
Efficiency Lower Bounds for Commit-and-Prove
Constructions

Christian Badertscher∗, Sandro Coretti†, Chen-Da Liu Zhang∗, Ueli Maurer∗
∗ETH Zurich, Switzerland; Email: {badi, lichen, maurer}@inf.ethz.ch
†New York University, United States; Email: scoretti@cs.nyu.edu

Abstract—Commitment schemes that admit zero-knowledge
proofs for relations among committed values are known as
commit-and-prove functionalities or notarized envelopes. An
important role in this context play equality proofs among com-
mitments. They appear in various contexts of multi-party com-
putation, circuit satisfiability or inclusion proofs. Using commit-
and-prove functionalities admitting equality, we investigate black-
box constructions of commit-and-prove functionalities admitting
more complex relations. Typically, these constructions have to
create commitments to additional values to achieve a certain level
of soundness. An important efficiency measure is the number of
such additional commitments. We prove that, for the natural
and quite general class of 3-round public-coin zero-knowledge
protocols, implementing the inequality relation, or any of the
relations NAND, NOR, or XOR, essentially requires at least 2n
additional commitments in order to achieve a soundness of 2−n.
A folklore protocol shows that this bound is tight for inequality.

I. INTRODUCTION

An interactive proof, originally introduced by Goldwasser,
Micali, and Rackoff [GMR], is an interactive protocol between
a prover Peggy and a verifier Vic. An interactive proof needs
to be complete and sound. It is called complete, if an honest
prover succeeds in convincing the honest verifier of true state-
ments. A protocol is called sound, if a dishonest prover cannot
convince an honest verifier of false statements. An interactive
proof in which Peggy does not convey any information to Vic
apart from the fact that the claimed statement is true, is further
called a zero-knowledge protocol.

Commitment schemes [Gol] are a fundamental cryptographic
primitive and often appear as part of an interactive protocol
or in multi-party computation (MPC). A commitment scheme
allows Peggy to commit to a chosen value while keeping it
hidden from Vic. It guarantees that the value remains hidden
from Vic until Peggy decides to open the commitment. This
is the hiding property. On the other hand, Vic is ensured that
once Peggy is committed to a value, she can only open exactly
one value, supposedly the one she committed to. This is the
binding property.

The combined view of zero-knowledge and commitments is
typically known as notarized envelopes [Kil92], [BOGG+90],
[BFOR90], [BFS90]. They allow Peggy to commit to a set
of bits b1, . . . , bn and at some point later prove in zero-
knowledge that some predicate P (b1, . . . , bn) holds for these
bits. Constructions of notarized envelopes are known from
commitment schemes [Kil92], [BOGG+90] or from oblivious
transfer [Kil88]. In MPC, of particular interest are universally

composable commitments that admit such zero-knowledge
proofs. They are modeled as commit-and-prove functionalities
[CLOS02] within a composable framework, such as Canetti’s
UC Framework [Can01] or the framework of Constructive
Cryptography by Maurer and Renner [Mau11], [MR11]. Of
special interest are commit-and-prove functionalities that ad-
mit equality proofs. Equality proofs are often used to construct
MPC protocols [CCD88], [GMW87], zero-knowledge proofs
for circuit satisfiability [BCC87] or inclusion proofs [CL02].

Another core task is to construct, based on the above
equality proofs, protocols that prove more complex relations
in zero-knowledge based. Of specific interest are inequality
of two bits [LLX07], [CvHP91], or NAND of three bits. The
efficiency of such constructions is typically measured as the
number of additional commitments that the protocol uses to
achieve a certain level of soundness [KMO89]. In this work,
we prove efficiency lower bounds of such constructions.

A. A Folklore Protocol for Inequality

We present a folklore protocol to prove that two com-
mitments to secret bits b1 and b2 contain different values.
Note that this means proving the statement b1 6= b2 without
revealing the secret bits: First, Peggy chooses two additional
bits (e1, e2), uniformly over the set {(0, 1), (1, 0)}, and com-
mits to them. In the second step, Vic chooses a challenge
c ∈ {1, 2} and sends c to Peggy. If c = 1, Peggy opens the
two additional bits to show to Vic that they are different. If
c = 2, Peggy proves to Vic, in zero-knowledge, equality of
the two committed values b1 and ei (where Peggy selects the
correct i according to the additional bits) and proves equality
of the two committed values b2 and e3−i. This protocol
is zero-knowledge: all the prover reveals is either two bits
that are independent of the secret bits (if c = 1), or two
zero-knowledge equality proofs for a random choice of i (if
c = 2). This does not reveal anything about the secret values.
Also, since a cheating prover cannot correctly answer both
challenges in case b1 = b2, we see that the probability of
cheating, i.e., the soundness, is one-half. By repeating this
protocol for t rounds, we can achieve soundness 2−t by
requiring 2t additional commitments.

