u.mpk and u.~id implies that c′
and c are siblings and share the same node u. If u.hsk 6= ⊥ in c′, then A sets u.hsk in c and
decrypts ci (note that u.hsk could have leaked when a party was exposed). Else, assume ci was
used in c during rekeying path up to w. We have the following cases:
(a) If w is not the root, then A does not decrypt ci. Instead, for every node v above u that is

currently rekeyed, A sets the labels (including the GSD node) of v in c to the labels of the
corresponding node v in c′.
Observe that it’s not a problem if non-root nodes in c and c′ share keys, since diverging
HIBE identities effectively make them independent.

(b) If w is the root, then A searches D’s RO calls for a hash chain si, ..., st s.t. si+1 = H1(si)
and H6(c, s) = conf-key, where conf-key is the confirmation key in c. If there is no such
chain, A rejects the commit. Else, si is the plaintext in ci and A uses it to derive the key
to win his GSD game (note that A leaves u.hsk = ⊥ and calls encrypt only if knowing the
plaintext would not constitute a trivial win in the GSD game).
(In particular, if ci can be used to compute the root in c′, A can extract that root from
RO’s queries and win the game.)

In any case, the new node c has safe(c) = false. A can compute the group key for Key queries
using the seed s extracted from D’s RO queries.

Injected welcome messages. Consider the situation when id joins with an injected welcome message
w. A first decrypts id’s secret state, using id’s key from the emulated PKI and rejects w if so would
id (e.g. if the decryption fails or if some secret labels don’t match the public ones). Then, if w
takes id to an existing node, A simply behaves as in the passive case. Else, he creates the new node
Node[c] with labels computed as in Fcgka (an orphan, with symbolic values computed from w),
and with the ratchet tree defined as follows.
A starts with the ratchet tree τ from w, with public labels only. Then, for each node v in τ , A

searches the history graph for ratchet tree nodes with the same mpk as v’s and:

– If there is no such node, then D created mpk. A sets v.hsk if available to id.
– If there is such node u with u.hsk 6= ⊥ and u.~id a prefix of v.~id, then A computes v.hsk (he

does not use the equivalent v.hsk potentially decrypted by id).

59

– If there is such node u with u.hsk = ⊥, then A sets gsd-node(v) to gsd-node(u). If id can
decrypt the corresponding hsk, then A uses it to win the GSD game and halts.

– Else, v.hsk = ⊥.

Exposures. For hijacked adds of id or updates by id, A clearly cannot compute id’s secret state upon
exposure. We note that this is not necessary, since id never processes such welcome, respectively,
commit message.

Preserving safe. We show that with the above changes, safe in Fcgka implies safe in the GSD
game. The argument is the same as in the passive proof, except that to account for injections, we
observe that:

– If a commit is made with some hijacked proposals, then safe is false until the corresponding
party is removed and his leaf is deleted. Thus, hijacked leaves are only used to encrypt seeds
chosen by A for insecure group keys.

– An injected commit shares “secure” encryptions of seeds only with its siblings. Shared encryp-
tions of non-root seeds are irrelevant, as the HIBE identities diverge. Shared root seeds are
excluded by the confirmation key. �

This concludes the overall proof of Theorem 3. ut

H Proof of Thm. 5: Security of the Construction with Robustness

Theorem 5. Let NIZKc and NIZKw be two zero-knowledge and simulation-sound extractable NIZK
systems for the relations Rc and Rw, respectively. Moreover, assume that HIBE and PKE are
IND-CCA secure, that KUS is EUF-CMA secure, that HIBE and KUS have an efficiently checkable
one-to-one matching between public- and secret-keys, that PRG is a secure PRNG with input, and
that the hash functions satisfy PRG security. Then, the protocol P-Act-Rob realizes F static

cgka with
robust = true and restrict-corruptions = true in the (Fcrs,Fpki)-hybrid model, where Fcrs
generates the pair of CRS for NIZKc and NIZKw.

Proof. We introduce the simulator S gradually, together with a sequence of hybrids. The first five
hybrids are the same as in the proof of the protocol without robustness from Appendix G; we
repeat them for completeness.

Hybrid 1. This is the real world. We make a syntactic change: S1 interacts with a dummy
functionality Fdummy, which routs all inputs and outputs through S1, who executes the protocol.

Hybrid 2. This change concerns the randomness pool. The simulator S2 computes rand-stat(·)
as in F static

cgka . When randomness for a party id is sampled while rand-stat(id) = good, the
simulator uses fresh independent value instead of calling GRO.

