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Abstract. We study anonymity of probabilistic encryption (pE) and
probabilistic authenticated encryption (pAE). We start by providing con-
cise game-based security definitions capturing anonymity for both pE and
pAE, and then show that the commonly used notion of indistinguisha-
bility from random ciphertexts (IND$) indeed implies the anonymity
notions for both pE and pAE. This is in contrast to a recent work of
Chan and Rogaway (Asiacrypt 2019), where it is shown that IND$-secure
nonce-based authenticated encryption can only achieve anonymity if a
sophisticated transformation is applied. Moreover, we also show that the
Encrypt-then-MAC paradigm is anonymity-preserving, in the sense that
if both the underlying probabilistic MAC (pMAC) and pE schemes are
anonymous, then also the resulting pAE scheme is. Finally, we provide a
composable treatment of anonymity using the constructive cryptography
framework of Maurer and Renner (ICS 2011). We introduce adequate ab-
stractions modeling various kinds of anonymous communication channels
for many senders and one receiver in the presence of an active man-in-
the-middle adversary. Then we show that the game-based notions indeed
are anonymity-preserving, in the sense that they imply constructions
between such anonymous channels, thus generating authenticity and/or
confidentiality as expected, but crucially retaining anonymity if present.
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1 Introduction

When transmitting messages in the symmetric-key setting, where communicating
parties share secret keys a priori, traditionally confidentiality and authenticity
are the security properties that are mostly considered. Confidentiality guarantees
exclusivity of the receiving party (no one but the receiver should be able to
gain any partial information about the transmitted message, possibly other than
its length), while authenticity guarantees exclusivity of the sending party (no
one except the sender should be able to convince the receiver that it indeed
originated the message). But in a scenario where there are more than just two
communicating parties using the same protocol, e.g., many senders and one
receiver (as considered in this work), another important security property must
be taken into account, namely anonymity.

For the mentioned setting, we are more specifically interested in external
sender anonymity, that is, the property that guarantees that no one but the
receiver can learn from which sender a message originated. The main focus of our
work is on security definitions which capture exactly this guarantee (in particular,
note that we are not addressing other common forms of anonymity usually found
in the literature, arising for instance from traffic-flow analysis).

1.1 Background

Anonymity, as opposed to confidentiality and authenticity, in most settings (as
is the case for the one considered here) cannot be “created out of the blue”;
rather, an intrinsic property of anonymity is that it can be preserved. In the
game-based spirit of security definitions, this is reflected by the fact that conven-
tional anonymity notions are captured by the concept of key-indistinguishability
of a scheme originally intended to provide other forms of security, as confidential-
ity or authenticity. More specifically, in the symmetric-key setting this means
that anonymity is a property that needs to be provided in conjunction with
confidentiality for encryption schemes and with authenticity for MAC schemes.

But when considered from a composable standpoint, the fact that anonymity
can merely be preserved becomes even more evident: consider for example a
protocol employing a MAC scheme and shared secret keys between the senders
and the receiver, which is executed on top of an insecure channel to obtain an
authenticated channel; if one wishes for the constructed channel to additionally
be also anonymous, it must be the case that the insecure channel is anonymous
as well, and this construction is still possible precisely if the employed MAC
scheme not only is unforgeable, but is also key-indistinguishable.

The latter considerations were made explicit by Alwen, Hirt, Maurer, Patra,
and Raykov in [AHM+15], and our work can be seen as a continuation and refine-
ment of this line of research: Here we consider the construction of an anonymous
secure (confidential and authenticated) channel from an anonymous authenti-
cated one, and show that this is possible precisely if the employed encryption
scheme not only has indistinguishable ciphertexts, but also indistinguishable keys.
Moreover, we show that only if a secure authenticated encryption scheme which
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is key-indistinguishable is employed, one can construct the anonymous secure
channel directly from the anonymous insecure one.

1.2 Contributions

We consider the following setting: n parties, the senders, wish to securely and
anonymously transmit messages to the same party, the receiver, and we assume
that the receiver a priori shares a (different) secret key with each of the n senders.
Since all of our treatment is in the symmetric-key setting, and the considered
protocols employ probabilistic (as opposed to nonce-based) schemes, we often
tacitly assume these two facts throughout the paper. Moreover, since the meaning
of security usually depends on the context, we adopt the convention that for
a cryptographic scheme by anonymous security we mean anonymity (in form
of key-indistinguishability) in conjunction with its conventionally associated
security notion, that is, confidentiality for encryption, authenticity for MAC, and
confidentiality plus authenticity (usually simply referred to as just security) for
authenticated encryption.

Game-Based Security Definitions. We start by providing game-based security
definitions capturing anonymity for both probabilistic encryption (pE) and proba-
bilistic authenticated encryption (pAE). For the former, we revisit the notion of
key-indistinguishability, originally put forth by Fischlin [Fis99], and subsequently
treated in [Des00] by Desai and in [AR00] by Abadi and Rogaway. In all three
works this notion has been expressed for n = 2 senders; here we generalize it to
an arbitrary number of senders. For nonce-based authenticated encryption (nAE),
the analogous notion of key-indistinguishability has been recently put forth by
Chan and Rogaway [CR19]. Here we propose a concise definition for the case of
pAE instead.

For both pE and pAE we show the relevant implications among the introduced
security definitions, exposing the concrete security losses surfacing from the
reductions. Furthermore, we formally show that indeed the strong security notion
of indistinguishability from random ciphertexts (dubbed IND$, and valid for both
schemes) implies key-indistinguishability. Finally, we prove that the Encrypt-then-
MAC (EtM) paradigm, applied on secure and anonymous pE and probabilistic
MAC (pMAC), yields pAE which is not only secure, but crucially also anonymous,
thus confirming that EtM is anonymity-preserving.

Composable Security Definitions. We next move to the focal point of our work,
the composable treatment of anonymity. Here we introduce alternative security
definitions within the constructive cryptography (CC) framework of Maurer and
Renner [MR11,Mau12], which enjoy composability and allow to make explicit
security goals from an application point of view.

First we phrase the desired security properties of (symmetric-key) protocols as
specific constructions of cryptographic communication channels. More concretely,
we start by defining the following resources which expose n interfaces to send
messages and one to receive them: the insecure anonymous channel (A-INS), the
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authenticated anonymous channel (A-AUT), and the secure anonymous chan-
nel (A-SEC). Then we state that a protocol (executed by the senders and the
receiver, which share secret keys a priori) provides authenticity in conjunction
with anonymity if it constructs A-AUT from A-INS, provides confidentiality in
conjunction with anonymity if it constructs A-SEC from A-AUT, and provides
security (i.e., confidentiality and authenticity) in conjunction with anonymity if
it constructs A-SEC directly from A-INS.

Secondly, we establish relations between the previously introduced game-
based security definitions and their composable counterparts, that is, we show
sufficiency conditions in terms of game-based definitions for the above mentioned
constructions. As already mentioned earlier, in [AHM+15] it was shown that
key-indistinguishable pMAC schemes enable the construction of A-AUT from
A-INS. Here we show that anonymous secure pE enables the next logical step,
namely the construction of A-SEC from A-AUT. In terms of time-complexity,
this significantly improves upon the MAC-based solution proposed in [AHM+15]
for the same construction. Furthermore, we show that these two steps can be
performed in one shot using authenticated encryption instead, that is, we show
that anonymous secure pAE constructs a A-SEC directly from A-INS. Again, this
significantly improves upon the MAC-based solution proposed in [AHM+15] for
the same construction. Moreover, this provides further evidence of the anonymity
preservation of EtM.

Preferring Probabilistic Schemes for Anonymity. We observe that our construc-
tive treatment strengthens the role of probabilistic authenticated encryption in
contrast to its nonce-based counterpart when it comes to anonymity. According
to Rogaway [Rog04], a main advantage provided by nonces is that

“encryption schemes constructed to be secure under nonce-based security
notions may be less prone to misuse”.

Nevertheless, this raises concerns about attacks in the multi-user (mu) setting,
where crucially anonymity lives. For this reason in TLS 1.3 a randomized nonces
mechanism has been proposed for the employed nAE scheme, AES with GCM
(Galois/Counter Mode). This recently spawned work by Bellare and Tackmann
[BT16] and Hoang, Tessaro, and Thiruvengadam [HTT18], which initiated and
refined the study of mu security of nAE in order to rigorously formalize security
under such randomized nonces mechanism (but they did not address anonymity,
in the form of key-indistinguishability).

But quoting again Rogaway [Rog11, I.8 (page 22)],

“ [if] an IV-based encryption scheme [...] is good in the nonce-based
framework [...] then it is also good in the probabilistic setting”,

which implies that an IND$-secure nAE scheme is an IND$-secure pAE scheme,
when the nonce is randomized (if one ignores the concept of associated data).
Therefore, in view of our previously mentioned result attesting that IND$-secure
pAE implies anonymity, our work can be considered as a confirmation that the
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random nonce mechanism, if used with an IND$-secure nAE scheme and under
the assumption that the nonces are indeed truly uniformly random, also provides
anonymity. Note that our consideration here is rather informal, and a more
thorough study should be carried out to also incorporate the issue of nonce
repetition and related birthday paradox security bounds (in our discussion, we
are assuming a setting where not too many messages are exchanged).

This is to be compared to a recent work by Chan and Rogaway [CR19], which
studies the anonymity of nAE: the authors observe that because of the session-
related nature of the nonces, nAE actually fails to generally provide anonymity. For
this reason, they introduce a transformation (dubbed NonceWrap) which converts
an nAE scheme into a (syntactically different) new scheme, anonymous nAE
(anAE), which they show does achieve anonymity (i.e., key-indistinguishability).

A Framework for Security Definitions and Proofs. We formulate all of the above
mentioned security definitions in a systematic and concise language. We see
the framework we put forth as an independent contribution, since it allows
for compact formulations of security definitions, and enables easy and short
(reduction-based) proofs of security, which in principle could be formally verified
in a rather direct way (we leave this task open). Our proposed framework is
based on the earlier work on cryptographic systems of Maurer, Pietrzak, and
Renner [Mau02,MPR07], can be seen as a specialization of the recent work of
Brzuska, Delignat-Lavaud, Fournet, Kohbrok, and Kohlweiss [BDLF+18], and is
inspired by the approach taken by Rosulek in [Ros18].

1.3 Outline

We begin by providing the necessary background in Section 2, where we introduce
our notation and the framework we use to state and prove security notions. As
motivating examples, we revisit the classical security definitions for pE and pAE
by capturing them within our framework. We proceed in Section 3 by providing
game-based security definitions of anonymity, in terms of key-indistinguishability,
for both pE and pAE. We introduce different notions, some capturing single
security goals while others capturing more together, and then we show the
relevant relations among them. Moreover, we show that for both pE and pAE,
their respective stronger IND$ security notions imply anonymity. As a last result
within the realm of game-based security notions, we show that the Encrypt-then-
MAC paradigm, used to build secure pAE from secure pE and secure pMAC (whose
syntax and security notions we introduce in Appendix C), not only preserves
security, but anonymity as well. Finally, in Section 4 we provide composable
security definitions capturing anonymity for both pE and pAE, and show that
these notions are implied by the previously introduced game-based definitions.
This is our main contribution, and it should be seen as shedding light into what
anonymity (in the sense of key-indistinguishability) of symmetric cryptographic
primitives really achieves from an application point of view. Our analysis makes
it explicit that in this setting, key-indistinguishability must be understood as a
tool that preserves anonymity, rather than creating it.
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2 Preliminaries

We start by introducing some basic notation, and subsequently defining the
building blocks of our framework for security proofs. We then provide syntax
of pE and pAE, and conclude the section by restating their (de facto standard)
respective security definitions withing our framework.

2.1 Notation

We write x, . . . ← y to assign the value y to variables x, . . ., and w, . . .
iid← D

to assign independently and identically distributed values to variables w, . . .
according to distribution D. ∅ denotes the empty set, N .