An interesting open question for this type of zero-knowledge
protocol is: is it actually possible to achieve a better soundness
than one-half with two additional commitments? And with
three additional commitments, can one improve the soundness
one-half? In general, using at most n additional commitments,

what is the best challenge space, i.e., a combination of equality
checks and openings that does not reveal values of the secret
bits, that minimizes the probability that Vic accepts in case
b1 = b2? In this work, we settle these questions proving that
no protocol of the above kind can be more efficient in terms of
additional commitments to achieve a soundness of 2−t. This
further implies that constructions for more complex relations
such as NAND, NOR or XOR are subject to this lower bound.

II. PRELIMINARIES AND NOTATION

In this work, we use the following conventions: Given
a set A, we denote by 2A the powerset of A. For a dis-
tribution D on A, supp(D) ⊆ A denotes the support of
D, and we denote by D(a) the probability assigned to el-
ement a ∈ A. For tuples Xn = (x1, . . . , xn) ∈ An and
Yk = (y1, . . . , yk) ∈ Ak (n, k > 0), (Xn, Yk) denotes con-
catenation, i.e., (x1, . . . , xn, y1, . . . , yk). Finally, a multiset M
is a generalization of a set in the sense that it allows multiple
instances of its elements. Given a multiset M and an ordinary
set A, we write M ⊆ A to express that ∀x ∈M : x ∈ A.

A. Commit-and-Prove Functionality

Commit-and-Prove functionalities are systems, i.e., random
systems [Mau02], with one interface P for the prover and one
interface V for the verifier. The behavior at these interfaces
can roughly be described as follows: The prover can store
bits within the resource (representing idealized commitments)
and subsequently prove to the verifier that a certain number
of stored bits, identified by their location, fulfill a relation R.
The verifier does not learn anything beyond the validity of
this statement. The prover can also reveal certain values to
the verifier (representing idealized openings of commitments).

Definition 1 (Commit-and-Prove). A commit-and-prove func-
tionality or resource CPR,n is parameterized by a k-ary
relation R and the number n of bits that can be stored within
the resource. We denote by xi the value stored at position i.
Initially, xi = ⊥ for all positions i. The behavior is as follows:

1) On input (store, b, i), b ∈ {0, 1} and i ∈ [1, n], at
interface P , store b at position i if the value is undefined,
i.e., set xi ← b and output (stored, i) at interface V .

2) On input (open, i) at interface P , if the value at position
i is defined, i.e., xi 6= ⊥, output (xi, i) at interface V .
Otherwise, ignore the input.

3) On input (prove, i1, . . . , ik) at interface P , output
(accept, i1, . . . , ik) at interface V if (and only if) all
values xi1 , . . . , xik are defined and R(xi1 , . . . , xik) = 1.
Otherwise, do not output anything.

III. FORMALIZATION OF THE PROBLEM

In this work, we assume commit-and-prove resources where
the relation R denotes equality of two bits. We denote this
resource by CP=,n. The goal of a construction is to realize
a stronger commit-and-prove functionality which in addition
supports proving that two bits are different. We denote this
resource by CP6=,n′ . We show in the next section that any
protocol that realizes CP6=,n′ , requires an overhead of at least

Figure 1: Attaching converters to a resource.

2` additional commitments per inequality proof in order to get
the cheating probability down to 2−`.

To prove this lower bound, we focus on the particular
problem of realizing CP6=,2, i.e., a resource that can store
exactly the two secret bits and prove that they are different,
from CP=,n+2, i.e., from a resource that can store the two
secret bits, but also can store n “helper bits” that can be used
by a protocol to implement the inequality proof.

