
Bitcoin as a Transaction Ledger:
A Composable Treatment∗

Christian Badertscher1, Ueli Maurer2, Daniel Tschudi†3, and Vassilis Zikas‡4

1ETH Zurich,

.

badi@inf.ethz.ch
2ETH Zurich,

.

maurer@inf.ethz.ch
3Aarhus University,

.

tschudi@cs.au.dk
4University of Edinburgh & IOHK,

.

vzikas@inf.ed.ac.uk

November 16, 2018

Abstract

Bitcoin is one of the most prominent examples of a distributed cryptographic protocol
that is extensively used in reality. Nonetheless, existing security proofs are property-based,
and as such they do not support composition.

In this work we put forth a universally composable treatment of the Bitcoin protocol. We
specify the goal that Bitcoin aims to achieve as a ledger functionality in the (G)UC model of
Canetti et al. [TCC’07]. Our ledger functionality is weaker than the one recently proposed
by Kiayias, Zhou, and Zikas [EUROCRYPT’16], but unlike the latter suggestion, which is
arguably not implementable given the Bitcoin assumptions, we prove that the one proposed
here is securely UC realized under standard assumptions by an appropriate abstraction of
Bitcoin as a UC protocol. We further show how known property-based approaches can be
cast as special instances of our treatment and how their underlying assumptions can be cast
in (G)UC without restricting the environment or the adversary.

∗An earlier version of this work appeared as an extended abstract in the proceedings of the 37th International
Cryptology Conference (CRYPTO 2017) available at https://doi.org/10.1007/978-3-319-63688-7_11. This
new version constitutes a major makeover (created by C. Badertscher). In particular, the structure has been
improved in order to convey the model and the analysis in a cleaner way.
†Work done while author was at ETH Zurich.
‡Work done while author was at RPI.

1

mailto:badi@inf.ethz.ch
mailto:maurer@inf.ethz.ch
mailto:tschudi@cs.au.dk
mailto:vzikas@inf.ed.ac.uk

Contents

1 Introduction

.

3
1.1 Bitcoin as a Service for Cryptographic Protocols

.

. 3
1.2 Our Contributions

.

. 5
1.3 Overview of Bitcoin and Related Work

.

. 6

2 Preliminaries

.

8
2.1 Overview of the UC Framework

.

. 8
2.2 Large Deviation Bounds

.

. 12

3 Principles of a Composable Model for Blockchain Protocols in the Permis-
sionless Setting

.

12
3.1 Functionalities with Dynamic Party Sets

.

. 13
3.2 Modeling Network Assumptions

.

. 14
3.3 Modeling Time and Clock-dependent Protocol Execution

.

. 16
3.4 Modeling Hash Queries

.

. 18
3.5 Assumptions as UC-Functionality Wrappers

.

. 18

4 The Basic Transaction-Ledger Functionality

.

20
4.1 Introduction and Overview

.

. 20
4.2 Specific Defining Features

.

. 21

5 Bitcoin as a UC Protocol

.

25
5.1 Basics of Bitcoin

.

. 25
5.2 Overview and Modeling Decisions

.

. 29
5.3 The Formal Protocol Description

.

. 30

6 The Bitcoin Ledger

.

34

7 Security Analysis

.

36
7.1 Overview

.

. 36
7.2 First Proof Step

.

. 36
7.3 Second Proof Step

.

. 42
7.4 Improving the Chain-Quality Parameter

.

. 56

8 Special Cases of our Model and Functionality Wrappers

.

57
8.1 Special Cases and Existing Works

.

. 58
8.2 Restrictions and Composition

.

. 60

9 Modular Constructions based on the Ledger

.

60
9.1 A Stronger Ledger with Account Management

.

. 62

A Further Details on the Model

.

69
A.1 Unicast Channels

.

. 69
A.2 On implementing a multicast network

.

. 69

B Further Details on the Bitcoin Ledger

.

70

C Further Details on Modularization of the Ledger Protocol

.

73
C.1 The Modular Ledger Protocol

.

. 73
C.2 On the Soundness of the Modular Decomposition

.

. 74

D The Simulator of the Main Theorem

.

76

1 Introduction

Since Nakamoto first proposed Bitcoin as a decentralized cryptocurrency [Nak08

.

], several works
have focused on analyzing and/or predicting its behavior under different attack scenarios [BDOZ11

.

,
ES18

.

, Eya15

.

, Zoh15

.

, SZ15

.

, KKKT16

.

, PS17

.

]. However, a core question remained:

What security goal does Bitcoin achieve under what assumptions?

An intuitive answer to this question was already given in Nakamoto’s original white pa-
per [Nak08

.

]: Bitcoin aims to achieve some form of consensus on a set of valid transactions. The
core difference of this consensus mechanism with traditional consensus [LSP82

.

, Lam98

.

, Lam02

.

,
Rab83

.

] is that it does not rely on having a known (permissioned) set of participants, but everyone
can join and leave at any point in time. This is often referred to as the permissionless model.
Consensus in this model is achieved by shifting from the traditional assumptions on the fraction
of cheating versus honest participants, to assumptions on the collective computing power of the
cheating participants compared to the total computing power of the parties that support the
consensus mechanism. The core idea is that in order for a party’s action to affect the system’s
behavior, it needs to prove that it is investing sufficient computing resources. In Bitcoin, these
resources are measured by means of solutions to a presumably computation-intensive problem.

Although the above idea is implicit in [Nak08

.

], a formal description of Bitcoin’s goal had
not been proposed or known to be achieved (and under what assumptions) until the recent
works of Garay, Kiayias, and Leonardos [GKL15

.

] and Pass, Seeman, and shelat [PSS17

.

]. In a
nutshell, these works set forth models of computation and, in these models, an abstraction of
Bitcoin as a distributed protocol, and proved that the output of this protocol satisfies certain
security properties, for example the common prefix [GKL15

.

] or consistency [PSS17

.

] property.
This property confirms—under the assumption that not too much of the total computing power
of the system is invested in breaking it—a heuristic argument used by the Bitcoin specification:
if some block makes it deep enough into the blockchain of an honest party, then it will eventually
make it into the blockchain of every honest party and will never be reversed.1

.

In addition to
the common prefix property, other quality properties of the output of the abstracted blockchain
protocol were also defined and proved. A more detailed description of the security properties
and a comparison of the assumptions in [GKL15

.

] and [PSS17

.

] is included in Section 8.1

.

.

1.1 Bitcoin as a Service for Cryptographic Protocols

Evidently, the main use of the Bitcoin protocol is as a decentralized monetary system with a
payment mechanism, which is what it was designed for. And although the exact economic forces
that guide its sustainability are still being researched, and certain rational models predict it is not
a stable solution, it is a fact that Bitcoin has not met any of these pessimistic predictions for several
years and it is not clear it ever will do. And even if it does, the research community has produced
and is testing several alternative decentralized cryptocurrencies, e.g., [MGGR13

.

, SCG+14

.

, But13

.

],
that are more functional and/or resilient to theoretic attacks than Bitcoin. Thus, it is reasonable
to assume that decentralized cryptocurrencies are here to stay.

This leads to the natural questions of how one can use this new reality to improve the
security and/or efficiency of cryptographic protocols. First answers to this question were given

1In the original Bitcoin heuristic “deep enough” is defined as six blocks, whereas in these works it is defined as
linear in an appropriate security parameter.

3

in [ADMM14

.

, ADMM16

.

, BK14

.

, KVV16

.

, KB16

.

, KMB15

.

, KB14

.

, AD15

.

] where it was shown how
Bitcoin can be used as a punishment mechanism to incentivize honest behavior in higher level
cryptographic protocols such as fair lotteries, poker, and general multi-party computation.

But in order to formally define and prove the security of the above constructions in a widely
accepted cryptographic framework for multi-party protocols, one needs to define what it means
for these protocols to be run in a world that gives them access to the Bitcoin network as a
resource to improve their security. In other words, the question now becomes:

What functionality can Bitcoin provide to cryptographic protocols?

To address this question, Bentov and Kumaresan [BK14

.

] introduced a model of computation
in which protocols can use a punishment mechanism to incentivize adversaries to adhere to their
protocol instructions. As a basis, they use the universal composition framework of Canetti [Can01

.

],
but the proposed modifications do not support composition and it is not clear how standard UC
cryptographic protocols can be cast as protocols in that model.

In a different direction, Kiayias, Zhou, and Zikas [KZZ16

.

] connected the above question with
the original question of Bitcoin’s security goal. More concretely, they proposed identifying the
resource that Bitcoin (or other decentralized cryptocurrencies) offers to cryptographic protocols as
its security goal, and expressing it in a standard language compatible with the existing literature
on cryptographic mulit-party protocols. More specifically, they modeled the ideal guarantees as
a transaction-ledger functionality in the universal composition framework. To be more precise,
the ledger of [KZZ16

.

] is formally a global setup in the (extended) GUC framework of Canetti et
al. [CDPW07

.

].
In a nutshell, the ledger proposed by [KZZ16

.

] corresponds to a trusted third party which keeps
a state of blocks of transactions and makes it available, upon request, to any party. Furthermore,
it accepts messages/transactions from any party and records them as long as they pass an
appropriate validation procedure that depends on the above publicly available state as well
as other registered messages. Periodically, this ledger puts the transactions that were recently
registered into a block and adds them into the state. The state is available to everyone. As proved
in [KZZ16

.

], giving multi-party protocols access to such a transaction-ledger functionality allows
for formally capturing, within the composable (G)UC framework, the mechanism of leveraging
security loss with coins. The proposed ledger functionality guarantees in an ideal manner all
properties that one could expect from Bitcoin and encompasses the properties in [GKL15

.

, PSS17

.

].
Therefore, it is natural to postulate that it is a candidate for defining the security goal of Bitcoin
(and potentially other decentralized cryptocurrencies). However, the ledger functionality proposed
by [KZZ16

.

] was not accompanied by a security proof that any of the known cryptocurrencies
implements it.

However, as we show, despite being a step in the right direction, the ledger proposed in [KZZ16

.

]
cannot be realized under standard assumptions about the Bitcoin network. On the positive side,
we specify a new transaction ledger functionality which still guarantees all properties postulated
in [GKL15

.

, PSS17

.

], and prove that a reasonable abstraction of the Bitcoin protocol implements
this ledger. In our construction, we describe Bitcoin as a UC protocol which generalizes both
the protocols proposed in [GKL15

.

, PSS17

.

]. Along the way we identify the assumptions in each
of [GKL15

.

, PSS17

.

] by devising a compound way of capturing such assumptions in UC, which
enables us to compare their strengths.

4

1.2 Our Contributions

We put forth the first universally composable (simulation-based) proof of security of Bitcoin in
the (G)UC model of Canetti et al. [CDPW07

.

]. We observe that the ledger functionality proposed
by Kiayias et al. [KZZ16

.

] is too strong to be implemented by the Bitcoin protocol—in fact, by
any protocol in the permissionless setting, which uses network assumptions similar to Bitcoin.
Intuitively, the reason is that the functionality allows too little interference of the simulator with
its state, making it impossible to emulate adversarial attacks that result, e.g., in the adversary
inserting only transactions coming from parties it wants or that result in parties holding chains
of different length.

Therefore, we propose an alternative ledger functionality which shares certain design properties
with the proposal in [KZZ16

.

] but which can be provably implemented by the Bitcoin protocol.
The ledger is parametrized by a set of parameters, for example by a generic transaction validation
predicate which enables it to capture decentralized blockchain protocols beyond Bitcoin. Our
functionality allows for parties/miners to join and leave the computation and allows for adaptive
corruption.

We formally prove for which choice of parameters the proposed ledger functionality is
implemented by Bitcoin under the assumption that miners which deviate from the Bitcoin
protocol do not control a majority of the total hashing power at any point. To this end, we
describe an abstraction of the Bitcoin protocol as a UC protocol. Casting Bitcoin in UC allows
to precisely model the protocol assumptions, for example the knowledge of the network delay
and the number of hash-function calls per round. We model Bitcoin to work over a network
which basically consists of bounded-delay channels. We explain how such a network could be
implemented by running the message-diffusion mechanism of the Bitcoin network (which is run
over a lower level network of unicast channels). Intuitively, this network is built by every miner,
upon joining the system, choosing some existing miners of its choice to use them as relay-nodes.
Similar to the protocol in [PSS17

.

], the miners are not aware of (an upper bound on) the actual
delay that the network induces. As we argue, this is a strictly weaker model assumption than
assuming that the network delay is publicly known such as in [GKL15

.

] (cf. Section 3.2

.

).
Our security proof proposes a useful modularization of the Bitcoin protocol. Concretely, we

first identify the part of the Bitcoin code which intuitively corresponds to the lottery aspect,
provide an ideal UC functionality that reflects this lottery aspect, and prove that this part of the
Bitcoin code realizes the proposed functionality. We then analyze the remainder of the protocol
in the simpler world where the respective code that implements the lottery aspect is replaced by
invocations of the corresponding functionality. Using the UC composition theorem, we can then
immediately combine the two parts into a proof of the full protocol.

As is the case with the so-called backbone protocol from [GKL15

.

] our above UC protocol
description of Bitcoin relies only on proofs of work and not on digital signatures. As a result, it
implements a somewhat weaker ledger, which does not guarantee that transactions submitted
by honest parties will eventually make it into the blockchain.2

.

As a last result, we show that
(similarly to [GKL15

.

]) by incorporating public-key cryptography, i.e., taking signatures into
account in the validation predicate, we can implement a stronger ledger that ensures that
transactions issued by honest users—i.e., users who do not sign contradicting transactions and
who keep their signing keys for themselves—are guaranteed to be eventually included into the
blockchain. The fact that our protocol is described in UC makes this a straight-forward, modular

2We formulate a weakened guarantee, which we then amplify using digital signatures.

5

construction using the proposed transaction ledger as a hybrid. In particular, we do not need
to consider the specifics of the Bitcoin protocol in the proof of this step. This also allows us to
identify the maximum (worst-case) delay a user needs to wait before being guaranteed to see its
transaction on the blockchain and be assured that it will not be inverted.

1.3 Overview of Bitcoin and Related Work

High-level introduction. At a high level, the Bitcoin protocol works as follows: The parties
(also referred to as miners) collect and circulate messages (transactions) from users of the network,
check that they satisfy some commonly agreed validity property, put the valid transactions into
a block, and then try to find appropriate metadata such that the hash of the block-contents
and this metadata is of a specific form—concretely that, parsed as a binary string, it has a
sufficient number of leading zeros. This is often referred to as a solving a mining puzzle and
the intuition behind it is that the best strategy for finding such metadata is supposedly by
trial-and-error. Thus, informally, the probability that some party finds appropriate metadata
increases proportional to the number of times some party attempts a hash computation. And the
more leading zeros we require from a correct puzzle solution the harder it is to find one, since
the solution space of the puzzle is smaller.

Intuitively, a successful solution can be seen as a proof-of-work (POW) that testifies to the
fact that the miner presenting has in fact tried a large number of hash queries. Once a miner
finds such a solution, he puts it into a block and sends it to the other miners. The miners who
receive it check that it satisfies some validity property (see below) and if so create new metadata
using the hash of this (newly minted) block and put this metadata together with transactions
that are still valid into a new block and start working on solving the puzzle induced by this
block. Since a block is rendered valid by a miner only if it includes a hash-pointer to a previous
valid block in the view of this miner, the view consists of a set of linked lists, namely a sequence
of valid blocks each with a hash-pointer to its predecessor in the list. Each such list is called a
blockchain or simply chain. All lists have a common starting point which is the so-called genesis
block of Bitcoin. Hence, the entire view of a miner could be modeled as a tree, where the root
is the genesis block, the nodes are valid blocks, and the hash-pointers correspond to (directed)
edges.

The works of Garay, Kiayias, and Leonardos [GKL15

.

] and that of Pass, Seeman, and she-
lat [PSS17

.

] contain the first formal specifications and security proofs of the Bitcoin protocol. The
proved security in these works is property-based. They prove that conditioned on the largest part
of the network following the Bitcoin protocol (in fact an abstraction and generalization thereof),
the output of this so-called backbone protocol satisfies three properties with overwhelming
probability. We only informally describe these properties here. We will meet their formalization
when analyzing the Bitcoin protocol in UC. In the following, let t1 ≤ t2 be two points in time
during the protocol execution.

• Common prefix: Any two valid chains Ct1 , Ct2 adopted by some honest parties at times t1
and t2, respectively, share a large common prefix. This is typically quantified by specifying
a value k (the common-prefix parameter) and the size of the common prefix is required to
be at least |Ct1 | − k.

• Chain growth: For time-intervals [t1, t2] of reasonable extent, the increase in number of
blocks —measured as the difference between any two valid chains Ct1 and Ct2 adopted by
some honest parties at times t1 and t2, respectively — is guaranteed to be substantial.

6

The relationship between time and chain-length is typically referred to as the chain-growth
coefficient.

• Chain quality: For any honest party and its adopted valid chain Ct at time t, it holds that
any consecutive sequence of blocks of reasonable extent in Ct is guaranteed to contain
blocks contributed by honest parties. The proportion of honestly mined blocks is typically
refereed to as the chain-quality coefficient.

Chain quality and chain growth are often expressed with respect to the common-prefix
parameter k. That is, as the fraction of honestly mined blocks in a consecutive sequence of k
blocks, and as the time interval within which an increase of k blocks is guaranteed (except with
negligible probability in k).

Network assumptions and random oracle. Both [GKL15

.

] and [PSS17

.

] assume a multicast
network—i.e., a network where a party sends messages to arbitrary other parties3

.

—and abstract
the hash function as a random oracle. Furthermore, they both have an explicit round-based
model of execution where parties proceed in rounds. There are some slight differences between
the two models. For example, in [GKL15

.

] every party makes q hash-queries (i.e., q RO calls) in
each round as opposed to [PSS17

.

] where every party makes one hash-query per round. Second,
in [PSS17

.

], the adversary might choose to delay message delivery but the statements are proved
assuming no message is delayed by more than ∆ rounds — also known as the partial-synchronous
setting — while the initial model taken by [GKL15

.

] was more synchronous (and was lifted to the
partial synchronous model later). We note that since the number of hash-queries is fixed in both
models, this implies that parties know exactly in which round they are, as they could simply count
the number of queries made to the random oracle (and by definition of their models no party
goes to round r + 1 before all parties have finished round r). Note that the partial-synchronous
protocol execution model in [PSS17

.

] is a strictly weaker setting than a synchronous execution
model with a fixed delay of one round.

Property-based vs simulation-based security. Proving that Bitcoin satisfies the above
properties has been an essential step into the direction of understanding the security goals
of Bitcoin. But as argued above, this does not offer the tool to be able to argue security of
cryptographic protocols that use Bitcoin—e.g., to achieve an improved fairness notion [ADMM14

.

,
ADMM16

.

, BK14

.

, KVV16

.

, KB16

.

, KMB15

.

, KB14

.

, AD15

.

]—without the need to always look at
the Bitcoin specifics. In other words, such property based security definitions do not support
composition. The standard way to allow for such a generic use of blockchain protocols as a
cryptographic resource, is to prove that it implements an ideal functionality in a composable
framework. Intuitively, in such frameworks, a composition theorem states that we can replace
calls to a functionality with invocation of a protocol implementing it without worrying about the
protocol’s internals.

3Unlike [GKL15

.

] where this operation is referred to as broadcast, we choose to call it multicast here to
avoid confusion with the standard broadcast primitive in the Byzantine agreement literature that offers stronger
consistency guarantees.

7

2 Preliminaries

2.1 Overview of the UC Framework

Some of the results in this work are formulated in the universal composability (UC) framework
introduced by Canetti [Can01

.

]. We give a brief introduction into the main notation of this
framework. Readers familiar with the concepts may skip this section.

2.1.1 Basics

The goal of the UC framework is to capture what it means for a protocol to securely carry out
a task. UC first defines the process of executing a protocol in some environment and in the
presence of an adversary, next it defines an ideal process to formalize what securely carrying out
the task means, and finally one has to prove that no (efficient) environment can distinguish the
real process and the ideal process. The core defining element of the ideal process is the ideal
functionality, which can be thought of as an incorruptible party. We briefly describe the main
ingredients first and then describe the real and ideal process.

Protocol and protocol instances. Formally, a protocol π is an algorithm for a distributed
system and formalized as an interactive Turing machine. An ITM has several tapes, for example an
identity tape (read-only), an activation tape, or input/output tapes to pass values to its program
and return values back to the caller (e.g., the environment). An ITM also has communication
tapes that model messages sent to and received from the network.

While an ITM is a static object, UC defines the notion of an ITM instance (denoted ITI),
which is defined as the pair (M, id), where M is the description of an ITM and id = (sid, pid) is
the identity string consisting of a session identifier sid and a party identifier pid. Each instance is
associated with a configuration, which is as usual the contents of all of its tapes and the heads,
and the control state of that ITM.

An instance, also called a session, of a protocol π (represented as an ITM Mπ) with respect
to a session number sid is defined as a set of ITIs (Mπ, idi) with idi = (pidi, sid).

Network and adversary. The UC model does not give any guarantee for its built-in network.
The network is asynchronous without guaranteed delivery, the messages are visible by an adversary
and there is no authenticity guarantee on the content or originator of a message.

The adversary A is also defined as an ITM. Aside of its capabilities to send and read messages,
it can at any time issue special corruption messages to corrupt protocol ITMs. When an ITM is
corrupted, the adversary does not only learn the contents of all tapes, but it can also act in the
name of this ITM, meaning that whenever this ITM is activated, the adversary gets actually
activated and can decide on the next steps. This corruption dynamics is the standard form of
corruption and we call such an adversary active and adaptive.

There are several deviations from this corruption model. A famous model is passive security,
where the adversary is as above, but cannot decide on a corrupted parties next steps. Instead,
the party follows the protocol. Another common model is to restrict the adversary to static
corruption, which means that an ITM can only be corrupted if the corruption message is issued
before the ITM has executed the first step of its program.

8

2.1.2 Real-world process

The real-world process for a protocol π is defined as follows. Let Z be an environment machine
and let A denote the adversary. The execution consists of a sequence of activations, initiated
by Z, where in each activation, either Z, A or some ITI running π is activated. We say that Z
invokes a new ITI Z if it activates an ITI for the first time (by passing some inputs) upon which
this new instance gets created (in the default configuration). All ITIs invoked by Z need to have
unique identities, but need to have the same session-identifier (which is chosen by Z), i.e., for all
ITIs I in this execution, idI := (sI , sid) for some bitstring sI specific to this instance.

Activations and execution rules. An activated ITI can change its configuration based on
its code. By the UC system model (i.e., by the definition of external-write requests), an ITI
loses its activation (i.e. is forced to complete) after (1) writing a message on its communication
output tape (in which case the adversary gets activated next), (1) passing an input value to
a (subsidiary) ITI (like a hybrid functionality), or (3) producing an output, i.e., writing to its
subroutine output tape. In cases (2) and (3) the next activated ITI is the ITI that was addressed
in this external-write request.

The environment Z can pass inputs to and read outputs from the input/output tape of any
party, respectively. The adversary A can access the communication tapes of the parties and
deliver messages by copying the entries from an outgoing communication tape to an incoming
communication tape. Following the external-write rules, if in some activation, the adversary
delivers a message to an ITI, then this ITI is activated next. In addition, the adversary can corrupt
parties as described above (which produces an observable special output to the environment).

The UC model also follows some activation rules (specified by the control function). As
already stated, the environment is activated first, and upon completion of its actions (entering a
special waiting state), the adversary is activated as a second entity. The remaining execution
proceeds as described above. As a convention, in addition to the above rules, the UC execution
model requires that if an ITI completes without external-write request (for example not sending
a message), then the environment is activated next. An important property of these rules is that
they ensure uniqueness of the next activated ITI and that it allows free interaction between the
adversary and the environment between any two activations of protocol ITIs.

Output and transcript. The output of the protocol execution is the output of Z and we
assume that this output is a binary value v ∈ {0, 1}. We denote this output by execπ,A,Z(k, z, r)
where k is the security parameter, z ∈ {0, 1}∗ is the input to the environment, and randomness
r for the entire experiment. Let execπ,A,Z(k, z) denote the random variable obtained by
choosing the randomness r uniformly at random and evaluating execπ,A,Z(k, z, r). Let execπ,A,Z
denote the ensemble {execπ,A,Z(k, z)}k∈N,z∈{0,1}∗ . By slight abuse of notation, we denote by
Texecπ,A,Z (k, z, r) the associated transcript of this execution, which is the concatenation of all
inputs to Z, all outputs from Z, and all messages exchanged via the communication tapes of the
ITIs (also called the joint view). The distribution Texecπ,A,Z (k, z) and ensemble Texecπ,A,Z are
defined analogously to above.

2.1.3 Ideal-world process

Security of protocols is defined via comparing the real-world execution with an ideal-world process
that solves the task in an idealistic way. More formally, the ideal process is formulated with

9

respect to an ITM F which is called an ideal functionality. In the ideal process, the environment
Z interacts with F , an ideal-world adversary (often called the simulator) S and a set of trivial,
i.e., dummy ITMs representing the protocol machines. The dummy ITMs behave as follows:
whenever activated with a request x, they forward the request x to F and output towards Z
whatever they receive in return. F thereby specify all outputs generated for each party, and
the amount of information the ideal-world adversary learn and what its active influence is via
its interaction with F . By definition of the corruption mechanism in standard UC, an ideal
functionality is informed (via special corruption messages) which instances of the dummy ITMs
are corrupted. We note that an ideal functionality itself, represented as an ITI during the protocol
execution, cannot be corrupted by definition.

Based on the above definitions, the ideal-world process proceeds as the real process. It is
essentially the real-world process where the ITIs running the protocol are replaced by the dummy
ITIs interacting with F (and only one challenge session ever exists). In this interaction, the same
constraints and activation sequence restrictions are enforced by the UC control function. For
further details we refer to [Can01

.

].
We denote the output of this ideal-world process by execF ,A,Z(k, z, r) where the inputs are as

in the real-world process. Let execF ,S,Z(k, z) denote the random variable obtained by choosing
the randomness r uniformly at random and evaluating execF ,S,Z(k, z, r). Let execF ,S,Z denote
the ensemble {execF ,S,Z(k, z)}k∈N,z∈{0,1}∗ . The transcript is defined analogously as in the
real-world process and denoted TexecF,S,Z (k, z, r).

2.1.4 Hybrid worlds

To model setup, the UC framework knows so-called hybrid worlds. We discuss two important
cases of hybrid worlds that differ in whether the setup, typically called the hybrid functionality,
is available only to an instance of a protocol session (standard), or to multiple protocol sessions
at the same time (shared). Note that a protocol can assume several setup functionalities of both
types.

Standard (local) setup. A standard setup is modeled in UC as an ideal-functionality available
in a real-world protocol execution, i.e., as an incorruptible ITI F that provides certain ideal
guarantees to this protocol session. We consider here the natural case that standard setups are
available in real-world processes only (note that while the following conventions can be applied to
ideal-world-processes as well, it still seems like an uninteresting case to consider standard setups
in ideal-processes). So, formally, the F -hybrid-world process is identical to the real-world process
with the following additions: The parties can interact with (an a priori unbounded number of)
instances of F by standard interaction (sending messages, passing output to them, or receiving
input from them). Each copy of F , i.e., each such incorruptible ITI, is identified via a unique
session identifier sid chosen by the protocol that passes in put to it (this in particular implies a
unique identity id of this ITI). It is stressed that by this definition, the environment can only
access F via calls to parties or via the adversary.

Since a protocol makes explicit which local functionalities it assumes we omit an explicit
reference in the formal expressions for simplicity. For example, we just write execπ,A,Z or
Texecπ,A,Z to denote the output or the transcript distribution ensembles in such cases.

Shared (global) setup. We briefly elaborate on the so-called externalized UC model (EUC),
which is an extension of standard UC and an important special case of what is known as the

10

generalized UC framework (GUC) [CDPW07

.