= {0, 1, 2, . . .} denotes
the set of natural numbers, and for n ∈ N, we use the convention [n]

.
= {1, . . . , n}.

For n ∈ N, {0, 1}n denotes the set of bitstrings of length n, {0, 1}∗ .=
⋃
i≥0{0, 1}i

denotes the set of all finite length bitstrings, for s ∈ {0, 1}∗, |s| denotes the length
of s (in bits), and $n represent a uniformly sampled random bitstring of length n.
Finally, for a random variable X over a set X , suppX

.
= {x ∈ X |Pr[X = x] > 0}.

2.2 Cryptographic Systems

We model cryptographic objects as discrete reactive systems with interfaces, that
is, systems that can be queried with labeled inputs in a sequential fashion, where
each distinct label corresponds to a distinct interface, and for each such input
generate (possibly probabilistically) an equally labeled output depending on the
input and the current state (formally defined by the sequence of all previous
inputs and the associated outputs). Such systems can be formally described
by conditional distributions of output values given input values, that is, by
their input-output behavior (often described with pseudocode), as they formally
correspond to random systems originally introduced in [Mau02], and later refined
in [MPR07]. For two such systems S and T having the same input-output behavior
(but possibly different implementation), we write S ≡ T.

In cryptography we are also interested in other objects (which can be formally
modeled as special kinds of random systems). The first type we consider are
distinguishers, which are just like the systems mentioned above, but enhanced
with a special initial output which does not require an input, and a special final
binary output. Formally, we usually consider a random experiment involving
a distinguisher D and a system S which interact as follows: first D starts
by (possibly probabilistically) generating the first output X1 with some label
(corresponding to a specific interface of S), which will be used as the first input
for S at that interface, which in turn will generate its first output Y1 at the
same interface, to be used as first input for D. From Y1 and the current state
(X1), D will then generate its second output X2, with some (possibly different)
label, and S will respond with Y2 (depending on X1, Y1, and X2), and so on,
until D stops and outputs a bit Z. We call the operation of connecting D and
S in the described way sequential composition and we syntactically represent
it by the expression DS, which is only valid if the number and types of labels
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(interfaces) match.1 We use the expression DS to also denote the random variable
Z representing D’s final binary output.

The second type of special objects are converters, which are similar to systems
but defining two disjoint sets of labels, and which can be used to extend either
distinguishers (with labels matching the one in the first set) or systems (with
labels matching the ones in the second set). We refrain from defining this concept
on a formal level, and limit ourselves to give an intuitive description: a converter
C is an object such that DC (the sequential composition restricted to the first
set of labels of distinguisher D with C) is again a distinguisher, and CS (the
sequential composition restricted to the second set of labels of C with system S)
is again a system.2

As for example also done in [BDLF+18] and [Ros18], it is then possible to
formalize an (associative) algebra of systems. Let D be a distinguisher, C a
converter, and S a (regular) system. Then the experiment where DC interacts
with S is the same experiment where D interacts with CS, and we just denote
this by DCS (again with the understanding that this expression also represents
the final binary output of D). Syntactically, this could be expressed as:3

(DC)S = D(CS) = DCS. (1)

We next define another way to compose systems, parallel composition: given
two (or more) systems S and T, a new system V is the (independent) parallel
composition of S and T, denoted V = [S,T], if a system D interacting with V
can (independently) access system S and system T. We remark that V is merely
a “wrapper” for two independent instances of systems S and T. On the other
hand, it is often also the case that two systems composed in parallel need some
correlation, that is, need to lose their independence (usually trough a shared
random variable or, more in general, some shared state); two such systems S
and T might be used to create what is called a correlated parallel composition,
which we formalize as a new system V such that V = C[S,T], for some system
C accessing the independent systems S and T, and emulating two (correlated)
systems towards a system D interacting with V. We introduce the notation
V = 〈S,T〉, which makes the correlating system C implicit in the following sense:
a system D interacting with V can access the system S and system T, but only

1 More formally, one could express D as Di, where i ∈ N is the number of different
labels (interfaces) that D associates its output to, and analogously jS for S, where
j ∈ N; then a necessary condition for the sequential composition of Di and jS to be
valid is that i = j, and in this case one would then write DiS instead of DS.

2 Again, one could express D as Di, for i ∈ N, C as jCk, for j, k ∈ N (where j is the
number of labels from the first set and k from the second), and S as `S, for ` ∈ N;
then a necessary condition for the sequential composition of Di and jCk to be valid
is that i = j, resulting in distinguisher DiCk, and a necessary condition for the
sequential composition of jCk and `S to be valid is that k = `, resulting in system
jCkS.

3 Using the more explicit notation, this would be: (DiCj)jS = Di(iCjS) = DiCjS.
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S

T

[S,T]

S

T
C

〈S,T〉 = C[S,T]

Fig. 1: Representation of the difference between (independent) par-
allel composition [S,T] and correlated parallel composition 〈S,T〉.

through C, and S and T become “labels”4 for the correlated systems emulated
by C. Figure 1 illustrates the two different concepts. Note that we can naturally
extend both definitions to the case of n systems.

Definition 1 (Systems Parallel Composition). Given the sequence of sys-
tems S1, . . . ,Sn, for n ∈ N, define:

– Their (independent) parallel composition, denoted [S1, . . . ,Sn], as the system
that exports n interfaces labeled S1, . . . ,Sn, where label Si is directly connected
to system Si, for i ∈ [n].

– Their correlated parallel composition, denoted 〈S1, . . . ,Sn〉, as the system
C[S1, . . . ,Sn], where C is some (implicit) system which exports n interfaces
labeled S1, . . . ,Sn.5

2.3 Indistinguishability of Cryptographic Systems

In cryptography, we are usually interested in how similarly two systems S and T
(with matching interfaces) behave. Intuitively, the more indistinguishable their
behavior is, the closer S and T are. We can measure such closeness by means
of the indistinguishability between systems S and T from the perspective of a
distinguisher D which interacts with either of them, and outputs the bit denoted
by DV, for V ∈ {S,T}, indicating its guess as to which system it is interacting
with, where the understanding is that 0 indicates S and 1 indicates T.

Definition 2. For distinguisher D and systems S and T, D’s advantage in
distinguishing between S and T is

∆D(S,T)
.
= Pr[DS = 0]− Pr[DT = 0].

4 We sometimes abuse notation, and make C in some sense more explicit; for instance,
given a system Ek which performs encryption under a fixed key k (which we assume
must be provided as first input to the system), if we consider a random variable K
over the key-space, then we denote by 〈EK ,EK〉 the correlated parallel composition
corresponding to the system K[Ek,Ek], where K merely samples a key k from K, and
feeds it to both systems (thus correlating them), and then emulates two encryption
oracles which use the same (random) key K.

5 Note that correlated parallel composition is merely syntactic construct, and we only
use this notation throughout our paper for easier (and nicer) statements.
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Moreover, in cryptography security statements are often conditional, as is
the case for the present work. This means that, given two systems S and T, we
do not give a concrete value for the distinguishing advantage depending on a
distinguisher D, but rather relate this quantity to the distinguishing advantage
of another distinguisher D′ for two different systems S′ and T′. Such a relation
should entail that if S′ and T′ are close (which usually can be either in turn
related to the distinction between two further systems, or just crystallized as
an hardness assumption), then so are S and T. Such a relation can be carried
out by using the same distinguisher for the two different distinction problems,
but more in general usually requires a reduction system C which translates S′

and T′ into two systems CS′ and CT′ that, towards D, behave similarly to
S and T, respectively. Turned around, this also means that C translates the
distinguisher D for S and T into the (similarly good) distinguisher D′ = DC for
S′ and T′.6 Therefore, if we assume that no (efficient) distinguisher can have a
good advantage in distinguishing S′ and T′, then so does D′, and in turn also
D in distinguishing S and T. By Definition 2 and Equation 1, this in particular
implies

∆D(S,T) = ∆D(CS′,CT′) = ∆DC(S′,T′) = ∆D′(S′,T′),

which we will extensively use in our proofs.
We next list some lemmas and definitions which are useful for proving the

above mentioned relations. Given a distinguisher D, we sometimes need to
consider reduction systems which flip the bit output by D. For this, we introduce
a special converter I.

Definition 3. The inversion converter I is defined such that for any distinguisher
D and any system S, DIS = 0 ⇐⇒ DS = 1.

Then, the following trivial lemma follows easily by the above definition.

Lemma 1. For distinguisher D and systems S and T, ∆D(S,T) = ∆DI(T,S).

The following two lemmas are usually used in conjunction when doing a
so-called hybrid argument.

Lemma 2. For distinguisher D and systems S1, . . . ,Sn,

∆D(S1,Sn) =

n−1∑
i=1

∆D(Si,Si+1).

Lemma 3. For distinguishers D1, . . . ,Dn, systems S and T, and random vari-
able I uniformly distributed over [n],

n∑
i=1

∆Di(S,T) = n ·∆DI (S,T).

6 In this work, we assume that such translations (reductions) are black-box, that is, C
only has access to the outputs of D, not to its internal behavior.
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2.4 Probabilistic (Authenticated) Encryption (pE/pAE)

Syntactically, probabilistic encryption (pE) and probabilistic authenticated encryp-
tion (pAE) are the same object, which we generally call an encryption scheme.
The distinction is merely on the level of security: if an encryption scheme pro-
vides confidentiality (or is IND-CPA-secure), we consider it secure pE, whereas
if it provides both confidentiality and authenticity (or is IND-CCA3-secure), we
consider it secure pAE.

Definition 4 (Encryption Scheme). A (probabilistic) encryption scheme Π
.
=

(Gen, Enc, Dec) over key-space K, message-space M, and ciphertext-space C (with
⊥ /∈ K ∪M∪ C), is such that

– Gen is an (efficiently samplable) distribution over K;
– Enc : K ×M→ C is a (efficiently computable) probabilistic function;
– Dec : K×C →M∪{⊥} is an (efficiently computable) deterministic function.

As customary, for k ∈ K we use the short-hand notation Enck(·) for Enc(k, ·)
and Deck(·) for Dec(k, ·), and we also assume that M ⊆ {0, 1}∗ and for any
m ∈ M, {0, 1}|m| ⊆ M, whereas C = {0, 1}∗, but for any m ∈ M and k ∈ K,
|Enck(m)| = |m|+τ for some fixed expansion factor τ ∈ N. Moreover, we assume
correctness of Π, that is, for all keys k distributed according to Gen, and all
message-ciphertexts pairs (m, c) ∈M× C,

Deck(c) =

{
m if c ∈ supp (Enck(m)),

⊥ otherwise.

In order to define the security (and later also anonymity) of a fixed scheme Π,
we define the following single and double interface systems (where the dependency
on Π is implicit), parameterized by a fixed key k ∈ K:

– Ek: On input a message m ∈M, return Enck(m) ∈ C.
– E$

k: On input a message m ∈ M, return Enck(m̃) ∈ C for freshly and
uniformly sampled m̃ ∈M with |m̃| = |m|.

– 〈Ek,Dk〉:
• On input a message m ∈M, return Enck(m) ∈ C.
• On input a ciphertext c ∈ C, return Deck(c) ∈M∪ {⊥}.

– 〈Ek,D
⊥〉: Initially set Q ⊆M× C to ∅ and then:

• On input a message m ∈ M, return c
.
= Enck(m) ∈ C and set Q to

Q∪ {(m, c)}.
• On input a ciphertext c ∈ C, if there is an m ∈M such that (m, c) ∈ Q,

then return m, otherwise return ⊥.
– 〈E$

k,D
⊥〉: Initially set Q ⊆M× C to ∅ and then:

• On input a message m ∈ M, return c
.
= Enck(m̃) ∈ C for freshly and

uniformly sampled m̃ ∈M with |m̃| = |m|, and set Q to Q∪ {(m, c)}.
• On input a ciphertext c ∈ C, if there is an m ∈M such that (m, c) ∈ Q,

then return m, otherwise return ⊥.