A. The Construction Notion of Constructive Cryptography

A construction is achieved by means of a protocol be-
tween the prover Peggy and the verfier Vic. A protocol π
is modeled as a pair of converters (πP , πV) that specify the
actions for both parties. As illustrated in Figure 1, each party
attaches its converter to the interfaces of the assumed resource
R = [CH,CP=,n+2], which consists of a commit-and-prove
functionality and a standard communication channel CH (as
in [Mau11]). Peggy’s interface P is on the left and Vic’s
interface V on the right. Attaching the converters changes
the local behavior at the interfaces and hence yields the new
resource S = πP [CH,CP=,n+2]πV . To show that a protocol
constructs CP 6=,2 from CP=,n+2 and CH, we have to prove
three conditions that are derived from the general construction
notion of constructive cryptography in [MR11], [Mau11].
Random experiments. The three conditions make statements
about random experiments DR in which a distinguisher D
plays the role of an interactive environment for some re-
source R. The distinguisher D is a system that provides inputs
to the connected resource and receives the outputs generated
by the resource. For example, D(πP [CH,CP=,n+2]πV) is
the experiment that captures “the protocol in action” in the
environment provided by D. More concretely, in each step of
these experiments, the distinguisher provides an input to one
of the interfaces and observes the output that is generated in
reaction to that input. This process continues iteratively by
having D providing adaptively the next input and receiving
the next output. The experiment ends by D outputting a bit 0
or 1 that indicates its guess to which system it is connected.
The distinguishing advantage of D for two resources R and S
is defined as ∆D(R,S) := |Pr [DR = 1]− Pr [DS = 1] |.

The three conditions of constructive cryptography in our
two-party setting are depicted in Figure 2. The first condition
places a bound on the advantage of any distinguisher D in
distinguishing the left system πP [CH,CP=,n+2]πV and the
right system CP6=,2, i.e., on

∆D(πP [CH,CP=,n+2]πV ,CP6=,2). (1)

Figure 2: Illustration of the construction notion.

It ensures that the constructed resource is achieved if both
parties honestly apply the protocol.
Simulating the actions of a dishonest prover. The second
condition requires that all attacks of a dishonest prover, who
does not attach its converter but uses its interface to the
assumed resource to follow an arbitrary strategy, can be
translated by means of a simulator σP to an attack on the
constructed resource. Turned around, since the resource on the
right does not allow the prover to cheat by definition, there
cannot be a successful attack in the real world depicted on the
left. Formally, the condition places, for any distinguisher D,
a bound on the advantage

∆D([CH,CP=,n+2]πV , σPCP6=,2). (2)

Simulating the actions of a dishonest verifier. The third con-
dition captures that any attack of dishonest Vic in the real
world (on the left), who tries to provoke Peggy to reveal more
information on the committed bits beyond the fact that they are
not equal, can be translated by a simulator σV to an attack on
the constructed resource. Since the constructed resource does
not reveal anything beyond the validity of the statement to Vic,
there cannot be a successful attack on the protocol on the left-
hand side. The third condition places, for any distinguisher D,
a bound on the advantage

∆D(πP [CH,CP=,n+2],CP6=,2σV). (3)

B. General Protocol Structure

To prevent cheating, Vic needs to demand from Peggy to
assure to him certain properties about the idealized commit-
ments stored in CP=,n+2: for example showing that a certain
value b is stored at position i by opening it, or proving equality
of two positions. We now provide the necessary definitions.

Definition 2 (Instructions, actions, challenges). Let n′ ∈ N.
We define the set of instructions In′ = OP ∪ EQ, where

OP = {(open(i); b) : i ∈ [n′] ∧ b ∈ {0, 1}}
EQ = {(equal, i, j) : i, j ∈ [n′]} .

An action a is a non-empty subset of instructions, i.e., a ∈ An′
where An′ is the set of all possible actions 2In′ \ {∅}. A
challenge c is a non-empty set of actions. The challenge space
C of a protocol is a set of challenges (see Definition 4 below).

Definition 3 (Matching instructions). Let n′ ∈ N. For a vector
X ∈ {0, 1,⊥}n′ and an instruction α, we define the predicate
match as follows: match(X,α) = 1 if and only if

1.) α = (open(i); b), i ≤ n′, xi 6= ⊥, and xi = b
or

2.) α = (equal, i, j), i, j ≤ n′, xi, xj 6= ⊥, and xi = xj .

For an action a, the induced predicate (abusing a bit of
notation) match is defined as follows: match(X, a) = 1 if
and only if ∀α ∈ a : match(X,α) = 1.

