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Abstract. Anonymity and authenticity are apparently conflicting goals.
Anonymity means hiding a party’s identity whereas authenticity means
proving a party’s identity. So how can a set of senders authenticate their
messages without revealing their identity? Despite the paradoxical nature
of this problem, there exist many cryptographic schemes designed to
achieve both goals simultaneously, in some form.
This paper provides a composable treatment of communication channels
that achieve different forms of anonymity and authenticity. More specif-
ically, three channel functionalities for many senders and one receiver
are introduced which provide some trade-off between authenticity and
anonymity (of the senders). For each of them, composably realizing it
is proved to corresponds to the use of a certain type of cryptographic
scheme, namely (1) a new type of scheme which we call bilateral signatures
(syntactically related to designated verifier signatures), (2) partial signa-
tures, and (3) ring signatures. This treatment hence provides composable
semantics for (game-based) security definitions for these types of schemes.
The results of this paper can be interpreted as the dual of the work by
Kohlweiss et al. (PETS 2013), where composable notions for anonymous
confidential communication were introduced and related to the security
definitions of certain types of public-key encryption schemes, and where
the treatment of anonymous authenticated communication was stated as
an open problem.
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1 Introduction

1.1 Background and Motivation

When studying the security of public-key encryption (PKE) it is natural to
consider a setting with one sender and many receivers, each generating its own
key-pair and authentically transmitting the public key to the sender. Then a
reasonable concern is whether ciphertexts subsequently generated by the sender
for distinct receivers are (computationally) indistinguishable. This captures the
intuitive notion of receiver anonymity from the standpoint of an eavesdropper, and
is formalized by the security definition of key-indistinguishability, first proposed
by Bellare et al. [BBDP01]. Almost a decade later, Abdalla et al. [ABN10]
introduced another related notion for PKE, robustness, which intuitively captures
the fact that ciphertexts can only be meaningfully decrypted using the correct
corresponding private key, meaning that trying to decrypt with a wrong key
results in an error.

It turns out that this further property is crucially needed in conjunction with
key-indistinguishability in order to provide a “usable” form of anonymous PKE,
and this has been highlighted by Kohlweiss et al. [KMO+13] by showing that
both properties, together with IND-CCA security, are needed in order for a PKE
scheme to enhance an anonymous insecure broadcast channel into an anonymous
confidential broadcast channel. Importantly, their work also highlights how key-
indistinguishability is a security notion that exclusively preserves anonymity,
rather than “creating” it, whereas IND-CCA lifts insecurity to confidentiality,
thus “creating” more security along the secrecy axis.

On the other hand, for the security of digital signature schemes (DSS) the
natural setting to consider is the dual of the above: Many senders, each authenti-
cally publishing their public verification key, send messages to the same party, the
receiver. Here too it is reasonable to consider anonymity (preservation), of the
sender in this case, from the standpoint of an eavesdropper. But in this setting it
is additionally also meaningful to study the stronger notion of anonymity from
the standpoint of the receiver, that is, we might want the senders to remain
anonymous not only towards an external attacker (the eavesdropper), but towards
the receiver as well. We distinguish those two separate notions of anonymity
in this setting as external and internal, respectively, where clearly the latter
implies the former (but not vice versa). However, unlike for PKE, the situation
is arguably more intricate for DSS; in fact, providing external anonymity alone
already appears paradoxical: How can we guarantee (computational) indistin-
guishability of signatures, when in the usual application of DSS it is assumed that
an eavesdropper has access to the corresponding message as well as all possible
verification keys, and could therefore easily distinguish signatures generated with
different keys by simply verifying the signature on the message against all keys?

A direct consequence of this apparent dilemma is that for the setting discussed
above, the standard syntactic definition of a DSS cannot possibly achieve any
meaningful form of anonymity, as we prove later within our framework. This is
in fact the reason why in the cryptographic literature there exist a multitude
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of different security notions capturing various forms of anonymity in relation
to syntactic modifications of the usual DSS definition. A non-exhaustive list of
examples includes: group signatures [CvH91], ring signatures [RST01], anonymous
signatures [YWDW06,Fis07,ZI09], and partial signatures [BD09,SY09].

In this work we take an alternative approach in order to treat the apparently
oxymoronic problem of achieving anonymous authenticity: Instead of creating new
syntactic modifications of DSS and ad-hoc game-based security definitions thereof,
we begin from a more abstract point of view and identify possible applications
where those two goals simultaneously come into play, and directly define security
in a composable fashion, using the framework of constructive cryptography of
Maurer and Renner [MR11,Mau12], requiring that a protocol realizes such an
application relying on the public-key infrastructure (PKI). More precisely, we
introduce three novel composable security notions for generic protocols, and then
present concrete protocols satisfying each of those. The first protocol makes use
of a novel cryptographic scheme, dubbed bilateral signatures, while the other two
employ partial signatures and ring signatures, respectively.