]. In EUC, we allow a dedicated hybrid functionality,
say G, to be declared as shared (often also denoted to as global setup). The process is identical
to the hybrid-world process as above with the following addition: The UC control function also
allows this special functionality G to directly interact with the environment Z via dummy ITIs.
Technically, in this hybrid-world process, the control function allows Z to spawn dummy ITIs
(with unique identities) for the purpose of interacting with G. Unlike standard setups, shared
setups are available in ideal-world processes as well, where they can interact (according to the
same rules) with the environment or the ideal functionality and the dummy ITIs (representing
the protocol or the access point to the shared setup). Recall that dummy ITIs always forward
inputs, either to the ideal functionality F (protocol inputs of this session), to the shared setup
G (setup queries), and even between functionalities such as F and G, as for example defined
in [CSV16

.

].
We conclude that G can be used to model shared state across sessions, and also how other

sessions can interfere with the setup. In this work, the EUC notion is the way we model global
setups in UC. Notable examples of shared setups include (global) random oracles, common
reference strings, or clocks. We point out that for a special class of protocols (such as the one
in this work), the EUC notion is sufficient to satisfy the even stronger GUC notion. We do
not discuss this particular class of protocols here since it is not important to understand the
results in this work. The relevant definition, relating to subroutine-respecting protocols, is given
in [CDPW07

.

] where also the associated equivalence proof of EUC and GUC is found.
If a shared setup G is available in the real-world or ideal-world processes, we usually make it

explicit in the notation such as execGπ,A,Z or execGF ,S,Z .

2.1.5 Secure Realization and Composition

In a nutshell, a protocol securely realizes an ideal functionality F if the real-world process (where
the protocol is executed) is indistinguishable from the ideal-world process (relative to F). If
the protocol uses setup, we technically consider the hybrid-world processes instead of the plain
real-world or ideal-world processes. We directly state the definitions.

Definition 2.1. Let us denote by X = {X(k, z)}k∈N,z∈{0,1}∗ and Y = {Y (k, z)}k∈N,z∈{0,1}∗ two
distribution ensembles over {0, 1}. We say that X and Y are indistinguishable if for any c, d ∈ N
there exists a k0 ∈ N such that |Pr[X(k, z) = 1] − Pr[Y (k, z) = 1] | < k−c for all k > k0 and
all z ∈

⋃
κ≤kd{0, 1}κ. We use the shorthand notation X ≈ Y to denote two indistinguishable

ensembles.

Definition 2.2. Let n ∈ N, let F be an ideal functionality and let π be a protocol defined for
the real-world, and which potentially makes use of some local setup functionality H and some
global setup G. We say that π securely realizes F (in the presence of these setup functionalities)
if for any (efficient) adversary A there exists an (efficient) ideal-world adversary (the simulator)
S such that for every (efficient) environment Z it holds that execGπ,A,Z ≈ execGF ,S,Z .

In the literature, the above condition is often referred to as π securely realizing functionality
F in the (G,H)-hybrid world, where the type of setup is inferred by the context.

Composition. The notion of secure realization is composable. We do not give a detailed
explanation as it is not important to follow the results in this work. In a nutshell, assume
first that a protocol securely realizes F in the H-hybrid world, where H denotes a standard

11

(local) setup functionality. Let further ρ be a protocol that securely realizes F . Then the
protocol π′, where each call to H is replaced by an invocation of protocol ρ, securely realizes
F . We refer the interested reader to [Can01

.

] for the general formal statement and on the exact
definition of π′. Along similar lines, a composition theorem can be proven where standard (local)
hybrid functionalities are replaced by the protocols securely realizing them in the presence of an
additional shared setup [CDPW07

.

]. Finally, we only note in passing that one can also consider
replacing shared functionalities by suitable protocols. This, however, is a very subtle issue for
which we refer the interested reader to [CSV16

.

].

2.2 Large Deviation Bounds

We use some known results to derive large deviation bounds in our probabilistic arguments. For
proofs and further discussions we refer to [DP09

.

].

Theorem 2.3 (Chernoff bound). Let X1, . . . , XT be independent random variables with E[Xi] =
pi and Xi ∈ [0, 1]. Let X =

∑T
i=1Xi and µ =

∑T
i=1 pi = E[X]. Then, for all Λ ≥ 0,

Pr[X ≥ (1 + Λ)µ] ≤ e−
Λ2

2+Λ
µ ;

Pr[X ≤ (1− Λ)µ] ≤ e−
Λ2

2+Λ
µ .

Theorem 2.4 (Azuma’s inequality (Azuma; Hoeffding).). Let X0, . . . , Xn be a sequence of
real-valued random variables so that, for all t, |Xt+1 − Xt| ≤ c for some constant c. If
E[Xt+1 |X0, . . . , Xt] ≤ Xt for all t then for every Λ ≥ 0

Pr[Xn −X0 ≥ Λ] ≤ exp

(
− Λ2

2nc2

)
.

Alternatively, if E[Xt+1 |X0, . . . , Xt] ≥ Xt for all t then for every Λ ≥ 0

Pr[Xn −X0 ≤ −Λ] ≤ exp

(
− Λ2

2nc2

)
.

3 Principles of a Composable Model for Blockchain Protocols in
the Permissionless Setting

In this section we describe our (G)UC-based model of execution for the Bitcoin protocol. We
remark that providing such a formal model of execution forces us to make explicit all the implicit
assumptions from previous works. As we lay down the theoretical framework, we will also discuss
these assumptions along with their strengths and differences.

Bitcoin miners are represented as players—formally Interactive Turing Machine instances
(ITIs)—in a multi-party computation. For notational convenience, we denote the identities of
these machines by Pi, i.e, Pi = (pidi, sidi) and call Pi a party for short. The index i is used to
distinguish two identifiers, i.e., Pi 6= Pj and otherwise carries no meaning. Parties interact which
each other by exchanging messages over an unauthenticated multicast network with eventual
delivery (see below) and might make queries to a common random oracle. We will assume a
central adversary A who gets to corrupt miners and might use them to attempt to break the
protocol’s security. As is common in (G)UC, the resources available to the parties are described

12

as hybrid functionalities. Before we provide the formal specification of such functionalities, we
first discuss a delicate issue that relates to the set of parties (ITIs) that might interact with an
ideal functionality.

3.1 Functionalities with Dynamic Party Sets

In many UC functionalities, the set of parties is defined upon initiation of the functionality and
is not subject to change throughout the lifecycle of the execution. Nonetheless, UC does provide
support for functionalities in which the set of parties that might interact with the functionality
is dynamic. In fact, this dynamic nature is an inherent feature of the Bitcoin protocol—where
miners come and go at will. In this work we make this explicit by means of the following
mechanism: All the functionalities considered here include the following instructions that allow
honest parties to join or leave the set P of players that the functionality interacts with, and
inform the adversary about the current set of registered parties:4

.

• Upon receiving (register, sid) from some party Pi (or from A on behalf of a corrupted
Pi), set P = P ∪ {Pi}. Return (register, sid, Pi) to the caller.

• Upon receiving (de-register, sid) from some party Pi ∈ P, the functionality updates
P := P \ {Pi} and returns (de-register, sid, Pi) to Pi.

• Upon receiving (is-registered, sid) from some party Pi, return (register, sid, b) to the
caller, where the bit b is 1 if and only if Pi ∈ P.5

.

• Upon receiving (get-registered, sid) from A, the functionality returns the response
(get-registered, sid,P) to A.

In addition to the above registration instructions, global setups, i.e., shared functionalities that
are available both in the real and in the ideal world and allow parties connected to them to share
state [CDPW07

.

], allow also UC functionalities to register with them. Concretely, global setups
include, in addition to the above party registration instructions, two registration/de-registration
instructions for functionalities:6

.

• Upon receiving (register, sidG) from a functionality F (with session-id sid), update
F := F ∪ {(F, sid)}.

• Upon receiving (de-register, sidG) from a functionality F (with session-id sid), update
F := F \ {(F, sid)}.

• Upon receiving (get-registered-f, sidG) from A, return (get-registered-f, sidG, F)
to A.

4Note that making the set of parties dynamic means that the adversary needs to be informed about which
parties are currently in the computation so that he can chose how many (and which) parties to corrupt.

5Note that typically a party knows whether it is registered at a functionality or not (and in which session).
However, it might be useful for another functionality to access this information via the dummy party corresponding
to Pi. The exact dynamics of such an information exchange can be found in [CSV16

.

, Section 2]. This is not to be
confused with the fact that functionalities can always communicate with global setups by the standard message
exchange mechanism.

6Recall that a shared functionality knows the identity of each ITM that calls it, which by definition includes
the session identifier.

13

We use the expression sidG to refer to the encoding of the session identifier of global setups.
By default (and if not otherwise stated), the above four (or seven in case of global setups)
instructions will be part of the code of all ideal functionalities considered in this work. However,
to keep the description simpler we will omit these instructions from the formal descriptions unless
deviations are defined.

3.2 Modeling Network Assumptions

In many situations, one cannot tolerate a complete asynchronous network such as the standard
UC communication mechanism. For example, we want to argue about liveness properties of
blockchains, which requires communication with eventual delivery guarantees as time goes by
(see below how we model time). We describe such a network based on ideas from from [KMTZ13

.

,
BHMQU05

.

, CGHZ16

.

]. In particular, we capture such communication by a network functionality
F∆

N-MC that provides each party or miner Ps ∈ P the capability to multicast a message. For
every newly sent message, say m, the network functionality creates a unique identifier mid for
each triple (Pj , Pj ,m), where Pj ∈ P is a potential receiver. This handle is needed to succinctly
refer to a message circulating in the network in a fine-grained manner. The network does not
provide any information to any receiver about who else is using it or where a message originates
from. More precisely, messages are buffered but the information of who is the sender is never
provided to a receiver.

The adversary—who is informed about both the content of the messages and about the
handles—is allowed to delay messages by any finite amount, and allowed to deliver them in
an arbitrary out-of-order manner. To ensure that the adversary cannot arbitrarily delay the
delivery of messages submitted by honest parties, we use the following idea: The network works
in a “fetch message” mode, which means that parties need to actively query for the message (for
example, a party can query for messages once in a round). If the adversary wishes to delay the
delivery of some message with message ID mid, he needs to submit an integer value Tmid—the
delay for the message-in-transmission with identifier mid. For example, if mid refers to the triple
(Ps, Pj ,m), this will have the effect that only after the next Tmid fetch attempts by Pj , Pj will be
able to report the receipt of this particular message m. Importantly, the network does not accept
more than ∆ accumulative delay for any mid. To allow the adversary freedom in scheduling
the delivery of messages, we allow him to input delays more than once, which are added to the
current delay amount. If the adversary wants to deliver the message in the next activation, all
he needs to do is submit a negative delay. Furthermore, we allow the adversary to schedule more
than one messages to be delivered in the same “fetch” command. Finally, to ensure that the
adversary is able to re-order such batches of messages arbitrarily, we allow A to send special
(swap,mid,mid′) commands that have as an effect to change the order of the corresponding
messages. Last but not least, the adversary is further allowed to do partial and inconsistent
multicasts, i.e., where different messages are sent to different parties. This is the main difference
of such a multicast network from a broadcast network. The description appears in Figure 1

.

.

From unicast to multicast. A natural question is how to get the above multicast network
from simpler channels. Note that in Bitcoin, parties/miners communicate over an incomplete
network and a standard diffusion mechanism is employed: The sender sends the message it wishes
to multicast to all its neighbors who check that a message with the same content was not received
before, and if this is the case forward it to their neighbors, who then do the same check, and so
on.

14

Functionality F∆
N-MC

The functionality manages the set possible senders and receivers denoted by P. Any newly registered (resp. deregis-
tered) party is added to (resp. deleted from) P. The functionality manages a list ~M , initially the empty list.

• Honest sender multicast:
Upon receiving (multicast, sid,m) from some Ps ∈ P, where P = {P1, . . . , Pn} denotes the current party set,
do:

1. Choose n new unique message-IDs mid1, . . . ,midn,
2. Initialize 2n new variables Dmid1

:= DMAX
mid1

. . . := Dmidn := DMAX
midn := 1,

3. Set ~M := ~M ||(m,mid1, Dmid1
, P1)|| . . . ||(m,midn, Dmidn , Pn),

4. Send (multicast, sid,m, Ps, (P1,mid1), . . . , (Pn,midn)) to the adversary.

• Adversarial sender (partial) multicast:
Upon receiving (multicast, sid, (mi1 , Pi1), . . . , (mi` , Pi`) from the adversary with {Pi1 , . . . , Pi`} ⊆ P, do:

1. Choose ` new unique message-IDs midi1 , . . . ,midi` ,
2. initialize ` new variables Dmidi1

:= DMAX
midi1

:= . . . := Dmidi`
:= DMAX

midi`
:= 1,

3. set ~M := ~M ||(mi1 ,midi1 , Dmidi1
, Pi1)|| . . . ||(mi` ,midi` , Dmidi`

, Pi`),
4. send (multicast, sid, (mi1 , Pi1 ,midi1), . . . , (mi` , Pi` ,midi`) to the adversary.

• Honest party fetching:
Upon receiving (fetch, sid) from Pi ∈ P (or from A on behalf of Pi if Pi is corrupted):

1. For all tuples (m,mid, Dmid, Pi) ∈ ~M , set Dmid := Dmid − 1.
2. Let ~M

Pi
0 denote the subvector ~M including all tuples of the form (m,mid, Dmid, Pi) with Dmid = 0 (in

the same order as they appear in ~M). Delete all entries in ~M
Pi
0 from ~M , and send ~M

Pi
0 to Pi.

• Adding adversarial delays:
Upon receiving (delays, sid, (Tmidi1

,midi1), . . . , (Tmidi`
,midi`)) from the adversary do the following for each

pair (Tmidij
,midij):

If DMAX
midij

+ Tmidij
≤ ∆ and mid is a message-ID registered in the current ~M , set Dmidij

:= Dmidij
+ Tmidij

and set DMAX
midij

:= DMAX
midij

+ Tmidij
; otherwise, ignore this pair.

• Adversarially reordering messages:
Upon receiving (swap, sid,mid,mid′) from the adversary, if mid and mid′ are message-IDs registered in the
current ~M , then swap the triples (m,mid, Dmid, ·) and (m,mid′, Dmid′ , ·) in ~M . Return (swap, sid) to the
adversary.

Figure 1: The network functionality with eventual delivery guarantees. Note that for a list ~M
we denote by the symbol || the operation which appends a new element to ~M .

In fact, a multicast network can be built from unicast channels. That is, one essentially
assumes for each miner PR ∈ P a channel functionality F∆,PR

U-CH — which is parameterized by a
receiver PR and an upper bound on the delay ∆ — to which any other party Pi ∈ P can connect
and input messages to be delivered to PR. A miner connecting to the unicast channel with
receiver PR models the real-world process of looking up PR (e.g., a public node in the network)
and using this party to disseminate future messages. The unicast channel should have some
similar properties as the above network, namely:

• They guarantee (reliable) delivery of messages within a delay parameter but are otherwise
specified to be of asynchronous nature (see below) and hence no protocol can rely on
timings regarding the delivery of messages. The adversary might delay any message sent
through such a channel, but at most by ∆. In particular, the adversary cannot block
messages. However, he can induce an arbitrary order on the messages sent to some party.

15

• The receiver gets no information other than the messages themselves. In particular, a
receiver cannot link a message to its sender nor can he observe whether or not two messages
were sent from the same sender.

• The channel offers no privacy guarantees. The adversary is given read access to all messages
sent on the network.

In Appendix A

.

, we provide this channel functionality for completeness and explain how
a simple round-based diffusion mechanism can be used to implement a multicast mechanism
from unicast channels as long as the corresponding network among honest parties stays strongly
connected. (A network graph is strongly connected if there is a directed path between any two
nodes in the network, where the unicast channels are seen as the directed edges from sender to
receiver.)

On functionally black-box use of the network. A key difference between the initial model
of [GKL15

.

] and [PSS17

.

] was that in the latter the parties do not know any bound on the delay
of the network. In particular, although both models are in the synchronous setting, in [PSS17

.

]
and in the extended model provided in [GKL15

.

], a party in the protocol does not know when to
expect a message which was sent to it in the previous round. Using terminology from [Ros12

.

], the
protocol uses the channel in a functionally black-box manner. Restricting to such protocols—a
restriction which we also adopt in this work—is in fact implying a weaker assumption on the
protocol than standard (known) bounded-delay channel. Intuitively the reason is that no such
protocol can realize a bounded-delay network with a known upper bound (unless it sacrifices
termination) since the protocol cannot decide whether or not the bound has been reached.

3.3 Modeling Time and Clock-dependent Protocol Execution

Katz et al. [KMTZ13

.

], proposed a methodology for casting synchronous protocols in UC by
assuming they have access to an ideal functionality Gclock, the clock, that allows parties to ensure
that they proceed in synchronized rounds. Informally, the idea is that the clock keeps track of
a round variable whose value the parties can request by sending it (clock-read, sidC). This
value is updated only once all honest parties sent the clock a (clock-update, sidC) command.
We lift their idea to a shared setup. The global clock functionality Gclock is a shared clock
that may interact with more than one protocol session. The global clock provides a means for
parties to synchronize each of their sessions.7

.

The clock can also be used as a local (not shared)
hybrid functionality, in which case the number of sessions it will synchronize is simply one. The
description is given in Figure 2

.

.
Given a clock, the authors of [KMTZ13

.

] describe how synchronous protocols can maintain
their necessary round structure in UC: For every round ρ each party first executes all its round-ρ
instructions and then sends the clock a clock-update command. Subsequently, whenever
activated, it sends the clock a clock-read command and does not advance to round ρ+1 before
it sees the clocks variable being updated. This ensures that no honest party will start round
ρ + 1 before every honest party has completed round ρ. In [KZZ16

.

], this idea was transfered
to the (G)UC setting, by assuming that the clock is a global setup. This allows for different
protocols to use the same clock and is the model we will also use here.

7The functionality presented here is different from shared clock functionalities used in prior work. We believe
that this version here is closer to the spirit of the GUC/EUC version of UC.

16

Functionality Gclock

The functionality manages the set P of registered identities, i.e., parties P = (pid, sid). It also manages the set F of
functionalities (together with their session identifier). Initially, P := ∅ and F := ∅.
For each session sid the clock maintains a variable τsid. For each identity P := (pid, sid) ∈ P it manages variable dP .
For each pair (F, sid) ∈ F it manages variable d(F,sid) (all integer variables are initially 0).

Synchronization:

• Upon receiving (clock-update, sidC) from some party P ∈ P set dP := 1; execute Round-Update and forward
(clock-update, sidC , P) to A.

• Upon receiving (clock-update, sidC) from some functionality F in a session sid such that (F, sid) ∈ F set
d(F,sid) := 1, execute Round-Update and return (clock-update, sidC ,F) to this instance of F.

• Upon receiving (clock-read, sidC) from any participant (including the environment on behalf of a party, the
adversary, or any ideal—shared or local—functionality) return (clock-read, sidC , τ) to the requestor.

Procedure Round-Update: For each session sid do: If d(F,sid) := 1 for all F ∈ F and dP = 1 for all honest parties
P = (·, sid) ∈ P, then set τsid := τsid + 1 and reset d(F,sid) := 0 and dP := 0 for all parties P = (·, sid) ∈ P.

Figure 2: The shared/global clock functionality. We assume lazy creation of variables, i.e., a
variable is only created once it is needed.

As argued in [KMTZ13

.

], in order for an eventual-delivery (aka guaranteed termination)
functionality to be UC implementable by a synchronous protocol it needs to keep track of the
number of activations that an honest party gets—so that it knows when to generate output
for honest parties. This requires that the protocol itself, when described as a UC interactive
Turing-machine instance (ITI), has a predictable behavior when it comes to the pattern of
activations that it needs before it sends the clock an update command. We capture this property
in a generic manner in Definition 3.1

.

.
To follow the definition recall the mechanics of activations in UC. In a UC protocol execution,

an honest party (ITI) gets activated either by receiving an input from the environment, or by
receiving a message from one of its hybrid-functionalities (or from the adversary). Any activation
results in the activated ITI performing some computation on its view of the protocol and its
local state and ends with either the party sending a message to some of its hybrid functionalities
or sending an output to the environment, or not sending any message. In either of these cases,
the party loses the activation.8

.

For any given protocol execution, we define the honest-input sequence ~IH to consist of all
inputs that the environment gives to honest parties in the given execution (in the order that they
were given) along with the identity of the party who received the input. For an execution in which
the environment has given m inputs to the honest parties in session sid in total, ~IH is a vector of
the form ((x1, id1), . . . , (xm, idm)), where xi is the i-th input that was given in this execution,
and idi is the corresponding identity (i.e., idi = (pidi, sid) for some bitstring pid) that received
this input in this session. We further define the timed honest-input sequence, denoted as ~ITH , to
be the honest-input sequence augmented with the respective clock time when an input was given.
If the timed honest-input sequence of an execution is ~ITH = ((x1, id1, τ1), . . . , (xm, idm, τm)), this
means that ((x1, id1), . . . , (xm, idm)) is the honest-input sequence corresponding to this execution,
and for each i ∈ [n], τi is the time of the global clock when input xi was handed to idi.

8In the latter case the activation goes to the environment by default.

17

Functionality FRO

The functionality is parametrized by the security parameter κ. It maintains the set of registered parties/miners P
(initially set to ∅) and a (dynamically updatable) function table T (initially T = ∅). For simplicity we write T [x] =⊥
to denote the fact that no pair of the form (x,)̇ is in T .

• Upon receiving (eval, sid, x) from some party P ∈ P (or from A on behalf of a corrupted P), do the following:

1. If H[x] = ⊥ sample a value y uniformly at random from {0, 1}κ, set H[x]← y and add (x, T [x]) to T .
2. Return (eval, sid, x,H[x]) to the requestor.

Figure 3: The random oracle functionality.

Definition 3.1. A Gclock-hybrid protocol Π has a predictable synchronization pattern iff there
exist an algorithm predict-timeΠ(·) such that for any possible execution of Π in a session sid (i.e.,
for any adversary and environment, and any choice of random coins) the following holds: If
~ITH = ((x1, id1, τ1), . . . , (xm, idm, τm)) is the corresponding timed honest-input sequence for this
session, then for any i ∈ [m− 1] :

predict-timeΠ((x1, id1, τ1), . . . , (xi, idi, τi)) = τi+1,

where τi+1 is the clock time for this session (cf. Figure 2

.

).

As we argue, all synchronous protocol described in this work are designed to have a predictable
synchronization pattern.

3.4 Modeling Hash Queries

As usual in cryptographic proofs, the queries to the hash function are modeled by assuming
access to a random oracle (functionality) FRO. This functionality is specified as follows: upon
receiving a query (eval, sid, x) from a registered party, if x has not been queried before, a value y
is chosen uniformly at random from {0, 1}κ (for security parameter κ) and returned to the party
(and the mapping (x, y) is internally stored). If x has been queried before, the corresponding y is
returned. The description appears in Figure 3

.

.

A note on global random oracles and PoW. In our model, the random oracle is a local
setup. In fact, abstracting hash-queries as calls to a global random oracle (GRO) runs into
intrinsic problems in the PoW-setting because of two reasons: (1) at an intuitive level this would
imply that the environment could make queries to the GRO and then provide them to the
adversary. As such, no real restriction on the adversary exists; (2) at the more technical level,
the non-programmability of the GRO forces the simulator to create blocks that indeed carry
sufficient work. Since the simulator needs to also simulate the hash queries of honest parties,
this would only be feasible if he had a much larger query budget than the real-world adversary
has, which is not possible as the GRO needs to behave identically in the real and ideal world.

3.5 Assumptions as UC-Functionality Wrappers

In order to prove statements about cryptographic protocols one often makes assumptions about
what the environment (or the adversary) can or cannot do. For example, a standard assumption

18

Wrapped Functionality Wq(FRO)

The wrapper functionality is parametrized by an upper bound q which restricts the F-evaluations of each corrupted
party per round. The functionality manages the variable counter and the current set of corrupted miners P ′. For
each party P ∈ P ′ it manages variables countP .

Initially, P ′ = ∅ and counter = 0.

General:

• The wrapper does not interact with the adversary as soon as the adversary tries to exceed its budget of q
queries per corrupted party. Registration-queries and their replies are simply relayed without modifications.

Relaying inputs to the random oracle:

• Upon receiving (eval, sid, x) from A on behalf of a corrupted party P ∈ P ′, then first execute Round Reset.
Then, set countP ← countP +1 and only if countP ≤ q forward the request to FRO and return to A whatever
FRO returns.

• Any other request from any participant or the adversary is simply relayed to the underlying functionality
without any further action and the output is given to the destination specified by the hybrid functionality.

Standard UC Corruption Handling:

• Upon receiving (corrupt, sid, P) from the adversary, set P ′ ← P ′∪{P}. If P has already issued t > 0 random
oracle queries in this round, set countP ← t. Otherwise set countP ← 0.

Procedure Round-Reset:
Send (clock-read, sidC) to Gclock and receive (clock-read, sidC , τ) from Gclock. If |τ − counter| > 0 and the new
time τ is even (i.e., a new round started), then set countP := 0 for each participant P ∈ P ′ and set counter← τ .

Figure 4: The wrapped random oracle.

in [GKL15

.

, PSS17

.

] is that in each round the adversary cannot do more calls to the random oracle
than what the honest parties (collectively) can do. This can be captured by assuming a restricted
environment and adversary which balances the amount of times that the adversary queries the
random oracle. In a property-based treatment such as [GKL15

.

, PSS17

.

] this assumptions is
typically acceptable. Also in a composable model such restrictions can be formulated. However,
restricting the environment is not compliant with a general composition theorem.

Therefore, instead of restricting the class of environments/adversaries, we present an alterna-
tive approach to capture the fact that the adversary’s access to real-world resource is restricted.
The general methodology is to capture restrictions by means of a functionality wrapper that
wraps the hybrid resources and enforces the restrictions on the adversary by limiting its access
to the resource. Such restrictions can become quite complex and we show concrete examples in
Section 8

.

to cast the assumptions and derive the equivalent composable statements.

A toy example. To illustrate the general methodology here with an easy example, consider
we want to capture a restriction of the adversary’s access to the RO. We can easily capture this
assumption by means of a functionality wrapper that wraps the RO functionality and enforces a
bound on the adversary, for example by assigning to each corrupted party at most q activations
per round for some parameter q. To keep track of rounds the functionality registers with the
global clock Gclock. For completeness the wrapped random oracle functionality Wq(FRO) is
found in Figure 4

.

.

19

4 The Basic Transaction-Ledger Functionality

The purpose of this section is to describe the basic structure of a ledger functionality Gledger. The
presented functionality is very generic in the sense that it is parameterizable by several elements.
The idea is that concrete blockchain protocols yield concrete instances of these parameters, while
the basic structure, as presented here, remains the same and can be seen as the greatest common
divisor of any such blockchain protocol proposal. The description of the functionality is found
in Figure 6

.

and the remainder of this section outlines its properties.

4.1 Introduction and Overview

Our ledger is parametrized by certain algorithms/predicates that allow us to capture a more
general version of a ledger which can be instantiated by various cryptocurrencies. Since our
abstraction of the Bitcoin protocol is in the synchronous model of computation (this is consistent
with known approaches in the cryptographic literature), our ledger is also designed for this
synchronous model. Nonetheless, several of our modeling choices are made with the foresight of
removing or limiting the use of the clock and leaving room for less synchrony.

At a high level, our ledger Gledger has a similar structure as the ledger proposed in [KZZ16

.

].
Concretely, anyone (whether an honest miner or the adversary) might submit a transaction
which is validated by means of a predicate Validate, and if it is found valid it is added to a
buffer buffer. The adversary A is informed that the transaction was received and is given its
contents.9

.

Informally, this buffer also contains transactions that, although validated, are not yet
deep enough in the blockchain to be considered out-of-reach for an adversary.10

.