Definition 4 (Protocol class Γ). A protocol (πP , πV) belongs
to the protocol class Γ of 3-round public coin protocols
that assume resource CP=,n+2 and prove inequality of two
committed input bits, if they have the following structure:
Setup: The protocol is parameterized by an arbitrary challenge
space C as in Definition 2 for n′ = n+ 2. For simplicity, we
assume Peggy stores the two input bits, denoted xn+1 and
xn+2, at locations n+ 1 and n+ 2 of CP=,n+2.
Round 1: Peggy chooses a vector of additional values
Xn = (x1, . . . , xn) according to a distribution Dxn+1,xn+2

on {0, 1,⊥}n. Peggy stores each additional bit xi 6= ⊥ at
position i of resource CP=,n+2. The contents of CP=,n+2 can
be described by Xn+2 := (Xn, xn+1, xn+2).
Round 2: Vic chooses a challenge c ∈ C uniformly at random
and sends c, i.e., a description of it, to Peggy via channel CH.
Round 3: Peggy chooses an action a from the given chal-
lenge c according to a distribution D′Xn+2,c

on the set
{a ∈ c | match(Xn+2, a) = 1} (and aborts in case this set is
empty). Peggy then announces a towards Vic and executes each
instruction α contained within the chosen action. This means
the following: For each α = (open(i); b) Peggy instructs
CP=,n+2 to open the bit at position i towards Vic, who
verifies that the output of CP=,n+2 equals (b, i). For each
α = (equal, i, j) Peggy instructs CP=,n+2 to assure that the
bits i and j are equal, and Vic verifies that the output of
CP=,n+2 equals (accept, i, j). If any of Vic’s checks do not
succeed, or if he observes that Peggy stores new bits in the
resource, he aborts. Vic accepts if he did not abort in round 3.

Definition 5 (View). The view of an execution of a protocol
π ∈ Γ with n additional commitments as in Definition 4
with an honest prover, consists of all outputs generated by
CP=,n+2 in round 1 (notifications of store-commands), round
3 (openings and equality proofs), and the action a chosen by
the prover. We denote by ViewπXn+2

(c) the random variable,
over the randomness in round 3, that describes the view as
a function of the chosen challenge c and conditioned on the
contents Xn+2 of CP=,n+2 (cf. Definition 4). We denote by
Viewπ the set of all possible views.

C. Important Combinatorial Properties

Definition 6 (Completeness). Let π ∈ Γ be a protocol with n
additional commitments as in Definition 4. Let xn+1 6= xn+2

denote the two secret bits. We say π is complete if for all
Xn ∈ supp(Dxn+1,xn+2

) and all challenges c ∈ C, we have
that |{a ∈ c | match(Xn+2, a) = 1}| > 0 (for Xn+2 defined
as in Definition 4).

If the above is fulfilled, the distinguishing advantage in
Equation (1) is zero and vice-versa.

Definition 7 (Soundness). Let π ∈ Γ be a protocol with n
additional commitments as per Definition 4. Let CX := {c ∈
C | ∃a ∈ c : match(X, a) = 1} and let X := {Xn+2 ∈
{0, 1}n+2 | xn+1 = xn+2}. The soundness of π is defined as
sound(π) := 1

|C| ·maxX∈X |CX |.

Elements of set X in Definition 7 describe the strategies
with which a dishonest prover can try to cheat in case xn+1 =
xn+2. A cheating attempt is only successful, if the tuple stored
in round 1 of a protocol run can be used to convince the verfier
in round 3. Hence, sound(π) upper bounds the distinguishing
advantage in Equation (2) and vice-versa.

Definition 8 (Zero-Knowledge). Let π ∈ Γ be a protocol with
n additional commitments as in Definition 4. The protocol π
is zero-knowledge if ∀c ∈ C ∀v ∈ Viewπ :∑

Xn∈supp(D0,1)

D0,1(Xn) · Pr[Viewπ(Xn,0,1)(c) = v]

=
∑

Xn∈supp(D1,0)

D1,0(Xn) · Pr[Viewπ(Xn,1,0)(c) = v].

The above property directly implies a simulator σV that can
simulate the view perfectly without knowledge of the secret
bits yielding advantage zero in Equation (3). The reverse is
also true: the existence of a perfect simulator σV implies the
above condition.

IV. EFFICIENCY LOWER BOUNDS

In this section, we prove a lower bound for inequality proofs
and show the implications on more complex relations.