11



In our definitions, the key k will always be replaced by a random variable (usually
denoted K or Ki, for some i ∈ N) distributed according to Π’s Gen.

We remark that in our security definitions below we will slightly abuse notation
and informally refer to efficient distinguishers and negligible advantages; both
concepts should be properly defined asymptotically, which we do not explicitly do,
since we do not define any security parameter. Nevertheless, correct asymptotic
security statements may be easily recovered by considering sequences of our
security statements, and taking the limit. Still, when relating such definitions, we
will not (need to) use such asymptotic concepts, since we will employ a concrete
approach, as done for example by Bellare, Desai, Jokipii, and Rogaway [BDJR97].

2.5 Game-Based Security of pE/pAE

Following [BDJR97], we first define the game-based security of pE in the real-or-
random fashion, where the adversary must distinguish between a true encryption
oracle and one which ignores inputs and encrypts random messages of the same
length instead. For this reason we interchangeably talk about adversary and
distinguisher. The following definition captures7 well-known IND-CPA security
notions commonly found in the literature.

Definition 5 (Game-Based Security of pE). An encryption scheme Π is
secure pE (or IND-CPA-secure) if

∆D(EK ,E
$
K)

is negligible for any efficient distinguisher D.

For pAE we closely follow the all-in-one security definition style originally
introduced by Shrimpton in [Shr04] and dubbed IND-CCA3, where an adver-
sary must distinguish between two sets of oracles: the first set consists of true
encryption and decryption oracles, whereas the second set consists of a fake
encryption oracle which ignores inputs and encrypts random messages of the
same length instead, and a fake decryption oracle which always return ⊥, except
if the provided ciphertext was previously output upon (fake) encryption, in which
case the original message is returned. Note that this is actually a slightly different
version than Shrimpton’s original definition, and was put forth in [AGM18] by
Alagic, Gagliardoni, and Majenz, where the equivalence with the former is shown.

Definition 6 (Game-Based Security of pAE). An encryption scheme Π is
secure pAE (or IND-CCA3-secure) if

∆D(〈EK ,DK〉, 〈E$
K ,D

⊥〉)

is negligible for any efficient distinguisher D.

7 It is actually equivalent to the one named ROR-CPA in [BDJR97], which is linearly
equivalent (in the number of queries) to the one dubbed FTG-CPA (for “find-then-
guess”) therein, commonly referred to as IND-CPA in the literature.
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3 Game-Based Anonymous Security of pE/pAE

We define game-based anonymity of pE and pAE in terms of what in the literature
is usually termed key-indistinguishability. For this, recall from our discussion
above (see Figure 1) that the system [SK1

, . . . ,SKn
] provides the distinguisher

with n interfaces to n distinct and independent copies of system Sk, each of which
is parameterized by a different, freshly and independently sampled key Ki. On the
other hand, the system 〈SK , . . . ,SK〉 provides the distinguisher with n interfaces
to essentially the same copy of system Sk, each of which is parameterized by the
same key K (previously freshly sampled).

We begin by providing a game-based security definition capturing exclusively
the notion of anonymity (in terms of key-indistinguishability) of pE and pAE. In
the following, when dropping the term [n-] we mean “for any integer n ≥ 2”.

Definition 7 (Game-Based Anonymity of pE). An encryption scheme Π is
[n-]anonymous pE (or [n-]IK-CPA-secure) if

∆D([EK1 , . . . ,EKn ], 〈EK , . . . ,EK〉)

is negligible for any efficient distinguisher D.

Definition 8 (Game-Based Anonymity of pAE). An encryption scheme Π
is [n-]anonymous pAE (or [n-]IK-CCA3-secure) if

∆D([〈EK1 ,DK1〉, . . . , 〈EKn ,DKn〉], 〈〈EK ,D
⊥〉, . . . , 〈EK ,D

⊥〉〉)

is negligible for any efficient distinguisher D.

Next, we define the coupling of the traditional security goal of pE/pAE with
anonymity. For both notions, we use the term anonymous security ; specifically,
by anonymous and secure pE we mean key-indistinguishable and confidential
encryption, whereas by anonymous and secure pAE we mean key-indistinguishable,
confidential, and authenticated encryption.

Definition 9 (Game-Based Anonymous Security of pE). An encryption
scheme Π is [n-]anonymous secure pE (or [n-]IND-IK-CPA-secure) if

∆D([EK1
, . . . ,EKn

], 〈E$
K , . . . ,E

$
K〉)

is negligible for any efficient distinguisher D.

Definition 10 (Game-Based Anonymous Security of pAE). An encryption
scheme Π is [n-]anonymous secure pAE (or [n-]IND-IK-CCA3-secure) if

∆D([〈EK1
,DK1

〉, . . . , 〈EKn
,DKn

〉], 〈〈E$
K ,D

⊥〉, . . . , 〈E$
K ,D

⊥〉〉)

is negligible for any efficient distinguisher D.

13



Remarks. The concept of key-indistinguishability has been first introduced under
the name of “key-hiding private-key encryption” by Fischlin in [Fis99] as 2-IK-
CPA according to Definition 7. Subsequently, in [Des00], Desai also studied the
problem introducing the concept of “non-separability of keys”, but specifically
for encryption schemes based on block ciphers. Later, in [AR00], Abadi and
Rogaway presented a security notion called “which-key concealing”, that is
basically identical to Fischlin’s, but they defined security as a combination of
key-indistinguishability and ciphertext-indistinguishability, that is, as 2-IND-
IK-CPA according to Definition 9. They also claimed that popular modes of
operation for symmetric encryption yield key-private encryption schemes. We
will prove this formally in Subsection 3.2. Interestingly, the concept of key-
indistinguishability was succesfully translated to the public-key setting by Bellare,
Boldyreva, Desai, and Pointcheval in [BBDP01], where the terms key-privacy
and indistinguishability of keys were originally suggested.

As previously mentioned, regarding key-indistinguishability of AE, in a very
recent work Chan and Rogaway [CR19] introduce the nonce-based counterpart
of our notion for pAE, Definition 10, which is crucially not directly applicable to
nAE, but rather to anAE, a syntactically different scheme which can be obtained
from nAE through the transformation NonceWrap that they introduce.

3.1 Relations Among Notions

In this section we show that the combination of ciphertext-indistinguishability
(IND-{CPA,CCA3}) for pE/pAE and key-indistinguishability (IK-{CPA,CCA3}) for
pE/pAE is equivalent to the respective game-based notion capturing both goals
simultaneously (IND-IK-{CPA,CCA3}), regardless of the number of users. In order
to keep the presentation simple, we drop the terms -CPA and -CCA3 from the
textual description, and only formally show the relations for the case of pE: for
any of the following results, the corresponding lifting to the case of pAE follows
trivially.8 Moreover, we defer all the proofs of this section to Appendix B.

We start by showing that key-indistinguishability is preserved up to constant
increase when the number of users is incremented.

Lemma 4. For every distinguisher D, there exists a reduction C such that

∆D([EK1
, . . . ,EKn

], 〈EK , . . . ,EK〉) = (n− 1) ·∆DC([EK1
,EK2

], 〈EK ,EK〉).

In particular, this implies that if an encryption scheme is 2-IK-CPA-secure, then
it is also n-IK-CPA-secure.

Corollary 1. If an encryption scheme is 2-IK-CCA3-secure, then it is also n-IK-
CCA3-secure.

Next, we confirm the natural intuition that ciphertext-indistinguishability
is also preserved when coupled with key-indistinguishability, that is, we show
sufficiency of IND and IK security for IND-IK security.

8 In the next sections we will however show two results that apply to both pE and pAE,
thus illustrating how generally such lifting trivially follows.
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Lemma 5. For every distinguisher D, there exist reductions C and C′ such that

∆D([EK1 , . . . ,EKn ], 〈E$
K , . . . ,E

$
K〉) = (n− 1) ·∆DC([EK1 ,EK2 ], 〈EK ,EK〉)

+ ∆DC′(EK ,E
$
K).

In particular, this implies that if an encryption scheme is 2-IK-CPA-secure and
IND-CPA-secure, then it is also n-IND-IK-CPA-secure.

Corollary 2. If an encryption scheme is 2-IK-CCA3-secure and IND-CCA3-
secure, then it is also n-IND-IK-CCA3-secure.

Note that similarly to Lemma 5, also n-IK security coupled with IND security
implies n-IND-IK security. We now turn to the necessary conditions; first we show
that indeed IND-IK security implies IND security.

Lemma 6. For every distinguisher D, there exists a reduction C such that

∆D([EK1
,EK2

], 〈EK ,EK〉) = 2 ·∆DC([EK1
, . . . ,EKn

], 〈E$
K , . . . ,E

$
K〉).

In particular, this implies that if an encryption scheme is n-IND-IK-CPA-secure,
then it is also 2-IK-CPA-secure.

Corollary 3. If an encryption scheme is n-IND-IK-CCA3-secure, then it is also
2-IK-CCA3-secure.

Note that similarly to Lemma 6, clearly n-IND-IK security also implies n-IK
security. The last necessary condition is that IND-IK security implies IND security.

Lemma 7. For every distinguisher D, there exists a reduction C such that

∆D(EK ,E
$
K) = ∆DC([EK1

, . . . ,EKn
], 〈E$

K , . . . ,E
$
K〉).

In particular, this implies that if an encryption scheme is n-IND-IK-CPA-secure,
then it is also IND-CPA-secure.

Corollary 4. If an encryption scheme is n-IND-IK-CCA3-secure, then it is also
IND-CCA3-secure.

Therefore, we showed that an encryption scheme is (n-)IND-IK secure if and
only if it is both (n-)IK and IND secure. Clearly this can be casted down to the 2
users case, in line with the security definitions of [Fis99,AR00].

Corollary 5. An encryption scheme is 2-IND-IK-CPA-secure if and only if it is
both IND-CPA-secure and 2-IK-CPA-secure.

Corollary 6. An encryption scheme is 2-IND-IK-CCA3-secure if and only if it
is both IND-CCA3-secure and 2-IK-CCA3-secure.
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3.2 Computationally Uniform Ciphertexts Imply Anonymity

In this section we revisit a stronger security notion for symmetric encryption,
which we call indistinguishability from uniform ciphertexts, strong security, or
IND$-{CPA,CCA3}-security, and show a simple folklore result that was stated
in [AR00] (of which, to the best of our knowledge, there is no formal proof yet).
This definition intuitively should capture indistinguishability of ciphertexts, but
it actually overshoots this goal, and it is stronger in the sense that it also implies
indistinguishability of keys. Recall that IND-{CPA,CCA3}-security does not imply
indistinguishability of keys, but it turns out to be easier to prove that schemes
meet the stronger notion, which is also conceptually simpler. Essentially, instead
of choosing a random message to be encrypted in the ideal world, a random
ciphertext is output (thus neglecting encryption altogether).

This stronger security notion appears to have been originally introduced by
Rogaway, Bellare, Black, and Krovetz in [RBBK01] for proving the security of the
so-called offset codebook (OCB) mode of operation for symmetric encryption.9

A number of other important results, such as the security of counter (CTR) or
cipher block chaining (CBC) modes, first carried out in [BDJR97], have been
later adapted by Rogaway [Rog04] to show that such schemes actually satisfy this
stronger definition.10 In fact, as argued in [AR00] (where this security notion—
targeted to encryption rather than authenticated encryption—is dubbed type-1
security), by the above mentioned folklore result which we prove here, such modes
indeed yield key indistinguishable schemes. We remark that subsequently, this
definition was also used in the field of provable secure steganography (for both
symmetric-key and asymmetric-key schemes) [HLvA02,vAH04,Möl04,BC05]. In
the literature, this definition is alternatively called indistinguishability from
random bits/bitstrings or simply pseudorandom ciphertexts security.

In order to formalize this notion, we need to introduce the system $ (with
implicit dependency on a fixed encryption scheme Π) which on input any message
m ∈ M simply outputs a uniformly sampled ciphertext of appropriate length,
that is, according to our Definition 4, a uniform random bitstring of length
|m|+ τ , where τ ∈ N is the expansion factor defined by Π (thus, in particular, $
does not make use of the underlying encryption function defined by Π). Then for
the case of pE we can increase the security requirement as follows.