Periodically,
Gledger fetches some of the transactions in the buffer, and using an algorithm Blockify creates a
block including these transactions and adds this block to its permanent state state, which is a
data structure that includes the part of the blockchain the adversary can no longer change. This
corresponds to the common prefix in [GKL15

.

, PSS17

.

]. Any miner or the adversary is allowed to
request a read of the contents of the state.

This sketched specification is simple, but in order to have a ledger that can be implemented
by existing blockchain protocols, we need to relax this functionality by giving the adversary more
power to interfere with it and influence its behavior. Before sketching the necessary relaxations
we discuss the need for a new ledger definition and its potential use as a global setup.

Impossibility to realize the ledger of [KZZ16

.

]. The main reasons why the ledger function-
ality in [KZZ16

.

] is not realizable by known protocols under reasonable assumptions are as follows:
first, their ledger guarantees that parties always obtain the same common state. Even with strong
synchrony assumptions, this is not realizable since an adversary, who just mined a new block,
is not forced to inform each party instantaneously (or at all) and thus could for example make
parties observe different lengths of the same prefix. Second, the adversarial influence is restricted
to permuting the buffer. This is too optimistic, as in reality the adversary can try to mine a new
block and possibly exclude certain transactions. Also, this excludes any possibility to quantify
quality. Third, letting the update rate be fixed does not adequately reflect the probabilistic
nature of Nakamoto-style blockchain protocols.

9This is inevitable since we assume non-private communication, where the adversary sees any message as soon
as it is sent, even if the sender and receiver are honest.

10E.g., in [KZZ16

.

] the adversary is allowed to permute the contents of the buffer.

20

On the sound usage of a ledger as a global setup. As presented in [KZZ16

.

], a UC ledger
functionality Gledger can be cast as a global setup [CDPW07

.

] which allows different protocols to
share state. This fact holds true for any UC functionality as stated in [CDPW07

.

] and [CSV16

.

].
Nonetheless, as pointed out in the recent work of Canetti, Shahaf, and Vald [CSV16

.

], one
needs to be extra careful when replacing a global setup by its implementation, e.g., in the case
of Gledger by the UC Bitcoin protocol. Indeed, such a replacement does not, in general, preserve
a realization proof of some ideal functionality F that is conducted in a ledger-hybrid world,
because the simulator in that proof might rely on specific capabilities that are not available any
more after replacement (as the global setup is also replaced in the ideal world). The authors
of [CSV16

.

] provide a sufficient condition for such a replacement to be sound. This condition
is generally too strong to be satisfied by any natural ledger implementation, which opens the
question of devising relaxed sufficient conditions for sound replacements in an MPC context.11

.

As this work focuses on the realization of ledger functionalities per se, we can treat Gledger as a
standard UC functionality.

4.2 Specific Defining Features

We explain several of the features of the ledger functionality of Figure 6

.

. For an overview of the
the relevant parameters and functions we refer to Figure 5

.

.

4.2.1 State-buffer validation

The first relaxation is with respect to the invariant that is enforced by the validation predicate
Validate. Concretely, in [KZZ16

.

] it is assumed that the validation predicate enforces that the
buffer does not include conflicting transactions, i.e., upon receipt of a transaction, Validate checks
that it is not in conflict with the state and the buffer, and if so the transaction is added to the
buffer. However, in reality we do not know how to implement such a strong filter, as different
miners might be working on different, potentially conflicting sets of transactions.12

.

The only time
when it becomes clear which of these conflicting transactions will make it into the state is once
one of them has been inserted into a block which has made it deep enough into the blockchain
(i.e., has become part of state). Hence, given that the buffer includes all transactions that might
end up in the state, it might at some point include both conflicting transactions.

To enable us for a provably implementable ledger, in this work we take a different approach.
The validate predicate will be less restrictive as to which transactions make it into the buffer.
Concretely, at the very least, Validate will enforce the invariant that no single transaction in
the buffer contradicts the state state, while different transactions in buffer might contradict
each other. Looking ahead, a stronger version that is achievable by employing digital signatures
(presented in Section 9

.

) could enforce that no submitted transaction contradicts other submitted
transactions. As in [KZZ16

.

], whenever a new transaction x is submitted to Gledger, it is passed
to Validate which takes as input a transaction and the current state and decides if x should
be added to the buffer. Additionally, as buffer might include conflicts, whenever a new block
is added to the state, the buffer (i.e., every single transaction in buffer) is re-validated using

11To give an example, a natural condition would be to require that the ideal-world adversary (or simulator) for
F does only use the ledger to submit queries or reading the state, and plays the “dummy adversary” for queries
that request the additional adversarial capabilities (i.e., the weaknesses of the ledger). For example, the simulator
in [KZZ16

.

] is of this kind.
12This will be the case for transactions submitted by the adversary even when signatures are used to authenticate

transactions.

21

Validate and invalid transactions in buffer are removed. To allow for this re-validation to be
generic, transactions that are added to the buffer are accompanied by certain metadata, i.e., the
identity of the submitter, a unique transaction ID txid13

.

, or the time τ when x was received.

4.2.2 State update policy and security guarantees

The second relaxation is with respect to the rate and the form and/or origin of transactions that
make it into a block. Concretely, instead of assuming that the state is extended in fixed time
intervals, we allow the adversary to define when this update occurs. This is done by allowing the
adversary, at any point, to propose what we refer to as the next-block candidate NxtBC. This is
a data structure containing the contents of the next block that A wants to have inserted into the
state. Leaving NxtBC empty can be interpreted as the adversary signaling that it does not want
the state to be updated in the current clock tick.

Of course allowing the adversary to always decide what makes it into the state state, or
if anything ever does, yields a very weak ledger. Intuitively, this would be a ledger that only
guarantees the common prefix property [GKL15

.

] but no liveness or chain quality. Therefore, to
enable us to capture also stronger properties of blockchain protocols we parameterize the ledger by
an algorithm ExtendPolicy that, informally, enforces a state-update policy restricting the freedom
of the adversary to choose the next block and implementing an appropriate compliance-enforcing
mechanism in case the adversary does not follow the policy. This enforcing mechanism simply
returns a default policy-complying block using the current contents of the buffer. We point out
that a good simulator for realizing the ledger will avoid triggering this compliance-enforcing
mechanism, as this could result in an uncontrolled update of the state which would yield a
potential distinguishing advantage. In other words, a good simulator, i.e., ideal-world adversary,
always complies with the policy.

In a nutshell, ExtendPolicy takes the current contents of the buffer buffer, along with the
adversary’s recommendation NxtBC, and the block-insertion times vector ~τstate. The latter is a
vector listing the times when each block was inserted into state. The output of ExtendPolicy is
a vector including the blocks to be appended to the state during the next state-extend time-slot
(where again, ExtendPolicy outputting an empty vector is a signal to not extend). To ensure
that ExtendPolicy can also enforce properties that depend on who inserted how many (or which)
blocks into the state—e.g. the so-called chain quality property from [GKL15

.

]—we also pass to it
the timed honest-input sequence ~ITH (cf. Section 3

.

).
Some examples of how ExtendPolicy allows us to define ways that the protocol might restrict

the adversary’s interference in the state-update include the following properties from [GKL15

.

]:

• Liveness corresponds to ExtendPolicy enforcing the following policy: If the state has not been
extended for more that a certain number of rounds and the simulator keeps recommending
an empty NxtBC, ExtendPolicy can choose some of the transactions in the buffer (e.g., those
that have been in the buffer for a long time) and add them to the next block. Note that
a good simulator or ideal-world adversary will never allow for this automatic update to
happen and will make sure that he keeps the state extend rate within the right amount.

• Chain quality corresponds to ExtendPolicy enforcing the following policy: Every block
proposal made by the simulator has to be associated with a special flag hFlag, where

13In Bitcoin, the value txid would be the hash-pointer corresponding to this transaction. Note that the generic
ledger can capture explicit guarantees on the ability or disability to link transactions, as this crucially depends on
the concrete choice of an ID mechanism.

22

intuitively hFlag = 1 indicates that the proposal is generated using the process that an
honest miner would follow. ExtendPolicy enforces two things: first, that block proposal
indicating hFlag = 1 are frequent enough, and second that such proposals fulfill some
specific quality properties (such as including all recent transactions). If these properties
are not met, the ledger will define and add a default block to the state. 14

.

We point out
that unlike the original chain-quality property from [GKL15

.

], this policy does not enforce
which miner should receive the reward for honest blocks and it is up to the simulator to do
so (via the so-called coinbased transaction).15

.

We note that ExtendPolicy is a general concept capable of formulating various properties of
blockchain protocols. For example, we can capture that honest (and non-conflicting) transactions
eventually make it into the state. Another property could be to formalize that transactions with
higher rewards make it into a block faster than others (which we do not consider in this work).

In Section 6

.

we provide the concrete specification of Validate and ExtendPolicy that can be
guaranteed for the UC Bitcoin protocol.

4.2.3 Output Slackness and Sliding Window of State Blocks

The common prefix property guarantees that blocks which are sufficiently deep in the blockchain
of an honest miner will eventually be included in the blockchain of every honest miner. Stated
differently, if an honest miner receives as output from the ledger a state state, every honest
miner will eventually receive state as its output. However, in reality we cannot guarantee that
at any given point in time all honest miners see exactly the same blockchain length; this is
especially the case when network delays are incorporated into the model, but it is also true in
the zero-delay model of [GKL15

.

]. Thus it is unclear how state can be defined so that at any
point all parties have the same view on it.

Therefore, to have a ledger implementable by standard assumptions we make the following
relaxation: We interpret state as the view of the state of the miner with the longest blockchain.
And we allow the adversary to define for every honest miner Pi a subchain statei of state of
length |statei| = pti that corresponds to what Pi gets as a response when he reads the state of
the ledger (formally, the adversary can fix a pointer pti). For convenience, we denote by state|pti
the subchain of state that finishes in the pti-th block. Once again, to avoid over-relaxing the
functionality to an unuseful setup, our ledger allows the adversary to only move the pointers
forward and it forbids the adversary to define pointers for honest miners that are too far apart, i.e.,
more than windowSize state blocks. The parameter windowSize ∈ N denotes a core parameter
of the ledger. In particular, the parameter windowSize reflects the similarity of the blockchain
to the dynamics of a so-called sliding window, where the window of size windowSize contains the
possible views of honest miners onto state and where the head of the window advances with
the head of the state. In addition, it is convenient to express security properties of concrete

14More technically, ExtendPolicy looks into the proposed-block sequence and identifies the blocks of state that
where proposed by the simulator with hFlag set to 1 to deduce how long ago (in time or block-number) the last
proposed block that made it into the chain had hFlag = 1.

15The actual Bitcoin protocol ensures that at the time when the block was created and circulated in the network
the originator of the block was honest. Note that this does not mean that he is still honest when the block makes
it into the state unless one considers static corruptions only (in which case one can indeed directly argue about
the fraction of honest originators in the state). To make this difference is crucial to explicitly see the impact due
to adaptive corruptions and was not made explicit in earlier versions of this work.

23

Ledger Element Description
P,H,PDS The party sets and categories: Registered, honest, and honest-but-

desynchronized, respectively.
~ITH The timed honest-input sequence.
predict-time The function to predict the real-world time advancement.
state The ledger state, i.e., a sequence of blocks containing the content.
buffer The buffer of submitted input values.
pti, statei The pointer of party Pi into state state. This prefix is denoted statei

for brevity.
~τstate A vector containing for each state block the time when the block added

to the ledger state.
τL The current time as reported by the clock.
NxtBC Stores the current adversarial suggestion for extending the ledger state.
Validate Decides on the validity of a transaction with respect to the current state.

Used to clean the buffer of transactions.
ExtendPolicy The function that specifies the ledger’s guarantees in extending the ledger

state (e.g., speed, content etc.).
Blockify The function to format the ledger state output.
windowSize The window size (number of blocks) of the sliding window.
Delay A general delay parameter for the time it takes for a newly joining (after

the onset of the computation) miner to become synchronized.

Figure 5: Overview of main ledger elements such as parameters and state variables.

blockchain protocols, including the properties discussed above, as assertions that hold within
such a sliding window (for any point in time).

4.2.4 Synchrony Aspects and De-Synchronized Parties

In order to keep the ideal execution indistinguishable from the real execution, the adversary
should be unable to use the clock for distinguishing. Since in the ideal world when a dummy party
receives a clock-update-message for Gclock it will forward it, the ledger needs to be responsible
that the clock counter does not advance before all honest parties have received sufficiently many
activations. This is achieved by the use of the function predict-time(~ITH) (see Definition 3.1

.

), which,
as we show, is defined for our ledger protocol. This function allows Gledger to predict when the
protocol would update the round and ensure that it only allows the clock to advance if and only if
the protocol would. Observe that the ledger can infer all protocol-relevant inputs/activations to
honest parties and can therefore easily keep track of the honest inputs sequence ~ITH . In particular,
in global UC communication between the ledger and the (shared) clock functionality is allowed
to access the relevant information (namely via a dummy party as defined in [CSV16

.

]).16

.

As
the other functions explained above, the function predict-time is a parameter of the (general)
ledger functionality and hence needs to be instantiated when realizing a specific ledger such as

16In order to keep the description below simple, we omit how the ledger exactly infers ~ITH , but this is quite
straightforward. In particular, the mechanism of [CSV16

.

] allows to assume that the ledger knows whether a party
is registered with the clock or not to deduce whether it is synchronized or de-synchronized.

24

the Bitcoin ledger (which is the topic of the next section).
A final observation is with respect to guarantees that the protocol (and therefore also the

ledger) can give to recently registered honest parties, or to registered parties that get de-registered
from the clock (temporarily, for instance). We will call miners de-synchronized if one of the above
properties are fulfilled for this miner. We denote the set of such miners by PDS .

To provide more intuition, consider the following scenario: An honest party registers as
miner in round r and waits to receive from honest parties the transactions to mine and the
current longest blockchain. In Bitcoin, upon joining, the miner sends out a special request on
the network—we denote this here as a special new-miner-message—and as soon as any party
receives it, it responds with the set of transactions and longest blockchain it knows. Due to the
network delay ∆, the parties might take up to ∆ rounds to receive the new-miner notification,
and their response might also take up to ∆ rounds before it arrives to the new miner. However,
because we do not make any assumption on honest parties knowing ∆ they need to start mining
as soon as a message arrives (otherwise they might wait indefinitely). But now the adversary,
in the worst case, can make these parties mine on any block he wants and have them accept
any valid chain he wants as the current state while they wait for the network’s response: simply
delay everything sent to these parties by honest miners by the maximum delay ∆, and instead,
immediately deliver what he wants them to work on. Thus, for the first 2∆ rounds17

.

these parties
are practically in the control of the adversary and their computing power is contributed to his.
The ledger parameter Delay describes the time it takes for a newly joining party, which joins
later than in the very first round, to become officially synchronized.

5 Bitcoin as a UC Protocol

5.1 Basics of Bitcoin

For the sake of self-containment, this section introduces the core algorithms of the Bitcoin
protocol.

5.1.1 Notation

A blockchain C = B1, . . . ,Bn is a (finite) sequence of blocks where each block Bi = 〈si, sti, ni〉 is
a triple consisting of the pointer si, the state block sti, and the nonce ni. The head of chain C
is the block head(C) := Bn and the length length(C) of the chain is the number of blocks, i.e.,
length(C) = n. The chain Cdk is the (potentially empty) sequence of the first length(C) − k
blocks of C. A special block is the genesis block G = 〈⊥, gen,⊥〉 which contains the genesis state
gen := ε and, as we will see later, is required to be the first block in the sequence.

The state ~st encoded in C is defined as a sequence of the corresponding state blocks, i.e.,
~st := st1|| . . . ||stn. In other words, one should think of the blockchain C as an encoding of
its underlying state ~st; such an encoding might, e.g., organize C is an efficient searchable data
structure as is the case in the Bitcoin protocol where a blockchain is a linked list implemented
with hash-pointers. In the protocol, the blockchain is the data structure storing a sequence
of entries, often referred to as transactions. Furthermore, as in [KZZ16

.

], in order to capture
blockchains with syntactically different state encoding, we use an algorithm blockifyB to map a
vector of transactions into a state block. Thus, each block st ∈ ~st (except the genesis state)

17For technical reasons described in Section 5

.

, ∆ rounds in the protocol correspond to 2∆ clock-ticks and hence
the ledger parameter will concretely be defined as Delay = 4∆.

25

Functionality Gledger

General: The functionality is parametrized by four algorithms Validate, ExtendPolicy, Blockify, and predict-time, along
with two parameters windowSize, Delay ∈ N. The functionality manages variables state, NxtBC, buffer, τL, and ~τstate, as
described above. Initially, state := ~τstate := NxtBC := ε, buffer := ∅, τL = 0.
For each party Pi ∈ P the functionality maintains a pointer pti (initially set to 1) and a current-state view statei := ε

(initially set to empty). The functionality keeps track of the timed honest-input sequence ~ITH (initially ~ITH := ε).

Party management: The functionality maintains the set of registered parties P, the (sub-)set of honest parties H ⊆ P,
and the (sub-set) of de-synchronized honest parties PDS ⊂ H (following the definition in the previous paragraph). The sets
P,H,PDS are all initially set to ∅. When a new honest party is registered at the ledger, if it is registered with the clock
already then it is added to the party sets H and P and the current time of registration is also recorded; if the current time
is τL > 0, it is also added to PDS . Similarly, when a party is deregistered, it is removed from both P (and therefore also
from PDS or H). The ledger maintains the invariant that it is registered (as a functionality) to the clock whenever H 6= ∅.
A party is considered fully registered if it is registered with the ledger and the clock.

Upon receiving any input I from any party or from the adversary, send (clock-read, sidC) to Gclock and upon receiving
response (clock-read, sidC , τ) set τL := τ and do the following:

1. Let P̂ ⊆ PDS denote the set of desynchronized honest parties that have been registered (continuously) since time
τ ′ < τL − Delay (to both ledger and clock). Set PDS := PDS \ P̂.

2. If I was received from an honest party Pi ∈ P:

(a) Set ~ITH := ~ITH ||(I, Pi, τL);

(b) Compute ~N = (~N1, . . . , ~N`) := ExtendPolicy(~ITH , state, NxtBC, buffer, ~τstate) and if ~N 6= ε set state :=

state||Blockify(~N1)|| . . . ||Blockify(~N`) and ~τstate := ~τstate||τ`L, where τ
`
L = τL|| . . . , ||τL.

(c) For each BTX ∈ buffer: if Validate(BTX, state, buffer) = 0 then delete BTX from buffer. Also, reset NxtBC := ε.

(d) If there exists Pj ∈ H \PDS such that |state| − ptj > windowSize or ptj < |statej |, then set ptk := |state|
for all Pk ∈ H \ PDS .

3. Depending on the input I and the ID of the sender, execute the respective code:

– Submiting a transaction:
If I = (submit, sid, tx) and is received from a party Pi ∈ P or from A (on behalf of a corrupted party Pi) do
the following

(a) Choose a unique transaction ID txid and set BTX := (tx, txid, τL, Pi)

(b) If Validate(BTX, state, buffer) = 1, then buffer := buffer ∪ {BTX}.
(c) Send (submit, BTX) to A.

– Reading the state:
If I = (read, sid) is received from a fully registered party Pi ∈ P then set statei := state|min{pti,|state|} and
return (read, sid, statei) to the requestor. If the requestor is A then send (state, buffer, ~ITH) to A.

– Maintaining the ledger state:
If I = (maintain-ledger, sid,minerID) is received by an honest party Pi ∈ P and (after updating ~ITH as
above) predict-time(~ITH) = τ̂ > τL then send (clock-update, sidC) to Gclock. Else send I to A.

– The adversary proposing the next block:
If I = (next-block, hFlag, (txid1, . . . , txid`)) is sent from the adversary, update NxtBC as follows:

(a) Set listOfTxid← ε

(b) For i = 1, . . . , ` do: if there exists BTX := (x, txid,minerID, τL, Pi) ∈ buffer with ID txid = txidi then
set listOfTxid := listOfTxid||txidi.

(c) Finally, set NxtBC := NxtBC||(hFlag, listOfTxid) and output (next-block, ok) to A.
– The adversary setting state-slackness:

If I = (set-slack, (Pi1 , p̂ti1), . . . , (Pi` , p̂ti`)), with {Pi1 , . . . , Pi`} ⊆ H \ PDS is received from the adversary
A do the following:

(a) If for all j ∈ [`] : |state| − p̂tij ≤ windowSize and p̂tij ≥ |stateij |, set pti1 := p̂ti1 for every j ∈ [`]

and return (set-slack, ok) to A.
(b) Otherwise set ptij := |state| for all j ∈ [`].

– The adversary setting the state for desychronized parties:
If I = (desync-state, (Pi1 , state

′
i1

), . . . , (Pi` , state
′
i`

)), with {Pi1 , . . . , Pi`} ⊆ PDS is received from the
adversary A, set stateij := state′ij for each j ∈ [`] and return (desync-state, ok) to A.

Figure 6: The ledger functionality. We write [n] to denote the set {1, . . . , n}.

26

of the state encoded in the blockchain has the form st = blockifyB(~N) where ~N is a vector of
transactions.

5.1.2 Validity and Longest Valid Chains

For a blockchain C to be considered a valid blockchain, it needs to satisfy certain conditions.
Concretely, the validity of a blockchain C = B1, . . . ,Bn where Bi = 〈si, sti, ni〉 depends on two
aspects: chain-level validity, also referred to as syntactic validity, and a state-level validity also
referred to as semantic validity.

Syntactic validity. This is defined with respect to a difficulty parameter D ∈ [2κ], where κ is
the security parameter, and a given hash function H(·) : {0, 1}∗ → {0, 1}κ; at its core, it requires
that, for each i > 1, the value si contained in Bi satisfies si = H[Bi−1] and that additionally
H[Bi] < D holds (for non-genesis blocks), where we interpret the output of the hash-function as
an integer in this comparison. The algorithm is given below. Note that for notational simplicity,
we omit the hash-function as an explicit superscript.

Algorithm validStructDB(C)

res← true
if (length(C) = 0) or (H[head(C)] ≥ D) then

res← false
else if length(C) = 1 then

res← (C = G)
else . In this case, the chain is non-trivial and the most recent block is a valid proof-of-work.
C′ ← C
〈s′, ·, ·〉 ← head(C′)
repeat
C′ ← C′d1 . Chop off the head of C′.
B := 〈s, st, n〉 ← head(C′)
if (H[B] 6= s′) or (length(C′) > 1 and H[head(C)] ≥ D) or (length(C′) = 1 and B 6= G) then

res← false
else

s′ ← s
until res = false or length(C′) = 1

return res

Semantic validity. This is defined on the state ~st encoded in the blockchain C and specifies
whether this content is valid (which might depend on a particular application). Recall that
the validation predicate Validate defined in the ledger functionality plays a similar role. For
example, a natural and generic semantic validity of the blockchain can be defined algorithm
that we denote isvalidstateB which builds upon a validation predicate for transactions, such as
Validate. Recall that in the general ledger description, Validate might depend on some associated
metadata; although this might be useful to capture alternative blockchains, it is not the case
for Bitcoin and to avoid confusion, throughout this section we use ValidTxB to refer to a generic
validation predicate which ignores all information other than the state and the transaction that
is being validated. The pseudo-code of the algorithm isvalidstateB which builds upon ValidTxB is
provided below. In a nutshell, the algorithm checks that a given blockchain state can be built
in an iterative manner, such that each contained transaction is considered valid according to
ValidTxB upon insertion. It further ensures that the state starts with the genesis state and that
state blocks contain a special coin-base transaction txcoin-baseminerID which assigns them to a miner.

27

Algorithm isvalidstateB(~st)

Let ~st := st1|| . . . ||stn
for each sti do

Extract the transaction sequence ~txi ← txi,1, . . . , txi,ni contained in sti
~st′ ← gen . Initialize the genesis state
for i = 1 to n do

if the first transaction in ~txi is not a coin-base transaction return false
~Ni ← txi,1
for j = 2 to | ~txi| do

st← blockifyB(~Ni)

if ValidTxB(txi,j , ~st
′||st) = 0 return false

~Ni ← ~Ni||txi,j
~st′ ← ~st′||sti

return true

Definition 5.1. A chain C is valid if it satisfies syntactic and semantic validity, i.e., if, for the
chain and its encoded state ~st, the predicate

isvalidchainDB(C) := validStructDB(C) ∧ isvalidstateB(~st)

evaluates to true.

Longest valid chain. In the Bitcoin protocol, the notion of the longest valid chain is very
crucial. The reason is that the party defines the ledger state at a certain time as a prefix of the
state encoded in the longest valid chain it knows at that time. We stick to the nomenclature of
[GKL15

.

] and call the function maxvalidB(C1, . . . , Ck).

Algorithm maxvalidDB(C1, . . . , Ck)

Ctemp ← ε
for i = 1 to k do

if isvalidchainDB(Ci) and (length(Ci) > length(Ctemp)) then
Ctemp ← Ci

return Ctemp

5.1.3 Extending Chains and Proofs-of-Work

A core step in Bitcoin is to extend a given chain C by a new block B (with certain state content)
to yield a longer chain C||B. As presented in [GKL15

.

] this can be captured by an algorithm
extendchainD(·) that takes a chain C, a state block st and the number of attempts q as inputs. It
tries to find a proof-of-work which allows to extend the C by a block which encodes st.

Algorithm extendchainD(C, st, q)

Input: Chain C is valid with state ~st. The state ~st||st is valid.
Set B← ⊥
s← H[head(C)] . Compute the pointer s of the new block
for i ∈ {1, . . . , q} do

Choose nonce n uniformly at random from {0, 1}κ and set B← 〈s, st, n〉.
if H[B] < D then

break

28

if B 6= ⊥ then
C ← C||B

return C

5.2 Overview and Modeling Decisions

In Bitcoin, each party maintains a local blockchain which initially consists of the genesis block.
The chains of honest parties might differ (but as we will prove, it will have a common prefix
which will define the ledger state). New transactions are added in a ‘mining process’. First, a
party collects valid transactions (according to ValidTxB) and creates a new state block st using
blockifyB. Next, the party attempts to mine a new block by solving a puzzle (and hence finding
a proof-of-work) which upon success could then be validly added to their local blockchain. After
each mining attempt parties will multicast their current chain. A party will replace its local
chain if it obtains or receives a longer valid chain. When queried to output the state of the ledger,
a party reports a prefix of the state encoded in its longest valid chain — obtained by ignoring
(or chopping-off) the most recent T blocks (a party outputs ε if the state has less than T blocks).
This behavior will ensure that all honest parties output a consistent ledger state. T is a crucial
parameter of the Bitcoin protocol and typically, the guarantees of the security statements depend
on T (and in addition on the usual security parameter κ).

5.2.1 The Round Structure

As already mentioned in the introduction, we model Bitcoin as a semi-synchronous protocol:
The protocol can proceed in rounds — enabled by having access to a global synchronization
clock Gclock— but is not aware of the actual delay of the network. In each round, two logical
tasks have to be executed: an updating or information-fetching step (where new messages from
the network are processed) and a working or mining-step, where each party tries to extend its
local chain.

To simplify the UC activation handling in the analysis, we divide each logical round into two
sub-rounds (where each sub-round corresponds to a logical task; see below for more details). This
means that each logical round correspond to two actual clock-ticks (also known as mini-rounds
in the MPC literature). We say that a protocol is in round r if the current time of the clock is
τ ∈ {2r, 2r + 1}.

Having two clock-ticks per round is a standard way to model in synchronous UC that messages
(e.g., a block) sent within a round are delivered at the beginning of the next round. In our case,
each round is divided into two mini-rounds, where each mini-round corresponds to a clock tick.
We treat the first mini-round as the updating mini-round (fetch messages from the network to
obtain messages sent previous rounds) and the second mini-round as the working mini-round
(solving the puzzle and multicasting solutions).