1.2 Related Work

The goal of this work is to fill a blank in the composable treatment of anonymous
communication.1 In order to illustrate this, we need to first briefly and informally
introduce some key concept that we will elaborate later.

As opposed to game-based security definitions, composable security definitions
in constructive cryptography are simulation-based; on an abstract level, they are
statements asserting that a cryptographic protocol constructs an ideal resource
from a set of real ones, where a resource is a mathematical object capturing a
certain functionality, and thus has interfaces through which parties, honest and
dishonest, can interact. In more detail, for the simple setting with two honest
parties—the sender and the receiver—and a dishonest party—the adversary—we
consider a real resource R and an ideal resource S, both having the same set of
interfaces, S for the sender, R for the receiver, and E for the adversary. Then
we say that a protocol π executed by the honest parties constructs S from R,
informally denoted as R p π==⇒ S, if there exists a simulator sim such that πS,R R
(the resource resulting from applying the protocol at the honest interfaces of
the real resource) is indistinguishable from simE S (the resource resulting from
applying the simulator at the dishonest interface of the ideal resource).

Typical resources used in this simple setting are the insecure channel INS
(which leaks everything the sender inputs to the adversary, and allows the latter
to inject messages), the authentic channel AUT, the confidential channel CNF,
and the secure (i.e., authentic and confidential) channel SEC, all allowing to send
multiple messages. But in order to capture anonymity, we are interested in a
setting where there are multiple parties. More concretely, we consider resources
with n senders S1, . . . , Sn and one receiver R (for which we use the intuitive
notation n→1), and resources with one sender and n receivers (for which we

1 In particular, we are not directly considering (anonymous) entity authentication.
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use the intuitive notation 1→n). If one considers the above channels, a natural
approach to extend them to this setting would be to simply compose them in
parallel, but this would imply that the leakage now includes the identities of the
sender Si or the receiver Ri, since the individual channels are distinguishable by
definition by the adversary. In the following table we summarize the guarantees
provided by resources combining such channels (which we also denote as channels)
in terms of what is leaked to the adversary relative to a message m input by a
sender and whether the adversary can inject messages (such that the receiver can
not distinguish whether the message was sent by the sender S or the adversary
E).

Channel Name Symbol Leaked Inject Symbol Leaked Inject

Insecure INSn→1 Si,m yes INS1→n Ri,m yes
Authentic AUTn→1 Si,m no AUT1→n Ri,m no
Confidential CNFn→1 Si, |m| yes CNF1→n Ri, |m| yes

Secure SECn→1 Si, |m| no SEC1→n Ri, |m| no

It seems natural that truly anonymous versions of these channels, that is,
channels capturing sender and receiver anonymity, must not leak such identities
to the adversary. Therefore we enhance the above channels with these guarantees
(adding the prefix A- for anonymous), and summarize the new channels in the
following table (note that in A-AUTn→1, A-CNFn→1, and A-SECn→1, the receiver
also obtains the identity Si of the sender, along with the message m).

Channel Name
Symbol

Leaked Inject
Sender anon. Receiver anon.

Anonymous & Insecure A-INSn→1 A-INS1→n m yes
Anonymous & Authentic A-AUTn→1 A-AUT1→n m no
Anonymous & Confidential A-CNFn→1 A-CNF1→n |m| yes

Anonymous & Secure A-SECn→1 A-SEC1→n |m| no

Other (non-anonymous) resources that we need in this setting are: KEYn↔1,
which provides each sender with a (different) shared secret-key with the receiver;
KEY1↔n, which provides each receiver with a shared secret-key with the sender
(in both resources, the adversary’s interface is inactive); 1-AUTn→1, which pro-
vides each sender with a (different) single-use authentic channel to the receiver;
1-AUT1←n, which provides the receiver with n (different) single-use authentic
channels, one to each of the senders.

We stress again that we are considering anonymity preservation, therefore
in the following we summarize the previous results from the literature in terms
of constructions among the anonymous channels mentioned above (plus shared
secret keys and one-time authentic channels). This means that both real and ideal
core resources are anonymous, and hence the enhancement of security provided by
a construction happens along a different axis (namely confidentiality, authenticity,
or both).
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– In the symmetric-key setting, two works provide sender anonymous construc-
tions:

• In [AHM+15], Alwen et al. show that for a simple protocol πpMAC based
on key-indistinguishable and unforgeable probabilistic MAC schemes,

[KEYn↔1,A-INSn→1] p
πpMAC
====⇒ A-AUTn→1.