Theorem 1 (Lower bound, Main theorem). A protocol π ∈ Γ
which is complete and zero knowledge, and which proves the
inequality of two secret bits xn+1, xn+2 using (at most) n
additional commitments, has soundness sound(π) ≥ 2−b

n
2 c.

We first state two technical lemmata.

Definition 9. Let n ∈ N and let A ⊆ An+2 be a set of
actions and let M be a multiset with elements a ∈ A and let
X := {X ∈ {0, 1}n+2 | xn+1 = xn+2}. Then we define the
following quantity: s(M) := maxX∈X

∑
a∈M match(X, a).

Lemma 1. Let n ∈ N. Let Ares ⊆ An+2 be the set of
actions a that satisfy the following two requirements:
1.) The action a contains exactly n instructions, i.e.,

a = {αa1 , . . . , αan}.
2.) ∀i : αai ∈ {(open(i); b), (equal, i, n + k)} for some

b ∈ {0, 1} and k ∈ {1, 2}.
Let further l ∈ N, let Xn ∈ {0, 1}n, and let (xn+1, xn+2) ∈
{(0, 1), (1, 0)}. Consider any set A ⊆ Ares such that for all
a ∈ A, it holds that match((Xn, xn+1, xn+2), a) = 1.
Then, the size |M | of any multiset M ⊆ A with s(M) ≤ l is
bounded by l · 2bn2 c.

Proof. We prove the lemma for the case (xn+1, xn+2) =
(0, 1). The case (xn+1, xn+2) = (1, 0) is symmetric and
omitted. Observe that |A| ≤ 2n. For the sake of the argument,
assume that the bitstring Xn has k zeros and n−k ones, where

k ≤ bn2 c. The proof is analogous for k being the number of
ones of Xn. We define an equivalence relation on set A:

a1 ∼ a2 :↔ ∃Yn ∈ {0, 1}n :

match((Yn, 1, 1), a1) = match((Yn, 1, 1), a2) = 1.

It is straightforward to see that this relation is symmetric,
reflexive, and transitive. We further define the following two
sets of actions: S0 = {(open(i); 0), (equal, i, n+ 1) : i ∈ [n]}
and S1 = {(open(i); 1), (equal, i, n+ 2) : i ∈ [n]}. We argue
that for any two actions a1, a2 ∈ A, a1 ∼ a2 is equivalent to
the following condition:

∀i ∈ [n] : αa1i ∈ S0 ∧ αa2i ∈ S0 → αa1i = αa2i . (4)

To see this, assume that there exists an i ∈ [n] : αa1i ∈
S0 ∧ αa2i ∈ S0 ∧ αa1i 6= αa2i . Then αa1i = (open(i); 0)
and αa2i = (equal, i, n + 1) or vice versa. But if ∃Yn :
match((Yn, 1, 1), a1) = 1 then yi = 0, and if ∃Yn :
match((Yn, 1, 1), a2) = 1 then yi = 1. Hence, a1 6∼ a2.

Conversely, define Yn bit-wise as follows: if αa1i , α
a2
i ∈ S1,

choose yi = 1. If αa1i = αa2i = (open(i); 0), choose yi = 0.
And finally, if αa1i = αa2i = (equal, i, n+ 1), choose yi = 1.
Other combinations of instructions αa1i and αa2i do not occur
by definition of the set A. Now, due to Equation (4), we
can bound the number of partitions induced by the above
equivalence relation on A. To this end, consider an arbitrary
action a ∈ A. We know that match((Xn, 0, 1), a) = 1 and we
conclude that for a = {αa1 , . . . , αan}, αai ∈ Sb if and only if
b = xi. Put differently, a partition is uniquely characterized
by specifying, for each position i where xi = 0, which of
the two possible actions in S0 is chosen as αai (the other
positions do not matter). Since this characterizes a partition,
the number of partitions is at most 2k. Consider now a multiset
M ⊆ A with s(M) ≤ l. We immediately observe that∑
a∈M match((Yn, 1, 1), a) ≤ l for all Yn ∈ {0, 1}n. This

implies that no more than l actions per partition of A can be
contained in M . The largest set M that fulfills this requirement
has size |M | ≤ l ·2k ≤ l ·2bn2 c, concluding the statement.