5.2.2 Handling Interrupts

A protocol command might consists of a sequence of operations. However, certain operations,
such as sending a message to another party, result in the protocol machine losing the activation
token. We briefly describe a standard way to formalize that a party that loses an activation in
the middle of a multi-step command is able to resume and complete the command following the

29

implicit proposal of [KMTZ13

.

]. Their mechanism can be made explicit by introducing an anchor
a that stores a pointer to the current operation; the protocol associates each anchor with such
a multiple command and an input I, so that when such an input is received it directly jumps
to the stored anchor, executes the next operation(s) and updates (increases) the anchor before
releasing the activation. We refer to such an execution as being I-interruptible.

As an example, consider a protocol that requires that upon receiving input I, the party
should run a command that consists of m steps Step 1, Step 2, . . . , Step m, but some of these
steps might result in the party losing its activation. Running this command in an I-interruptible
manner means executing the following code: Upon receiving input I if a < m go to Step a and
increase a = a+ 1 before executing the first operation that releases the activation; otherwise go
to Step 1 and set a = 2 before executing any operation that releases the activation.

5.3 The Formal Protocol Description

We can now formally define our blockchain protocol Ledger-Protocolq,D,T (we usually omit the
parameters when clear from the context). The protocol allows an arbitrary number of par-
ties/miners to communicate by means of a multicast network F∆

N-MC. Note that this means that
the adversary can send different messages to different parties. New miners might dynamically
join or leave the protocol by means of the registration/de-registration commands: when they
join they register with all associated functionalities and when they leave they deregister.18

.

The
pseudo-code of this UC blockchain protocol is given in the remainder of this section. For the
general structure of our UC blockchain model, we refer to Figure 7

.

.
The Bitcoin ledger protocol assumes as hybrids a random oracle FRO, a network Fbc

N-MC for
blockchains, a network F tx

N-MC for transcations, and clock Gclock. Note that the two networks
are simply (named) instances of F∆

N-MC and can be realized from a single network F∆
N-MC using

different message-IDs. The protocol is parametrized by q, D, T where q is the number of mining
attempts per round, D is the difficulty of the proof-of-work, and T is the number of blocks
chopped off to obtain the ledger state.

5.3.1 Registration, De-Registration and Initialization

The registration process in the protocol works as follows. If a party receives (register, sid) from
the environment it registers at the random oracle and the network. Since the clock is a shared
functionality, the registrations are fully controlled by the environment and thus the protocol
relays such registration queries to the clock. Only if a party is registered to the clock already, it
reacts to such register queries and otherwise stays idle. Once registration has succeeded the
party returns activation to the environment. Upon the next activation to maintain the ledger
(maintain-ledger), the party initializes its local variables, multicasts a special new-party
message over the network, and executes the main maintenance sub-protocol (in an interruptible
manner as further explained below).

De-registering from the ledger (via a query (de-register, sid)) from the environment) works
analogously, upon which the party erases all its state and becomes idle until its is freshly invoked
with a register-query.

18Note that when a party registers to a local functionality such as the network or the random oracle it does not
lose its activation token. This is a subtle point to ensure that the real and ideal worlds are in-sync regarding
activations.

30

Protocol Ledger-Protocolq,D,T (P)

Variables and Initial Values:

• The protocol stores a local (working) chain Cloc which initially contains the genesis block, i.e., Cloc ← (G).

• It additionally manages a separate chain Cexp to store the current chain whose encoded state ~st is exported
as the ledger state (initially this chain contains the genesis block).

• Variable isInit stores the initialization status. Initially this variable is false.

• buffer contains the list of transactions obtained from the network. Initially, this buffer is empty.

• A time stamp t to remember when this party was last active (initially, t = 0) and a flag welcome to indicate
whether a indication was received that a new party joined the network (initially welcome = 0).

• The party stores its registration status to the hybrid functionalities internally. We do not introduce an explicit
name for this variable.

Registration/De-Registration:

• Upon receiving (register, sid) do the following: if this party is registered with the clock, then send
(register, sid) to Fbc

N-MC, F tx
N-MC, and FRO and output (register, sid, P); otherwise, ignore the input.

• Upon receiving (de-register, sid), send (de-register, sid) to Fbc
N-MC, F tx

N-MC, and FRO. Set all variables
back to their initial values and return (de-register, sid, P).

• Upon receiving (is-registered, sid), return (register, sid, 1) if this party is registered with the network and
the random oracle. Otherwise, return (register, sid, 0).

• Upon receiving (register, sidC) (for the global clock), send (register, sidC) to Gclock and return whatever
Gclock returns.

• Upon receiving (de-register, sidC) (for the global clock), send (de-register, sidC) to Gclock and return
whatever Gclock returns.

Ledger-Queries:
Ledger queries are only answered once registered.

• Upon receiving (submit, sid, tx), set buffer← buffer||tx, and send (multicast, sid, tx) to F tx
N-MC.

• Upon receiving (read, sid) send (clock-read, sidC) to Gclock, receive as answer (clock-read, sidC , τ) and
proceed as follows:
if τ corresponds to an update mini-round and t < τ and isInit then

Execute sub-protocol FetchInformation and set t← τ .
Let ~st be the encoded state in Cexp

Return (read, sid, ~stdT).

• Upon receiving (maintain-ledger, sid,minerID) execute in a (maintain-ledger, sid,minerID)-interruptible
manner the following:

1. If isInit = false, then set all variables to their initial values, set isInit ← true and output
(multicast, sid,new-party) to F tx

N-MC.

2. Execute sub-protocol Ledger-Maintenance

Handling other external calls:

• Upon receiving (clock-read, sidC) forward the query to Gclock and return whatever is received as answer
from Gclock

• Upon receiving (clock-update, sidC), remember that a clock-update was received in the current mini-round
for later reference. If this protocol instance is currently only registered to the clock (and no other functionality),
then forward (clock-update, sidC) to Gclock.

Figure 7: The main structure of the UC blockchain protocol.

31

Recall that the notion of de-synchronized parties is strongly connected to its registration: if
an active honest party is not registered with the clock or not registered to all hybrids for long
enough after joining the protocol execution at some time τ > 0, it is considered de-synchronized
(and otherwise the party is synchronized). In particular, honest parties that register at the onset
of the protocol execution are synchronized (until they get corrupted or de-registered from the
clock).

5.3.2 Ledger-Specific Queries

Ledger specific queries are the specific features that one wishes to implement. Our very basic
ledger supports three operations (after registration):

Submitting a transaction. This one is very simple: when given a transaction a party
multicasts the transaction.

Ledger maintenance. Ledger maintenance refers to activating the main mining procedure of
Bitcoin and is given in Figure 8

.

. Since ledger maintenance consists of several complex steps that
in particular lose activations, the execution proceeds in an interruptible manner as explained
in Section 5.2.2

.

. The main structure of maintenance enforces the mini-round structure: in a
working mini-round, the protocol tries to obtain the solution to a proof-of-work puzzle for a
newly generated state block. The core sub-protocol thereby is:

Sub-Protocol ExtendState(st)

Cnew ← extendchainD(Cloc, st, q)
if Cnew 6= Cloc then

Update the local chain, i.e., Cloc ← Cnew.
Send (multicast, sid, Cloc) to Fbc

N-MC . Multicast current chain

It then enters an idle mode for maintenance queries until the clock advances and enters an update
mini-round where new information is fetched from the network.

Sub-Protocol FetchInformation

Send (fetch, sid) to Fbc
N-MC; denote the response from Fbc

N-MC by (fetch, sid, b).
Extract chains C1, . . . , Ck from b.
Cloc, Cexp ← maxvalidDB(Cloc, Cexp, C1, . . . , Ck)

Send (fetch, sid) to F tx
N-MC; denote the response from F tx

N-MC by (fetch, sid, b).
Extract received transactions (tx1, . . . , txk) from b.
Set buffer← buffer||(tx1, . . . , txk).
If a new-party message was received, set welcome← 1. Otherwise, set welcome← 0.
Remove all transactions from buffer which are invalid with respect to ~stdT

Again the protocol is idle for maintenance queries until the clock advances.

Reading the state. When asked to report the current ledger state, the protocol outputs the
prefix of the exported state, i.e., a prefix of the state encoded in Cexp. By the mini-round structure,
the exported state is updated exactly once in every update mini-rounds (after initialization is
complete).

32

Sub-Protocol Ledger-Maintenance

This sub-protocol is executed in a (maintain-ledger, sid,minerID)-interruptible manner
Step 1: If a (clock-update, sidC) has been received during this update mini-round then send (clock-update, sidC)

to Gclock (if it hasn’t been sent already in the current mini-round), and in the next activation go to the next
step. Else in the next activation repeat this step.

Step 2: Send (clock-read, sidC) to Gclock, receive as answer (clock-read, sidC , τ), and proceed as follows.
if τ corresponds to a working mini-round then

. Generate a new block: extract transactions and form a state-block and append
Let ~st be the encoded state in Cloc
Set buffer′ ← buffer
Parse buffer′ as sequence (tx1, . . . , txn)

Set ~N ← txcoin-base
minerID

Set st← blockifyB(~N)
repeat

Let (tx1, . . . , txn) be the current list of (remaining) transactions in buffer′

for i = 1 to n do
if ValidTxB(txi, ~st||st) = 1 then

~N ← ~N ||txi
Remove tx from buffer′

Set st← blockifyB(~N)

until ~N does not increase anymore
Execute ExtendState(st)
If the flag Welcome = 1, send (multicast, sid, tx) to F tx

N-MC for all tx ∈ buffer.
Go to step 3 in the next activation.

else
Go to the beginning of step 2 in the next activation.

Step 3:
If a (clock-update, sidC) has been received during this working round then send (clock-update, sidC) to
Gclock, and in the next activation go to the next step. Else in the next activation repeat this step.

Step 4:
Send (clock-read, sidC) to Gclock, receive as answer (clock-read, sidC , τ), and proceed as follows.
if τ corresponds to an update mini-round then

If t < τ execute FetchInformation and set t← τ .
Go to step 1 in the next activation.

else
Go to the beginning of step 4 in the next activation.

Figure 8: The maintenance procedure of the UC Bitcoin protocol.

5.3.3 Predictable Synchronization Pattern

We now show that the ledger protocol has a predictable synchronization pattern according
to Definition 3.1

.

.

Lemma 5.2. The protocol Ledger-Protocolq,D,T satisfies Definition 3.1

.

. More specifically, there
is a predicate predict-timeBC that predicts the synchronization pattern of the UC Bitcoin protocol
as required by Definition 3.1

.

.

Proof Sketch. This is straightforward to see for our ledger protocol (and all protocols that
share the same structure) in all the respective hybrid worlds they are executed. The predicate
predict-time can be implemented as follows: browse through the entire sequence ~ITH and determine
how many times the clock advances. The clock advances for the first time, when all miners got
sufficient maintain commands to complete their mini-round operation, followed by a clock-update

33

command. By definition of Ledger-Protocol, this implies that each party has sent a clock-update
to the clock and hence the clock advances. By an inductive argument, whenever the clock
has ticked, the check when the clock advances the next time is checked exactly the same way.
Overall, this allows to check whether the next activation of an honest party, given the history
of activations will provoke a clock update. Note that only an activation of an honest party can
make the clock advance.

6 The Bitcoin Ledger

We next show how to instantiate the ledger functionality from Section 4

.

with appropriate
parameters so that it is implemented by protocol Ledger-Protocol. The proof of this appears in
the next section. To define this Bitcoin ledger GBledger, we give the specific instantiations of the
relevant functions Validate, Blockify, ExtendPolicy, and predict-time.

Synchrony pattern. First, predict-time is defined to be predict-timeBC to reflect the synchro-
nization pattern of the UC Bitcoin protocol as described in the proof of Lemma 5.2

.

. This shows
the dependency of the realized ledger from the protocol that achieves it.

State-buffer-validation. Similarly, in case of Validate we use the same predicate as the
protocol uses to validate the states: For a given transaction tx and a given state state, the
predicate decides whether this transaction is valid with respect to state. Given such a validation
predicate, the ledger validation predicate takes a specific simple form which, excludes dependency
on anything other than the transaction tx and the state state, i.e., for any values of txid, τL, Pi,
and buffer:

Validate((tx, txid, τL, Pi), state, buffer) := ValidTxB(tx, state).

Ledger-output format. As with the above parameters, the function Blockify is defined to
be blockifyB, i.e., the function used in the UC Bitcoin protocol. In principle, any formatting
function can be used and the security proof goes through (as long as the same function is
used in the protocol Ledger-Protocol and functionality GBledger). However, as we observe below
in Definition 6.1

.

, a meaningful Blockify should be in certain relation with the ledger’s Validate
predicate. This relation is satisfied by the Bitcoin protocol.

The ledger policy. Finally, we define ExtendPolicy. At a high level, upon receiving a list of
possible candidate blocks which should go into the state of the ledger, ExtendPolicy does the
following: for each block it first verifies that the blocks are valid with respect to the state they
extend. Only valid blocks might be added to the state. Moreover, ExtendPolicy ensures the
following property:

1. The speed of the ledger is not too slow. This is implemented by defining an upper bound
maxTimewindow on the time interval (number of clock-ticks) within which at least windowSize
state blocks have to be added. This is known as minimal chain-growth.

2. The speed of the ledger is not too fast. This is implemented by defining a lower bound
minTimewindow on the time interval (number of clock-ticks), such that the adversary is not

34

allowed to propose new blocks if windowSize or more blocks have already been added
during that time interval.

3. The adversary cannot create too many blocks with arbitrary (but valid) contents. This is
formally enforced by defining an upper bound η on the number of these so-called adversarial
blocks within a sequence of windowSize state blocks. This is known as chain quality.
Formally, this is enforced by requiring that a certain fraction of blocks need to satisfy
higher quality standards (to model blocks that are honestly generated).

4. Last but not least, ExtendPolicy guarantees that if a transaction is “old enough”, and still
valid with respect to the actual state, then it is included into the state. This is a weak
form of guaranteeing that a transaction will make it into the state unless it is in conflict.
As we show in Section 9

.

, this guarantee can be amplified by using digital signatures.

In order to enforce these policies, ExtendPolicy first defines alternative blocks which satisfy all of
the above criteria in an ideal way, and whenever it catches the adversary in trying to propose
blocks that do not obey the policies, it punishes the adversary by proposing its own generated
blocks. In particular, if the adversary violates the policy regarding minimal chain-growth, the
ExtendPolicy will directly propose a sequence of complying blocks. The precise formal description
of the extend policy (as pseudo-code) for GBledger is given in Appendix B

.

for completeness.

On the relation between Blockify and Validate. As already discussed above, ExtendPolicy
guarantees that the adversary cannot block the extension of the state indefinitely, and that
occasionally an honest miner will create a block. These are implications of the chain-growth
and chain-quality properties from [GKL15

.

]. However, our generic ExtendPolicy makes explicit
that a priori, we cannot exclude that the chain always extends with blocks that include, for
example, only a coin-base transaction, i.e., any submitted transaction is ignored and never
inserted into a new block. This issue is an orthogonal one to ensuring that honest transactions are
not invalidated by adversarial interaction—which, as argued in [GKL15

.

], is achieved by adding
digital signatures.

To see where this could be problematic in general, consider a blockify that, at a certain
point, creates a block that renders all possible future transactions invalid. Observe that this
does not mean that our protocol is insecure and that this is as well possible for the protocols
of [GKL15

.

, PSS17

.

]; indeed our proof shows that the protocol will give exactly the same guarantees
as an Gledger parametrized with such an algorithm Blockify.

Nonetheless, a look in reality indicates that this situation never occurs with Bitcoin. To
capture that this is the case, Validate and Blockify need to be in a certain relation with each
other. Informally, this relation should ensure that the above sketched situation does not occur,
i.e., Blockify should “not affect” the “true validity” of a transaction. A way to ensure this,
which is already implemented by the Bitcoin protocol, is by restricting Blockify to only make an
invertible manipulation of the blocks when they are inserted into the state—e.g., be an encoding
function—and define Validate to depend on the inverse of Blockify. This is captured in the
following definition.

Definition 6.1. A co-design of Blockify and Validate is non-self-disqualifying if there exists an
efficiently computable function Dec mapping outputs of Blockify to vectors ~N such that there
exists a validate predicate Validate′ for which the following properties hold for any possible state

35

state = st1|| . . . ||st`, buffer buffer vectors ~N := (tx1, . . . , txm), and transaction tx:

1. Validate(tx, state, buffer) = Validate′(tx,Dec(st1)|| . . . ||Dec(st`), buffer)

2. Validate(tx, state||Blockify(~N), buffer) = Validate′(tx,Dec(st1)|| . . . ||Dec(st`)|| ~N, buffer)

We remark that the actual validation of Bitcoin does satisfy the above definition, since a
transaction is only rendered invalid with respect to the state if the coins it is trying to spend
have already been spent, and this only depends on the transactions in the state and not the
metadata added by Blockify. Hence, in the following, we assume that ValidTxB and blockifyB
satisfy the relation in Definition 6.1

.

.

7 Security Analysis

7.1 Overview

In this section we prove our main theorem, namely that, under appropriate assumptions, Bitcoin
realizes the instantiation of the ledger functionality from the previous section. We prove our
main theorem which can be described informally as follows:

Theorem (Informal). For the security parameter κ and assuming windowSize = ω(log κ), then
the protocol Ledger-Protocol securely realizes the concrete ledger functionality GBledger defined in
the previous section. The assumptions on network delays and mining power, where mining power
is roughly understood as the ability to find proofs of work via queries to the random oracle (and
will be formally defined later) are as follows:

• In any round of the protocol execution, the collective mining power of the adversary,
contributed by corrupted and temporarily de-synchronized miners, does not exceed the
mining power of honest (and synchronized) parties. The exact relation additionally captures
the (negative) impact of network delays on the coordination of mining power of honest
parties.

• No message can be delayed in the network by more than ∆ = O(1) rounds.

We prove the above theorem via what we believe is a useful modularization of the Bitcoin
protocol (cf. Figure 9

.

). Informally, this modularization distills out from the protocol a reactive
state-extend subprocess which captures the lottery that decides which miner gets to advance
the blockchain next and additionally the process of propagating this state to other miners.
In Lemma 7.2

.

we show that the state-extend-and-exchange module/subprocess implements an
appropriate reactive UC functionality FStX. We can then use the UC composition theorem
which allows us to argue security of Ledger-Protocol in a simpler hybrid world where, instead of
using this subprocess, parties make calls to the functionality FStX.

For the sake of generality, our treatment will assume a shared (global) clock functionality
and therefore, our main proof follows the EUC-realization (externalized UC) notion introduced
in [CDPW07

.

] which then implies full GUC security as stated in [CDPW07

.

].

7.2 First Proof Step

In a first step, we distill out from the protocol Ledger-Protocol a state-extend module/subprocess,
denoted as StateExchange-Protocol, and show, using a “game-hopping” argument, that a modular

36

FROGclock FN-MC

Pi · · · Pj

Z

A

(a) In the real world parties have access to the global
clock Gclock, the random oracle FRO, and network
FN-MC. Here, parties execute the Bitcoin protocol
Ledger-Protocol

FStXGclock FN-MC

P ′
i · · · P ′

j

Z

S ′

(b) In the hybrid world parties have access to the
state-exchange functionality FStX (instead of the
random oracle). Here, parties execute the modular-
ized protocol Modular-Ledger-Protocol

GledgerGclock

P̄i · · · P̄j

Z

S

(c) In the ideal world, dummy parties have access to
the global clock Gclock and the ledger Gledger

Figure 9: Modularization of the Bitcoin protocol.

description of the Ledger-Protocol in which every party makes invocations of this subprocess,
yields an equivalent protocol. We abstract the service provided by this sub-process by a new
lottery-functionality denoted FStX. The modularized protocol, defined for the FStX-hybrid
world is denoted by Modular-Ledger-Protocol.

As we prove, the sub-process StateExchange-Protocol UC-realizes FStX and hence the origi-
nal protocol Ledger-Protocol and the modularized protocol Modular-Ledger-Protocol are in fact
indistinguishable. This final step is a direct consequence of the universal composition theorem:
Ledger-Protocol UC emulates Modular-Ledger-Protocol where invocations of StateExchange-Protocol
are replaced by invocations of FStX (for appropriate parameters as precisely defined below).

Looking ahead, in the next section, we can hence focus on analyzing the simpler protocol
Modular-Ledger-Protocol in order to show that the UC Bitcoin protocol realizes the Bitcoin Ledger
of Section 6

.

— again by invoking the composition theorem.

37

7.2.1 The State-Exchange Functionality

The state-exchange functionality F∆,pH ,pA
StX allows parties to submit ledger states which are

accepted with a certain probability. Accepted states are then multicast to all parties. Informally,
it can be seen as as lottery on which (valid) states are exchanged among the participants. Note
that for simplicity of notation we do not write the parameters when clear from the context.

Parties can use FStX to multicast a valid state, but instead of accepting any submitted state
and sending it to all (registered) parties, FStX keeps track of all states that it ever saw, and
implements the following mechanism upon submission of a state ~st and a new block st from any
party: If ~st was previously accepted by FStX and ~st||st is a valid new state, then FStX accepts
~st||st with probability pH (resp. pA for dishonest parties) and sends it to registered parties.
Each submission is evaluated independently. The formal specification is found in Figure 10

.

.

7.2.2 Realizing the State-Exchange Functionality

The state-exchange functionality is realized by the protocol given below. It is obtained by
identifying the relevant instructions from the UC-ledger protocol. More precisely, protocol
StateExchange-Protocol UC-realizes the FStX functionality in the (FRO, Fbc

N-MC)-hybrid world.
Note that Fbc

N-MC is a (named) instance of the F∆
N-MC functionality. The protocol is parametrized

by q and D where q is the number of mining attempts per submission attempt and D is the
difficulty of the proof-of-work.

Protocol StateExchange-Protocolq,D(P)

Initialization:
The protocol maintains a tree T of all valid chains. Initially it contains the genesis chain (G).

Registration/De-Registration:

• Upon receiving (register, sid) do the following: send (register, sid) to Fbc
N-MC and FRO and output

(register, sid, P).

• Upon receiving (de-register, sid), send (de-register, sid) to Fbc
N-MC and FRO. Set all variables back to

their initial values and return (de-register, sid, P).

• Upon receiving (is-registered, sid), return (register, sid, 1) if this party is registered with Fbc
N-MC and FRO.

Otherwise, return (register, sid, 0).

Exchange: Exchange queries are only answered once registered.

• Upon receiving (submit-new, sid, ~st, st) do
if isvalidstateB(~st||st) = 1 then . Check if there exists a chain in T which contains the state ~st

if there exists C ∈ T with ~st then
Cnew ← extendchainD(C, st, q) . Try to extend the chain
if Cnew 6= C then

Update the local tree, i.e., add Cnew to T
Output (success, sid, 1) to P .

else
Output (success, sid, 0) to P .

On response (continue, sid) send (multicast, sid, Cnew) to Fbc
N-MC. . Broadcast current chain

• Upon receiving (fetch-new, sid) if do the following:
Send (fetch, sid) to Fbc

N-MC and denote the response by (fetch, sid, b).
Extract all valid chains C1, . . . , Ck from b and add them to T .
Extract states ~st1, . . . , ~stk from C1, . . . , Ck and output them.

38

Functionality F∆,pH ,pA
StX

The functionality is parametrized with a set of parties P. Any newly registered (resp. deregistered) party is added to
(resp. deleted from) P. For each party P ∈ P the functionality manages a tree TP where each rooted path corresponds
to a valid state the party has received. Initially each tree contains the genesis state gen.
Finally, it manages a buffer ~M which contains successfully submitted states which have not yet been delivered to
(some) parties in P.

Submit/receive new states:

– Upon receiving (submit-new, sid, ~st, st) from some participant Ps ∈ P, if isvalidstateB(~st||st) = 1 and ~st ∈ TP
do the following:

1. Sample B according to a Bernoulli-Distribution with parameter pH (or pA if Ps is dishonest).

2. If B = 1, set ~stnew ← ~st||st and add ~stnew to TPs . Else set ~stnew ← ~st.

3. Output (success, sid, B) to Ps.

4. On response (continue, sid) where P = {P1, . . . , Pn} choose n new unique message-IDs
mid1, . . . ,midn, initialize n new variables Dmid1

:= DMAX
mid1

:= . . . := Dmidn :=

DMAX
midn := 1 set ~M := ~M ||(~stnew,mid1, Dmid1

, P1)|| . . . ||(~stnew,midn, Dmidn , Pn), and send
(submit-new, sid, ~stnew, Ps, (P1,mid1), . . . , (Pn,midn)) to the adversary.

– Upon receiving (fetch-new, sid) from a party P ∈ P or A (on behalf of P), do the following:

1. For all tuples (~st,mid, Dmid, P) ∈ ~M set Dmid := Dmid − 1.

2. Let ~MP
0 denote the subvector of ~M including all tuples of the form (~st,mid, Dmid, P) where Dmid = 0

(in the same order as they appear in ~M). For each tuple (~st,mid, Dmid, P) ∈ ~MP
0 add ~st to TP . Delete

all entries in ~MP
0 from ~M and send ~MP

0 to P .

– Upon receiving (send, sid, ~st, P ′) from A on behalf some corrupted P ∈ P, if P ′ ∈ P and ~st ∈ TP , choose a
new unique message-ID mid, initialize D := 1, add (~st,mid, Dmid, P

′) to ~M , and return (send, sid, ~st, P ′,mid)
to A.

Further adversarial influence on the network:

– Upon receiving (swap, sid,mid,mid′) from A, if mid and mid′ are message-IDs registered in the current ~M ,
swap the corresponding tuples in ~M . Return (swap, sid) to A.

– Upon receiving (delay, sid, T,mid) from A, if T is a valid delay, mid is a message-ID for a tuple
(~st,mid, Dmid, P) in the current ~M and DMAX

mid +T ≤ ∆, set Dmid := Dmid+T and set DMAX
mid := DMAX

mid +T .

Figure 10: The state exchange functionality. Parameters are the delay ∆ and the success
probabilities pH and pA for honest and adversarial submissions.

39

Lemma 7.1. Let p := D
2κ . The protocol StateExchange-Protocolq,D UC-realizes functionality

F∆,pH ,pA
StX in the (FRO,F∆

N-MC)-hybrid model where pA := p and pH := 1− (1− p)q.

Proof. We consider the following simulator:

Simulator Sstx

Initialization:
Set up a tree of valid chains T ← {(G)} and an empty network buffer ~M .
Set up an empty random oracle table H and set H[G] to a uniform random value in {0, 1}κ. If the simulator ever
tries to add a colliding entry to H, abort with collision-error.
The simulator manages a set PRO of parties registered to the random oracle and a set of parties Pnet registered to
the network.

Simulating the Random Oracle:

• Upon receiving (eval, sid, v) for FRO from A on behalf of corrupted P ∈ PRO do the following.

1. If H[v] is already defined, output (eval, sid, v,H[v]).

2. If v is of the form (s, st, n) and there existsa

.

a chain C = B1, . . . ,Bn such that H[Bn] = s proceed
as follows. If C 6∈ T abort with tree-error. Otherwise continue. Extract the state ~st from C and
extract the state block st from v. Send (submit-new, sid, ~st, st) to FStX and denote by (success, B)
the output of FStX. If B = 1 set H[v] to a uniform random value in {0, 1}κ strictly smallerb

.

than
D. Add C||v to T . Otherwise set H[v] to a uniform random value in {0, 1}κ larger than D. Output
(eval, sid, v,H[v]).

3. Otherwise set v to a uniform random value in {0, 1}κ and output (eval, sid, v,H[v]).

Simulating the Network:

• Upon receiving (multicast, sid, (mi1 , Pi1), . . . , (mi` , Pi`)) for Fbc
N-MC from A on behalf of corrupted P ∈ Pnet

with {Pi1 , . . . , Pi`} ⊆ Pnet proceed as follows.