Definition 11 (Game-Based Strong Security of pE). An encryption scheme
Π is strongly secure pE (or IND$-CPA-secure) if

∆D(EK ,$)

is negligible for any efficient distinguisher D.

9 Note that OCB actually yields more than a secure encryption scheme: in [RBBK01]
it is actually shown that OCB is confidential according to the mentioned stronger
notion, but also authentic, thus making it a secure authenticated encryption scheme.

10 All of those results are actually geared towards nonce-based symmetric encryption,
but they also apply to our setting.
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The analogous notion for pAE was introduced by Rogaway and Shrimpton in
[RS06], and is adapted within our framework as follows.

Definition 12 (Game-Based Strong Security of pAE). An encryption sch-
eme Π is strongly secure pAE (or IND$-CCA3-secure) if

∆D(〈EK ,DK〉, 〈$,D⊥〉)

is negligible for any efficient distinguisher D.

Next, starting with the case of pE, we show that the stronger notion of
IND$-CPA indeed implies IND-IK-CPA (and thus also both IK-CPA and IND-CPA),
as originally pointed out in [AR00]. This is captured formally by the following
statement, shown for 2 users for cleaner presentation, but easily generalized to n
users.

Theorem 1. For every distinguisher D, there exists a reduction C such that

∆D([EK1 ,EK2 ], 〈E$
K ,E

$
K〉) = 3 ·∆DC(EK ,$).

In particular, this implies that if an encryption scheme is IND$-CPA-secure, then
it is also IND-IK-CPA-secure.

Proof. For reduction systems C1, C2, and C3, such that, for any compatible
system S, C1S = [S,EK ], C2S = [$,S], and C3S = 〈S$,S$〉, and for any
distinguisher D, by Lemma 2, Lemma 1, and Lemma 3,

∆D([EK1
,EK2

], 〈E$
K ,E

$
K〉)

= ∆D([EK1 ,EK2 ], [$,EK ]) + ∆D([$,EK ], [$,$]) + ∆D([$,$], 〈E$
K ,E

$
K〉)

= ∆D(C1EK1 ,C1$) + ∆D(C2EK ,C2$) + ∆D(C3$,C3EK)

= ∆DC1(EK ,$) + ∆DC2(EK ,$) + ∆DIC3(EK ,$)

= 3 ·∆DC′I (EK ,$),

where C′1
.
= C1, C′2

.
= C2, C′3

.
= IC3, I is uniformly distributed over {1, 2, 3},

and we used that C3$ = 〈$,$〉 ≡ [$,$]. With C
.
= C′I , this concludes the

proof.

Finally, the analogous statement for the case of pAE just follows as a natural
lifting of Theorem 1, but since we consider this result more important than the
previous relations among notions, instead of only providing a corollary we actually
state the whole theorem with its proof, that is, we show that the stronger notion
of IND$-CCA3 indeed implies IND-IK-CCA3 (and thus also both IK-CCA3 and
IND-CCA3). We remark that this fact was informally pointed out by Rogaway
[Rog13].
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Theorem 2. For every distinguisher D, there exists a reduction C such that

∆D([〈EK1
,DK1

〉, 〈EK2
,DK2

〉], 〈〈E$
K ,D

⊥〉, 〈E$
K ,D

⊥〉〉)
= 3 ·∆DC(〈EK ,DK〉, 〈$,D⊥〉).

In particular, this implies that if an encryption scheme is IND$-CCA3-secure,
then it is also IND-IK-CCA3-secure.

Proof. For reduction systems C1, C2, and C3, such that, for any compatible
system 〈S,T〉, C1〈S,T〉 = [〈S,T〉, 〈EK ,DK〉], C2〈S,T〉 = [〈$,D⊥〉, 〈S,T〉], and
C3〈S,T〉 = 〈〈S$,T⊥〉, 〈S$,T⊥〉〉, and for any distinguisher D, by Lemma 2,
Lemma 1, and Lemma 3,

∆D([〈EK1
,DK1

〉, 〈EK2
,DK2

〉], 〈〈E$
K ,D

⊥〉, 〈E$
K ,D

⊥〉〉)
= ∆D([〈EK1

,DK1
〉, 〈EK2

,DK2
〉], [〈$,D⊥〉, 〈EK ,DK〉])

+ ∆D([〈$,D⊥〉, 〈EK ,DK〉], [〈$,D⊥〉, 〈$,D⊥〉])
+ ∆D([〈$,D⊥〉, 〈$,D⊥〉], 〈〈E$

K ,D
⊥〉, 〈E$

K ,D
⊥〉〉)

= ∆D(C1〈EK ,DK〉,C1〈$,D⊥〉) + ∆D(C2〈EK ,DK〉,C2〈$,D⊥〉)
+ ∆D(C3〈$,D⊥〉,C3〈EK ,DK〉)

= ∆DC1(〈EK ,DK〉, 〈$,D⊥〉) + ∆DC2(〈EK ,DK〉, 〈$,D⊥〉)
+ ∆DIC3(〈EK ,DK〉, 〈$,D⊥〉)

= 3 ·∆DC′I (〈EK ,DK〉, 〈$,D⊥〉),

where C′1
.
= C1, C′2

.
= C2, C′3

.
= IC3, I is uniformly distributed over {1, 2, 3},

and we used that C3〈$,D⊥〉 = 〈〈$,D⊥〉, 〈$,D⊥〉〉 ≡ [〈$,D⊥〉, 〈$,D⊥〉]. With
C

.
= C′I , this concludes the proof.

3.3 Anonymity Preservation of Encrypt-then-MAC

After having related the various game-based notions for pE and for pAE separately,
we finally show how the anonymity enhanced security definitions for pE relate with
those of pAE. For this, we need to introduce the concept of message authentication
code (MAC) and its security and anonymity notions, which we defer to Appendix C.
Recall that Bellare and Namprempre [BN00] and Krawczyk [Kra01] have shown
that the combination of an unforgeable (UF-CMA) MAC and a secure (IND-
CPA) encryption scheme, performed according to the Encrypt-then-MAC (EtM)
paradigm, yields an encryption scheme which is both secure (IND-CPA) and
unforgeable (INT-CTXT, the equivalent notion of UF-CMA for encryption). Later,
Shrimpton [Shr04] showed that a nice all-in-one security definition for secure
authenticated encryption, IND-CCA3, is equivalent to the combination IND-CPA
and INT-CTXT, thus attesting that EtM performed on a UF-CMA-secure MAC
scheme and an IND-CPA-secure encryption scheme, yields a IND-CCA3-secure
authenticated encryption scheme. Using our notation from Subsection 2.4 and
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Appendix C, the encryption scheme EtM(Π,Σ)
.
= (Ĝen, T̂ag, V̂rf), resulting from

this specific composition of an encryption scheme Π
.
= (GenΠ, Enc, Dec) (with

key-space KΠ) and a MAC scheme Σ
.
= (GenΣ, Tag, Vrf) (with key-space KΣ) is

defined as follows:11

– Ĝen is the product distribution of GenΠ and GenΣ over KΠ ×KΣ;
– Ênc(ke,ka)

.
= Tagka ◦ Encke ;

– V̂rf(ke,ka)
.
= Decke ◦ Vrfka .

Note that in order for correctness to hold, we further need to assume that ⊥ ∈M,
and that Enck(⊥) = ⊥ for any k ∈ KΠ.

If we now want to define security of the composed scheme Π̂
.
= EtM(Π,Σ), we

need to introduce a simple operator between (single-interface) systems, namely
cascading : Informally, given systems S and T, we define the new system SBT
as the system that on input x computes y

.
= S(x), and returns z

.
= T(y) (where

we are assuming matching domains). As we did for Π, we can define systems

Tk and Vk relative to Σ. Then Ênc(ke,ka) is modeled by Ê(ke,ka)
.
= EkeBTka ,

and D̂ec(ke,ka) by D̂(ke,ka)
.
= VkaBDke . Recalling the security definitions from

Subsection 2.4 and Appendix C, the statement that Π̂ is secure follows.

Theorem 3. For every distinguisher D, there exist reductions C and C′ such
that

∆D(〈ÊK , D̂K〉, 〈Ê$
K , D̂

⊥〉) = ∆DC(EK ,E
$
K) + ∆DC′(〈TK ,VK〉, 〈TK ,V

⊥〉).

In particular, this implies that if Π is IND-CPA-secure and Σ is UF-CMA-secure,
then EtM(Π,Σ) is IND-CCA3-secure.

Proof. For reduction system C such that, for any compatible system E, CE =
〈EBTK , D̂

⊥〉, and reduction system C′ such that, for any compatible system
〈T,V〉, C′〈T,V〉 = 〈EKBT,VBDK〉, and for any distinguisher D, by Lemma 2,

∆D(〈ÊK , D̂K〉, 〈Ê$
K , D̂

⊥〉) = ∆D(〈ÊK , D̂K〉, 〈ÊK , D̂
⊥〉)

+ ∆D(〈ÊK , D̂
⊥〉, 〈Ê$

K , D̂
⊥〉)

= ∆D(C′〈TK ,VK〉,C′〈TK ,V
⊥〉)

+ ∆D(CEK ,CE$
K)

= ∆DC(EK ,E
$
K) + ∆DC′(〈TK ,VK〉, 〈TK ,V

⊥〉).

This concludes the proof.

We finally show the important fact that EtM is anonymity-preserving, in
the sense that if an encryption scheme Π is both IND-CPA-secure and IK-CPA-
secure (that is, IND-IK-CPA-secure) and a MAC scheme Σ is both UF-CMA-secure
and IK-CMA-secure (that is, UF-IK-CMA-secure), then EtM(Π,Σ) not only is

11 Recall that the symbol ◦ in this context represents function composition.
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IND-CCA3-secure, but also IK-CCA3-secure (that is, IND-IK-CCA3-secure). This
is captured formally by the following statement, shown for 2 users for cleaner
presentation, but easily generalized to n users.

Theorem 4. For every distinguisher D, there exist reduction C and C′ such
that

∆D([〈ÊK1 , D̂K1〉, 〈ÊK2 , D̂K2〉], 〈〈Ê$
K , D̂

⊥〉, 〈Ê$
K , D̂

⊥〉〉)
= ∆DC([EK1

,EK2
], 〈E$

K ,E
$
K〉)

+ ∆DC′([〈TK1
,VK1

〉, 〈TK2
,VK2

〉], 〈〈TK ,V
⊥〉, 〈TK ,V

⊥〉〉).

In particular, this implies that if Π is IND-IK-CPA-secure and Σ is UF-IK-CMA-
secure, then EtM(Π,Σ) is IND-IK-CCA3-secure.

Proof. For reduction system C such that, for any compatible system 〈E1,E2〉,
C〈E1,E2〉 = 〈〈E1BTK , D̂

⊥〉, 〈E2BTK , D̂
⊥〉〉, and reduction system C′ such

that, for any compatible system 〈〈T1,V1〉, 〈T2,V2〉〉, C′〈〈T1,V1〉, 〈T2,V2〉〉 =
〈〈EK1BT1,V1BDK1〉, 〈EK2BT2,V2BDK2〉〉, and for any distinguisher D, by
Lemma 2,

∆D([〈ÊK1
, D̂K1

〉, 〈ÊK2
, D̂K2

〉], 〈〈Ê$
K , D̂

⊥〉, 〈Ê$
K , D̂

⊥〉〉)

= ∆D([〈ÊK1
, D̂K1

〉, 〈ÊK2
, D̂K2

〉], [〈ÊK1
, D̂⊥〉, 〈ÊK2

, D̂⊥〉])

+ ∆D([〈ÊK1
, D̂⊥〉, 〈ÊK2

, D̂⊥〉], 〈〈Ê$
K , D̂

⊥〉, 〈Ê$
K , D̂

⊥〉〉)
= ∆D(C′[〈TK1

,VK1
〉, 〈TK2

,VK2
〉],C′〈〈TK ,V

⊥〉, 〈TK ,V
⊥〉〉)

+ ∆D(C[EK1 ,EK2 ],C〈E$
K ,E

$
K〉)

= ∆DC([EK1
,EK2

], 〈E$
K ,E

$
K〉)

+ ∆DC′([〈TK1
,VK1

〉, 〈TK2
,VK2

〉], 〈〈TK ,V
⊥〉, 〈TK ,V

⊥〉〉).