Lemma 2. Let n ∈ N. Let Azk ⊆ An+2 be the set of actions a
that satisfy the following requirement:
1.) The action a does neither contain (open(n + 1); b′) nor

(open(n+ 2); b′) for some b′ ∈ {0, 1}.
2.) If there exists an i ∈ [n] such that (open(i); b) ∈ a

for some b, then, for any k > 0, ij ∈ [n + 2]
(j = 1 . . . k), action a does not contain any subset
of the form {(equal, i1, i2), . . . , (equal, ik−1, ik)}, where
i ∈ {i1, i2} ∧ ((ik−1 > n) ∨ (ik > n)).

Let further l ∈ N, let Xn ∈ {0, 1}n, and let (xn+1, xn+2) ∈
{(0, 1), (1, 0)}. Consider any set A ⊆ Azk such that for all
a ∈ A, it holds that match((Xn, xn+1, xn+2), a) = 1.
Then, the size |M | of any multiset M ⊆ A with s(M) ≤ l is
bounded by l · 2bn2 c.

Proof. As above, we give a proof for the case (xn+1, xn+2) =
(0, 1) (the other case is symmetric). We first transform the
assumed multiset M according to the following procedure:

Transformation T(M)

Input: Multiset M ⊆ Azk

M ′ ← empty multiset
for each a ∈M do
a′ ← empty action
Partition the set of indices: i, j ∈ [n] are in the same partition if and only if:

There is a subset {(equal, i1, i2), . . . , (equal, il−1, il)} ⊆ a,
with i1, . . . , il ∈ [n], l > 0, i ∈ {i1, i2} and j ∈ {il−1, il}.

for each partition P ⊆ [n] do
if there is (equal, i, j) ∈ a, with i ∈ P, j ∈ {n+ 1, n+ 2} then

for each k ∈ P do
Add the instruction (equal, k, j) to a′.

else if there is (equal, j, i) ∈ a, with i ∈ P, j ∈ {n+1, n+2} then
for each k ∈ P do

Add the instruction (equal, k, j) to a′.
else

for each k ∈ P do
Add the instruction (open(i); xi) to a′.

Add action a′ to multiset M ′

return M ′

The following four important properties hold:
1.) T(M) ⊆ Ares ⊆ Azk; 2.) match((Xn, 0, 1), a′) = 1

for each a′ ∈ T(M); 3.) s(T(M)) ≤ s(M) ≤ l; and
4.) |T(M)| = |M |. By properties 1.)-3.) and Lemma 1, we
conclude that |T(M)| ≤ l · 2bn2 c. By property 4.), we can
conclude that |M | ≤ l · 2bn2 c. This proves the statement.

Let us justify properties 1.) to 4.): To see 1.), observe
that match((Xn, 0, 1), a) = 1 implies that if a contains
an instruction (open(i); b) or (equal, i, n + 1 + b) for some
i ∈ P, b ∈ {0, 1}, then b = xi. Since M ⊆ Azk, a can
not contain both. Hence, the transformation is well-defined in
each partition P . Each action a ∈ M is thus transformed
into an action a′ ∈ Ares. To see 2.) note that for each
a ∈ M we have match((Xn, 0, 1), a) = 1, and we design a′

to either contain open instructions to bits of Xn, or equality
proofs that are already implicitly required by a. To see 3.),
further observe that for all b ∈ {0, 1} and Yn ∈ {0, 1}n,
match((Yn, b, b), a

′) ≤ match((Yn, b, b), a). Thus, quantity
s(·) cannot increase. Property 4.) holds since for each a ∈M ,
exactly one action is inserted into multiset M ′ = T(M).

Proof of Main Theorem. Given an arbitrary protocol π ∈ Γ
with challenge space C, let us define l as the maximum
number of challenges that a dishonest prover can simulta-
neously prepare for, i.e., l := maxX∈X |CX |, where, as in
Definition 7, CX := {c ∈ C | ∃a ∈ c : match(X, a) = 1}
and X := {X ∈ {0, 1}n+2 | xn+1 = xn+2}. To lower
bound the soundness sound(π) = l

|C| , we upper bound the
size of C using the previous Lemmata as follows: Let us fix
Xn ∈ supp(D0,1). By Definition 6, for any challenge c ∈ C the
prover is able to choose a ∈ c with match((Xn, 0, 1), a) = 1
with strictly positive probability. We call such an action a a
successful answer to challenge c. From C we construct the
multiset M containing for each challenge c ∈ C exactly one
of those successful answers to the challenge. Hence, M ⊆ A,
where A ⊆ {a ∈

⋃
c∈C c | match((Xn, 0, 1), a) = 1}. Since

π is zero-knowledge, we must have M ⊆ Azk, as otherwise,
with non-zero probability, the values of the secret bits would
be revealed by the honest prover. By construction, we have
|M | = |C| and s(M) ≤ l. By Lemma 2 we get |M | ≤ l ·2bn2 c
and conclude that sound(π) = l

|C| ≥ 2−b
n
2 c.