1. Choose ` new unique message-IDs midi1 , . . . ,midi` , initialize ` new variablesDmidi1
:= . . . := Dmidi`

:=

1, set ~M := ~M ||(mi1 ,midi1 , Dmidi1
, Pi1)|| . . . ||(mi` ,midi` , Dmidi`

, P`).

2. For each (mij , Pij) where mij is a chain in T extract the state ~stij from mij , and send

(send, sid, ~st, Pij) to FStX. Store the message-ID m̂idij returned by FStX with midij . Note that
if P has not yet received that state, it is first fetched by A on behalf of P and if an unknown state
is encoded, a random oracle query is simulated for the input to simulate the chain’s validity and its
possible inclusion into T .

3. Output (multicast, sid, (mi1 , Pi1 ,midi1), . . . , (mi` , Pi` ,midi`) to A.

• Upon receiving (fetch, sid) for Fbc
N-MC from A on behalf of corrupted P ∈ Pnet proceed as follows.

1. For all tuples (m,mid, Dmid, P) ∈ ~M , set Dmid := Dmid − 1.

2. Let ~MP
0 denote the subvector ~M including all tuples of the form (m,mid, Dmid, P) with Dmid = 0 (in

the same order as they appear in ~M). Delete all entries in ~MP
0 from ~M , and send ~MP

0 to A.

• Upon receiving a message (delays, sid, (Tmidi1
,midi1), . . . , (Tmidi`

,midi`)) do the following for each pair
(Tmid,mid) in this message:

1. If Tmid is a valid delay (i.e., it encodes an integer in unary notation) and mid is a message-ID registered
in the current ~M , set Dmid := max{1, Dmid + Tmid}; otherwise, ignore this tuple.

2. If the simulator knows a corresponding FStX-message-ID m̂id for mid send (delay, sid, Tmid, m̂id) to
FStX.

• Upon receiving a message (swap, sid,mid1,mid2) from the adversary do the following:

1. If mid1 and mid2 are message-IDs registered in the current ~M , then swap the corresponding tuples in
~M .

40

2. If the simulator knows for both mid1 and mid2 FStX-message-IDs m̂id1 and m̂id2 send
(swap, sid, m̂id1, m̂id2) to FStX.

3. Output (swap, sid) to A.

Interaction with the State Exchange Functionality :

• Upon receiving (submit-new, sid, ~st, Ps, (P1, m̂id1), . . . , (Pn, m̂idn)) from FStX where ~st = st1, . . . , stk and
{P1, . . . , Pn} := Pnet proceed as follows

1. If there exist a chain C ∈ T with state ~st generate new unique message-IDs mid1, . . . ,midn, initialize
D1 := · · · := Dn = 1, set ~M ||(C,midi1, Dmid1

, P1)|| . . . ||(C,midn, Dmidn , Pn), and store the message-
IDs m̂idi along the message-IDs midi.
Output (multicast, sid, C, Ps, (P1,mid1), . . . , (Pn,midn)) to the adversary.

2. Otherwise find a chain C′ in T with state st1, . . . , stk−1
c

.

. Choose a random nonce n and set Bk =
(H[Bk−1], stk, n) and set H[Bk] to a uniform random value in {0, 1}κ strictly smaller than D. Add the
chain C = C′||Bk to T .
Generate new unique message-IDs mid1, . . . ,midn, initialize D1 := · · · := Dn = 1, set
~M ||(C,midi1, Dmid1

, P1)|| . . . ||(C,midn, Dmidn , Pn), and store the message-IDs m̂idi along the message-
IDs midi. Output (multicast, sid, C, Ps, (P1,mid1), . . . , (Pn,midn)) to the adversary.

aThis can be checked efficiently using H under the assumption that there are no collisions.
bCan be done efficiently using rejection sampling.
cSuch a chain must exist as st1, . . . , stk−1 is a successfully submitted state in FStX in which case the

simulator knows a corresponding chain.

The proof works similar as the one for Lemma 5.1 in [PSS17

.

]. Recall the notation from
Section 2.1

.

and introduce the shorthand notation Treal := TexecStateExchange-Protocol,A,Z(κ,z) which is
the (distribution of the) joint view of all parties in the execution of StateExchange-Protocol for
adversary A and environment Z (upon some input z). Denote by Tideal := TexecFStX,Sstx,Z

(κ, z)
the joint view of all parties for FStX with simulator Sstx. In the following, we treat the arguments
κ and z as implicit.

Define a new hybrid world, via the following random experiment: the experiment is defined as
the real-world execution except that the random oracle aborts on collisions with collision-error
and that adversarial oracle queries are emulated as in Sstx. We use the shorthand HYBA,Z to
refer to this hybrid world (defined analogously to exec·,·,Z). The only difference is thus that in
the hybrid world we may abort with collision-error or tree-error as in the ideal execution.
Let Thyb be the associated distribution of the joint view.

Let event1 be the event that some parties query two different values v, v′ such that H[v] =
H[v′], i.e. the event that a hash-collision occurs (this event is a condition on the realized transcript
tr in the support of Treal or Thyb, respectively). For any two queries the probability that they
return the same hash value is 2−κ. By a union bound over all queries we have that event1
happens with probability at most poly(κ) · 2−κ in both worlds. Note that if event1 does not
happen the hybrid random experiment does not abort with collision-error.

Let event2 be the event that some party makes a query H[(s, ·, ·)] where no v exists such that
H[v] = s, but later some party makes a query v′ such that H[v′] = s. The probability that any
query H[(s, ·, ·)] a later query returns s is 2−κ in both worlds By a union bound over all queries
we have that event2 happens with probability at most poly(κ) · 2−κ in both worlds.

Next, we show that the tree-error abort does not occur in the hybrid world execution
conditioned under event1 and event2 not happening. Assume for contradiction that HYBA,Z
aborts with tree-error with event1 and event2 not happening. Let C = B1, . . . ,Bn be

41

the shortest valid chain created in the experiment HYBA,Z such that B1, . . . ,Bn−1 ∈ T but
B1, . . . ,Bn 6∈ T . Let Bi = (si, sti, ni). Since C is a valid chain we have H[(sn, stnnn)] < D.
But at the time Bn was added to H no valid chain existed where the last block has hash value
sn (otherwise C would be in T). This implies that no earlier query to H could have returned sn,
since if the query was Bn−1 C would not be the shortest chain with the above property and if
the query was not Bn−1 the event event1 must have happened. This implies that event2 must
have happened, which is a contradiction.

This implies that conditioned under event1 and event2 not happening, the hybrid-world
execution proceeds the same as the real-world execution and hence the two worlds are statistically
close with respect to efficient environments Z, i.e., execStateExchange-Protocol,A,Z ≈ HYBA,Z .

Now we compare HYBA,Z and execFStX,Sstx,Z . Consider the event where a honest miner
queries a block (s, st, n) and fails, i.e. where H[(s, st, n)] > D. In the hybrid execution, this
query is stored in the random oracle table while the simulator in the ideal world does not store
the query in the random oracle table. Under the condition that such failed queries are not
repeated, the hybrid-world execution and the ideal-world execution proceed in identical ways
(note that the network simulation in Sstx perfectly mimics the real and the hybrid worlds).

Note that the nonce n in a ‘failed’ query (s, st, n) is choosen uniform at random from {0, 1}κ
by honest parties. This implies that with probability poly(κ) ·2−κ it was never queried before. As
honest miner discard ‘failed’ queries (and failed queries do not leave the ITI and hence are hidden
from the adversary) it also follows that except with probability poly(κ) · 2−κ the query will not
be queried again (by any honest or corrupted party) unless the nonce of that failed query would
be successfully guessed. By a union bound over all failed queries we have that failed queries are
never queried twice except with probability poly(κ) · 2−κ. Thus, execFStX,Sstx,Z ≈ HYBA,Z .

This concludes the proof.

7.2.3 Proving the Modularization of the Ledger-Protocol

We present the modularized UC Bitcoin protocol in Appendix C

.

. We have the following lemma:

Lemma 7.2. The UC Bitcoin protocol Ledger-Protocolq,D,T UC emulates Modular-Ledger-ProtocolT
that runs in a hybrid world with access to the functionality F∆,pH ,pA

StX with pA := D
2κ and

pH = 1− (1− pA)q, and where ∆ denotes the upper bound on the network delay.

Proof. The proof involves a sequence of modifications, morphing from the original protocol
to the modularized protocol in a “game-hopping” style and finally identifying the sub-process
StateExchange-Protocol that can be replaced by calls to FStX and concluding the statement by
invoking Lemma 7.1

.

. The detailed proof is given in Appendix C.2

.

.

7.3 Second Proof Step

We now proof that if honest parties have some advantage over the dishonest parties in winning the
lottery, then the UC Bitcoin protocol Modular-Ledger-ProtocolT realizes the ledger functionality.
By the composition theorem, we can directly conclude that Ledger-Protocolq,D,T realizes the
Bitcoin ledger functionality.

7.3.1 Relevant Quantities of the Analysis

The main theorem will require a condition on the power of the adversary and it is useful to
describe here the random variables induced by a pair (Z,A).

42

Recall from Sections 5.2.1

.

and 5.3.1

.

that a party is honest-and-synchronized if it either joined
at the onset of the execution or it joined a sufficient number of rounds ago (depending on the
delay). Furthermore, recall that a logical round consists of two clock-ticks. In the following, we
denote the round number by r (which consists of two mini-rounds).

Definition 7.3 (Query Power). We define for the real-world execution of Modular-Ledger-ProtocolT
with respect to the pair (Z,A) the sequence of random variables Q(r)

H to measure the number of
distinct honest-and-synchronized parties that are activated in the working mini-round of round
r to submit a query to F∆,pH ,pA

StX . Analogously, denote by Q(r)
A the number of submit-queries

to F∆,pH ,pA
StX from corrupted parties in round r, and by Q(r)

H,DS the number submit-queries by
honest-but-desynchronized parties in the working mini-round of round r.

Definition 7.4 (Mining Power.). We define mining power as simple functions of the query-power.
Note that in our analysis, pA and pH are constants. We have:

• The total mining power T(r)
mp := Q

(r)
A · pA + (Q

(r)
H +Q

(r)
H,DS) · pH .

• The adversarial mining power β(r) := pA ·Q(r)
A + pH ·Q(r)

H,DS .

• The honest mining power α(r) := 1− (1− pH)Q
(r)
H .

It might be useful to recall that from Bernoulli’s inequality we have α(r) ≤ pH · Q(r)
H . For

small values of pH (as usual in Bitcoin) this upper bound is a good approximation of α(r).
Note that α(r), β(r), and T(r)

mp are random variables (on integer domains). For example. α(r)

maps the number of honest-and-synchronized submit-queries to the probability that at least one
is a successful query. More formally, conditioned on Q(r)

H = q, the random variable α(r) is the
probability of at least one success among q queries and the expected value of α(r) corresponds to
the probability of at least one successful state-extension in round r of the execution. The reason
is that F∆,pH ,pA

StX treats each submit-query independently at random. This is the main motivation
to introduce this intermediate step.

7.3.2 The analysis

In the analysis of Bitcoin, conditions are needed that allow to reasonably lower and upper
bound expected values of the above random variables (and their variances). As we will quickly
recap below, it is shown in [PSS17

.

] that if the involved query power exceeds any limits in the
constant-difficulty case, then no security guarantees can be obtained. We start with the following
definition.

Definition 7.5 (Query and Mining Pattern). We say that the pair (Z,A), running for R rounds
(referred to by numbers 0, . . . , R − 1) obeys the query pattern (~h,~a, ~d) if, for any round r, we
have

Q
(r)
H ≥ hr, Q

(r)
A ≤ ar, Q

(r)
H,DS ≤ dr

where ~h = (h0, . . . , hR−1),~a = (a0, . . . , aR−1), ~d = (d0, . . . , dR−1) are vectors consisting of positive
integers. Consequently, the pair (Z,A) obeys the associated mining pattern denoted by (~α, ~β),
where vectors ~α = (α0, . . . , αR−1) and ~β = (β0, . . . , βR−1) are defined by the mapping

α(r) ≥ 1− (1− pH)hr =: αr

β(r) ≤ pA · ar + pH · dr =: βr.

43

Technically, these definitions imply lower and upper bounds on the expectations of the random
variables α(r) and β(r) respectively, which is what will be eventually needed.

Definition 7.6 (Power Limits). The pair (Z,A) is said to be qtot-query-limited if Q(r)
H +Q

(r)
A +

Q
(r)
H,DS ≤ qtot. The pair (Z,A) is said to be Tmp-mining limited if for all r,

T(r)
mp ≤ Tmp.

The bounds in the theorem will depend on several worst-case quantities that we introduce
below.

Definition 7.7. For mining patterns (~α, ~β), we use the shorthand notation

αmin := min {αr}r∈[0,R−1] and αmax := max {αr}r∈[0,R−1];

βmin := min {βr}r∈[0,R−1] and βmax := max {βr}r∈[0,R−1].

For a (non-empty) subset S ⊆ {0, . . . , R− 1} of rounds we define the corresponding averages by

αS :=
1

|S|
·
∑
r∈S

αr and βS :=
1

|S|
·
∑
r∈S

βr.

For Tmp-mining limited pairs (Z,A), we define the relative-power fractions

ρh :=
αmin
Tmp

and ρa :=
βmin
Tmp

.

We call a subset S of rounds an interval if it consists of consecutive round numbers r, . . . , r + t
for some integers r, t ≥ 0.

Following [PSS17

.

], the theorem will take into account that the network delay ∆ decreases
the effectiveness of the actual honest mining power:

Definition 7.8 (Discount function.). We define the function γ(α,∆) := α
1+α∆ for α,∆ > 0.

We are now ready to state and prove the main theorem which assures that we can realize the
ledger for a given range of parameters.

Theorem 7.9. Let p ∈ (0, 1), integer q ≥ 1, pH = 1− (1− p)q, and pA = p. Let ∆ ≥ 1 be the
upper bound on the network delay. For all pairs (Z,A) running for R rounds which obey the (~α, ~β)
mining pattern as of Definition 7.5

.

and which are Tmp-limited as of Definition 7.6

.

, the real-world
execution of protocol Modular-Ledger-ProtocolT (in the (Gclock,F∆,pH ,pA

StX ,F∆
N-MC)-hybrid world)

is indistinguishable from the ideal-world execution with ledger functionality GBledger (and the
simulator defined in the proof), if for some λ > 1, it holds that for any interval S of rounds of
size t ≥ 1 and any S′ ⊆ S of size t′ ∈ [max{1, t · (1−∆αmax)}, . . . , t] the relation

αS′ · (1− 2 · (∆ + 1) · Tmp) ≥ λ · βS (1)

holds, and if the ledger parameters (which are positive and integer-valued) satisfy the conditions

windowSize = T and Delay = 4∆,

maxTimewindow ≥
2 · windowSize
(1− δ) · γmin

and minTimewindow ≤
2 · windowSize
(1 + δ) · Tmp

,

η ≥ min{(1 + δ) · βmax
γmin

· windowSize, windowSize},

44

where the quantities are defined as in Definition 7.7

.

and where γmin := γ(αmin,∆) and δ > 0 is
an arbitrary constant. In particular, the realization is perfect except with probability R · negl(T),
where negl(T) denotes a negligible function in T .

Remarks. Before proving the theorem, it is instructive to recall the flat model of Bitcoin and
to see how the above quantities appear there. By the above definitions and theorem statement,
we see that we only make statements if the honest mining power is not too small, the dishonest
mining power is not too large (and stands in a certain relation to the honest mining power) and
if the respective mining power values are in a reasonable range to the overall mining power. In
particular, the theorem expresses a condition that the average honest mining power dominates
the average mining power of the adversary, even if the honest average is taken over slightly
smaller intervals (note that in particular, for each singleton set S, we obtain that the familiar
condition that αr should dominate βr).

Note that βmin is the most restrictive restriction (but not a lower-bound) on the adversary
(similarly, αmax is the best guaranteed lower-bound for honest-and-synchronous mining power).
In general, the adversary (and hence the environment) is free to activate as many ITI’s unless it
would exceed Tmp if the environment is Tmp-bounded, and no more than what is allowed by ~β.
This is a more general setting in the fixed-difficulty setting compared to previous works. We
show how to cast previous analyses (with respect to fixed difficulty) in our setting in Section 8.1

.

.
Furthermore, we show in the next subsection how to get a better bound for chain-quality.

Looking ahead, for example in [PSS17

.

], the overall number of parties is fixed to be some
number n and there is an upper bound on the number of dishonest parties ρn (and de-synchronized
parties are not allowed by definition). Assume for simplicity that pH = pA = p for a very small
value p > 0. We then obtain αmin ≈ (1− ρ) ·n · p and βmax ≈ ρH ·n · p. By Tmp = n · p and since
the mining pattern as defined above is flat in flat models (cf. Section 8.1

.

), the correspondence
ρa = ρ and ρh = (1− ρ) follows.

Also, as pointed out by [PSS17

.

], for too large values of p in a range that would yield
Tmp = n · p > 1

∆ (where ∆ is the network delay), there is an attack against the protocol, even
if one assumes an honest majority. This indicates that the main condition of the theorem
in equation (1)

.

is also necessary up to a constant factor.

We now prove our main theorem.

Proof of Theorem 7.9

.

. We start with an overview followed by a sequence of claims.

Overview. We prove the theorem by proving the security with respect to the so-called EUC
notion (externalized UC) with the global clock as the only shared functionality. This then not
only implies standard UC realization (with respect to a local clock), but also implies the full
GUC statement by the equivalence shown in [CDPW07

.

]. In order to show the theorem we specify
the simulator for the ideal world Sledg. Sledg is specified as pseudo-code in Appendix D

.

. Let us
explain the general structure: the simulator internally runs the round-based mining procedure of
every honest party. Whenever a working mini-round is over, i.e., whenever the real world parties
have issued their queries to FStX, then the simulator will assemble the views of its simulated
honest-and-synchronized miners and determine their common prefix of states, which is the longest
state stored or received by each simulated party when chopping off T blocks. The adversary will
then propose a new block candidate, i.e., a list of transactions, to the ledger to announce that
the common prefix has increased (procedure ExtendLedgerState). The ledger will apply

45

the Blockify on this list of transactions and add it to the state. Note that since Blockify does
not depend on time, the current time of the ledger has no influence on this output. To reflect
that not all parties have the same view on this common prefix, the simulator can adjust the
state pointers accordingly (procedure AdjustView). The simulation inside the simulator is
perfect and is simply the emulation of real-world processes. What restricts a perfect simulation is
the requirement of a consistent prefix and the restrictions imposed by ExtendPolicy. In order to
show that these restrictions are not forbidding a proper simulation, we have to justify, why the
choice of the parameters in the theorem are sufficient to guarantee that (except with negligible
probability). To this end, we analyze the real-world execution to bound the corresponding bad
events that prevent a perfect simulation.

We basically follow the proof ideas of Pass, Seeman, and shelat [PSS17

.

] to bound the bad
events and adapt their observations to our setting. The analysis is divided into several different
claims about the real-world execution. They include properties such as a lower-bound on the
chain growth, the chain quality, or an upper-bound on the chain growth. These claims prove
that our simulator can simulate the real-world view perfectly, since the restrictions imposed by
the ledger prohibit that only with negligible probability, where the distinguishing advantage is
upper bounded by R · negl(T), where R denotes the number of rounds the protocol is running
and negl(·) denotes a negligible function in the parameter T .

Recall that each round consists of two time-ticks. Hence, if a statement is expressed with
respect to a certain number t of rounds, it can equivalently be expressed with respect to 2t
clock-ticks. Recall that the ledger parameters have to be given with respect to the clock, since
the clock is the formal reference point of time. However, for the analysis, it is easier to think in
rounds. In the following sections, if we refer to an interval r, . . . , r+ t, this refers to t full rounds,
i.e., the time window when the clock first switched to the value τ = 2r up to the point when the
clock value is τ ∈ {2(r + t), 2(r + t) + 1}.

Chain dissemination. We first state an obvious useful fact about the protocol’s operation.

Lemma 7.10 (State dissemination). Let Pi and Pj be miners, and let r ≥ 0. Assume Pi is
honest in round r, and its adopted state has length `. For any honest miner Pj in round r + ∆
who registered to the network before round r, it holds that its adopted state must have at least
length `.

Proof. By assumption, all messages, and in particular transmitted states of honest miners, are
delayed maximally by ∆ rounds. Thus, if such a miner receives a state of length `, then any
other honest miner will receive this state within the next ∆ rounds since the protocol relays its
adopted state. Additionally, if an honest miner successfully extends a ledger-state in round r,
the new state is fetched by other honest miner at latest after ∆ rounds if they were registered
before round r. Hence by then, they will have adopted a chain of length at least `.

Probably the most useful corollary which is used in the sequel, is to apply the above lemma
to the sub-class of honest-and-synchronized miners. Note that if Pj in the above lemma is
honest-and-synchronized at round r + ∆ it must have been registered to the network not later
than at round max{0, r −∆} and hence the statement applies.

Analyzing chain growth. We now state the relation between time (measured in number of
rounds) and guaranteed number of new state blocks.

46

Lemma 7.11 (Chain growth). Consider the real-world execution (under the conditions of the
theorem). Let Pi be a miner, and let r ≥ 0. Assume Pi is honest-and-synchronized in round r,
and the (longest) state adopted by Pi in round r has length `. Then, in round r + t, it holds that
for any δ > 0, except with probability R · negl(T), the length of the (longest) state adopted of any
honest-and-synchronized miner Pj in that round has length at least `+ T if t ≥ T

(1−δ)·γmin .
More generally, for an interval of rounds r, . . . , r + t, we can guarantee a length increase of

γ · t with γ := τ
1+τ∆ if for all possible subsets S of rounds of size t′ = t(1− γ∆) of this interval

we have αS ≥ τ . The guarantee holds except with probability exp(−Ω(tγ)).

Proof. We first prove that for any real-world adversary A, there is an adversary A′ that, starting
at the given round r, maximally delays messages and prove that in a real-world execution with
A′ the expected state length of an honest-and-synchronized miner in round r + t, where the
expectation is taken over the randomness of the adversarial strategy, is no larger than with
adversary A in round r + t. Given adversary A, the adversary A′ works as follows. It internally
runs A until and including round r without any modifications. After round r, A′ first delays all
current messages in the network to the maximally possible delay. Also, after round r, whenever
an honest-and-synchronized party sends a message containing a state, A′ sets the maximal delay
∆ for this message. Message delays defined by A for messages that contain valid states of honest
parties are ignored. The adversary further ignores any message sent by A on behalf of corrupted
parties after round r.

We define the following “hybrid world”, which equals the real world execution, but with
fixed randomness as follows: for random strings σ, σ′, we define HYBFStX(σ′),A(σ),Z to be
defined analogously to exec·,·,Z but where the internal coins of A and FStX are fixed to σ
and σ′ respectively (note that both are poly-bounded by the run-time restrictions of UC). Let
T hyb
A(σ),FStX(σ′),Z be the associated distribution of the joint view (induced by the random coins

of Z). Let Lenri (T) be the function that maps a transcript T (of real-world and hybrid-world
executions) to the length of the (longest) adopted chain by (honest-and-synchronized) miner i in
round r.

We first give an inductive proof to show that for any r > 0, and all strings σ, σ′,

Pr
σZ∈R{0,1}poly(κ)

[Lenr+ti (T hyb
A(σ),FStX(σ′),Z(σZ)) ≥ Lenr+ti (T hyb

A′(A(σ)),FStX(σ′),Z(σZ))] = 1.

Base Case(s): We give the base cases t = 0 and = 1 to already include the arguments for the
general case below. We argue for any fixed σZ and show that the condition in the event cannot
be violated. Since adversary A and A′ behave identical up to and including round r, the length
of the longest state known or received by any party is the same. The reason is that A′ and
A play exactly the same strategy when the randomness is fixed, since A′ itself does not use
additional random coins and thus case t = 0 follows. Furthermore, when the randomness σ′ of
FStX is fixed, a miner i in any round r′ is successful, if and only if it is successful in round r′

with adversary A′. Thus, the condition for t = 1 would only be violated if player i receives a
longer state in round r + 1. However, since A′ maximally delays messages, if any state arrives in
round r+ 1 in the real execution with A′, then it arrives no later than r+ 1 in the real execution
with A. This concludes the base cases.
Induction Step: t→ t+ 1: By the induction hypothesis, we have that the condition

Lenr+ti (T hyb
A(σ),FStX(σ′),Z(σZ)) ≥ Lenr+ti (T hyb

A′(A(σ)),FStX(σ′),Z(σZ))

47

holds with probability one. We argue that Lenr+t+1
i (·) ≥ Lenr+t+1

i (·) holds as well (on the
above arguments) with probability one. Assume this was not the case, then following the above
reasoning, it can only be due to miner i receiving a state in round r + t+ 1 that would increase
the value of Lenr+t+1

i (T hyb
A′(A(σ)),FStX(σ′),Z(σZ)) but not the value of Lenr+t+1

i (T hyb
A(σ),FStX(σ′),Z(σZ))

(since the success of miner i in round r + t + 1 is fixed given σ′). By the same reasoning as
above, since A′ maximally delays delivery of new states, if any state arrives in round r in the real
execution with A′, then it arrives no later than r in the real execution with A. This concludes
the induction proof.

We note that the hybrid world, if we sample σ, σ′ this yields the distribution Texecπ,A′,Z (κ, z)
(for any fixed input z to the environment). Let us abbreviate this by Treal,A′ to save on notation
(and assuming the input z is hard-coded in the environment). Similarly, let us denote Treal,A the
distribution in an execution with A.

By taking the expectation over σ, σ′ (and by the law of total probability), we immediately
get from the above arguments that for any positive integer c and any round r:

Pr[Lenr+ti (Treal,A) ≤ Lenri (Treal,A) + c]

≤ Pr[Lenr+ti (Treal,A′) ≤ Lenri (Treal,A′) + c]

where we also used that for t = 0, the length distributions induced by A and A′ are identical.
Hence, chain growth can be analyzed w.r.t. adversary A′ to yield a useful statement for any
adversary A.

Let us use the following terminology: We say a round r′ is uniform if Lenr
′
i (tr) = Lenr

′
j (tr)

holds (where tr is a transcript), for all honest-and-synchronized miners i and j. Recall that
adversary A′ does not broadcast adversarially generated states and any new state is delayed
by exactly ∆ rounds. The slowest progress of the overall maximal state length known to an
honest-and-synchronized party occurs in case uniform rounds are the only successful rounds (if
at all). Otherwise, the honest miner with the longest state could be successful and broadcast
a longer state at round r′, which would be guaranteed to arrive to any other honest miner
in r + ∆. Furthermore, by a standard coupling argument, the probability of success of any
honest-and-synchronized party in some round r′ is minimized by an environment Z that activates
just enough parties to obey the mining pattern αr′ . The coupling with any other environment can
be obtained by letting the activation results be the same up to the point where enough parties
have been activated to satisfy the mining pattern. Further activations honest-and-synchronized
participants can only induce more successful state extension than what Z obtained.

We are thus left with analyzing growth w.r.t. a simple adversary and an environment Z with
a fixed activation pattern per round to match the mining pattern.

Obtaining a tail bound depending on number of blocks. Now, fix some round r. If in
round s = r + t, the length increase of the overall longest state of an honest-and-synchronized
miner is less than c blocks, then at most c ·∆ non-uniform rounds occurred. According to above,
we can associate to each round i a random variable Xi which is 1 if at least one honest-and-
synchronized miner successfully extended the state by a query to FStX. The Xi’s are independent
by construction and there must be at least t − c ·∆ uniform rounds. On the other hand, for
any concrete sub-sequence of rounds S ⊂ (r, . . . , r + t) of size t′, the Chernoff-Hoeffding bound

48

in Theorem 2.3

.

implies for our setting (of independent heterogeneous variables) that

Pr

[∑
i∈S

Xi ≤ (1− δ) · αS · t′
]
≤ exp(−Ω(αS · t′)), (2)

where αS := 1
t′
∑

i∈S αi.
We conclude that if for the sub-sequence S of rounds in the interval from r to s, the relations

c = E
[∑

i∈S Xi

]
= αS · t′ and |S| =: t′ = t− c∆ hold, we can derive a tail-estimate depending

on the number of blocks. We can define

cS :=
αSt

1 + αS∆

and assign a corresponding growth coefficient

γS :=
αS

1 + αS∆
.

and thus except with exponentially small probability in tγS = cS , the length-increase is at least cS
for this particular interval.