• In [BM20], Banfi and Maurer show that for a simple protocol πpE based
on key-indistinguishable and IND-CPA probabilistic encryption schemes,

[KEYn↔1,A-AUTn→1] p
πpE
===⇒ A-SECn→1,

and for a simple protocol πpAE based on key-indistinguishable and IND-
CCA3 probabilistic authenticated encryption schemes,

[KEYn↔1,A-INSn→1] p
πpAE
===⇒ A-SECn→1.

– In the public-key setting, Kohlweiss et al. [KMO+13] show that for a simple
protocol πPKE based on key-indistinguishable and robust IND-CCA public-key
encryption schemes,

[1-AUT1←n,A-INS1→n] p
πPKE===⇒ A-CNF1→n.

So far, no public-key constructions achieving sender anonymity were given,
and we fill precisely this gap here, stated as an open problem in [KMO+13].

1.3 Contributions

Referring to the above discussion, it is natural to ask whether it is possible to
construct A-AUTn→1 from 1-AUTn→1 and A-INSn→1, using a protocol based on
signature schemes achieving some form of anonymity. But it is rather easy to see
that for regular signature schemes, this is impossible. Using an intuitive notation,
the first result that we show is in fact that for any such protocol π,

[1-AUTn→1,A-INSn→1] Yp π==⇒ A-AUTn→1, (1)

that is, no protocol can construct A-AUTn→1 from 1-AUTn→1 and A-INSn→1

only. We prove this in Appendix B.

The main goal of this paper is to show how to get around this impossibility
result by rethinking what can actually be achieved in this setting. We still did
not discuss the guarantees of the receiver: In A-AUTn→1, while only the message
m is leaked to the adversary, the receiver will see both the message m and the
sender’s identity Si. Therefore, we identify two natural ways in which we can
modify this resource such that we can then make meaningful statements. We see
this systematic approach as a further contribution of this paper.

6



– We introduce the new resource de-anonymizable authentic channel D-AUTn→1,
which is similar to A-AUTn→1, except that it only guarantees authenticity of
a sender once it decides to give up its anonymity. In more detail, a sender Si

can send a message m, and both the adversary and the receiver will only see
m, but can decide at a later point to leak its identity to both parties, and this
capability is not available to the adversary. This channel could be used for
example in an anonymous auction, where bids need to be anonymous but the
winner is required to later give up its anonymity in order to (authentically)
claim the winning bet.

– We also introduce the new ideal resource receiver-side anonymous authen-
tic channel RA-AUTn→1, which is similar to A-AUTn→1, except that the
anonymity of the sender is guaranteed also towards the receiver, not just the
adversary. Therefore, RA-AUTn→1 also captures internal anonymity.

In the following table we summarize the guarantees provided by those resources.

Channel Name Symbol Leaked Inject Received

Anonymous & Authentic A-AUTn→1 m no Si,m
De-Anonymizable & Authentic D-AUTn→1 m/(Si,m) m̃/(Sj , m̃) m/(Si,m)

Receiver-Side Anon. & Authentic RA-AUTn→1 m no m

We can now summarize our contribution as providing constructions that,
compared to (1), (i) use a different set of assumed resources, (ii) realize a different
kind of ideal resource, or (iii) both. For (i) we show that a new scheme that
we introduce, bilateral signatures, can be used to construct A-AUTn→1 if we
further assume a (single-use) authentic channel from the receiver to the senders,
1-AUTn←1. Informally, we show that

[1-AUTn→1, 1-AUTn←1,A-INSn→1] p
πBS===⇒ A-AUTn→1,

which amounts to giving composable semantics to bilateral signatures. For (ii)
we show that D-AUTn→1 can be constructed from the original set of assumed
resources from (1) using partial signatures from [BD09,SY09]. Informally, we
show that

[1-AUTn→1,A-INSn→1] p
πPS===⇒ D-AUTn→1,

which amounts to giving composable semantics to partial signatures. Finally,
for (iii) we show that RA-AUTn→1 can be constructed using ring signatures
[RST01,BKM06] if instead of 1-AUTn→1, we assume a (single-use) broadcast
authentic channel, 1-AUTn⟲1, which from each sender authentically transmits a
message to the receiver, as well as all other senders. Informally, we show that

[1-AUTn⟲1,A-INSn→1] p
πRS===⇒ RA-AUTn→1,

which amounts to giving composable semantics to ring signatures.
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1.4 Outline

In Section 2 we introduce our notation and the specific version of constructive
cryptography used to present our results. We present and relate game-based
and composable security notions for bilateral signatures in Section 3, for partial
signatures in Section 4, and for ring signatures in Section 5.