This concludes the proof.

We will confirm Theorem 4 with a composable approach in the next section.

4 Composable Security of Anonymous Communication

In this section we turn our attention to composable security, as opposed to
game-based security. For this, we make use of the constructive cryptography
(CC) framework by Maurer [Mau12], which is a specialization of the abstract
cryptography theory by Maurer and Renner [MR11].

4.1 Constructive Cryptography

In essence, CC allows to define security of cryptographic protocols as statements
about constructions of resources from other resources, which we model as crypto-
graphic systems from Subsection 2.2. For such systems, we might at times use
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suggestive words typed in sans-serif rather than bold-faced letters. The various
interfaces of a resource should be thought of as being assigned to parties. In
this work, all resources are parameterized by an integer n ≥ 2 (the case n = 1
would be pointless for anonymity), and each defines n+ 2 interfaces: n for the
senders, denoted Si, for i ∈ [n], one for the adversary, denoted E, and one for the
receiver, denoted R. Therefore, in the following we use the expression n-resource
to make explicit such parameter. Another crucial ingredient of CC are converters,
also formally modeled as systems (labeled by lower-case sans-serif suggestive
words), which when applied to interfaces of n-resources, give raise to a new
n-resource. Within our formalization of cryptographic systems, CC converters
thus correspond to converters of systems as defined in Subsection 2.2, but where
we extend the sequential composition notion by allowing a (single-interface)
converter system to be attached to just one of the interfaces of another n-resource
system. Given a converter cnv and an n-resource R, for i ∈ [n] we denote the
new n-resource system resulting from attaching converter cnv to interface Si of
n-resource R as cnvSi R. Note that this automatically implies commutativity of
converters attached to different interfaces, that is, considering a second converter
ĉnv and letting j ∈ [n] such that j 6= i, then cnvSi ĉnvSj R ≡ ĉnvSj cnvSi R.

In order to make security statements within CC, we model protocols as lists of
converters. For n-resources, this means that a protocol π executed by n senders
and one receiver (an n-protocol) is a list of n+ 1 converters (cnv1, . . . , cnvn+1),
where the adopted convention is that cnvi is attached to sender interface Si, for i ∈
[n], while cnvn+1 is attached to the receiver interfaceR. In the following, we use the
short-hand notation πR for the n-resource cnvS1

1 · · · cnvSn
n cnvRn+1 R. Moreover,

for a second n-protocol π̂
.
= (ĉnv1, . . . , ĉnvn+1), we define the composition of π̂

and π as π̂π
.
= (ĉnv1cnv1, . . . , ĉnvn+1cnvn+1), and therefore π̂πR is the n-resource

(ĉnv1cnv1)S1 · · · (ĉnvncnvn)Sn (ĉnvn+1cnvn+1)R R. The last ingredient we need is
that of a simulator, which can be simply understood as a converter to be attached
to the adversarial interface E. With this, we can now express composable security
of an n-protocol π in terms of indistinguishability as follows.

Definition 13 (Construction). For n-resources R and S, and function ε map-
ping distinguishers to real values, we say that an n-protocol π constructs S from
R within ε, denoted

R
π,ε−−→ S,

if there exists a simulator sim such that for all distinguishers D,

∆D(πR, simE S) ≤ ε(D).

The intuition is that, if lifted to the asymptotic setting, Definition 13 implies
that if ε(D) is negligible for every efficient distinguisher D, then the real n-resource
R looks indistinguishable from the ideal n-resource S. This naturally hints to the
intuition that in any context where S is needed, πR can be safely used instead.
This is the central point of composable security definitions, and is formalized by
the following theorem, following directly from [MR11] (we nevertheless provide a
short proof of this special for case here).
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Fig. 2: Sketches of the anonymous channel resources (blue: inter-
faces; green: inputs; red: outputs).

Theorem 5 (Composition). Let R,S,T be n-resources, and π1, π2 n-protocols.

If R
π1,ε1−−−→ S and S

π2,ε2−−−→ T, then R
π2π1,ε̂1⊕ε̂2−−−−−−−→ T, where ε̂1(D)

.
= ε1(Dπ2),

ε̂2(D)
.
= ε2(D simE

2 ), sim2 is any simulator whose existence justifies S
π2,ε2−−−→ T,

and (ε̂1 ⊕ ε̂2)(D)
.
= ε̂1(D) + ε̂2(D).

Proof. Recall that R
π1,ε1−−−→ S means that there exists a simulator sim1 such that

for all distinguishers D, ∆D(π1R, sim
E
1 S) ≤ ε1(D), and S

π2,ε2−−−→ T means that
there exists a simulator sim2 such that for all distinguishers D, ∆D(π2S, sim

E
2 T) ≤

ε2(D). Then, using commutativity of converters (attached to different interfaces)
and Lemma 2, the theorem follows immediately by observing that

∆D(π2π1R, (sim1sim2)E T) = ∆D(π2π1R, π2 sim
E
1 S)

+ ∆D(simE
1 π2 S, simE

1 simE
2 T)

= ∆Dπ2(π1R, sim
E
1 S) + ∆D simE

1 (π2 S, simE
2 T)

≤ ε1(Dπ2) + ε2(D simE
1 )

= ε̂1(D) + ε̂2(D)

= (ε̂1 ⊕ ε̂2)(D),

which by definition implies R
π2π1,ε̂1⊕ε̂2−−−−−−−→ T.

Anonymous Channels. There are four n-resources that we consider in this
work. The first, KEYnK, models the initial symmetric-key setup: it generates n
independent keys K1, . . . ,Kn ∈ K according to an implicitly defined distribution
Gen over K, and for i ∈ [n] it outputs Ki at interface Si; at interface R it outputs
the list (K1, . . . ,Kn) of all generated keys, while it outputs nothing at interface
E. The remaining three n-resources model the anonymous channels for n senders
and one receiver mentioned above (for messages over some set X ), where we
assume a central adversary that is in full control of the physical communication
between the senders and the receiver, that is, an adversary that can delete, repeat,
and reorder messages.12 A-INSnX models the channel which leaks every message

12 Note that while deletion is a physical phenomenon, and can thus not be prevented
using cryptography, it is in principle possible to prevent repetition and reordering,
concretely by means of sequence numbers. But we do not cover this aspect of security
in this work.
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A-INSn
X

S,R ⊆ N×X ,
cS , cR, tS , tR ∈ N
Initialize:
S,R← ∅
cS , cR ← 1
tS , tR ← 0

Interface Si(x ∈ X ):
tS ← tS + 1
S ← S ∪ {(tS , x)}

Interface E(�):
O ← {(j, x) ∈ S | cS ≤ j ≤ tS}
cS ← tS + 1
return O

Interface E(x ∈ X ):
tR ← tR + 1
R← R∪ {(tR, x)}

Interface R(�):
O ← {(j, x) ∈ R | cR ≤ j ≤ tR}
cR ← tR + 1
return O

A-AUTn
X

S,R ⊆ (N×X ×N) ∪ (N× {⊥}2),
cS , cR, tS , tR ∈ N
Initialize:
S,R← ∅, cS , cR ← 1, tS , tR ← 0

Interface Si(x ∈ X ):
tS ← tS + 1, S ← S ∪ {(tS , x, i)}

Interface E(�):
O ← {(j, x) ∈ N×X |

∃i ∈ [n] : (j, x, i) ∈ S,
cS ≤ j ≤ tS}

cS ← tS + 1
return O

Interface E(j ∈ N ∪ {−1}):
if ∃x ∈ X , i ∈ [n] : (j, x, i) ∈ S then

tR ← tR + 1
R ← R∪ {(tR, x, i)}

else if j = −1 then
tR ← tR + 1
R ← R∪ {(tR,⊥,⊥)}

Interface R(�):
O ← {(j, x, i) ∈ R | cR ≤ j ≤ tR}
cR ← tR + 1
return O

A-SECn
X

S,R ⊆ (N×X × N) ∪ (N× {⊥}2), cS , cR, tS , tR ∈ N
Initialize:
S,R← ∅, cS , cR ← 1, tS , tR ← 0

Interface Si(x ∈ X ):
tS ← tS + 1, S ← S ∪ {(tS , x, i)}

Interface E(�):
O ← {(j, |x|) ∈ N× N | ∃i ∈ [n] : (j, x, i) ∈ S, cS ≤ j ≤ tS}, cS ← tS + 1
return O

Interface E(j ∈ N ∪ {−1}):
if ∃x ∈ X , i ∈ [n] : (j, x, i) ∈ S then

tR ← tR + 1, R← R∪ {(tR, x, i)}
else if j = −1 then

tR ← tR + 1, R← R∪ {(tR,⊥,⊥)}
Interface R(�):
O ← {(j, x, i) ∈ R | cR ≤ j ≤ tR}, cR ← tR + 1
return O

Fig. 3: Formal description of the insecure (A-INSnX ), authenticated
(A-AUTnX ), and secure (A-SECnX ) anonymous channels, each with
the differences from the weaker one highlighted in blue.
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input by any sender (but not their identities) directly to the adversary. Note
that in particular this means that the receiver does not directly receive the
messages sent by the senders. Moreover, A-INSnX allows the adversary to inject
any message to the receiver (thus, in particular, also the ones originally sent
by the senders). Note that this channel, while providing anonymity, is per se
pretty useless, since the receiver has also no information about the identity of
the sender of any message. Instead, A-AUTnX , while still leaking all the messages
sent by the senders directly to the adversary, does not allow the latter to inject
any message; instead, the adversary can now select messages that it wants to
be forwarded to the receiver. Moreover, the forwarded messages also carry the
identity of the original sender, still hidden to the adversary. Finally, A-SECnX
essentially works as A-AUTnX , except that now only the lengths of the messages
sent by the senders are leaked directly to the adversary. We sketch the three
anonymous channels in Figure 2 and provide a formal description of the behavior
of the systems implementing such n-resources in Figure 3.

4.2 Overview of the Results

In [AHM+15] it was already shown13 that UF-IK-CMA-secure pMAC constructs14

A-AUT from A-INS and KEY; in Appendix C we restate the result within our
model, which is captured by the following statement (cf. Theorem 8 therein):

[KEY,A-INS]
πmac,εmac−−−−−→ A-AUT,

(for appropriate n-protocol πmac implementing pMAC and function εmac). Here
we instead focus on the following further constructions:

– IND-IK-CPA-secure pE constructs A-SEC from A-AUT and KEY (cf. Theo-
rem 6):

[KEY,A-AUT]
πenc,εenc−−−−−→ A-SEC,

(for appropriate n-protocol πenc and function εenc).
– IND-IK-CCA3-secure pAE constructs A-SEC from A-INS and KEY (cf. Theo-

rem 7):

[KEY,A-INS]
πae,εae−−−−→ A-SEC,

(for appropriate n-protocol πae and function εae).

Note that by the composition theorem (Theorem 5), the first two statements imply
the third for the (composed) protocol πae = πencπmac and function εae = ε̂enc⊕ε̂mac,
namely

[KEY,KEY,A-INS]
πencπmac,ε̂enc⊕ε̂mac−−−−−−−−−−−→ A-SEC.

In particular, note that this corresponds to the EtM paradigm, and therefore is a
(composable) confirmation of Theorem 4.