For the first part of the statement, observe that αS ≥ αmin, for all subsets S, and that
the function x

1+kx , where k is a positive integer and x ∈ (0, 1), is monotone in x. We get
the guaranteed minimal growth by t · γmin in any interval of size t rounds for an honest-and-
synchronized party except with negligible probability in t ·γmin by taking the union bound overall
all rounds r. What remains to prove is that this bound applies also to the growth of the state if
one compares any two honest-and-synchronized miners which we do below (still following the
proof steps of [PSS17

.

]).
For the second part of the statement, we generalize the above observation: if we have a

guaranteed lower bound τ on the average αS (better than αmin as used before) with respect to
any subset of the required size within the given interval r, . . . , r + t (note that indeed we only
have a bound for the size of S in our experiments but no guarantee that a particularly “good”
one is chosen), the second part of the statement follows.

Bound for any honest-and-synchronized party. By Lemma 7.10

.

, we know that if an
honest-and-synchronized miner knows some state, then within ∆ rounds, every other honest
miner will be aware of that state. A similar calculation shows that the lower bound on the time
to have a state increase by T blocks by all honest-and-synchronized parties follows the same law
(and hence the perceived ledger speed is the same). By requiring s = r + t−∆ above, and thus
considering t′ := t −∆ − c ·∆ = t − (c + 1)∆ does not change the asymptotic behavior since
γSt− 1 < γSt− γS∆ < γSt for all t and S since ∆γS < 1. Hence, this additional additive term
can be compensated by choosing a sufficiently small constant δ in equation (2)

.

.

Mining limits. We state some helpful facts about bounds on the mining behavior.

Lemma 7.12. The number of successful state-extensions that happen with F∆,pH ,pA
StX in any given

interval of t rounds (in the real-world execution under the theorem conditions), where pA = p
and pH = 1− (1− p)q for some q ≥ 1 and p ∈ (0, 1) is bounded by (1 + δ) · t · Tmp for any δ > 0,
except with probability negl(Tmp · t). Consequently, for a number T of state-extensions to occur,
the number of required rounds is less than T

(1+δ)Tmp
only with negligible probability in T . Finally,

49

the number of adversarial state extensions in a sub-set S of t rounds is no more than (1 + δ)βS · t
except with probability exp(−Ω(βS · t)) (for any δ > 0.

Proof. Since the state-exchange functionality evaluates each query independently, we can upper
bound the number of successes of these independent Bernoulli-trials. We prove the bound for the
environment Z (and A) that makes as many queries as allowed per round (as limited by βr and
Tmp). As in the previous lemma, a coupling argument shows that any other query-distribution
cannot induce a larger probability exceeding the given bound than Z, for which the query
distribution is fixed. For a round, let X(r) =

∑
iXi model the sum of the involved independent

trials to the state-exchange functionality. Clearly, βr ≤ E[X(r)] ≤ Tmp. Let S be a set of t rounds.
By linearity of expectation and invoking Theorem 2.3

.

we get the tail-estimate

Pr

[∑
i∈S

X(i) ≥ (1 + δ) · t · Tmp

]
≤ exp(−Ω(βS · t))

≤ exp(−Ω(Tmp · t)),

where the last step invokes the theorem assumption that ∀r : βr ≥ ρaTmp for the relative-power
coefficient ρa.

Similarly, denote by Y (r) =
∑

i Yi the number of adversarial state-extensions in round r.
Again it is sufficient to consider a maximizing Z which has an expected value of t · βS over a
sub-set of rounds of size t. Hence, we again can obtain an estimate of the form

Pr

[∑
i∈S

Y (i) ≥ (1 + δ) · t · βS

]
≤ exp(−Ω(βS · t)).

As a final conclusion we observe that for any number of state blocks T , the probability that
for any δ > 0 it takes less than t = T

(1+δ)Tmp
rounds to get T state extensions is negligible in T .

Consequently, for this large time interval, all tail bounds hold except with probability exp(−Ω(T)),
where the constant hidden in Ω(·) depend on δ and on the relative-power coefficient ρa.

Block withholding. From chain growth and the theorem’s condition, we derive that if an
honest-and-synchronized miner adopts a new state that contains a block the adversary obtained
by FStX then either this block has been published by the adversary before, or it was mined quite
recently by a corrupted party.

Lemma 7.13 (Bound on Withholding strategies). In the real-world execution (under the condi-
tions of the theorem), assume that in round r, an honest-and-synchronized miner adopts a new
longer state state. Assume there is a block st in this new state that was accepted upon an ad-
versarial query to FStX and that is not part of any state adopted by any honest-and-synchronized
party before round r. The probability that such a block st was first accepted by FStX before round
r − ωt happens only with probability negl(βS · t), for any constant 0 < ω < 1, where S denotes
the interval r − ωt, . . . , r.

Proof. Let us define ~st(r)
= st0|| . . . ||stk to be the state adopted by the honest-and-synchronized

miner in round r as assumed in the lemma statement. Let ~st(r′) be the longest prefix of ~st(r)

such that ~st(r′) is either the genesis block or a state newly accepted by FStX upon a query by
an honest-and-synchronized party in round r′ ≤ r. Hence all the blocks in that prefix are known

50

to at least one honest-and-synchronized party by round r′. In light of the lemma statement, we
consider the case that r − r′ ≥ ωt.

Let S denote the set of rounds from r′ to r. The number of new states mined by the adversary
does not exceed (1 + δ′) · βSωt (except with probability negl(βS · t)) by the previous lemma.

At the same time, equation (1)

.

implies that on any subset S′ of size t′ = ωt(1 − αmax∆)
the condition αS′(1 − ∆αS′) ≥ (1 + δ)βS has to hold for some constant δ ∈ (0, 1). This is
the case since for all x,∆ > 0, x

1+x∆ > x(1 − x∆) (and Tmp ≥ αS′) and this implies that

γ :=
αS′

1+αS′∆
≥ (1 + δ)βS . Lemma 7.11

.

gives us a chain-growth of | ~st(r)| − | ~st(r′)| ≥ (1− δ′) · γωt
except with probability negl(βS · t).

Since all | ~st(r)| − | ~st(r′)| blocks must have been mined by the adversary we have | ~st(r)| −
| ~st(r′)| ≤ (1 + δ′′) · βSωt. We get a contradiction, since now

(1− δ′) · γωt ≤ (1 + δ′′) · βS · ωt,

which, for sufficiently small δ′, δ′′ would imply that γ < (1 + δ)βS .

Chain-growth upper-bound. Our ledger also restricts the growth over time. This is based
on the following observation.

Lemma 7.14 (Chain-Growth Upperbound). Consider the real-world execution (under the condi-
tions of the theorem) and let Pi be a miner, and let r ≥ 0. Assume Pi is honest-and-synchronized
in round r, and the longest state received or stored by Pi in round r has length `. Then, in round
r + t, it holds, except with probability R · negl(T), that the length of the longest state (received or
stored) of at least one honest-and-synchronized miner Pj in that round has length at most `+ T
if t ≤ T

(1+δ)·Tmp for any δ > 0.

Proof. We can combine the previous observations to upper bound the number of accepted
blocks. By Lemma 7.12

.

the number of rounds to generate T new extensions of states is at least
t′ ≥ T

(1+δ′)Tmp
except with probability negl(T) (for any δ′ > 0) and thus with overwhelming

probability, in t′ ≤ T
(1+δ′)Tmp

, no more than T new blocks are mined.
In addition, we can invoke Lemma 7.13

.

to conclude that a new state that contains a block
that the adversary is withholding since a round prior to r − ωt is accepted by an honest-and-
synchronized party only with probability negl(βmint), for any 0 < ω < 1 (since βmin can be
achieved in any round by an adversarial strategy and hence can serve as the lower bound in the
exponent of the tail bound). Analogously to Lemma 7.12

.

, by the definition ρa · Tmp = βmin this
error probability is thus negligible in T .

Both observations together imply that in t′ = t(1 + ω) ≤ T
(1+δ′)Tmp

rounds, no honest-and-
synchronized party experiences a state increase of more than T blocks for any δ′ except with
negligible probability in T . This is equivalent to the condition that t ≤ T

(1+ω)(1+δ′)Tmp
and we

can choose δ′ sufficiently small to obtain the bound with respect to t ≤ T
(1+δ)Tmp

and any given
δ > 0 as required by the statement. The claim follows by taking the union bound over all rounds
as the arguments above hold for any round r.

Worst-case chain quality. We give a very coarse bound on the overall chain quality in any
sequence of T blocks as follows:

51

Lemma 7.15 (Fraction of honest blocks). Let Pi be a miner, and let r ≥ 0. Assume Pi is
honest-and-synchronized in round r and that the length of the longest state received or stored is
` ≥ T . The fraction of adversarially mined blocks within a sequence of T blocks in the state is at
most min{1, (1 + δ) · βmaxγmin

} except with probability R · negl(T) for any δ > 0.

Proof. Let us assume that at round r, the state adopted by miner Pi is ~str′ = st0|| . . . ||stk.
We show that in any sub-sequence of T state blocks stj+1, . . . , stj+T in ~str, the fraction of
adversarially mined blocks is bounded. Without loss of generality, one can assume that the state
~st<j := st0|| . . . ||stj as well as the state ~st>j+T := st0|| . . . ||stj+T+1 are mined by honest-and-
synchronized miners (or j + T equals the length of the state). Otherwise, one can enlarge T to
meet this condition — this can only increase the fraction of adversarial blocks in the sequence
of T blocks and since any state is finite and starts with the genesis block, the condition will be
fulfilled for some T . We further assume that ~st<j is mined at round r′, and that in round r′ + t,
the state ~st>j+T appears for the first time as the state, or the prefix of a state, of at least one
honest-and-synchronized miner. We conclude that if an adversary successfully extended the state
during some round by a new state block stj+s of the above sequence stj+1, . . . , stj+T , then this
happens in a round between r′ and r′ + t.

We now relate the number t of rounds to the number T of blocks. Since t is assumed to be
the minimal number of rounds until the first honest-and-synchronized miner adopted a state
containing stj+1, we can make use of the minimal chain-growth Lemma 7.11

.

to conclude that
the probability that the condition t > T

(1−δ′)γmin occurs in such an execution is at most negl(T).
We hence have t ≤ T

(1−δ′)γmin with overwhelming probability in T .
Similar to above, by Lemma 7.12

.

the time it takes to generate T blocks is at least t ≥ T
(1+δ)Tmp

except with probability negl(T) and thus with overwhelming probability, in t ≤ T
(1+δ)Tmp

, no
more than T blocks are mined.

Furthermore, also by Lemma 7.12

.

, we get a worst-case upper bound. Let N t
A denote the

expected value in t rounds, invoking Lemma 7.12

.

gives us that N t
A ≤ (1 + δ)βmaxt except with

probability negl(βmint) (where we again use the minimum to bound the average of any interval).
Hence, since ρa · Tmp = βmin by definition it follows as in previous lemmata that the bound holds
except with probability negl(T).

Putting things together, we conclude that except with negligible probability in T , the number
of times the adversary was successful in extending the state by one block is upper bounded by
the quantity

N
T

(1−δ′)γ
A ≤ 1 + δ

1− δ′
· T · βmax

γmin
.

Hence, the fraction of adversarial blocks within T consecutive blocks cannot be more than
f = min{1, (1 + δ′′)βmaxγmin

} for any δ′′ and sufficiently small constants δ, δ′ > 0, except with
negligible probability in the length T of the sequence.

Since our arguments hold for any interval, the proof is concluded by taking the union bound
over the number of such sequences (which is in the order of number of rounds).

Consistency (common prefix). We now state the lemma on the common-prefix property in
our setting.

52

Lemma 7.16 (Consistent states). Consider the real-world execution under the condition of the
main theorem. Let Pi and Pj be miners (potentially the same), and let r′ ≥ r ≥ 0. Assume Pi is
honest-and-synchronized in round r, and Pj is honest-and-synchronized in round r′. Assume that
the length of the longest state received or stored by Pi in round r is ` ≥ T . Then, the `− T -prefix
of that longest state of Pi in round r is identical to the `− T -prefix of the state of Pj stored or
received in round r′ except with probability R · negl(T).

Proof. We again follow the basic line of reasoning in [PSS17

.

] and adapt the appropriate arguments
to our setting. First, since an inconsistency at round r implies an inconsistency at round r′ > r,
if the claim is proven for the case r ≤ r′ ≤ r+ 1, then by an inductive argument, the claim holds
for any r′ ≥ r.

The protocol mandates that the honest-and-synchronized miners truncates the T newest
blocks from the current respective state. Thus, we need to argue that the block which is T + 1
far away from the head will be part of any state output by any honest-and-synchronized miner.
Suppose we are at round r′ in the protocol, then the time it takes to generate the last T blocks
is at least t ≥ T

(1+δ)Tmp
except with negligible probability in T as established in Lemma 7.12

.

and
any 0 < δ < 1.

Looking ahead, we will eventually conclude that with overwhelming probability within the
interval of rounds s = r− t, . . . , r′ ∈ {r, r+ 1} (where r ≥ t), the honest-and-synchronized miners
have an opportunity to agree on a common state and hence at round r′, they will still agree on a
large common prefix of the current state at round r′.

In the interval of rounds, let this set be denoted as usual by S, between round s and
round r′ = r, the expected number of rounds, where at lest one honest-and-synchronized
miner is successful, is at least αSt. Thus, again by a standard Chernoff bound, the probability
that the number of these successful rounds is smaller than q̄min := (1 − δ′) · αSt is no more
than exp(−Ω(tαS)) in the real-world UC random experiment. Again, a coupling argument as
in Lemma 7.11

.

yields that this tail-bound (where the environment activates the least number
of parties possible and hence the random variables that describe the success are independent)
applies to any environment. Finally, the conditions of the theorem in particular assure that
αS > βmin and hence this probability can be upper bounded by negl(βmint).

Unfortunately, the “race” between the good guys and the bad guys is not yet conclusively
analyzed, since the mere superiority of honestly mined blocks does not imply that the honest
parties will reach agreement. In particular, not all of the expected honestly mined blocks are
equally useful to obtain a so-called convergence opportunity. In particular, we need to know how
many of the honestly mined blocks happen in isolated, sufficiently silent intervals.

Formally, let us introduce the random variable Ri that measures the number of elapsed
round between successful round i − 1 and successful round i in the real-world UC execution,
where R1 measures the number of elapsed rounds to the first successful round. Based on Ri,
the random variable Xi is defined as follows: Xi = 1 if and only if Ri > ∆ and exactly one
honest-and-synchronized miner mines a new state (i.e., successfully appends a new block to the
state) in the ith successful round.

Let Ei1 be the event that there is at least one successful round in the interval of ∆ rounds
starting after successful round i − 1 (or at the onset of the experiment). Let Ei2 be the event
that strictly more than one miner is successful in the following successful round i.

Overall, our goal is to suitably bound the number of blocks that prevent those events of
“success & silence” (i.e., bound the probability of the event Xi = 0) in an interval of t rounds. We
call these the undesirable blocks. They have to be infrequent enough such that in combination

53

with adversarially mined blocks, they do not prevent too many convergence opportunities. We
hence need to suitably bound the occurrence of the above two bad events Eij in our experiment.

By a union bound, and invoking that αr ≤ Tmp, we directly have that Pr[Xi = 0] =
Pr[Ei1 ∪ Ei2] ≤ ∆Tmp + Tmp, hence, on the positive side, Pr[Xi = 1] ≥ 1− Tmp(∆ + 1).

Let X :=
∑q̄min

i=1 Xi and let us define q̄′min := (1 − δ′′) · (1 − Tmp(∆ + 1)) · q̄min. Since
by equation (1)

.

the term 1 − 2(∆ + 1)Tmp must be positive, we have that Tmp(∆ + 1) ≤ 1
2

and, because FStX treats each new state-submission independently of previous submission, we
conclude that Pr[Xi = 1 |X1, . . . , Xi−1] ≥ 1

2 . Since we do not argue here about any particular
optimal strategy by an environment-adversary pair (Z,A), we need to invoke Lemma 7.17

.

from
which we get

Pr[X ≤ q̄′min] ≤ exp
(
−(δ′′)2q̄min/2

)
. (3)

To express this w.r.t. βmin, observe that not only αr > βr (and thus αmin > βmin) by
equation (1)

.

but also there is an actual constant 0 < δ̂ < 1 such that Tmp(∆ + 1) < 1− δ̂. This
is true since by the theorem condition we deduce that

(1− 2(∆ + 1)Tmp) ≥ λ(βmin/αmin)

=⇒ 1− λ(βmin/αmin) ≥ 2(∆ + 1)Tmp > (∆ + 1)Tmp.

And since λ > 1, i.e., we get can bound the constant by 0 < δ̂ < λ(βmin/αmin) and obtain

(1− Tmp(∆ + 1)) · q̄min > δ̂(1− δ′) · αSt > δ̂(1− δ′) · βSt.

And hence conclude by equation (3)

.

that Pr[X ≤ q̄′min] ≤ exp(−Ω(βmint)). We thus have a
(high-probability) lower bound on the number of silent patterns.

We are actually interested in the number of times that Xi = Xi+1 = 1. This situation, as
already introduced above, means that we have a situation, in which for ∆ rounds, no miner is
successful, then exactly one honest-and-synchronized miner is successful, and afterwards, we again
have ∆ rounds of silence. This is denoted in [PSS17

.

] as a convergence opportunity. For example,
a convergence opportunity has the desirable property, that at the end of such an opportunity, if
the adversary is unable to provide a longer state to the honest-and-synchronized miners during
this period, all honest-and-synchronized miners will reach an agreement on the current longest
state. Thus, in order to prevent this, an adversary needs to be successful in mining roughly at
the rate of the number of convergence opportunities within t rounds.

We have already seen that with overwhelming probability, there are at least q̄min successful
rounds, and among which (q̄min − q̄′min) can disturb convergence opportunities. Since a single
disturbing round can at most prevent two convergence opportunities (it violates the condition
for a convergence opportunity with its neighbors in the sequence X1, . . . , Xk), the number of
effective convergence opportunities, say C, is lower bounded (except with neglgiblble probability)
by

C ≥ q̄min − 2(q̄min − q̄′min) = 2q̄′min − q̄min
≥ (1− δ′)αSt[1− 2Tmp(∆ + 1)− 2δ′′].

For any constant ε, by picking δ′ and δ′′ sufficiently small, this yields a bound (except with
negligible probability as derived above) of

C > (1− ε)(1− 2Tmp(∆ + 1))αSt.

54

The final argument is a counting argument. Let us denote by Sr′ the set of maximal states
known to FStX at round r′ (i.e., any path from the root to some a leaf) of length at least `+ C,
where ` is the length of the longest state known to at least one honest-and-synchronized miner
at round s. Note that S`+Cr′ is non-empty: since each convergence opportunity increases the
length by at least one, and before each successful round, there is a period of ∆ rounds where no
honest miner mines a new state, there has to exist at least one state with length at least `+ C
at round r′.

Assume that the number of successful state extensions made by the adversary (to FStX)
between round s and r′ is TA < C. Then, by the pigeonhole principle, for all ~st ∈ Sr′ , it holds
that there is at least one block stk, such that functionality FStX is successfully queried by
exactly one honest-and-synchronized miner P in round i to extend the state to length k + 1,
but no query by the adversary to extend a state of length k to a state of length k + 1 has been
successful up to and including round r′. Even more, TA < C implies that such an i has to exist
that also constitutes a convergence opportunity.

After this convergence opportunity at round i, all honest-and-synchronized miners have a
state whose first k+ 1 blocks are ~sti = st0 . . . , stk. Unless the adversary provides an alternative
state with a prefix ~st′i of length k + 1, such that st′l 6= stl for at least one index 0 < l ≤ k, no
honest-and-synchronized miner will ever mine on a state whose first k + 1 blocks do not agree
with ~sti.

The existence of an alternative prefix ~st′i of length k + 1 for any such i and for all states
~st ∈ S`+Cr′ implies TA ≥ C and therefore contradicts the assumption that TA < C.

What is left to prove is that for any such interval of size t (from round s to round r′), the
probability that TA < C holds in any real-world execution except with negligible probability
in βmint. Analogously to Lemma 7.12

.

, by the definition ρa · Tmp = βmin (and recalling that we
established a lower bound on t in the beginning) we get that this error probability is negligible
in T .

First, by Lemma 7.13

.

, for any ω > 0, the probability that any new state accepted by an
honest-and-synchronized miner during the period of at most t+ 1 rounds (from s to r′) is actually
a state extension that the adversary withheld since round s−ω(t+ 1) (or even before) is at most
negl(βmint). By Lemma 7.12

.

, the number of adversarial blocks (i.e., successful state extensions
by A) generated within this slightly larger interval S′ of size |S′| = (1 + ω)(t + 1) rounds is
(except with probability negl(βmint)) upper bounded by TA ≤ (1 + δ)(1 + ω)(t+ 1)βS′ . Also by
picking constant ω sufficiently small, we have that |S| ≥ (1−αmax∆)|S′| and thus αS dominates
βS′ by the theorem assumptions. We hence get TA ≤ (1+δ)(1+ω)

λ (t+ 1)αS · (1− 2Tmp · (∆ + 1)) by
equation (1)

.

. By picking the constants δ and ω, and ε sufficiently small relative to λ, we hence
get TA < C except with probability negl(βmint). Since our arguments hold for any particular
intervals S, we again apply the union bound over the number of rounds and get the desired
claim.

We used the following useful lemma in the previous proof to bound the deviation with respect
to an arbitrary environment (inducing a certain sequence of random variables):

Lemma 7.17. Let τ ≥ 1
2 and consider boolean random variables X1, . . . , Xn for which it holds

that Pr[Xi = 1 |X1, . . . , Xi−1] ≥ τ . Then, for any δ > 0,

Pr[
n∑
i=1

Xi ≤ (1− δ)τn] ≤ exp
(
−δ2n/2

)
.

55

Proof. We define the random variables Yk :=
∑k

i=1(Xi − τ) = (
∑k

i=1Xi) − kτ . First, they
satisfy the sub-martingale condition, i.e., for all k, E[Yk |Y1, . . . Yk−1] ≥ Yk−1: let Pr[Yk =
yk−1 + (1 − τ) |Yk−1 = yk−1] = Pr[Xk = 1 |X1, . . . , Xk−1] =: p1 ≥ τ and Pr[Yk = yk−1 +
(−τ) |Yk−1 = yk−1] = Pr[Xk = 0 |X1, . . . , Xk−1] := p0 ≤ 1− τ . The (conditional) expected value
is p1(yk−1 +(1−τ))+p0(yk−1−τ) ≥ yk−1 +p1(1−τ)−p0τ ≥ yk−1 +[τ(1−τ)− (1− τ)τ] = yk−1.
Second, we have a bounded difference of |Yk − Yk−1| ≤ max(τ, 1 − τ) = τ by the condition
τ ≥ 1/2. Applying the Azuma-Hoeffding bound given by Theorem 2.4

.

to the variables Yk gives

Pr[Yn ≤ −δτn] ≤ exp(−δ2n/2).

And by definition Yn ≤ −δτn↔ Xn ≤ nτ − nδτ , the statement follows.

Concluding observations. Finally, we conclude the proof by noting that after a delay of ∆
rounds, all honestly multicast transactions are known to all honest-and-synchronized miners and
would be included into the next honestly minded block if valid. In the simulation, the simulator
also does it in the ideal world and hence will never propose blocks of honest parties that do not
comply with the conditions of the defined ExtendPolicy of GBledger. Further, the synchronization
of a party takes at most Delay = 4∆ clock ticks: if Pj joins the network, his knowledge of the
longest chain and the set of valid transactions relative to that state, which is known to at least
one honest and synchronized miner is only reliable after 2∆ rounds (4∆ clock ticks) since it
takes at most ∆ rounds to multicast the initial message that the miner has joined the network,
and additional ∆ rounds until the replies are received. During this 2∆ round the new miner
will also have received all messages sent at or after he joined the network, and in particular all
transactions that are more than ∆ rounds (2∆ = Delay

2) old and potentially valid.
The pointers of honest-and-synchronized parties can also not be too distant, i.e., the slackness

is upper bounded by windowSize ≥ T as otherwise we would have a common-prefix violation in
that execution (assume the prefix of the chain known to a honest-and-synchronized party was
further away than T blocks from the prefix of the actual longest chain, this would yield a fork
with substantial probability). The theorem follows.

7.4 Improving the Chain-Quality Parameter

As long as αmin > βmax, we see that among windowSize state blocks, there is at least an honestly
generated block, because then, by equation (1)

.

, we also have γmin > βmax and thus βmax
γmin

< 1.
Such an assumption is usually taken in existing analyses. However, we can derive more general
bounds for chain-quality (where the above case is one special case) to obtain bounds for more
general scenarios. In light of the chain-growth statement in Lemma 7.11

.

, we introduce the
following useful quantity:

Definition 7.18. Let the mining pattern be (~α, ~β) for R rounds, let the network delay be ∆,
and let S be an interval. Define

cg∆(S) := max{τ ∈ (0, 1) | ∀S′ ⊆ S with |S′| ≥ max{1, |S|(1−∆ · γ(τ,∆))} : αS′ ≥ τ};

and define the fraction

fcq := max
S⊆{0,...,R−1}

βS
γ(cg∆(S),∆)

.

56

Both quantities are well-defined as functions since we assume that ∀r : αr > 0. We derive
a more general worst-case guarantee for the fraction of adversarial blocks which in particular
shows that this fraction is less than one under the theorem condition.

Lemma 7.19 (Generalization of Lemma 7.15

.

). Consider a real-world execution as in Theorem 7.9

.

.
Let Pi be a miner, and let r ≥ 0. Assume Pi is honest-and-synchronized in round r and that the
length of the longest state received or stored is ` ≥ T . The fraction of adversarially mined blocks
within a sequence of T blocks in the state is at most min{1, (1 + δ) · fcq} except with probability
R · negl(T) for any δ > 0 and where fcq is defined as in Definition 7.18

.

. Under the condition
of Theorem 7.9

.

, this means that for the ledger GBledger, we can guarantee

η ≥ min{(1 + δ) · fcq · windowSize, windowSize},

with fcq < 1 (and for any δ > 0).

Proof. The proof proceeds as the one of Lemma 7.15

.

: consider any sub-sequence of T state
blocks stj+1, . . . , stj+T in ~str. We again assume that ~st<j is mined at round r′ (by an honest-
and-synchronized party), and that in round r′ + t, the state ~st>j+T appears for the first time as
the state, or the prefix of a state, of at least one honest-and-synchronized miner. Recall that if
an adversary successfully extended the state during some round by a new state block stj+s of
the above sequence stj+1, . . . , stj+T , then this happens in a round between r′ and r′ + t. Let us
denote this interval by the set S of rounds.

Since t is assumed to be the minimal number of rounds until the first honest miner adopted a
state containing stj+1, we can actually make use of the general part of Lemma 7.11

.

to conclude
that the probability that the condition t ≥ T

(1−δ′)γ(cg∆(S),∆) occurs in such an execution is at
most negl(T) and obtain t ≤ T

(1−δ′)γ(cg∆(S),∆) with overwhelming probability in T . On the other
hand, the lower bound on t is as in the proof of Lemma 7.15

.

.
Let again N t

A denote the expected value of adversarial blocks in t rounds, invoking Lemma 7.12

.

gives us that N t
A ≤ (1 + δ)βSt except with probability negl(βSt).