2 Preliminaries

2.1 Notation

We write x, . . . ← y to assign the value y to variables x, . . ., and z, . . . ← D
to assign independently and identically distributed values to variables z, . . .
according to distribution D, where we usually describe D as a probabilistic
function. ∅ denotes the empty set, N .

= {0, 1, 2, . . .} denotes the set of natural
numbers, and for n ∈ N, we use the convention [n]

.
= {1, . . . , n}. For a random

variable X over a set X , we define suppX
.
= {x ∈ X |Pr[X = x] > 0}. For a

logical statement S, 1{S} is 1 if S is true, and 0 otherwise. Finally, for tuples we
sometimes abuse notation in the following way: (x, (y, z)) = (x, y, z).

2.2 Constructive Cryptography

In this work we use the composable framework of constructive cryptography (CC),
originally introduced by Maurer and Renner [MR11,Mau12], incorporating ideas
later exposed in [MR16] and [JM20]. At the most abstract level, CC is a theory
that allows to define security of cryptographic protocols as statements about
constructions transforming a number of resources satisfying some real (easier to
achieve) specification R into a resource satisfying an ideal (simple and abstract)
specification S. In this work we use the version of CC in which a specification S
is simply modeled as a subset of the set of all resources Φ, therefore, S ⊆ Φ. For
a resource R ∈ Φ we will often abuse notation and use the expression R in order
to refer to the singleton specification {R}.

On this abstract level, we define a constructor γ simply as a function Φ→ Φ,
which given a resource R ∈ Φ, returns the constructed resource γ(R) ∈ Φ, and we
also consider the natural lift-up γ : 2Φ → 2Φ of constructor γ to specifications by
extending the definitions to include γ(S) .

= {γ(R) |R ∈ S} ⊆ Φ. Therefore, we
formalize the concept of construction via the subset relation.

Definition 1. Given specifications R,S ⊆ Φ and constructor γ : Φ → Φ, γ

constructs R from S, denoted R γ−−→ S, if and only if γ(R) ⊆ S.

Since this implies that S, as a set, is potentially larger than γ(R), it also highlights
the fact that the guarantees given by the specification S are generally weaker
than those given by R. This results in S having simpler and easier to analyze
guarantees, and therefore the statement can be interpreted as a distillation of
the relevant properties.
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Another important ingredient of CC is the concept of a relaxation. Given a
resource R ∈ Φ, a relaxation ρ : Φ → 2Φ maps R into a specification ρ(R) ⊆ Φ
and is such that R ∈ ρ(R). We use the shorthand notation Rρ .

= ρ(R). As we
did for constructors, we also consider the natural lift-up ρ : 2Φ → 2Φ of a
relaxation ρ to a specification S ⊆ Φ by extending the definitions to include
Sρ .

= ρ(S) .
=

⋃
R∈S R

ρ ⊆ Φ.

Systems, Resources, Converters, and Protocols. So far we defined CC
on an abstract level, now we specify more concretely what kind of resources we
consider, and how constructors are concretely instantiated for such objects. We
model resources and constructors as random systems, just systems for short,
as introduced in [Mau02] and later refined in [MPR07]. Simplistically, such
mathematical objects can be considered as probabilistic discrete reactive systems,
that can be queried with labeled inputs in a sequential fashion, where each
distinct label corresponds to a distinct interface, and for each such input generate
(possibly probabilistically) an equally labeled output depending on the input and
the current state (formally defined by the sequence of all previous inputs and the
associated outputs). Systems can be composed in parallel: given two (or more)
systems S and T, we denote [S,T] as the system which can be independently
queried at the interfaces of both S and T. Following [BM20], we also use correlated
parallel composition, where S and T are not independent (they might for example
share a state, or depend on the same random variable), denoted ⟨S,T⟩. Such
a system can be modeled by introducing another system C that has access to
[S,T], that is, ⟨S,T⟩ = C[S,T].