Hybrid 3. This change concerns the guarantees on the history graph. F ′cgka is the same as Fcgka,
except it uses safe(c) := false and always allows injections (formally, it skips the second
invariant condition from Fig. 7). The simulator S3 computes all messages c and p outputted by
F ′cgka according to the protocol. He sends ack = false if some CGKA function outputs ⊥,
and deduces the semantics of injected messages (e.g. the sender and commit node for welcome
messages) from the messages (the values are always included). He sets all group keys.

Hybrid 4. This change concerns signing. F static
cgka

′ uses the original invariant (see Fig. 7).
Hybrid 5. This change concerns NIZK proofs. The simulator S5 generates the crs (outputted by

the emulated Fcrs) using the trapdoor-generation algorithm SE1. Whenever during a commit
the additional input is secure = true, S5 sends a new commit c′ with all NIZK proofs replaced
by ones simulated using the trapdoor τ .

Hybrid 6. This change concerns welcome messages. Whenever a party id commits using good
randomness, i.e., while rand-stat(id) = good, the simulator S6 replaces ciphertexts in the
welcome message by encryptions of 0 and computes the initial state of new member using the
information that would be encrypted directly.

60

Hybrid 7. This change concerns secrecy of group keys. F static
cgka

′ uses the original predicate safe.
Whenever the simulator S7 generates a commit c, he checks if safe(c) and the additional input
secure are both true. If so, he sends to F static

cgka
′ a new commit c′, where (1) all HIBE ciphertexts

are replaced by encryptions of 0 and (2) all new HIBE key pairs are generated using fresh
randomness (instead of by hashing up the tree). This is the ideal world.

Hybrids 1 and 2 are clearly indistinguishable by security of the PRG with input used to
implement the randomness pool. Indistinguishability of Hybrids 4 and 5 trivially follows from
the zero-knowledge property and the fact that the trapdoor-generation algorithm outputs an
indistinguishable CRS (note that we generate both trapdoors, so we also need the nizk-ssExt1
property). We address the rest of the hops next.

Claim. Hybrids 2 and 3 are indistinguishable, assuming that NIZK is sound and that HIBE and
KUS provide perfect correctness.

Proof: This proof is mostly the same as for the non-robust protocol (see Appendix G). The only
difference is that the soundness of NIZK implies that if any party accepts a commit message, then
there exists some encryption randomness that would result in all ciphertexts being consistent (w.r.t.
hashing up the tree). Recall now that the underlying (passive) scheme is provides correctness even
if the adversary choses the randomness (by perfect correctness of the HIBE scheme). Analogously,
perfect correctness of KUS preserves this property for the underlying without the NIZK (i.e., the
passive ones with the basic additional checks). This implies, that each party will decrypt correctly
and end up in the consistent state. �

Claim. Hybrids 3 and 4 are indistinguishable, if KUS is EUF-CMA secure.

Proof: This proof is the same as for the non-robust protocol, see Appendix G.

Claim. Hybrids 5 and 6 are indistinguishable, if PKE is IND-CCA secure.

Proof: The NIZKs are simulated and independent of encryptions, so we can use the same proof as
for the non-robust protocol, see Appendix G.

Claim. Hybrids 6 and 7 are indistinguishable, assuming that HIBE is IND-CCA secure and NIZK
is simulation-sound extractable and Hi are secure PRGs.

Proof: The difference between Hybrids 6 and 7 is in those commit messages for which safe and
secure are both true. We will refer to such messages as “simulatable”.

Assume te is the maximum number of epochs and tu is the maximum size of a ratchet tree
(corresponding to the number of users). The proof follows by a sequence of sub-hybrids Hi,j for
i = 0...te and j = 0...2tu, where Hi,2tu is the same as Hi+1,0. Let ci denote the i-th simulatable
commit message.

– Hi,0: The first i− 1 simulatable commit messages ci are simulated as in Hybrid 7, and the rest
is as in Hybrid 6.

– Hi,j for j = 1...tu: The difference from Hi,0 is that the first (according to some arbitrary order)
j HIBE ciphertexts in ci are replaced by encryptions of 0.

– Hi,tu+j for j = 1...tu: The difference from Hi,tu is that the first j calls to HIBE.setup made
while generating ci (according to the order of calls) use fresh randomness, instead of hashing
up the tree.