The number of times the adversary was successful in extending the state by one block can
therefore be upper bounded by the quantity

N
T

(1−δ′)γ
A ≤ 1 + δ

1− δ′
· T · βS

γ(cg∆(S),∆)
.

Since our arguments hold for any interval, the proof is concluded by taking the worst case over
all rounds and the maximal fraction equals fcq as claimed.

To establish the last part of the statement, we observe that equation (1)

.

in particular
implies that for any interval S (of sufficient size), we have that any subset S′ of rounds of size
(1− αmax∆)|S| fulfills αS′(1− Tmp∆) > (1 + ε)βS for some ε > 0. Since a lower bound x for αS′
over all subsets of size (1− αmax∆)|S| implies that x is also a lower bound for any larger subset
S′′ and hence for cg∆(S). Observing that for x,∆ > 0, x

1+x∆ > x(1− x∆) and Tmp ≥ cg∆(S),
we get γ(cg∆(S),∆) > βS as required to conclude that fcq < 1.

8 Special Cases of our Model and Functionality Wrappers

In this section, we first explain important special cases of our main theorem and show how to
use functionality wrappers to enforce its conditions to obtain composable statements.

57

8.1 Special Cases and Existing Works

We demonstrate how the protocols, assumptions, and results from the two existing works analyzing
security of Bitcoin (in a property based manner) can be cast as special cases of our construction.
We focus on the analyses of Pass et al. (PSs for short) and of Garay et al. (GKL for short).

These models assume a number n of participants being active in the protocol execution. All
honest parties are assumed to be synchronized (e.g., by special initialization messages by the
environment).

GKL analysis (fixed difficulty and delay). We start with the result in [GKL15

.

], in par-
ticular with the so-called flat and synchronous model with next-round delivery and a constant
number of parties n (i.e., Bitcoin is seen as an n-party MPC protocol).19

.

The relevant variables
are defined as follows:

• Each party is allowed to perform q ≥ 1 hash queries. This translates to a success probability
of pH = 1− (1− p)q and pA = p, and to a total mining power TGKL

mp := p · q · n.

• The adversary gets (at most) q queries per corrupted party with probability pA = p (there
are no desynchronized parties). If tr denotes the number of corrupted parties in round
r, the expected value would be tr · q · p and thus we can define the upper bound on the
adversarial mining power βGKL

max = p · q · (ρ · n), where ρn is the (assumed) upper bound
on the number of miners contributing to the adversarial mining power (independent of r).
Since the adversary is free to go to the limit in the model, the mining pattern is also flat:
~β = (βGKL

max , . . . , β
GKL
max).

• Each honest and synchronized miner gets exactly one activation per round and has success
probability pH = 1 − (1 − p)q ∈ (0, 1), for some integer q > 0 and hence we get a
minimal honest mining power of αGKL

min = 1 − (1 − p)q(1−ρ)·n (independent of r). Note
that since n is assumed to be fixed in their model, q(1 − ρ) · n is in fact a lower bound
on the honest and synchronized hashing power. Since the model assumes that this lower
bound could potentially always be allowed, we again define the flat mining pattern ~α =
(αGKL

min , . . . , αGKL
min).

• If instant delivery is assumed, this translates to defining ∆GKL := 1, i.e., guaranteed
delivery in the next round.

PSs analysis (fixed difficulty). Similarly, we can instantiate the above values with the
assumptions of [PSS17

.

]:

• For each corrupted party, the adversary gets at most one query per round. Each honest
miner makes exactly one query per round. In total, there are n parties among which ρn
can be corrupted (in any round).

• In the PSs model, pH = pA = p and hence TPSs
mp = p · n. With these values we get

βPSs
max = p · (ρ · n). Putting things together, we also have αPSs

min = 1− (1− p)(1−ρ)·n, where
(1 − ρ) · n is the lower bound on the honest (and hence also synchronized) parties. As
before, the mining pattern is flat.

19In a recent paper, the authors of [GKL15

.

] propose an analysis of Bitcoin for a variable number of parties.

58

• The delay of the network is upper bounded by a constant ∆PSs (as usual, unknown to the
participants).

The security is established by the following lemma:

Lemma 8.1. For the special settings above, if we impose the assumption that

α
{GKL,PSs}
min · (1− 2 · (∆{GKL,PSs} + 1) · α{GKL,PSs}

min) ≥ λ · β{GKL,PSs}
max (4)

then this implies the secure realization of the Bitcoin ledger with the parameters assured by Theo-
rem 7.9

.

for the above choices of values, respectively.

Proof Sketch. The statement of course follows from the arguments given in the respective
works [GKL15

.

] and [PSS17

.

] since our execution model in particular allows us to formulate
the above assumptions. However, it is instructive to see how the security follows in view
of Theorem 7.9

.

. In particular, why security follows when replacing the condition in equation (1)

.

by equation (4)

.

. At first sight, the condition is stronger as it implies that the best strategy of the
adversary is dominated by the worst strategy of the honest players. However, the discount factor
(1− 2 · (∆{GKL,PSs} + 1) · α{GKL,PSs}

min) is better than (1− 2 · (∆{GKL,PSs} + 1) · TGKL,PSs
mp). The

key observation why equation (4)

.

subsumes equation (1)

.

in the special cases described above are
the following:

• Since the number n of parties is fixed and exactly divided into honest and adversarial, and
because the worst-case honest strategy still dominates the adversary’s best strategy, we
can use to following argument to justify why equation (4)

.

is actually sufficient. Still, the
best strategy of the adversary is to activate as many corrupted parties, say t, as allowed
by the upper bound βmax. Since the number of parties is fixed, this implies that at most
n − t activations of honest parties remain and by definition αmin = 1 − (1 − p)(n − t)
is the matching lower bound. Hence, and in contrast to the more general setting, here
the best strategy for corrupted parties induces a concrete strategy for honest parties.20

.

A bit more formally, let x denote the number of queries such that αmin = 1 − (1 − p)x
holds. Assume in some round r, more honest parties are activated, say qrH . By definition,
βmax ≥ p · (n− x) and we can formally assign the difference (qrH − x) to the adversary’s
budget (and the condition αmin > βmax is preserved as stated below). First, observe that
for integers x, y > 1,

αr − α = (1− (1− p)x+y)− (1− (1− p)x) = (1− p)x − (1− p)x+y

= (1− p)x · (1− (1− p)y) ≤ (1− (1− p)y) ≤ (1− (1− y · p))
= y · p,

where the last inequality is a consequence of Bernoulli’s inequality. The adversary’s
mining power is thus increased, however not beyond βmax since the identity n − x =
(n− qrH) + (qrH − x) is guaranteed because n and x are fixed for the analysis.

• Looking at the proof of Theorem 7.9

.

, we see that the quantities αS and βS can be identified
by αmin and βmax, respectively, and in addition the relationship αmin > βmax is implied

20Note that in a more general setting, this not need to be the case: even if the bound on the adversary is small,
by activating a huge fraction of honest parties the consensus of honest parties could still be disturbed and hence
our analysis has to consider such “malicious” strategies as well.

59

by equation (4)

.

(and thus αS > βS for any subset S of rounds of any size. With this,
all Lemmata in the proof of Theorem 7.9

.

simplify and no further condition in addition
to equation (4)

.

is needed.

With this in mind, replacing the condition in equation (1)

.

by equation (4)

.

the proof of Theorem 7.9

.

,
under the conditions imposed by the above models, yields the statement of the lemma.

8.2 Restrictions and Composition

Note that the theorem statement a-priori holds for any environment (but simply yields a void
statement if the conditions are violated). In order to turn this into a composable statement
without restrictions, we follow the approach proposed in Section 3

.

and model restrictions in the
setup of the protocol via wrapper functionalities. The general conceptual principle behind this
is the following: For the hybrid world, that consists of a network FN-MC, a clock Gclock and a
random oracle FRO with output length κ (or alternatively the state-exchange functionality FStX
instead of the random oracle), define a wrapper functionality W which enforces a given mining
pattern (~α, ~β) (and the upper bounds on the mining power). If the conditions of Theorem 7.9

.

are met, then we get a UC-realization statement with respect to all (efficient) environments.

A general wrapper. We define a wrapper along the lines of the basic example in Section 3

.

and
we provide the details and the specification of such a general random-oracle wrapperW∆,Tmp

~α,~β,D
(FRO)

in Figure 11

.

. This wrapper slightly changes the synchrony pattern of the real-world execution:
since a lower bound on honest mining power is enforced (otherwise, the clock does not go on),
we realize the ledger with a slightly different predicate predict-timeBC to reflect this assumption.
It is easy to see that this is a straightforward extension to the derivation in Lemma 5.2

.

. We note
that this change to the synchronization pattern just stems from the fact how we implement such
restricting assumptions but does not affect other modeling decisions. Recall that this is a major
motivation to abstract the time-dependency of the ledger using such an abstract predicate, such
that minor details have only local effects.

For this wrapper we have the following desired corollary to Theorem 7.9

.

and Lemma 7.2

.

.
This statement is guaranteed to compose according to the UC composition theorem.

Corollary 8.2. The protocol Ledger-Protocolq,D,T , defined in the (Gclock,F∆
N-MC,W

Tmp
~α,~β,D

(FRO))-

hybrid world, UC-realizes functionality GBledger (for the parameters established by Theorem 7.9

.

and the extended predicate predict-timeBC as described above) if the parameters of the wrapper
(and thus formally enforced by the setup-functionality of the protocol), satisfy equation (1)

.

.

It is straightforward to design different wrappers capturing a range of assumptions that
one might want to make (and which imply the conditions of Theorem 7.9

.

), such as an explicit
restriction on number of active participants etc. Each of these real-world assumptions might
influence the time-progress and hence the predict-time-predicate.

9 Modular Constructions based on the Ledger

The ledger functionality can be enhanced in a modular way in various directions. In fact, the
presented ledger functionality can be seen as the minimal composable goal of a blockchain
protocol. Different blockchain protocols would typically achieve different ledgers, either because

60

Functionality W∆,λ,Tmp
~α,~β,D

(FRO)

The wrapper functionality is parametrized by the mining pattern, the difficulty, and the upper bound Tmp on the
total mining power per round (which thereby also implies an upper bound on the total number of RO-queries per
round). The wrapper is assumed to be registered with the global clock Gclock. The functionality manages the variable
counter and is aware of set of registered parties, and the set of corrupted parties.

Initially, P ′ = ∅ and counter = 0, qA = 0 and qH = 0. Define p := D
2κ

(where κ is the output length of the underlying
random oracle).

General:

• The wrapper stops the interaction with the adversary as soon as the adversary tries to exceed its allowed
budget of hashing power.

Relaying inputs to the random oracle:

• Upon receiving (eval, sid, x) fromA on behalf of a party P which is corrupted or registered but de-synchronized,
then first execute Round Reset. Then do the following:
qA ← qA + 1; β(counter) ← qA · p
if (qA + qH) · p ≤ Tmp then

if β(counter) ≤ ~β[counter] then
Forward the request to FRO and return to A whatever FRO returns.

• Upon receiving (eval, sid, x) from an uncorrupted, registered and synchronized party P , then first execute
Round Reset. Then do the following:
qH ← qH + 1; α(counter) ← 1− (1− p)qH
if (qA + qH) · p ≤ Tmp then

Forward the request to FRO and return to P whatever FRO returns.
if αcounter ≥ ~α[counter] then

Send (clock-update, sidC) to Gclock . Release the clock if lower bound is reached.

• Any other request is relayed to the underlying functionality (and recorded by the wrapper) and the corre-
sponding output is given to the destination specified by the underlying functionality.

Standard UC Corruption Handling:

• Upon receiving (corrupt, sid, P) from the adversary, set P ′ ← P ′ ∪ {P}.

Procedure Round-Reset:
Send (clock-read, sidC) to Gclock and receive (clock-read, sidC , τ) from Gclock. If |τ − counter| > 0 and the new
time τ is even (i.e., a new round started), then set counter← τ and set qA ← 0 and qH ← 0.

Figure 11: The wrapper that restricts access to the random oracle based on a given mining
pattern.

61

they achieve stronger guarantees or offer more capabilities in addition to the basic ones we
captured. In this section, we show a straightforward extension.

As already observed in [GKL15

.

], the Bitcoin protocol makes use of digital signatures to
protect transactions which allows it to achieve stronger guarantees. Informally, the stronger
guarantee ensures that every transaction submitted by an honest miner will eventually make it
into the state. Using our terminology, this means that by employing digital signatures, Bitcoin
implements a stronger ledger. In this section we present this stronger ledger and show how
such an implementation can be captured as a UC protocol which makes black-box use of the
Ledger-Protocol to implement this ledger. The UC composition theorem makes such a proof
immediate, as we do not need to think about the specifics of the invoked ledger protocol, and we
can instead argue security in a world where this protocol is replaced by GBledger.

Protection of transactions using accounts. In Bitcoin, a miner creates an account ID
AccountID by generating a signature key pair and hashing the public key. Any transaction
of this party includes this account ID, i.e., tx = (AccountID, tx′). An important property is
that a transaction of a certain account cannot be invalidated by a transaction with a different
account ID. Hence, to protect the validity of a transaction, upon submitting tx, party Pi has to
sign it, append the signature and verification key to get a transaction ((AccountID, tx′), vk , σ).
The validation predicate now additionally has to check that the account ID is the hash of the
public key and that the signature σ is valid with respect to the verification key vk . Roughly, an
adversary can invalidate tx, only by either forging a signature relative to vk , or by possessing
key pair whose hash of the public key collides with the account ID of the honest party.

The realized ledger abstraction, denoted by GB+ledger, is a ledger functionality as the one
from the previous section, but which additionally allows parties to create unique accounts.
Upon receiving a transaction from party Pi, GB+ledger only accepts a transaction containing the
AccountID that was previously associated to Pi and ensures that parties are restricted to issue
transactions using their own accounts. As we explain, this also amplifies transaction liveness.

9.1 A Stronger Ledger with Account Management

9.1.1 Overview and Definitions

To achieve stronger guarantees than our original Bitcoin ledger, a party issues transactions
relative to an account. More abstractly speaking, a transaction contains an identifier, AccountID,
which can be seen as the abstract identity that claims ownership of the transaction. More
specifically, we can represent this situation by having transactions tx be pairs (AccountID, tx′)
with the above meaning. Signatures enter the picture at this level: an honest participant of the
Bitcoin network will issue only signed transactions on the network. In order to link verification
key to the account, AccountID is the hash of the verification keys, where we require collision
resistance. More concretely, whenever a miner is supposed to submit a transaction tx, it signs it
and appends the signature and its verification key. This bundle is distributed into the Bitcoin
network. The validation consists now of three parts. First, it is verified that the public key
matches the account, second, the signature is verified, and third, its validated whether the actual
transaction (AccountID, tx′) is valid, with respect to a separate validation predicate ValidTxB on
states and transactions tx of the above format. Only if all three tests succeed, the transactions
is valid.

62

Looking ahead, the goal of this is the following: Assume that for the validation predicate
ValidTxB it holds that if a transaction (AccountID, tx) is valid relative to a state, then the only
reason why it can get invalid is due to the presence of another transaction with the same account.
If we think of wallets, if a miner can spend his coins at current time, then only another transaction
by himself can invalidate that (by spending the same coins, which the Bitcoin network will
refuse). In combination with the unforgeability of signatures, no adversary can ever render a
valid transaction invalid. Together with the weak liveness guarantee we can derive a better
liveness guarantee.

We now show how to implement this account management in the GBledger hybrid world to
achieve a stronger ledger that formalizes account management in an ideal manner. Our protocol
makes use of an existentially unforgeable digital signatures scheme.

Definition 9.1. A digital signature scheme DSS := (Gen,Sign,Ver) for a message space M,
signature space S, and key space K = SK × PK consists of a (probabilistic) key generation
algorithm Gen that returns a key pair (sk , vk) ∈ K, a (possibly probabilistic) signing algorithm
Sign, that given a message m ∈ M and the signing key sk ∈ SK returns a signature s ←
Sign(sk ,m), and a (possibly probabilistic, but usually deterministic) verification algorithm Ver,
that given a message m ∈ M, a candidate signature s′ ∈ S, and the verification key vk ∈ PK
returns a bit Ver(vk ,m, s′). The bit 1 is interpreted as a successful verification and 0 as a failed
verification. We require correctness, that is, we demand that Ver(vk ,m,Sign(sk ,m)) = 1 for all
m ∈M and all pairs (vk , sk) in the support of Gen.

Definition 9.2. A digital signatures scheme is existentially unforgeable under chosen message
attacks if no efficient adversary A can win the following game GEU–CMA

DSS better than with negligible
probability. GEU–CMA

DSS first chooses a key pair (sk , vk)← Gen. Then it acts as a signing oracle,
receiving messages m ∈M at its interface and responding with Sign(sk ,m). At any point, A can
undertake a forging attempt by providing a message m′ and a candidate signature s′ to GEU–CMA.
The game is won if and only if Ver(vk ,m′, s′) = 1 and m′ was never queried before by A.

9.1.2 The Protocol for Account Management

Hybrid ledger functionality. Let ValidTxB and blockifyB be as in the previous section
but with the following additional property: each transaction is a pair tx = (AccountID, tx′)
where the first part is bitstring of fixed length and the second part is an arbitrary transac-
tion. In addition we require the following property: for any state state and any transaction
tx it holds that ValidTxB(tx, state) = 1 implies, for any state extension state||st′, that
ValidTxB(tx, state||st′) = 1, if st′ does not contain a transaction with the same identifier
AccountID. Recall that we assume that Definition 6.1

.

is satisfied.
We assume the Bitcoin ledger functionality with the following validation predicate, which is

defined relative to a collision-resistant hash function H, and a signature scheme DSS.

Algorithm to describe the assumed validation predicate

function ValDSS(BTX, state, buffer)
Let BTX = (tx, txid, τL, pi)
Parse tx as ((AccountID, tx′), vk , σ) (Return 0 in case of a wrong format)
if AccountID = H(vk) and Ver(vk , tx, σ) = 1 then

return ValidTxB(tx, state)
else

return 0

63

Protocol. The protocol is straightforward: whenever the protocol is given an input of the
form (AccountID, tx) it first checks that it is the party associated with this account ID. Then, it
receives the newest state from the ledger and checks, whether this input is valid with respect to
the current state. If this is the case, the party signs the input and submits it to the ledger.

Protocol accountMgmt(P)

Initialization:
This protocol talks to the Gledger, but only changes the behavior of read or submit-queries to the ledger. Any other
command is simply relayed to Gledger and the corresponding output is given to the environment.
The protocol keeps a counter i and a vector submitted of inputs submitted to the ledger which are not yet contained
in the state of the ledger.

Account Management:

• Upon receiving (CreateAccount, sid), execute (sk , vk)← Gen, update i← i+1 and set AccountIDi ← H(vk).
Return (CreateAccount, sid,AccountIDi)

Ledger Read and Write:

• Upon receiving (read, sid) send (read, sid) to Gledger and receive as answer the current state = st1|| . . . ||stn.
Then do the following:

state′ ← st1 . Genesis state
for i = 2 to n do

From state block sti, extract the contents (tx1, vk1, σ1)|| . . . ||(txn, vkn, σn)
Define new block-content ~x′ ← tx1|| . . . ||txn
state′ ← state||blockifyB(~x′)

Return (read, sid, state′)

• Upon receiving (submit, sid, tx), check that tx = (AccountID, tx′) for AccountID ∈
{AccountID1, . . .AccountIDi}. If the check fails, ignore the input. Otherwise, do the following:

1. Read the state state from Gledger as above.

2. If ValidTxB(tx, state) = 1, then sign the input by σ ← Sign(sk , tx) and send (submit, sid, (tx, vk , σ))

9.1.3 The Enhanced Ledger Functionality

We present an enhanced ledger functionality with a validation predicate that enforces that an
adversarial transaction cannot prevent a transaction by an honest party to eventually make it
into the stable state of the ledger. In particular, we get the following enhanced functionality:

Functionality GB+
ledger

GB+ledger is identical to GBledger except with the following additional capabilities:

Difference to standard Ledger:

• Upon receiving (CreateAccount, sid) from party Pi (or the adversary on behalf of a party Pi), send
(AccountReq, sid, Pi) to A and upon receiving a reply (AccountReq, sid, Pi,AccountID) do the following:

1. If AccountID is not yet associated to any party, store the pair (AccountID, Pi) internally and return
(CreateAccount, sid,AccountID) to Pi.

2. If AccountID is already associated to a party, then output (CreateAccount, sid,Fail) to Pi.

Standard Bitcoin Ledger:

• Identical to Gledger with validation predicate Valstrong and with the fixed transaction format described above.
We omit the formal specification here.

64

The following validation predicate is used within GB+ledger.

Algorithm to define the strong validation

function Valstrong(BTX, state, buffer)
Let BTX = (tx, txid, τL, pi)
if tx = (AccountID, tx′) and AccountID is associated with pi then

return ValidTxB(tx, state)
else

return 0

We have the following lemma:

Lemma 9.3. Let DSS be a secure digital signature scheme and let H be a collision resistant
hash function. Then the protocol accountMgmt in the GBledger-hybrid world UC-realizes ledger
GB+ledger, where the functionalities are instantiated as described above.

Proof Sketch. It is straightforward to write a simulator in the ideal-world execution that perfectly
mimics the protocol as long as no hash-collision or signature forgery occurs. This is because
the only non-trivial property that the ledger enforces (in addition to what the assumed ledger
guarantees) is that only the account holder can submit a transaction but no one else. If no
hash-function collision is found, the only possible way is to forge a signature. If both events do
not happen, the real world indeed implements the stronger validation predicate. Assuming a
collision-resistant hash function a and signature scheme that is unforgeable under chosen-message
attacks, this implies the statement.

9.1.4 On the Better Guarantees

The stronger guarantee for honestly submitted transactions stems from two facts. First, by Defi-
nition 6.1

.

, the state blocks contain transactions beyond coin-base transactions. Second, since
a transaction of a party is associated with its account, and cannot be invalidated by another
transaction with a different account, this implies that the transaction remains valid relative to
state (unless the honest party itself issues a transaction that contradicts a previous transaction
for one of its accounts, but we neglect this here). As an example, assume an honest party
submits a single transaction for one of its accounts, and assume this transaction is valid relative
to the state state. Then, by the defined enforcing mechanism of ExtendPolicy, this transaction
is guaranteed to enter the state after staying in the buffer for long enough, and when an honest
party mines a subsequent block after this delay. This means that after that delay has passed, the
transaction has to appear within the subsequent window of windowSize blocks.

A brief worst-case calculation. Looking at the ledger abstraction, we can directly compute
the following worst-case upper bound for any miner (we neglect here the offset at the beginning of
the execution for simplicity): after submitting the transaction, the transaction will appear (relative
to the view of the submitting party) within the next 4 · windowSize blocks after submitting the
transaction (except with negligible probability). The reason is that upon submitting, (1) the
view of the miner submitting the transaction could be windowSize blocks behind the head of the
state of the ledger, (2) by the definition of ExtendPolicy, at most 2 · windowSize blocks can be
added to the state while the transaction is staying in the buffer before the ledger starts enforcing
that the transaction be part of the subsequent next honest state block. This can be guaranteed

65

within another interval of windowSize state blocks. We note that this calculation is quite loose.
By the correspondence of windowSize and the chop-off parameter T of the Bitcoin protocol, and
assuming that T = 6 blocks take approximately one hour, we get a worst-case time estimate
for transaction liveness of four hours— given that transactions are correctly signed and are not
invalidated due to other transactions with the same account.

References

[AD15] Marcin Andrychowicz and Stefan Dziembowski. Pow-based distributed cryptography
with no trusted setup. In Rosario Gennaro and Matthew Robshaw, editors, Advances
in Cryptology – CRYPTO 2015, pages 379–399, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

[ADMM14] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Fair two-party computations via bitcoin deposits. In Rainer Böhme,
Michael Brenner, Tyler Moore, and Matthew Smith, editors, Financial Cryptogra-
phy and Data Security, pages 105–121, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

[ADMM16] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Secure multiparty computations on bitcoin. Commun. ACM, 59(4):76–84,
March 2016.

[BDOZ11] Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv Zohar. On bitcoin and
red balloons. SIGecom Exch., 10(3):5–9, December 2011.

[BHMQU05] Michael Backes, Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. On
fairness in simulatability-based cryptographic systems. In Proceedings of the 2005
ACM Workshop on Formal Methods in Security Engineering, FMSE ’05, pages
13–22, New York, NY, USA, 2005. ACM.

[BK14] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In
Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology – CRYPTO
2014, pages 421–439, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[But13] Vitalik Buterin. A next-generation smart contract and decentralized application
platform. White Paper on GitHub, 2013. https://github.com/ethereum/wiki/
wiki/White-Paper

.

.

[Can01] R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings of the 42Nd IEEE Symposium on Foundations of Computer
Science, FOCS ’01, pages 136–, Washington, DC, USA, 2001. IEEE Computer
Society.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally compos-
able security with global setup. In Salil P. Vadhan, editor, Theory of Cryptography,
pages 61–85, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

66

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

[CGHZ16] Sandro Coretti, Juan Garay, Martin Hirt, and Vassilis Zikas. Constant-round
asynchronous multi-party computation based on one-way functions. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology – ASIACRYPT 2016,
pages 998–1021, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[CSV16] Ran Canetti, Daniel Shahaf, and Margarita Vald. Universally composable authen-
tication and key-exchange with global pki. In Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang, editors, Public-Key Cryptography – PKC
2016, pages 265–296, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[DP09] Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge University Press, New York, NY,
USA, 1st edition, 2009.

[ES18] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable.
Commun. ACM, 61(7):95–102, June 2018.

[Eya15] I. Eyal. The miner’s dilemma. In 2015 IEEE Symposium on Security and Privacy,
pages 89–103, May 2015.

[GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Elisabeth Oswald and Marc Fischlin, editors, Advances
in Cryptology - EUROCRYPT 2015, pages 281–310, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[KB14] Ranjit Kumaresan and Iddo Bentov. How to use bitcoin to incentivize correct
computations. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’14, pages 30–41, New York, NY, USA, 2014.
ACM.

[KB16] Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation with penal-
ties. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 418–429, New York, NY, USA, 2016.
ACM.

[KKKT16] Aggelos Kiayias, Elias Koutsoupias, Maria Kyropoulou, and Yiannis Tselekounis.
Blockchain mining games. In Proceedings of the 2016 ACM Conference on Economics
and Computation, EC ’16, pages 365–382, New York, NY, USA, 2016. ACM.

[KMB15] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to use bitcoin to play
decentralized poker. In Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security, CCS ’15, pages 195–206, New York, NY,
USA, 2015. ACM.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally com-
posable synchronous computation. In Amit Sahai, editor, Theory of Cryptography,
pages 477–498, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[KVV16] Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. Im-
provements to secure computation with penalties. In Proceedings of the 2016 ACM

67

SIGSAC Conference on Computer and Communications Security, CCS ’16, pages
406–417, New York, NY, USA, 2016. ACM.

[KZZ16] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party
computation using a global transaction ledger. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology – EUROCRYPT 2016, pages 705–734,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[Lam98] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–
169, May 1998.

[Lam02] Leslie Lamport. Paxos made simple, fast, and byzantine. In Procedings of the
6th International Conference on Principles of Distributed Systems. OPODIS 2002,
Reims, France, December 11-13, 2002, page 7–9. Suger, Saint-Denis, rue Catulienne,
France, 2002.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[MGGR13] I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous distributed
e-cash from bitcoin. In 2013 IEEE Symposium on Security and Privacy, pages
397–411, May 2013.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. White Paper,
2008. http://bitcoin.org/bitcoin.pdf

.

.

[PS17] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In Proceedings of the
ACM Symposium on Principles of Distributed Computing, PODC ’17, page 315–324,
New York, NY, USA, 2017. ACM.

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol
in asynchronous networks. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, Advances in Cryptology – EUROCRYPT 2017, pages 643–673, Cham, 2017.
Springer International Publishing.