In the following we consider only resources relevant to our setting for conve-
nience, but of course everything can be phrased at a more abstract level for any
kind of resource modeled as a system. Following [BM20], in this work all resources
are parameterized by an integer n ≥ 2, and each defines n+ 2 interfaces: n for
the senders, denoted Si, for i ∈ [n], one for the adversary, denoted E, one for
the receiver, denoted R, and we define In

.
= {S1, . . . , Sn, R,E}. In the following

we use the expression n-resource to make explicit such parameter, and denote
the set of all such resources as Φn. To any interface I ∈ In of an n-resource
R ∈ Φn, we can attach a converter α (also formally modeled as a random system)
which we assume results in a new n-resource, denoted as αI R ∈ Φn. We denote
the set of all converters as Σ, and assume that they naturally compose, that
is, for converters α, β ∈ Σ, αβ ∈ Σ is also a converter. Moreover, we assume
commutativity of converters attached at different interfaces, that is, considering
converters α, β ∈ Σ and interfaces I, J ∈ In, with I ̸= J , then αI βJ R = βJ αI R.
Finally, we define the special converter id ∈ Σ as the identity converter such that
idI R = R, for any R ∈ Φn and I ∈ In.

In order to make security statements using CC, we still need to define
constructors for this specific type of resources. To do so, we first model a protocol
π executed by n senders and one receiver (an n-protocol) as a list of n + 1
converters (α1, . . . , αn+1), where the adopted convention is that αi is attached
to sender interface Si, for i ∈ [n], while αn+1 is attached to the receiver interface
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R. In the following, we use the short-hand notation πR for the n-resource
αS1
1 · · · αSn

n αR
n+1 R. This way, we can now instantiate the concept of a constructor

γ simply as attachment of a n-protocol, that is, for each n-protocol π, we
consider the associated constructor γπ, and define γπ(R)

.
= πR. Moreover,

for a second n-protocol π′
.
= (β1, . . . , βn+1), we define the composition of π′

with π as π′π
.
= (β1α1, . . . , βn+1αn+1), and therefore π′πR is the n-resource

(β1α1)
S1 · · · (βnαn)

Sn (βn+1αn+1)
R R. Therefore composition of the constructors

corresponding to π and π′, that is, γπ′ ◦ γπ, is simply modeled as π′π. In the
following, we will just use the concept of protocol attachment rather than the
more abstract concept of a constructor.

Finally, for n-resources R1, . . . ,Rℓ ∈ Φn, we overload notation and define
their parallel composition [R1, . . . ,Rℓ] also as an n-resource, but where each
interface I ∈ In exports ℓ sub-interfaces Ij , for j ∈ [ℓ], with the convention that
Ij provides direct access to the interface I of Rj .

Indistinguishability of Systems. In order to define security, we also need to
formalize the notion of indistinguishability of n-resources, and more in general
of systems. For that, we formally define a distinguisher D, also as a system
but with the exception that it initially produces an output with no need for an
input, and finally produces a binary output (which depends on the probabilistic
interaction with another system). We always tacitly assume that a distinguisher
D interacting with any system S has matching interfaces with S; for n-resources
we denote the set of all such distinguishers as Θn. We can attach a converter
α ∈ Σ also to any distinguisher D, at any of its interfaces, say I, which we assume
results in a new distinguisher, denoted as D Iα, and in the case of an n-protocol
π (and D being an appropriate distinguisher for an n-resource) we can naturally
consider Dπ. For a distinguisher D and systems S,T, we denote D’s output after
interacting with S as DS ∈ {0, 1}, and define D’s advantage in S from T as

∆D(S,T)
.
= |Pr[DS = 0]− Pr[DT = 0]|.

Considering a converter α ∈ Σ and an interface I, note that D IαS = DαI S, and

therefore ∆D(αI S, αI T) = ∆D Iα(S,T). Finally, given a function ε that maps
distinguishers to [0, 1], we can define the ε-indistinguishability relation between
systems S and T, called ε-closeness, as

S ≈ε T :⇐⇒ ∀D : ∆D(S,T) ≤ ε(D).

For a distinguisher D, ε(D) might be a negligible value (depending on some
security parameter, which we do not make explicit in this work). More generally,
ε maps a distinguisher D for systems S and T to the advantage that a new
distinguisher D̃ has in distinguishing two different systems S̃ and T̃, where D̃
uses D as a black-box. For this we need to define a reduction system C that on
one side exports all the interfaces of D (which has the same interface set as S
and T), and on the other side exports all interfaces of S̃ (which has the same
interface set as T̃). Then if C is composed with S̃ or T̃, denoted CS̃ or CT̃,
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respectively, we usually show that S = CS̃ and T = CT̃. Just as we did for
converters, we can assume more generally that such a system C can be attached
to D resulting in a distinguisher system D̃

.
= DC for S̃ and T̃. Then if we know

(or assume) that S̃ ≈ε̃ T̃, we have

ε(D) = ∆D(S,T) = ∆D(CS̃,CT̃) = ∆DC(S̃, T̃) ≤ ε̃(DC),

and by defining ε̃C(D)
.
= ε̃(DC), we establish the (function) inequality ε ≤ ε̃C

which entails that by showing (or just assuming) that ε̃ is negligible (for all
distinguishers), then so is ε.