Hybrids Hi,j−1 and Hi,j for 1 ≤ j ≤ tu. Given a distinguisher D1, we construct an IND-CCA
adversary A1 as follows. In general, A1 emulates for D1 the execution of Hi,j−1. This means that
A1 executes the code of the simulator and knows both the simulation and the extraction trapdoors
for the NIZK. A1 modifies Hi,j−1 as follows:

1. Generating control messages.
(a) A1 guesses an index q, smaller than the maximum number of calls to HIBE.setup. If the

q-th call to HIBE.setup is made while generating ci′ for some i′ < i, or if it’s made for an
(honest) add or update, A1 replaces the output by the key mpk∗ from his IND-CCA game.
(Otherwise, he aborts.)

61

(b) If the j-th ciphertext in ci is encrypted under mpk∗, A1 replaces it by ctxt∗, obtained from
the IND-CCA challenge oracle on inputs 0 and the actual encrypted seed. (Otherwise, he
aborts.)

2. Exposures. To emulate exposures involving mpk∗, he calls the IND-CCA corrupt oracle.
3. Injections. If D1 injects a commit c = (c′, π) and both the NIZK and the signature verify, A1

does:
(a) If c′ contains a ciphertext ctxt 6= ctxt∗ for mpk∗, A1 calls the decrypt oracle to process c′.
(b) If c′ contains ctxt∗, A1 uses the trapdoor to extract from π the state γ and randomness

r s.t. c′ = commit′(γ, ~p; r). This, in particular, allows to compute the randomness s used
to encrypt ctxt∗. A0 checks if ctxt∗ is the encryption of 0 with randomness s, guesses the
IND-CCA bit accordingly, and halts.

Observe first that since ci is simulatable, we have safe(ci) = true and secure = true. This
also means F static

cgka
′ immediately sampled a random group key for Node[c∗] and set Node[c∗].chall

to true. This means that safe(c∗) will never switch to false due to the restriction on D1 (flag
restrict-corruptions).

Assume A1 correctly guesses the index q of the setup query used to generate the j-th ciphertext
in ci.

We first show that embedding the instance in Step 1 (a) does not change the execution of
neither hybrid. First, observe that all keys in c′i with i′ < i (as well as in add and update messages)
are generated using fresh randomness. Second, A1 does not abort in this step — otherwise, the
group state in ci’s parent contains a HIBE key generated by some id using bad randomness. This
means that id was exposed in a parent of ci and since any healing action (update or commit) by id
would replace this key, we have safe(ci) = false, a contradiction.

Second, suppose A is not a valid IND-CCA adversary, i.e. he corrupts ~idcorr and challenges
~idcorr ‖ ~idchal. Given the definition of A1, we have ~idchal = ~c ‖ ci and ~idcorr = ~c ‖ cexp, where some
party holding the secret key for mpk∗ was exposed in cexp. Again, there is no healing action on the
cexp-ci path, as this would replace mpk∗. This contradicts safe.

Finally, by simulation extractability, A1 does not fail in Step 3 (b).

Hybrids Hi,tu+j−1 and Hi,tu+j for 1 ≤ j ≤ tu. This follows from PRG security, using the standard
hybrid argument. �

This concludes the overall proof of Theorem 5. ut

62

	Introduction
	Overview and Motivation
	Contributions
	Technical Overview
	Related Work
	Outline

	Preliminaries
	Continuous Group Key Agreement
	CGKA Schemes
	CGKA Syntax

	Modeling Security of CGKA
	Security of CGKA in the Passive Setting
	Security of CGKA in the Active Setting
	Construction for the Authenticated Setting
	TTKEM
	Cross-Group Attacks
	The Protocol P-Pas
	Efficiency

	Constructions for the Passive Setting
	Basic Modifications of the Passive Protocol
	The Non-Robust Protocol
	The Robust Protocol using NIZKs

	On the Sub-optimality of Alternative Solutions
	Pairwise Channels
	Key-Homomorphic Encryption

	Conclusions and Future Directions
	Conclusions
	Future Directions

	Additional Preliminaries
	Additional Notation
	UC Security
	Left-Balanced Binary Trees
	Cryptographic Primitives

	Details of the Security Model
	The Corruption Model
	Restricted Environments
	PKI

	Details of the Construction for the Passive Setting
	Labeled Trees
	The Algorithms of P-Pas

	Proof of Thm. 1: Security in the Non-Programmable ROM
	Proof of Thm. 2: Full UC Security in the Programmable ROM
	Details of the Construction for the Active Setting
	Shared Modifications
	The Non-robust Protocol
	The Robust Protocol

	Proof of Thm. 3: Security of the Construction without Robustness
	Proof of Thm. 5: Security of the Construction with Robustness