13 For a slightly different modeling of the anonymous channel resources.
14 For better readability, in the following highlights of the results we drop the parameters

of the involved channels; nevertheless, in the referenced formal results (which follow
these highlights) we will make such parameters explicit.
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4.3 Composable Anonymous Security of pE

In this section we first introduce a composable definition of anonymous security
for pE, and then we show that the previously introduced game-based notion
of IND-IK-CPA-security implies the former. The composable definition can be
interpreted as providing composable semantics to IND-IK-CPA-security for pE, in
the sense that the result we show here attests that if an encryption scheme is
IND-IK-CPA-secure, then it can be safely used to construct a secure channel from
an authenticated one, while preserving anonymity.

In the following, for a fixed encryption scheme Π let the converter enc (where
the dependency on Π is implicit) behave as follows when connected to interface
Si of KEYK and interface Si of A-AUTC , for i ∈ [n]: on input a message m ∈M
from the outside, if not already done so before, output � to KEYK in order to
fetch key Ki, then compute c← EncKi

(m) ∈ C and output c to A-AUTC . Also let
the converter dec (where again the dependency on Π is implicit) behave as follows
when connected to interface R of KEYK and interface R of A-AUTC : on input �
from the outside, if not already done so before, output � to KEYK in order to fetch
keys K1, . . . ,Kn, and then output � to A-AUTC ; for each obtained tuple (j, c, i),
compute m ← DecKi

(c), and output the collection of all such resulting tuples
(j,m, i) to the outside. Finally, we define the n-protocol πenc

.
= (enc, . . . , enc, dec).

Definition 14 (Composable Anonymous Security of pE). An encryption
scheme Π achieves composable anonymous confidentiality if

[KEYnK,A-AUT
n
C ]

πenc,ε−−−→ A-SECnM,

that is, if there exists a simulator sim such that for all distinguishers D,

∆D(πenc[KEY
n
K,A-AUT

n
C ], sim

E A-SECnM) ≤ ε(D).

We remark that in [AHM+15] this construction step was already presented,
but for a much less efficient (but statistically secure) protocol: the idea is to
double the number of sender interfaces (two interfaces per user), and transmit
messages bit-by-bit. More concretely, assumingM = {0, 1}`, for some ` ∈ N, this
protocol constructs A-SECnM from A-AUT2n

R×[`] (and, crucially, no KEY resource).
It works by assigning to each outside interface Si, for i ∈ [n], two interfaces Si,b
of A-AUT2n

R×[`], with b ∈ {0, 1}, and transmits each message m = (m1, . . . ,m`) ∈
M as follows: first, sample some fresh uniform randomness r ∈ R, for some
randomness space R, and then, for each j ∈ [`], input (r, j) at interface Si,mj

of A-AUT2n
R×[`]. Then at the receiver interface R, each message is reconstructed

in the obvious way: upon obtaining all of the ` triplets (·, (r, j), (i,mj)), output
the triplet (·, (m1, . . . ,m`), i) (where we are ignoring the counters, i.e., the first
arguments of the triplets). This protocol is intuitively secure because for the
adversary sitting at interface E, its view is independent of each message m, and
moreover it can only provoke the protocol to output an invalid message at R if
one of the senders reuses the same randomness value r for two different messages,
which can be avoided by introducing state by the senders. Otherwise, assuming
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uniform distribution over R, this anyway happens with very small probability,
that is, by a standard approximation for the birthday paradox bound, at most
q2/|R|, where q is the total of transmitted messages.

The above protocol is nevertheless clearly inefficient: considering the construc-
tion of A-AUT using a MAC scheme, for each message of size `, the underlying
MAC must be invoked ` times. Here we propose a much more efficient construc-
tion by employing symmetric-key encryption, only at the cost of doubling the
size of the shared secret keys. The new protocol is more efficient because now
for every message only a single invocation of both the MAC and the encryption
scheme are required, independently of its size.

Theorem 6. If an encryption scheme Π is IND-IK-CPA-secure, then it achieves
composable anonymous confidentiality, that is,

[KEYnK,A-AUT
n
C ]

πenc,ε−−−→ A-SECnM,

with ε(D)
.
= ∆DC([EK1

, . . . ,EKn
], 〈E$

K , . . . ,E
$
K〉) and reduction system C which

is attached to system 〈E1, . . . ,En〉 and is defined as follows.

C〈E1, . . . ,En〉

S,R ⊆ N×M× N, cS , cR, tS , tR ∈ N
Initialize:
S,R ← ∅, cS , cR ← 1, tS , tR ← 0

Interface Si(m):
tS ← tS + 1, S ← S ∪ {(tS ,m, i)}

Interface E(�):
O ← {(j,Ei(m)) ∈ N× C | (j,m, i) ∈ S, cS ≤ j ≤ tS}
cS ← tS + 1
return O

Interface E(j):
if ∃m ∈M, i ∈ [n] : (j,m, i) ∈ S then

tR ← tR + 1, R ← R∪ {(tR,m, i)}
Interface R(�):
O ← {(j,m, i) ∈ R | cR ≤ j ≤ tR}, cR ← tR + 1
return O

Proof. Consider the simulator sim attached to interface E of A-SECnM that
behaves as follows: Initially, sample a key K according to Gen. Then:

– On input � from the outside, output � on the inside, obtain a set O ⊆ N×N,
and initialize another set O′ ⊆ N×M to ∅; Then for each (j, `) ∈ O, add
(j, EncK(m̃)) to O′, for freshly and uniformly sampled m̃ ∈M with |m̃| = |m|.
Finally, output O′.

– On input c ∈ C from the outside, if there exists a j ∈ N such that (j, c) ∈ T ,
then forward j to the inside.
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Let now define the n-resources15

R
.
= encS1 · · · encSn decR [KEYnK,A-AUT

n
C ] and S

.
= simE A-SECnM.

Then we need to show that

∆D(R,S) = ∆DC([EK1
, . . . ,EKn

], 〈E$
K , . . . ,E

$
K〉)

for every distinguisher D. For this, we first introduce the system H0 defined
below, for which it can be easily checked that R ≡ H0 holds (H0 is the monolithic
representation of R).

H0

S,R ⊆ N× C × N, cS , cR, tS , tR ∈ N, K1, . . . ,Kn ∈ K
Initialize:
S,R ← ∅, cS , cR ← 1, tS , tR ← 0, K1, . . . ,Kn

iid← Gen()

Interface Si(m):
tS ← tS + 1, S ← S ∪ {(tS , EncKi

(m), i)}
Interface E(�):
O ← {(j, c) ∈ N× C | ∃i ∈ [n] : (j, c, i) ∈ S, cS ≤ j ≤ tS}, cS ← tS + 1
return O

Interface E(j):
if ∃c ∈ C, i ∈ [n] : (j, c, i) ∈ S then

tR ← tR + 1, R ← R∪ {(tR, c, i)}
Interface R(�):
O ← {(j, DecKi

(c), i) ∈ N×M× [n] | (j, c, i) ∈ R, cR ≤ j ≤ tR}
cR ← tR + 1
return O

We now define the system H1
.
= C[EK1

, . . . ,EKn
], for which it can be easily

checked that H0 ≡ H1 holds (by the correctness of the scheme). Next, we define
the system H2

.
= C〈E$

K , . . . ,E
$
K〉, for which it can be easily checked that H2 ≡ S

holds (H2 is the monolithic representation of S). Summarizing, we established
that

R ≡ H0 ≡ H1 and H2 ≡ S,

and therefore by Lemma 2 we have

∆D(R,S) = ∆D(R,H0) + ∆D(H0,H1) + ∆D(H1,H2) + ∆D(H2,S)

= 0 + 0 + ∆D(C[EK1
, . . . ,EKn

],C〈E$
K , . . . ,E

$
K〉) + 0

= ∆DC([EK1
, . . . ,EKn

], 〈E$
K , . . . ,E

$
K〉)

= ε(D),

15 For simplicity, here we consider the slightly different channel resources which on
input −1 at interface E do nothing (instead of adding the tuple (k,⊥,⊥), for some
k ∈ N, to the set R), since they would behave identically also otherwise.
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which indeed implies

[KEYnK,A-AUT
n
C ]

πenc,ε−−−→ A-SECnM.

Note that by Theorem 1, it must be possible to prove Theorem 6 with ε′(D) =
f(n) ·∆DC′(EK ,$), for some polynomial f(n) and (different) reduction system
C′, rather than ε(D) = ∆DC([EK1

, . . . ,EKn
], 〈E$

K , . . . ,E
$
K〉). More precisely, we

remark that by virtue of Lemma 5, Lemma 6 and Lemma 7 for n = 1, and
Theorem 1, for appropriate distinguishers D1, D2, D3, and D4,

∆D([EK1
, . . . ,EKn

], 〈E$
K , . . . ,E

$
K〉) = (n− 1) ·∆D1([EK1

,EK2
], 〈EK ,EK〉)

+ ∆D2(EK ,E
$
K)

= (2n− 1) ·∆D3([EK1
,EK2

], 〈E$
K ,E

$
K〉)

= (6n− 3) ·∆D4(EK ,$).

Therefore, by letting C′ be the reduction system resulting from the composition
of the various reduction systems from the mentioned results, we have that, for R
and S as in the proof of Theorem 6,

∆D(R,S) = (6n− 3) ·∆DC′(EK ,$),

which implies

[KEYnK,A-AUT
n
C ]

πenc,ε
′

−−−−→ A-SECnM,

for f(n) = 6n− 3.

4.4 Composable Anonymous Security of pAE

In this section we first introduce a composable definition of anonymous security
for pAE, and then we show that the previously introduced game-based notion
of IND-IK-CCA3-security implies the former. The composable definition can be
interpreted as providing composable semantics to IND-IK-CCA3-security for pAE,
in the sense that the result we show here attests that if an (authenticated)
encryption scheme is IND-IK-CCA3-secure, then it can be safely used to construct
a secure channel from an insecure one, while preserving anonymity.

In the following, for a fixed (authenticated) encryption scheme Π let the
converter ae (where the dependency on Π is implicit) behave as follows when
connected to interface Si of KEYK and interface Si of A-INSC , for i ∈ [n]: on input
a message m ∈M from the outside, if not already done so before, output � to
KEYK in order to fetch key Ki, then compute c← EncKi

(m) ∈ C and output c to
A-INSC . Also let the converter ad (where again the dependency on Π is implicit)
behave as follows when connected to interface R of KEYK and interface R of
A-INSC : on input � from the outside, if not already done so before, output � to
KEYK in order to fetch keys K1, . . . ,Kn, and then output � to A-INSC ; for each
obtained tuple (j, c), find the index i ∈ [n] such that m 6= ⊥, for m← DecKi

(c),
and output the collection of all such resulting tuples (j,m, i) to the outside.
Finally, we define the n-protocol πae

.
= (ae, . . . , ae, ad).
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Definition 15 (Composable Anonymous Security of pAE). An (authenti-
cated) encryption scheme Π achieves composable anonymous security if

[KEYnK,A-INS
n
C ]

πae,ε−−−→ A-SECnM,

that is, if there exists a simulator sim such that for all distinguishers D,

∆D(πae[KEY
n
K,A-INS

n
C ], sim

E A-SECnM) ≤ ε(D).