Relevant Resource Specification Relaxations. Recall that for our specific
instantiation of CC, a specification S ⊆ Φn is a set of n-resources. Then for a
converter α ∈ Σ and an interface I ∈ In, we define αI S .

= {αI R |R ∈ S}, and
for an n-protocol π, we analogously define πS .

= {πR |R ∈ S}. Next we define
two important relaxations, as introduced in [MR16].

First, we define the ε-relaxation of R as the set of all resources which are
ε-close to R, for some function ε : Θn → [0, 1], that is,

Rε .
= {S ∈ Φn |S ≈ε R}.

We can naturally extend this notion to a specification S ⊆ Φn, that is, we define

Sε .
=

⋃
R∈S

Rε = {S ∈ Φn | ∃R ∈ S : S ≈ε R}.

Secondly, we define the ∗-relaxation (spelled “star relaxation”) of R, relative
to a set of interfaces C ⊆ In, with t

.
= |C| and C .

= {I1, . . . , It}, as the set of all
resources which behave arbitrarily at those interfaces, that is,

R∗C
.
= {αI1

1 · · ·α
It
t R |α1, . . . , αt ∈ Σ}.

We can again extend this notion to a specification S ⊆ Φn, that is, we define

S∗C .
=

⋃
R∈S

R∗C = {αI1
1 · · ·α

It
t R |α1, . . . , αt ∈ Σ, R ∈ S}.

This relaxation intuitively captures a scenario in which a set of parties is dishonest,
namely those which are assigned to the interfaces in C. We often consider the
singleton C = {E} for which we write R∗E and S∗E instead of R∗{E} and S∗{E} ,
respectively.

Constructions Capturing Anonymity. Using the specifications introduced
above, we can now illustrate the specific type of construction statements that we
will show in this work. Intuitively, we want to say that a weaker (that is, “smaller”)
specification S can be constructed from a stronger (that is, “larger”) specification
R by an n-protocol π if applying π to any n-resource R ∈ R satisfying the
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specification R, results in an n-resource πR ∈ Φn not too far from an n-resource
S ∈ S satisfying the specification S. As usual in cryptography, we also require
that such n-resource S can exhibit arbitrary behavior at the adversarial interface
E, reflecting the fact that whatever the adversary can do in the real-world,
modeled by πR, it can also do in the ideal-world. This is conventionally modeled
by considering a special converter sim ∈ Σ (a simulator) that is attached to S’s
adversarial interface E, resulting in the resource simE S ∈ Φn. Therefore, on a
high level the statement that one need to prove is R π−−→ S∗E , if we would consider
perfect closeness, that is, information theoretic security. But more in general,
we formalize the concept of “not too far” by means of the ε-relaxation, hence
a more frequent kind of statement to prove in cryptography is R π−−→ (S∗E )ε,
which essentially allows us to rely on cryptographic assumptions.

But this specific type of construction still does not allow us to appropriately
model anonymity in our setting; in order to capture anonymity, we exploit the
power of the ∗-relaxation once more. Concretely, as pointed out earlier, we want
to make statements about the preservation of anonymity: We want to capture
that a protocol neither increases, nor degrades anonymity, and we do so by
modeling the “level” of anonymity by a corruption set C ⊆ {Si}ni=1. Then we
show that for any such corruption set C, if the senders which are not part of such
set execute the protocol, they still obtain the desired properties. To formalize this

for a protocol π
.
= (α1, . . . , αn+1), we use the notation πC, by which we mean

the list of protocols (α1, . . . , αn+1), but where for any Si ∈ C, for some i ∈ [n],
αi is replaced by the identity converter id. We now formalize the specific type of
construction statements that we will make (and in Appendix C we show they
compose).

Definition 2. For an n-protocol π, a function ε, and n-resources R,S, π anony-

mously constructs S from R within ε, denoted R pp π,ε===⇒ S, if for all C ⊆ {Si}ni=1,

R∗C
πC

−−→ (S∗C∪{E})ε, that is, πCR∗C ⊆ (S∗C∪{E})ε.