Our result can be generalized to more complex relations. We
show this in the following corollary for the NAND relation.
Analogous corollaries can be made for relations XOR or NOR.

Corollary 1 (Lower bound, complex relations). Assume a
protocol class Γ′ defined like Γ, but instead of inequality of
two bits, the NAND relation of three bits xn+1, xn+2, xn+3

is proven. Let the protocol π ∈ Γ′ be complete and zero-
knowledge and use (at most) n − 1 additional commitments.
Then π has soundness at least 2−b

n
2 c.

Proof. Note that a 6= b if and only if (a, a, b) satisfies the
NAND relation. Assume there is a complete, zero-knowledge
protocol π ∈ Γ′ that uses n − 1 additional commitments and
has soundness smaller than 2−b

n
2 c. We construct a protocol

π′ ∈ Γ for inequality that uses n additional commitments
and has soundness sound(π′) < 2−b

n
2 c, in contradiction to

Theorem 1. The protocol π′ to prove inequality of two bits
xn+1, xn+2 is as follows. First, Peggy additionally commits
to a bit xn = xn+1 and then runs π on the three input values
xn, xn+1, xn+2 and finally proves equality of xn and xn+1

to Vic in zero-knowledge. The protocol π′ uses no more than
n additional commitments, is complete and zero-knowledge,
and has the same soundness as π.

REFERENCES

[BCC87] G. Brassard, D. Chaum, and C. Crepeau. Minimum disclosure
proofs of knowledge. Computer and System Sciences 37, 1987.

[BFOR90] D. Beaver, J. Feigenbaum, R. Ostrovsky, and P. Rogaway.
Security with low communication overhead. CRYPTO, 1990.

[BFS90] D. Beaver, J. Feigenbaum, and V. Shoup. Hiding instances in
zero-knowledge proof systems. CRYPTO, 1990.

[BOGG+90] M. Ben-Or, O. Goldreich, S. Goldwasser, J. Hastad, J. Kilian,
S. Micali, and P. Rogaway. Everything provable is provable in
zero-knowledge. CRYPTO, 1990.

[Can01] R. Canetti. Universally composable security: A new paradigm
for cryptographic protocols. FOCS, 2001.

[CCD88] D. Chaum, C. Crepeau, and I. Damgard. Multiparty uncondi-
tionally secure protocols. In STOC, 1988.

[CL02] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and
application to efficient revocation of anonymous credentials. In
CRYPTO, 2002.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally
composable two-party and multi-party secure computation. In
STOC, 2002.

[CvHP91] D. Chaum, E. van Heijst, and B. Pfitzmann. Cryptographically
strong undeniable signatures, unconditionally secure for the
signer. In CRYPTO, 1991.

[GMR] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge com-
plexity of interactive proof systems. SIAM J. Comput. 18(1).

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play
any mental game - a completeness theorem for protocols with
honest majority. STOC, 1987.

[Gol] O. Goldreich. Foundations of Cryptography: Volume 1.
[Kil88] J. Kilian. Founding cryptography on oblivious transfer. In

STOC, 1988.
[Kil92] J. Kilian. A note on efficient zero-knowledge proofs and

arguments. STOC, 1992.
[KMO89] J. Kilian, S. Micali, and R. Ostrovsky. Minimum resource zero

knowledge proofs. In FOCS, 1989.
[LLX07] J. Li, N. Li, and R. Xue. Universal accumulators with efficient

nonmembership proofs. In ACNS, 2007.
[Mau02] U. Maurer. Indistinguishability of random systems. EURO-

CRYPT, 2002.
[Mau11] U. Maurer. Constructive cryptography - a new paradigm for

security definitions and proofs. TOSCA, 2011.
[MR11] U. Maurer and R. Renner. Abstract cryptography. In ICS, 2011.

	Introduction
	A Folklore Protocol for Inequality

	Preliminaries and Notation
	Commit-and-Prove Functionality

	Formalization of the Problem
	The Construction Notion of Constructive Cryptography
	General Protocol Structure
	Important Combinatorial Properties

	Efficiency Lower Bounds
	References