Again, we remark that in [AHM+15, Theorem 2] this direct construction step
was already presented but the suggested protocol is again much less efficient than
ours. The idea improves upon the previous one used to construct A-SECnM from
A-AUT2n

R×[`], by using the randomness r ∈ R only once per message, and reducing
the domain of the underlying MAC scheme to |R|+ log ` bits (where again we
are assuming M = {0, 1}`). Detailedly, given a MAC with message space M′ .=
R× {0, 1}log ` and tag space T , the protocol uses [KEYnK,KEY

n
K,A-INS

n
R×T ` ] in

the following way: on input a message m = (m1, . . . ,m`) ∈ M at the outside
interface assigned to sender Si, compute c

.
= (r, Tagki,m1

(r, 1), . . . , Tagki,m`
(r, `)),

where r is sampled uniformly at random over R, ki,0 is the key shared by Si and R
through the first KEYnK resource, and ki,1 is the key shared by Si and R through
the second KEYnK resource. Then at the receiver interface R, each message is
reconstructed by testing the value (r, τ1, . . . , τ`) obtained by A-INSnR×T ` against
each possible key-pair (ki,0, ki,1), for i ∈ [n], and message (m1, . . . ,m`) ∈ {0, 1}`:
if for each j ∈ [`] the tag τj is valid for the (MAC) message (r, j) ∈ R×{0, 1}log `

under key ki,mj , then output (·, (m1, . . . ,m`), i)

Note that the major drawbacks of this construction are (1) the fact that even
if the message space of the MAC has been reduced, this must be invoked ` times
for each message (as opposed to 1 time), and (2) the fact that the time complexity
of the receiver is O(n`) for each message (as opposed to O(n)). Here we improve
the efficiency of this construction by employing authenticated encryption instead;
therefore, this can be seen as improving upon both the amount of invocations to
the underlying primitive (once per message—once MAC and once encryption,
if the scheme arises from the Encrypt-then-MAC paradigm—instead of `), and
the time complexity associated to the receiving of each message: we only need to
test the received ciphertext against each possible of the n keys. Moreover, our
construction statement arguably feels more “natural” than the one of [AHM+15].

Theorem 7. If an (authenticated) encryption scheme Π is IND-IK-CCA3-secure,
then it achieves composable anonymous security, that is,

[KEYnK,A-INS
n
C ]

πae,ε−−−→ A-SECnM,

with ε(D)
.
= ∆DC([〈EK1 ,DK1〉, . . . , 〈EKn ,DKn〉], 〈〈E$

K ,D
⊥〉, . . . , 〈E$

K ,D
⊥〉〉)

and reduction system C which is attached to system 〈〈E1,D1〉, . . . , 〈En,Dn〉〉
and is defined as follows.
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C〈〈E1,D1〉, . . . , 〈En,Dn〉〉

S,R ⊆ (N×M× N) ∪ (N× {⊥}2), cS , cR, tS , tR ∈ N
Initialize:
S,R ← ∅, cS , cR ← 1, tS , tR ← 0

Interface Si(m):
tS ← tS + 1, S ← S ∪ {(tS ,m, i)}

Interface E(�):
O ← {(j,Ei(m)) ∈ N× C | (j,m, i) ∈ S, cS ≤ j ≤ tS}
cS ← tS + 1
return O

Interface E(c):
tR ← tR + 1
if ∃i ∈ [n] : Di(c) 6= ⊥ then
R ← R∪ {(tR,Di(c), i)}

else
R ← R∪ {(tR,⊥,⊥)}

Interface R(�):
O ← {(j,m, i) ∈ R | cR ≤ j ≤ tR}, cR ← tR + 1
return O

Proof. Consider the simulator sim attached to interface E of A-SECnM that
behaves as follows: Initially, sample a key K according to Gen, and initialize the
set T to ∅. Then:

– On input � from the outside, output � on the inside, obtain a set O ⊆ N×N,
and initialize another set O′ ⊆ N×M to ∅; Then for each (j, `) ∈ O, add
(j, EncK(m̃)) to both O′ and T , for freshly and uniformly sampled m̃ ∈M
with |m̃| = |m|. Finally, output O′.

– On input j ∈ N from the outside, simply forward j to the inside.

Let now define the n-resources

R
.
= aeS1 · · · aeSn adR [KEYnK,A-INS

n
C ] and S

.
= simE A-SECnM.

Then we need to show that

∆D(R,S) = ∆DC([〈EK1
,DK1

〉, . . . , 〈EKn
,DKn

〉], [〈E$
K ,D

⊥〉, . . . , 〈E$
K ,D

⊥〉])

for every distinguisher D. For this, we first introduce the system H0 defined
below, for which it can be easily checked that R ≡ H0 holds (H0 is the monolithic
representation of R).
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H0

S,R ⊆ N× C, cS , cR, tS , tR ∈ N, K1, . . . ,Kn ∈ K
Initialize:
S,R ← ∅, cS , cR ← 1, tS , tR ← 0, K1, . . . ,Kn

iid← Gen()

Interface Si(m):
tS ← tS + 1, S ← S ∪ {(tS , EncKi(m))}

Interface E(�):
O ← {(j, c) ∈ S | cS ≤ j ≤ tS}, cS ← tS + 1
return O

Interface E(c):
tR ← tR + 1, R ← R∪ {(tR, c)}

Interface R(�):
O ← {(j, DecKi

(c), i)∈N×M×[n] | (j, c)∈R, cR ≤ j ≤ tR, DecKi
(c) 6= ⊥}

∪{(j,⊥,⊥) | ∃c∈C : (j, c)∈R, cR ≤ j ≤ tR,∀i∈ [n] : DecKi
(c) = ⊥}

cR ← tR + 1
return O

We now introduce the system H1
.
= C[〈EK1

,DK1
〉, . . . , 〈EKn

,DKn
〉], for

which it can be easily checked that H0 ≡ H1 holds (this is just a different
description of the same system). Next, we introduce the system H3 defined below,
for which it can be easily checked that H3 ≡ S holds (H3 is the monolithic
representation of S).

H3

S,R ⊆ (N×M× N) ∪ (N× {⊥}2), T ⊆ N× C, cS , cR, tS , tR ∈ N, K ∈ K
Initialize:
S,R, T ← ∅, cS , cR ← 1, tS , tR ← 0, K ← Gen()

Interface Si(m):
tS ← tS + 1, S ← S ∪ {(tS ,m, i)}

Interface E(�):
O ← {(j, EncK($|m|)) ∈ N× C | ∃i ∈ [n] : (j,m, i) ∈ S, cS ≤ j ≤ tS}
T ← T ∪ O, cS ← tS + 1
return O

Interface E(c):
tR ← tR + 1
if ∃j ∈ N : (j, c) ∈ T then
R ← R∪ {(tR,m, i) ∈ N×M× N | (j,m, i) ∈ S}

else
R ← R∪ {(tR,⊥,⊥)}

Interface R(�):
O ← {(j,m, i) ∈ R | cR ≤ j ≤ tR}, cR ← tR + 1
return O
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Finally, we introduce the system H2
.
= C[〈E$

K ,D
⊥〉, . . . , 〈E$

K ,D
⊥〉], for which

it can be easily checked that H2 ≡ H3 holds (by the correctness of the scheme).
Summarizing, we established that

R ≡ H0 ≡ H1 and H2 ≡ H3 ≡ S,

and therefore by Lemma 2 we have

∆D(R,S) = ∆D(R,H0) +

2∑
i=0

∆D(Hi,Hi+1) + ∆D(H3,S)

= 0 + 0 + ∆D(H1,H2) + 0 + 0

= ∆DC([〈EK1
,DK1

〉, . . . , 〈EKn
,DKn

〉], [〈E$
K ,D

⊥〉, . . . , 〈E$
K ,D

⊥〉])
= ε(D),

which indeed implies

[KEYnK,A-AUT
n
C ]

πae,ε−−−→ A-SECnM.

Note that, analogously as for pE, by virtue of Corollary 2, Corollary 3 and
Corollary 4 for n = 1, and Theorem 2, it is possible to prove Theorem 7 with

ε′(D) = (6n− 3) ·∆DC′(〈EK ,DK〉, 〈$,D⊥〉),

for an appropriate reduction system C′.
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editors, Theory of Security and Applications – TOSCA 2011, pages 33–56,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
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A Proofs for Section 2

Lemma 1. For distinguisher D and systems S and T, ∆D(S,T) = ∆DI(T,S).

Proof.

∆D(S,T) = Pr[DS = 0]− Pr[DT = 0]

= Pr[DIS = 1]− Pr[DIT = 1]

= 1− Pr[DIS = 0]− 1 + Pr[DIT = 0]

= Pr[DIT = 0]− Pr[DIS = 0]

= ∆DI(T,S).

Lemma 2. For distinguisher D and systems S1, . . . ,Sn,

∆D(S1,Sn) =

n−1∑
i=1

∆D(Si,Si+1).

Proof.

n−1∑
i=1

∆D(Si,Si+1) = Pr[DS1 = 0]− Pr[DS2 = 0] + · · ·
+ Pr[DSn−1 = 0]− Pr[DSn = 0]

= Pr[DS1 = 0]− Pr[DSn = 0]

= ∆D(S1,Sn).

Lemma 3. For distinguishers D1, . . . ,Dn, systems S and T, and random vari-
able I uniformly distributed over [n],

n∑
i=1

∆Di(S,T) = n ·∆DI (S,T).

Proof. By the law of total probability:

∆DI (S,T) = Pr[DIS = 0]− Pr[DIT = 0]

=

n∑
i=1

(
Pr[DiS = 0] · Pr[I = i]− Pr[DiT = 0] · Pr[I = i]

)
=

1

n
·
n∑
i=1

(
Pr[DiS = 0]− Pr[DiT = 0]

)
=

1

n
·
n∑
i=1

∆Di(S,T).
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B Proofs for Section 3

Lemma 4. For every distinguisher D, there exists a reduction C such that

∆D([EK1
, . . . ,EKn

], 〈EK , . . . ,EK〉) = (n− 1) ·∆DC([EK1
,EK2

], 〈EK ,EK〉).

In particular, this implies that if an encryption scheme is 2-IK-CPA-secure, then
it is also n-IK-CPA-secure.

Proof. For i ∈ [n], let define hybrid systems

Hi
.
= 〈EK , . . . ,EK︸ ︷︷ ︸

i times

,EKi+1 , . . . ,EKn〉

and reduction systems Ci such that

Ci〈S,T〉 = 〈S, . . . ,S︸ ︷︷ ︸
i times

,T,EKi+2 , . . . ,EKn〉.

Then note that Hi = Ci[EK1
,EK2

] and Hi+1 = Ci〈EK ,EK〉. Therefore, for any
distinguisher D, by Lemma 2 and Lemma 3,

∆D([EK1 , . . . ,EKn ], 〈EK , . . . ,EK〉) =

n−1∑
i=1

∆D(Hi,Hi+1)

=

n−1∑
i=1

∆D(Ci[EK1 ,EK2 ],Ci〈EK ,EK〉)

=

n−1∑
i=1

∆DCi([EK1
,EK2

], 〈EK ,EK〉)

= (n− 1) ·∆DCI ([EK1 ,EK2 ], 〈EK ,EK〉).

where I is uniformly distributed over [n] With C
.
= CI , this concludes the

proof.

Lemma 5. For every distinguisher D, there exist reductions C and C′ such that

∆D([EK1 , . . . ,EKn ], 〈E$
K , . . . ,E

$
K〉) = (n− 1) ·∆DC([EK1 ,EK2 ], 〈EK ,EK〉)

+ ∆DC′(EK ,E
$
K).

In particular, this implies that if an encryption scheme is 2-IK-CPA-secure and
IND-CPA-secure, then it is also n-IND-IK-CPA-secure.

Proof. First note that by Lemma 2, for any distinguisher D,

∆D([EK1
, . . . ,EKn

], 〈E$
K , . . . ,E

$
K〉) = ∆D([EK1

, . . . ,EKn
], 〈EK , . . . ,EK〉)

+ ∆D(〈EK , . . . ,EK〉, 〈E$
K , . . . ,E

$
K〉).
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Moreover, for reduction system C′ such that C′S = 〈S, . . . ,S︸ ︷︷ ︸
n times

〉, then

∆D(〈EK , . . . ,EK〉, 〈E$
K , . . . ,E

$
K〉) = ∆D(C′EK ,C

′E$
K) = ∆DC′(EK ,E

$
K).

With C as defined in the proof of Lemma 4, this concludes the proof.

Lemma 6. For every distinguisher D, there exists a reduction C such that

∆D([EK1
,EK2

], 〈EK ,EK〉) = 2 ·∆DC([EK1
, . . . ,EKn

], 〈E$
K , . . . ,E

$
K〉).

In particular, this implies that if an encryption scheme is n-IND-IK-CPA-secure,
then it is also 2-IK-CPA-secure.