2.3 Anonymous and Authentic Resources

In this section we present the n-resources that we need later in order to make our
security statements, and we formally define then all in Appendix A. Instead of
bold-face letters, for such resources we will use suggestive sans-serif abbreviations.
We describe all resources first on an intuitive level, and then formally following
the model introduced in [BM20], in which communication is modeled by a sender
buffer S and a receiver buffer R, both allowing to insert single elements and to
read in chunks. Note that all our resources are parameterized by a set, either K
(ideally for public keys),M (ideally for messages), or X (for anything), but we
will make the instantiation of such set implicit when showing constructions.

We begin by describing the three single-use authentic channels needed as
assumed resources in order to authentically exchange public keys. The first such
resource is 1-AUTn→1, which allows to input a value once at every sender interface
Si, for i ∈ [n], and allows to read these values at the receiver and adversary
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interfaces, R and E, respectively. Based on this resource, we then simply define
1-AUTn←1 as somewhat the dual of this, namely, the resource that allows to input
a value once at the receiver interface R, and that allows to read this value at
every sender and adversary interface, Si, for i ∈ [n], and E, respectively. Finally,
we also need the resource 1-AUTn⟲1, which similarly to 1-AUTn→1 allows to
input a value once at every sender interface Si, for i ∈ [n], but additionally allows
to read these values at all the sender interfaces Si as well. We tacitly assume
that protocols first use those resources to exchange public-keys, and only once
all keys have been exchanged, they use the channel resources. We also point out
that our results are in a model in which public keys are therefore assumed to
always be honestly generated. We leave open the problem of strengthening the
model by replacing these resources by a certificate authority, which would allow
the adversary to also register keys.

We next describe the assumed channel resource A-INSn→1 as well as the
three different ideal anonymous channel resources A-AUTn→1, D-AUTn→1, and
RA-AUTn→1 (all depicted in Figure 1).

– The anonymous insecure channel A-INSn→1 allows to input multiple values
at every sender interface Si, for i ∈ [n]. Those values are stored in the
sender buffer S, from which they can be read at the adversary interface
E. Moreover, at this interface A-INSn→1 also allows the adversary to inject
multiple arbitrary values. Those values are stored in the receiver buffer R,
from which they can be read at the receiver interface R.

– In the anonymous authentic channel A-AUTn→1, the sender buffer S is used
exactly as in A-INSn→1, except that for every message sent, information about
the sender is also stored, but not leaked to the adversary. Unlike A-INSn→1,
at the interface E, A-AUTn→1 only allows the adversary to select which
messages previously input by a sender will be transmitted to the receiver.
Those messages, along with the sender information, will be transferred from
the sender buffer S to the receiver buffer R, from which they can be read at
the receiver interface R.

– The de-anonymizable authentic channel D-AUTn→1 allows to input two type
of values at every sender interface Si, for i ∈ [n]: one to commit a message
m, (cmt,m), and the other to authenticate a previously committed message
m′, (aut, hm′), where hm′ is a handle for m′ generated by D-AUTn→1. Those
values are stored in the sender buffer S, from which they can be read at the
adversary interface E. Information about the sender is also stored, but is only
leaked to the adversary along with aut values. At the interface E, D-AUTn→1

allows the adversary to select which values (of both types) previously input
by a sender will be transmitted to the receiver, as well as to inject additional
cmt values. Those values, including sender information only in case of aut
values, will be transferred from the sender buffer S to the receiver buffer R,
from which they can be read at the receiver interface R.

– The receiver-side anonymous authentic channel RA-AUTn→1 works exactly
as A-AUTn→1, except that sender information is concealed from the receiver
as well (and therefore never stored in the buffers S and R).
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Fig. 1. Sketches of the anonymous channel resources for n = 2 senders (S1 sending m1

and S2 sending m2). For D-AUT, only S1 de-anonymizes its message (in green).

3 Achieving Anonymous Authenticity

We start by introducing a new flavor of a signature scheme with some anonymity
property, dubbed bilateral signatures. This scheme shares the syntax of designated
verifier signatures (DVS): both sender and receiver have a key-pair; signing a
message requires the secret key of the sender and the public key of the receiver,
and verifying a signature requires the secret key of the receiver and the public
key of the sender. The receiver’s key-pair is essentially what allows to circumvent
the impossibility result from Appendix B, by introducing one-time authenticated
information from the receiver to the senders: it enables indistinguishability of
signatures by making verification exclusive to the receiver, as opposed to public.