[Rab83] M. O. Rabin. Randomized byzantine generals. In 24th Annual Symposium on
Foundations of Computer Science (sfcs 1983), pages 403–409, Nov 1983.

[Ros12] Mike Rosulek. Must you know the code of f to securely compute f? In Reihaneh
Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012,
pages 87–104, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[SCG+14] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Sympo-
sium on Security and Privacy, pages 459–474, May 2014.

[SZ15] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in
bitcoin. In Rainer Böhme and Tatsuaki Okamoto, editors, Financial Cryptogra-
phy and Data Security, pages 507–527, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

[Zoh15] Aviv Zohar. Bitcoin: Under the hood. Commun. ACM, 58(9):104–113, August
2015.

68

http://bitcoin.org/bitcoin.pdf

A Further Details on the Model

This section includes complementary material for Section 3

.

.

A.1 Unicast Channels

A unicast channel can be defined as follows:

Functionality F∆,PR
U-CH

The functionality is parametrized with a receiver PR, and and upper bound ∆ on the delay of any channel. It keeps
track of the set of possible senders P. Any newly registered (resp. deregistered) party is added to (resp. deleted from)
P. The list of messages is stored in ~M , initially empty.

• Upon receiving (send,m) from some Ps ∈ P or from the adversary A, choose a new unique message-ID midfor
m, initialize variables Dmid := 1 and DMAX

mid = 1, set ~M := ~M ||(m,mid, Dmid), and send (m,mid, Dmid) to
the adversary.

• Upon receiving (fetch) from PR:
1. For all registered mids, set Dmid := Dmid − 1.
2. Let ~M0 denote the subvector ~M including all triples (m,mid, Dmid) with Dmid = 0 (in the same order

as they appear in ~M). Delete all entries in ~M0 from ~M and send ~M0 to PR.

• Upon receiving (delay, Tmid,mid) from the adversary, ifDMAX
mid +Tmid ≤ ∆ and mid is a message-ID registered

in the current ~M , set Dmid := Dmid + Tmid and DMAX
mid := DMAX

mid + Tmid; otherwise, ignore the message.

• Upon receiving (swap,mid,mid′) from the adversary, if mid and mid′ are message-IDs registered in the current
~M , then swap the triples (m,mid, Dmid) and (m,mid′, Dmid′) in ~M . Return (swap-ok) to the adversary.

A.2 On implementing a multicast network

We briefly sketch how to realize such a multicast network, in particular its synchronized version
along the lines of [KMTZ13

.

], by means of a synchronized message-diffusion protocol over a
network of unicast channels (and implicitly assuming a local clock to obtain the round structure).
The core of this diffusion protocol are the assumed and known (e.g., by a common list of IP
addresses) relay-nodes to which parties thus can connect and which forward in each round all
new messages they received (either from registered parties or other relay nodes) in the previous
round to all the unicast channels they are connected to as senders.21

.

Let G = (V,E) denote the
(dynamically updatable) directed graph whose vertices V are the parties and the relay-nodes
which are currently participating in the execution and an edge (pi, pj) is in E iff pi is one of the
senders of the multicast channel with receiver pj . It is straightforward to verify that provided
that G restricted to the honest parties (i.e., when corrupted parties and the edges that use them
are deleted from G) remains strongly connected (i.e., there is a directed path between any two
honest parties, in either direction), then the diffusion mechanism executed over unicast channels
with delay at most ∆ security realizes a multicast network with delay ∆d where d is an upper
bound of the diameter of G. Indeed, the simulator, which is given any message submitted to any
unicast channel and enough activations when the dummy parties themselves get activated (note
that it is essentially a synchronous computation among the relay-nodes), needs to simply simulate
when the respective parties would see a message and schedule the corresponding deliveries by

21In order to ensure that parties can send some messages twice, a nonce is attached to each input message that
is to be multicasted. The relayers do not add another nonce to the message they relay.

69

using the delays submitted by the adversary. The fact that each channel has at most ∆ delay
means that it will take delay at most ∆L rounds for it to travel through an honest path of
length L. Last but not least, in order to receive messages from the network established this way,
when a party joins the network, it has to multicast a special message to the relay-nodes that
has to contain its identifier such that the relay-nodes can start sending messages to that party.
This induces at most a delay of ∆ rounds until the party is guaranteed to receive the messages
sent over the network. For simplicity, we ignore this additional delay incurred by the registration
to the network, and omit it in our specification of the multicast functionality in Section 3.2

.

. If
one implements the network using the above sketched method, one would formally obtain the a
multicast functionality as given in Figure 1

.

, but where the party set P contains all parties that
have joined (and not yet left) the network at least ∆ rounds ago, since the sketched solution
does not support instant registration. All remaining guarantees remain unchanged with respect
to this new party set.

B Further Details on the Bitcoin Ledger

This section includes complementary material for Section Section 6

.

. We here give the formal
description of the Extend Policy for GBledger in Figure 12

.

. It is easy to observe that the
computation performed by this algorithm is well-defined for any definition of Validate and
Blockify.

Compared to previous versions of this work, the presentation is now logically divided into
the step of deriving a default extension and the actual tests whether the adversarial proposal is
admissible. The default extension is taken as the ledger-state extension if and only the proposal
by the adversary does not pass the test specified and implemented by ExtendPolicy in Figure 12

.

.
The derivation of the default extension is given as pseudo-code in Figure 13

.

. Note also that the
policy makes the initial bootstrapping time of the chain now explicit, where by bootstrapping
time we mean the time it takes for the first state block to be inserted into the ledger state.

70

Algorithm ExtendPolicy for GBledger

function ExtendPolicy(~ITH , state, NxtBC, buffer, ~τstate)
We assume call-by-value and hence the function has no side effects.
This Function implements the Extend Policy of the Bitcoin Ledger.

~Ndf ← DefaultExtension(~ITH , state, NxtBC, buffer, ~τstate) . Extension if adversary violates policy.
Let τL be current ledger time (computed from ~ITH)
Parse NxtBC as a vector ((hFlag1, NxtBC1), · · · , (hFlagn, NxtBCn))
~N ← ε . Initialize Result
if |state| ≥ windowSize then . Determine time of the block which is windowSize blocks behind the state head

Set τlow ← ~τstate[|state| − windowSize + 1]
else

Set τlow ← 0
oldValidTxMissing← false . Flag to keep track whether old enough, valid transactions are inserted.
for each list NxtBCi of transaction IDs do . Compute the next state block and verify validity

~Ni ← ε
Use the txid contained in NxtBCi to determine the list of transactions
Let ~tx = (tx1, . . . , tx|NxtBCi|) denote the transactions of NxtBCi
if tx1 is not a coin-base transaction then

return ~Ndf
else

~Ni ← tx1

for j = 2 to |NxtBCi| do
Set sti ← blockifyB(~Ni)
if ValidTxB(txj , state||sti) = 0 then

return ~Ndf . Default Extension if adversarial proposal is invalid
~Ni ← ~Ni||txj

Set sti ← blockifyB(~Ni)
if the proposal is declared to be an honest block, i.e., hFlagi = 1 then

for each BTX = (tx, txid, τ ′, Pi) ∈ buffer of an honest party Pi with time τ ′ < τlow − Delay
2

do
if ValidTxB(tx, state||sti) = 1 but tx 6∈ ~Ni then

oldValidTxMissing← true . A transaction is missing in adversarial proposal.
~N ← ~N || ~Ni
state← state||sti
~τstate ← ~τstate||τL
j ← max{{windowSize} ∪ {k | stk ∈ state ∧ proposal of stk had hFlag = 1}} . Determine most recent
honestly-generated block in the interval behind the head.
if |state| − j ≥ η then

return ~Ndf . Adversary proposed too few honestly generated blocks.
if |state| ≥ windowSize then

. Update τlow: the time of the state block which is windowSize blocks behind the head of the current,
possibly extended state
Set τlow ← ~τstate[|state| − windowSize + 1]

else
Set τlow ← 0

if τL − τlow < minTimewindow then . Ensure that ledger does not proceed too fast
return ε

else if τlow > 0 and τL − τlow > maxTimewindow then . A sequence of blocks cannot take too much time.
return ~Ndf

else if τlow = 0 and τL − τlow > 2 · maxTimewindow then . Bootstrapping cannot take too much time.
return ~Ndf

else if oldValidTxMissing then . If not all old enough, valid transactions have been included.
return ~Ndf

return ~N

Figure 12: The extend policy of the Bitcoin Ledger.

71

Algorithm for Default State Extension

function DefaultExtension(~ITH , state, NxtBC, buffer, ~τstate)
We assume call-by-value and hence the function has no side effects.
The function returns a policy-compliant extension of the ledger state.

Let τL be current ledger time (computed from ~ITH)
Set ~Ndf ← txcoin-base

minerID of an honest miner
Sort buffer according to time stamps and let ~tx = (tx1, . . . , txn) be the transactions in buffer
Set st← blockifyB(~Ndf)
repeat

Let ~tx = (tx1, . . . , txn) be the current list of (remaining) transactions
for i = 1 to n do

if ValidTxB(txi, state||st) = 1 then
~Ndf ← ~Ndf||txi
Remove txi from ~tx
Set st← blockifyB(~Ndf)

until ~Ndf does not increase anymore
if |state|+ 1 ≥ windowSize then . Let τlow be the time of the block which is windowSize− 1 blocks behind
the head of the state.

Set τlow ← ~τstate[|state| − windowSize + 2]
else

Set τlow ← 0
c← 1
while τL − τlow > maxTimewindow do

Set ~Nc ← txcoin-base
minerID of an honest miner

~Ndf ← ~Ndf|| ~Nc
c← c+ 1
if |state|+ c ≥ windowSize then . Update τlow to the time of the state block which is windowSize− c
blocks behind the head.

Set τlow ← ~τstate[|state| − windowSize + c+ 1]
else

Set τlow ← 0
return ~Ndf

Figure 13: Function to compute a policiy-compliant default ledger-state extension.

72

C Further Details on Modularization of the Ledger Protocol

C.1 The Modular Ledger Protocol

We describe a modularized version of the UC Bitcoin protocol which is indistinguishable from
the original protocol:

Protocol Modular-Ledger-ProtocolT (P)

Variables and Initial Values:

• The same as in the original protocol, cf. Figure 7

.

, except replace:

The protocol stores a local (working) chain Cloc which initially contains the genesis block, i.e., Cloc ← (G).

by

The protocol manages the exported ledger state ~stexp which initially is the genesis state, i.e. , ~st ← (gen).
It also manages a local (working) state ~stloc (initially also the genesis state).

Registration/De-Registration:

• As in the original protocol, cf. Figure 7

.

, but where the two local setup functionalities (Fbc
N-MC,FRO) are

subsumed by one local functionality FStX.

Ledger-Queries:
Ledger queries are only answered once registered.

• As in the original protocol, cf. Figure 7

.

.

Handling other external calls:

• As in the original protocol, cf. Figure 7

.

.

Furthermore, the only places where we modify the original protocol in a non-trivial way are
in the main sub-processes (only executed once registered):

Sub-Protocol ExtendState(st)

Send (submit-new, sid, ~stloc, st) to FStX.
Denote the response by (success, sid, B) of FStX.
if B = 1 then

Update the local state, i.e., ~stloc ← ~stloc||st.
Send (continue, sid) to FStX . Broadcast current state using FStX.

and

Sub-Protocol FetchInformation

Send (fetch-new, sid) to FStX.
Denote the response from FStX by (fetch-new, sid, (~st1, . . . , ~stk)).
Set both ~stloc, ~stexp to the longest state in ~stloc, ~stexp, ~st1, . . . , ~stk (to resolve ties the ordering decides).
Send (fetch, sid) to F tx

N-MC; denote the response from F tx
N-MC by (fetch, sid, b).

Extract received transactions (tx1, . . . , txk) from b.
Set buffer← buffer||(tx1, . . . , txk).
If a new-party message was received, set welcome← 1. Otherwise, set welcome← 0.
Remove all transactions from buffer which are invalid with respect to ~stdTloc

73

C.2 On the Soundness of the Modular Decomposition

We perform a “game-hopping” argument to show that Ledger-Protocol UC emulates the protocol
Modular-Ledger-Protocol when in the latter protocol, the invocations to FStX are replace by calls
to sub-process StateExchange-Protocol. We start with the original Ledger-Protocol and consider
the protocol part below where will alter the protocol step by step.

Fragments of Original Protocol Part

Initialization:
The protocol stores a local (working) chain Cloc which initially contains the genesis block, i.e., Cloc ← (G). [...]

ExtendState(st):
Cnew ← extendchainD(Cloc, st, q)
if Cnew 6= Cloc then

Update the local chain, i.e., Cloc ← Cnew.
Send (multicast, sid, Cloc) to Fbc

N-MC . Multicast current chain

FetchInformation:
. Update the local state

Send (fetch, sid) to Fbc
N-MC; denote the response from Fbc

N-MC by (fetch, sid, b).
Extract valid chains C1, . . . , Ck from b.
Set both Cloc, Cexp to the longest valid chain in Cloc, Cexp, C1, . . . , Ck (to resolve ties the ordering decides).
[. . .]

Modification 1. The first modification of the protocol (see below) proceeds as Ledger-Protocol
except (a) it stores a history of all valid chains in a tree T and (b) in the ExtendState(st)
procedure it checks that ~st||st is a valid state and that there exists a chain in T which encodes
the state ~st. We observe that the protocol calls ExtendState(st) only with st where ~st||st is
a valid state. This implies that the first check is always satisfied. Moreover, note that the current
local chain Cloc which encodes state ~st is at any time stored in the tree T . We therefore call
the state encoded in Cloc by ~stloc and see that the second check is therefore also always satisfied.
Hence, the modified protocol has the same input/output behavior as Ledger-Protocol.

Fragments, Modification 1

Initialization:
The protocol stores a local (working) chain Cloc which initially contains the genesis block, i.e., Cloc ← (G). [...]
The protocol additionally maintains a tree T of valid chains which initially contains the (genesis) chain (G).

ExtendState(st):
if isvalidstateB(~stloc||st) = 1 then

if there exists C ∈ T which encodes ~stloc then
Cnew ← extendchainD(Cloc, st, q)
if Cnew 6= Cloc then

Update the local chain, i.e., Cloc ← Cnew.
Add Cloc to T

Send (multicast, sid, Cloc) to Fbc
N-MC . Multicast current chain

FetchInformation:
Send (fetch, sid) to Fbc

N-MC; denote the response from Fbc
N-MC by (fetch, sid, b).

Extract all valid chains C1, . . . , Ck from b and add them to T .
Set both Cloc, Cexp to the longest valid chain in Cloc, Cexp, C1, . . . , Ck (to resolve ties the ordering decides).
[. . .]

74

Modification 2. In Modification 2 (see below) the local state ~stloc is stored directly instead
of being encoded in chain Cloc. The procedures ExtendState(st) and FetchInformation are
modified to accommodate this change. Note that the Cloc is stored in T as we have seen in the
first modification. This implies that the behavior of ExtendState(st) remains the same as in
the first modification.

Fragments, Modification 2

Initialization:
The protocol manages [...] a local (working) state ~stloc (initially also the genesis state).[...]
The protocol additionally maintains a tree T of valid chains which initially contains the genesis chain (G).

ExtendState(st):
if isvalidstateB(~stloc||st) = 1 then

if there exists C ∈ T which encodes ~stloc then
Cnew ← extendchainD(C, st, q)
if Cnew 6= C then

Add C to T
Update the local state, i.e., ~stloc ← ~stloc||st.

Send (multicast, sid, Cloc) to Fbc
N-MC . Multicast current chain

FetchInformation:
Send (fetch, sid) to Fbc

N-MC; denote the response from Fbc
N-MC by (fetch, sid, b).

Extract all valid chains C1, . . . , Ck from b and add them to T .
Extract all state ~st1, . . . , ~stk from chains C1, . . . , Ck.
Set both ~stloc, ~stexp to the longest state in ~stloc, ~stexp, ~st1, . . . , ~stk (to resolve ties the ordering decides).
[. . .]

Modification 3. In Modification 3 (see below) parts of the procedures ExtendState(st) and
FetchInformation are split off into separate sub-procedures. Otherwise the protocol remains
the same. As there are no changes to the program logic the protocol still has the same behavior
as the original protocol.

Fragments, Modification 3

Initialization:
The protocol manages [...] a local (working) state ~stloc (initially also the genesis state).[...]
The protocol additionally maintains a tree T of valid chains which initially contains the (genesis) chain (G).

ExtendState(st):
B ← submit-new(~stloc, st)
if B = 1 then

Update the local state, i.e., ~stloc ← ~stloc||st.
Execute continue. . Broadcast current chain

Procedure submit-new(~st, st):
if isvalidstateB(~st||st) = 1 then

if there exists C′ ∈ T which encodes ~st then
Set C ← C′. . C is assumed to be a global variable
Cnew ← extendchainD(C, st, q)
if Cnew 6= C then

Add C to T
return 1

return 0

Procedure continue:
Send (multicast, sid, C) to Fbc

N-MC

75

FetchInformation:
(~st1, . . . , ~stk)← fetch-new
Set both ~stloc, ~stexp to the longest state in ~stloc, ~stexp, ~st1, . . . , ~stk (to resolve ties the ordering decides).
[. . .]

Procedure fetch-new:
Send (fetch, sid) to Fbc

N-MC; denote the response from Fbc
N-MC by (fetch, sid, b).

Extract all valid chains C1, . . . , Ck from b and add them to T .
Extract states ~st1, . . . , ~sts from C1, . . . , Ck and output them.

Final Considerations. Finally consider the part of Modular-Ledger-Protocol below which is
the same as Modification 3 except that the chain storage T and the calls to sub-procedures
submit-new, continue, and fetch-new are replaced by the calls to FStX. Now, if these
calls are answered by the protocol StateExchange-Protocol, we get the exact same behavior as
implemented by the third modification above. To see this, we recap quickly the relevant fragment:

Fragments, Modular-Ledger-Protocol

Initialization:
The protocol manages [...] a local (working) state ~stloc (initially also the genesis state). [...]

ExtendState(st):
Send (submit-new, sid, ~stloc, st) to FStX.
Denote the response by (success, sid, B) of FStX.
if B = 1 then

Update the local state, i.e., ~stloc ← ~stloc||st.
Send (continue, sid) to FStX . Broadcast current state using FStX.

FetchInformation:
Send (fetch-new, sid) to FStX.
Denote the response from FStX by (fetch-new, sid, (~st1, . . . , ~stk)).
Set ~stloc, ~stexp to the longest state in ~stloc, ~stexp, ~st1, . . . , ~stk (to resolve ties the ordering decides).
[. . .]

Also, when registering/de-registering from FStX, StateExchange-Protocol simply registers/de-
registers from (Fbc

N-MC,FRO), just as the original protocol. As we prove in the main body in
Lemma 7.1

.

, StateExchange-Protocol UC-realizes FStX, hence replacing calls to StateExchange-Protocol
by calls to the ideal (hybrid) functionality yields an indistinguishable protocol to Ledger-Protocol.

D The Simulator of the Main Theorem

The formal specification of the simulator appears on the following pages.

76

Simulator Sledg

Initialization:
The simulator manages internally a simulated state-exchange functionality FStX, a simulated network FN-MC.
An honest miner P registered to GBledger is assumed to be registered in all simulated functionalities. Moreover,
the simulator maintains the local state ~stP and the buffer of transactions bufferP of such a party. Upon any
activation, the simulator will query the current party set from the ledger (and simulate the corresponding message
they send out to the network in the first maintain-ledger activation after registration), query all activations from
honest parties ~ITH , and read the current clock value to learn the time. In particular, the simulator knows which
parties are honest and synchronized and which parties are de-synchronized.

General Structure:
The simulator internally runs adversary A in a black-box way and simulates the interaction between A and the
(emulated) real-world hybrid functionalities. The inputs from A to the clock are simply relayed (and the replies given
back to A). The ideal world consists of the ledger functionality and the clock.

Messages from the Clock:

• Upon receiving (clock-update, sidC , P) from Gclock, if P is an honest registered party, then remember
that this party has received such a clock update (and the environment gets an activation). Otherwise,
send (clock-update, sidC , P) to A. In addition (before releasing the activation token), the simulator checks
whether the clock advances. If so, and if this was a working mini-round (and hence all maintain commands
have already been submitted by honest and synchronized parties), then execute ExtendLedgerState before
giving the activation to A.

Messages from the Ledger:

• Upon receiving (submit, BTX) from GBledger where BTX := (tx, txid, τ, P) forward (multicast, sid, tx) to the
simulated network FN-MC in the name of P . Output the answer of FN-MC to the adversary.

• Upon receiving (maintain-ledger, sid,minerID) from GBledger, extract from ~ITH the party Pi that issued this
query. If Pi has already done its instructions for the current mini-round, then ignore the request. Otherwise,
do:

1. Execute SimulateMining(PminerID, τ) and if this was the last maintain command in a working mini-
round and the round will advance, then execute ExtendLedgerState before giving the activation to
A.

2. In addition, remember that party Pi is done with mining in the current mini-round.

• Upon any further activation of the simulator, the simulator inspects the entire sequence of inputs by honest
parties to the ledger ~ITH and does the following:

1. For any input, I = (read, sid) of party P , if the current round is an update mini-round, then execute
Step 4 of the mining procedure as below in SimulateMining

2. Remember that the update for party P is done for this round.

Simulation of the State Exchange Functionality:

• Upon receiving (submit-new, sid, ~st, st) from A on behalf of a corrupted P ∈ Pstx, then relay it to the
simulated FStX and do the following:

1. If FStX returns (success, B) give this reply to A
2. If A replies with (continue, sid), input (continue, sid) to the simulated FStX

3. If the current mini-round is an update mini-round, then execute ExtendLedgerState

• Upon receiving (fetch-new, sid) from A (on behalf of a corrupted P) forward the request to the simulated
FStX and return whatever is returned to A.

• Upon receiving (send, sid, s, P ′) from A on behalf some corrupted party P , do the following:

1. Forward the request to the simulated FStX.

2. If the current mini-round is an update mini-round, then execute ExtendLedgerState

3. Return to A the return value from FStX.

77

• Upon receiving (swap, sid,mid,mid′) from A, forward the request to the simulated FStX and return whatever
is returned to A.

• Upon receiving (delay, sid, T,mid) from A forward the request to the simulated FStX and do the following:

1. Query the ledger state state

2. Execute AdjustView(state)

3. Return to A the output of FStX

Simulation of the Network (over which transactionss are sent) :

• Upon receiving (multicast, sid, (mi1 , Pi1), . . . , (mi` , Pi`) with list of transactions from A on behalf some
corrupted P ∈ Pnet, then do the following:

1. Submit the transactions to the ledger on behalf of this corrupted party, and receive for each transaction
the transaction id txid

2. Forward the request to the internally simulated FN-MC, which replies for each message with a message-
ID mid

3. Remember the association between each mid and the corresponding txid

4. Provide A with whatever the network outputs.

• Upon receiving (an ordinary input) (multicast, sid,m) from A on behalf of some corrupted P ∈ Pnet, then
execute the corresponding steps 1. to 4. as above.

• Upon receiving (fetch, sid) from A on behalf some corrupted P ∈ Pnet forward the request to the simulated
FN-MC and return whatever is returned to A.

• Upon receiving (delays, sid, (Tmidi1
,midi1), . . . , (Tmidi`

,midi`)) from A forward the request to the simulated
FN-MC and return whatever is returned to A.

• Upon receiving (swap, sid,mid,mid′) from A forward the request to the simulated FN-MC and return whatever
is returned to A.

procedure SimulateMining(P, τ)
Simulate the mining procedure of P of the protocol:
if time-tick τ corresponds to a working sub-round then

Execute Step 2 of the mining protocol. This includes:
-Define the next state block st using the transaction set TxsP
-Send (submit-new, sid, ~stP , st) to simulated functionality FStX.
-If successful, store ~stP ||st as the new ~stP
-If successful, distribute the new state via FStX.

else if time-tick τ corresponds to an update sub-round then
Execute Step 4 of the mining protocol. This means that if the new
information has not been fetched in this round already, then the
following is executed:

-Fetch transactions (tx1, . . . , txu) (on behalf of P) from
simulated FN-MC and add them to TxsP .

-Fetch states ~st1, . . . , ~sts (on behalf of P) from the simulated
FStX and update ~stP to the largest state among ~stP and ~sti.

procedure ExtendLedgerState
Consider all honest and synchronized players P :

- Let ~st be the longest state among all states ~stP or states contained
in a receiver buffer ~MP with delay 1 (and hence is a potential
output in the next round)

Compare ~stdT with the current state state of the ledger
if |state| > | ~stdT | then

Execute AdjustViiew(state)
if state is not a prefix of ~stdT then

Abort the simulation (due to inconsistency)

78

Define the difference diff to be the block sequence s.t. state||diff = ~stdT .
Let n← |diff|
for each block diffj , j = 1 to n do

Map each transaction tx in this block to its unique transaction ID txid
If a transaction does not yet have an txid, then submit it to the ledger

and receive the corresponding txid from GBledger
Let listj = (txidj,1, . . . , txidj,`j) be the corresponding list for this block.
if coinbase txidj,1 specifies a party that was honest at block creation time then

hFlagj ← 1
else

hFlagj ← 0

Output (next-block,hFlagj , listj) to GBledger (receiving (next-block, ok) as an immediate answer)
Execute AdjustView(state||diff)

procedure AdjustView(state)
pointers← ε
for each honest and synchronized party Pi do

Using the simulated functionality FStX do the following:
- Let ~st be the longest state among ~stPi and those contained in the
receiver buffer ~MPi with delay 1

Determine the pointer pti s.t. ~st
dT

= state|pti
if such a pointer value does not exist then

Abort simulation (due to inconsistency)
if Party Pi has not executed step 4 of the mining protocol in this
current mini-round then

pointers← pointers||(Pi, pti)
. As otherwise, the new state is only fetched in the next round

Output (set-slack, pointers) to GBledger
pointers← ε
desyncStates← ε
for each honest but de-synchronized party Pi do

Using the simulated functionality FStX do the following:
- Let ~st be the longest state among ~stPi and those contained in the
receiver buffer ~MPi with delay 1

if Party Pi has not executed step 4 of the mining protocol in this
current mini-round then

Set the pointer pti to be | ~stdT |
pointers← pointers||(Pi, pti)
desyncStates← desyncState||(Pi, ~st

dT
)

. As otherwise, the new state is only fetched in the next round
Output (set-slack, pointers) to GBledger
Output (desync-state, desyncStates) to GBledger

79

	Introduction
	Bitcoin as a Service for Cryptographic Protocols
	Our Contributions
	Overview of Bitcoin and Related Work

	Preliminaries
	Overview of the UC Framework
	Large Deviation Bounds

	Principles of a Composable Model for Blockchain Protocols in the Permissionless Setting
	Functionalities with Dynamic Party Sets
	Modeling Network Assumptions
	Modeling Time and Clock-dependent Protocol Execution
	Modeling Hash Queries
	Assumptions as UC-Functionality Wrappers

	The Basic Transaction-Ledger Functionality
	Introduction and Overview
	Specific Defining Features

	Bitcoin as a UC Protocol
	Basics of Bitcoin
	Overview and Modeling Decisions
	The Formal Protocol Description

	The Bitcoin Ledger
	Security Analysis
	Overview
	First Proof Step
	Second Proof Step
	Improving the Chain-Quality Parameter

	Special Cases of our Model and Functionality Wrappers
	Special Cases and Existing Works
	Restrictions and Composition

	Modular Constructions based on the Ledger
	A Stronger Ledger with Account Management

	Further Details on the Model
	Unicast Channels
	On implementing a multicast network

	Further Details on the Bitcoin Ledger
	Further Details on Modularization of the Ledger Protocol
	The Modular Ledger Protocol
	On the Soundness of the Modular Decomposition

	The Simulator of the Main Theorem