Proof. For reduction system C1 such that C1〈S1, . . . ,Sn〉 = 〈S1,S2〉 and reduc-
tion system C2 such that C2〈S1, . . . ,Sn〉 = 〈S1, . . . ,S1〉, for any distinguisher
D, by Lemma 2, Lemma 1, and Lemma 3,

∆D([EK1 ,EK2 ], 〈EK ,EK〉) = ∆D(C1[EK1 , . . . ,EKn ],C1〈EK , . . . ,EK〉)
= ∆DC1([EK1 , . . . ,EKn ], 〈EK , . . . ,EK〉)
= ∆DC1([EK1

, . . . ,EKn
], 〈E$

K , . . . ,E
$
K〉)

+ ∆DC1(〈E$
K , . . . ,E

$
K〉, 〈EK , . . . ,EK〉)

= ∆DC1([EK1
, . . . ,EKn

], 〈E$
K , . . . ,E

$
K〉)

+ ∆DIC1(C2[EK1
, . . . ,EKn

],C2〈E$
K , . . . ,E

$
K〉)

= ∆DC1([EK1
, . . . ,EKn

], 〈E$
K , . . . ,E

$
K〉)

+ ∆DIC1C2([EK1
, . . . ,EKn

], 〈E$
K , . . . ,E

$
K〉)

= 2 ·∆DC′I ([EK1
, . . . ,EKn

], 〈E$
K , . . . ,E

$
K〉),

where C′1
.
= C1, C′2

.
= IC1C2, and I is uniformly distributed over {1, 2}. With

C
.
= C′I , this concludes the proof.

Lemma 7. For every distinguisher D, there exists a reduction C such that

∆D(EK ,E
$
K) = ∆DC([EK1 , . . . ,EKn ], 〈E$

K , . . . ,E
$
K〉).

In particular, this implies that if an encryption scheme is n-IND-IK-CPA-secure,
then it is also IND-CPA-secure.

Proof. For reduction system C such that C〈S1, . . . ,Sn〉 = S1, for any distin-
guisher D,

∆D(EK ,E
$
K) = ∆D(C[EK1

, . . . ,EKn
],C〈E$

K , . . . ,E
$
K〉)

= ∆DC([EK1 , . . . ,EKn ], 〈E$
K , . . . ,E

$
K〉).

This concludes the proof.
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C Anonymous Security of Probabilistic MACs (pMAC)

We introduce a very specific syntax for Message Authentication Codes (MAC)
which will turn out to be very useful in order to analyze the Encrypt-then-MAC
paradigm. More precisely, we consider MAC schemes which take as messages
ciphertexts arising from some encryption scheme, and which provide an interface
optimized for being coupled with such scheme. In this section we revisit the
security and anonymity notions of MAC, the latter having being originally
introduced in [AHM+14] (as a form of key-indistinguishability), and used in
[AHM+15] to construct an authenticated and anonymous channel. Note that
since we are interested in anonymity in this work, it is imperative that we only
consider probabilistic MAC (pMAC), as pointed out in [AHM+14,AHM+15].

Definition 16 (MAC Scheme). A (probabilistic) message authentication code
(MAC) scheme Σ

.
= (Gen, Tag, Vrf) over key-space K, message-space C, and tag-

space T (with ⊥ /∈ K ∪ C ∪ T ), is such that

– Gen is a distribution (often the uniform one) over K;

– Tag : K × C → C × T is a probabilistic function;

– Vrf : K × C × T → C ∪ {⊥} is a deterministic function.

As customary, for k ∈ K we use the short-hand notation Tagk(·) for Tag(k, ·)
and Vrfk(·, ·) for Vrf(k, ·, ·). Moreover, we assume correctness of Σ, that is, for
all keys k distributed according to Gen, and all ciphertext-tag pairs (c, τ) ∈ C ×T ,

Vrfk(c, τ) =

{
c if (c, τ) ∈ supp (Tagk(c)),

⊥ otherwise.

As for pE and pAE, in order to define the security and anonymity of a fixed
MAC scheme Σ, we need to define the following single and double interface
systems (where the dependency on Σ is implicit), parameterized by a fixed key
k ∈ K:

– 〈Tk,Vk〉:
• On input a ciphertext c ∈ C, return Tagk(c) ∈ C × T .

• On input a ciphertext-tag pair (c, τ) ∈ C×T , return Vrfk(c, τ) ∈ C∪{⊥}.
– 〈Tk,V

⊥〉: Initially set Q ⊆ C × T to ∅ and then:

• On input a ciphertext c ∈ C, return (c, τ)
.
= Tagk(c) ∈ C × T and set Q

to Q∪ {(c, τ)}.
• On input a ciphertext-tag pair (c, τ) ∈ C × T , if (c, τ) ∈ Q then return c,

otherwise return ⊥.

In our definitions, the key k will always be replaced by a random variable (usually
denoted K or Ki, for some i ∈ N) distributed according to Σ’s Gen.
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C.1 Game-Based (Anonymous) Security of pMAC

The classical security notion of MAC is universal unforgeability under chosen
messages attack. This kind of game-based definition is often formulated as a game
which an adversary is supposed to win. In this work we take the dual view that
such a definition can be equivalently phrased as a distinction problem (see for
example [Mau02,MPR07,Ros18]).

Definition 17 (Game-Based Unforgeability of pMAC). A MAC scheme Σ
is unforgeable pMAC (or UF-CMA-secure) if

∆D(〈TK ,VK〉, 〈TK ,V
⊥〉)

is negligible for any efficient distinguisher D.

The concept of anonymous MAC schemes was crystallized by Alwen et al,
which in [AHM+14] introduced the notion of key-indistinguishable pMAC. In the
following definition, we capture this notion within our framework.

Definition 18 (Game-Based Anonymity of pMAC). A MAC scheme Σ is
[n-]anonymous pMAC (or [n-]IK-CMA-secure) if

∆D([〈TK1
,VK1

〉, . . . , 〈TKn
,VKn

〉], 〈〈TK ,VK〉, . . . , 〈TK ,VK〉〉)

is negligible for any efficient distinguisher D.

Finally, we introduce a new all-in-one definition for pMAC, which should
intuitively capture both unforgeability and anonymity.

Definition 19 (Game-Based Anonymous Unforgeability of pMAC). A
MAC scheme Σ is [n-]anonymous secure pMAC (or [n-]UF-IK-CMA-secure) if

∆D([〈TK1
,VK1

〉, . . . , 〈TKn
,VKn

〉], 〈〈TK ,V
⊥〉, . . . , 〈TK ,V

⊥〉〉)

is negligible for any efficient distinguisher D.

C.2 Relations Among Notions

We now confirm the intuition that UF-CMA and IK-CMA together imply UF-IK-
CMA (for the simpler case of n+ 2, which is easily generalizable).

Lemma 8. For every distinguisher D, there exists a reduction C such that

∆D([〈TK1 ,VK1〉, 〈TK2 ,VK2〉], 〈〈TK ,V
⊥〉, 〈TK ,V

⊥〉〉)
= ∆D([〈TK1 ,VK1〉, 〈TK2 ,VK2〉], 〈〈TK ,VK〉, 〈TK ,VK〉〉)

+ ∆DC(〈TK ,VK〉, 〈TK ,V
⊥〉).

In particular, this implies that if a MAC scheme is UF-CMA-secure and IK-CMA-
secure, then it is also UF-IK-CMA-secure.
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Proof. First note that by Lemma 2, for any distinguisher D,

∆D([〈TK1 ,VK1〉, 〈TK2 ,VK2〉], 〈〈TK ,V
⊥〉, 〈TK ,V

⊥〉〉)
= ∆D([〈TK1 ,VK1〉, 〈TK2 ,VK2〉], 〈〈TK ,VK〉, 〈TK ,VK〉〉)

+ ∆D(〈〈TK ,VK〉, 〈TK ,VK〉〉, 〈〈TK ,V
⊥〉, 〈TK ,V

⊥〉〉).

Moreover, for reduction system C such that CS = 〈S,S〉, then

∆D(〈〈TK ,VK〉, 〈TK ,VK〉〉, 〈〈TK ,V
⊥〉, 〈TK ,V

⊥〉〉)
= ∆D(C〈TK ,VK〉,C〈TK ,V

⊥〉)
= ∆DC(〈TK ,VK〉, 〈TK ,V

⊥〉).

This concludes the proof.

In order to directly link our results on pMAC to those of [AHM+15], the
second relation we outline here, is the one between the distinguishing-type of
game-based unforgeability definition for pMAC, UF-CMA from Definition 17,
and the more “traditional” game-winning one, which we label gw-UF-CMA and
informally describe next. Let Gmac be a system that works as follows: on input
a message m, output TagK(m), for a key K initially sampled according to Gen,
and eventually accept one (final) forgery query (m, τ) as input. If an adversary
D interacting with Gmac submits a forgery (m, τ) which is both new (that is,
m was not queried before by D) and valid (that is, VrfK(m, τ) = m), then we
say that D wins the game Gmac. Finally, we define ΓD(Gmac) as the winning
probability of D, that is, the probability that D indeed submits a valid and new
forgery to Gmac. Recall the classical result from the literature that, informally,
asserts that distinguishing two systems is at most as hard as provoking an event
in either one, such that the systems behave identically until this event is provoked.
For the kind of systems we are considering, this was shown for example16 in
[Mau02, Theorem 1] and [MPR07, Lemma 4]. Then it is easy to see that indeed
gw-UF-CMA-security implies UF-CMA-security, as we state next (without proof).

Lemma 9. For every distinguisher D making at most q verification queries,

∆D(〈TK ,VK〉, 〈TK ,V
⊥〉) ≤ q · ΓDC(Gmac),

for an appropriate reduction system C. In particular, this implies that if a MAC
scheme is gw-UF-CMA-secure, then it is also UF-CMA-secure.

C.3 Composable Anonymous Security of pMAC

After having introduced the game-based notion of key-indistinguishability for
pMAC in [AHM+14], Alwen et al went on to define the corresponding composable

16 For other kind of systems, such as Code-Based Games, the same result is usually
referred to as the “fundamental lemma of game-playing” from [BR06, Lemma 2].

41



notion and relate this to the former in [AHM+15]. In this section we summarize
on a high level how those results should be cast within our framework. For a fixed
MAC scheme Σ, consider the n-protocol πmac

.
= (tag, . . . , tag, vrf), where, very

informally, tag implements TagK and vrf executes VrfK on all keys and outputs
the message and identity according to the index of the (unique) matching key
(for more details see [AHM+15]). Then composable anonymous authenticity of a
MAC scheme is defined as follows.

Definition 20 (Composable Anonymous Security of pMAC). A MAC
scheme Σ achieves composable anonymous authenticity if

[KEYnK,A-INS
n
C×T ]

πmac,ε−−−−→ A-AUTnC ,

that is, if there exists a simulator sim such that for all distinguishers D,

∆D(πenc[KEY
n
K,A-INS

n
C×T ], simE A-AUTnC) ≤ ε(D).

Finally, we state the main theorem from [AHM+15] within our framework
(without proof): a MAC scheme which is both key-indistinguishable and un-
forgeable implies the corresponding composable notion from Definition 20. We
do so using our all-in-one anonymous security definition of UF-IK-CMA for
pMAC instead of the two separate notions of unforgeability (UF-CMA) and key-
indistinguishability (IK-CMA), as originally done by Alwen et al. By virtue of
Lemma 8 and Lemma 9, our statement follows directly from their original proof.

Theorem 8 ([AHM+15]). If a MAC scheme Σ is UF-IK-CMA-secure, then it
achieves composable anonymous authenticity, that is,

[KEYnK,A-INS
n
C×T ]

πmac,ε−−−−→ A-AUTnC ,

where ε(D)
.
= ∆DC([〈TK1

,VK1
〉, . . . , 〈TKn

,VKn
〉], 〈〈TK ,V

⊥〉, . . . , 〈TK ,V
⊥〉〉),

for an adequate reduction system C.
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