Definition 3 (Bilateral Signature Scheme). A bilateral signature scheme
(BSS) ΣBS

.
= (GenS , GenR, Sgn, Vrf) over message-spaceM and signature-space

S (with ⊥ /∈M∪ S), is such that

– GenS is a distribution over the sender key-spaces SKS × PKS;
– GenR is a distribution over the receiver key-spaces SKR × PKR;
– Sgn : SKS × PKR ×M→ S is a probabilistic function;
– Vrf : SKR × PKS ×M×S → {0, 1} is a deterministic function.

We require the above to be efficiently samplable/computable. For sender key-
pair (ssk, spk) ∈ SKS × PKS and receiver key-pair (rsk, rpk) ∈ SKR × PKR we
use the short-hand notation Sgnssk,rpk(·) for Sgn(ssk, rpk, ·) and Vrfrsk,spk(·, ·)
for Vrf(rsk, spk, ·, ·). Moreover, we assume correctness of ΣBS, that is, for all
key-pairs (ssk, spk) and (rsk, rpk) distributed according to GenS and GenR, re-
spectively, all messages m ∈ M, and all signatures σ ∈ S, Vrfrsk,spk(m,σ) =
1
{
σ ∈ supp (Sgnssk,rpk(m))

}
.

Note that we only introduce bilateral signatures as an abstract syntactic
object. As we discuss in Appendix E.1, there exist concrete schemes satisfying
such syntax, as well as the semantics we define later. Nevertheless, such schemes
provide additional security guarantees that are not required in our setting. We
leave the problem of finding a bilateral signature scheme which is minimal.

3.1 Game-Based Security of Bilateral Signatures

We begin our study of the semantics of bilateral signatures by defining their
game-base security. In order to define the security of a fixed scheme ΣBS, we define
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the following systems (where the dependency on ΣBS is implicit), parameterized
by keys (ssk, spk) ∈ SKS × PKS , spk

.
= (spk1, . . . , spkn) ∈ PKn

S , for any n ∈ N,
and (rsk, rpk) ∈ SKR × PKR.

– ⟨Sssk,rpk,Vrsk,spk⟩:
• On input m ∈M, return (m,σ) ∈M× S, for σ ← Sgnssk,rpk(m).
• On input (m,σ) ∈ M × S, return m if Vrfrsk,spk(m,σ) = 1 and ⊥
otherwise.

– ⟨Sssk,rpk,V
⊥⟩: Set Q ⊆M×S to ∅ and then:

• On input m ∈ M, return (m,σ) ∈ M× S, for σ ← Sgnssk,rpk(m), and
set Q to Q∪ {(m,σ)}.

• On input (m,σ) ∈M× S, return m if (m,σ) ∈ Q and ⊥ otherwise.
– Kspk,rpk: On input ⋄, output (spk, rpk).

In our definitions, all keys will always be random variables distributed (as
key-pairs) according to ΣBS’s GenS and GenR.

We define a combined notion for bilateral signatures capturing both authen-
ticity and anonymity at once. For this, we define a distinction problem between
a real system that correctly generates and verifies signatures, via signing and
verification oracles for n (different) senders and one receiver, and an ideal system
that also correctly generates signatures and only correctly verifies signatures
previously signed, but via n copies of signing and verification oracles for the same
(randomly selected) sender and one receiver.

Definition 4 (UF-IK-Secure Bilateral Signature). A bilateral signature
scheme ΣBS is (n, ε)-unforgeable-and-anonymous (or (n, ε)-UF-IK-secure) if

[⟨Sssk1,rpk,Vrsk,spk1⟩, . . . , ⟨Ssskn,rpk,Vrsk,spkn⟩,Kspk,rpk]

≈ε

[⟨SsskI ,rpk,V
⊥⟩, . . . , ⟨SsskI ,rpk,V

⊥⟩︸ ︷︷ ︸
n times

,Kspk,rpk]

for key-pairs (ssk1, spk1), . . . , (sskn, spkn) ← GenS, (rsk, rpk) ← GenR, spk
.
=

(spk1, . . . , spkn), and random variable I $← [n].

As we formally show in Appendix D.1, it is easy to see that if a bilateral
signature scheme is ε-UF-secure and (n, ε′)-IK-secure (as defined there), then it
is (n, εC + ε′)-UF-IK-secure, for a specific reduction C.

3.2 Composable Security of Bilateral Signatures

We continue our study of the semantics of bilateral signatures by defining their
composable security in the constructive cryptography framework. Recall that we
want to define composable security of a bilateral signature scheme ΣBS as the
construction of the resource A-AUTn→1 from the resources 1-AUTn→1, 1-AUTn←1,
and A-INSn→1 (instantiated with X = M× S, referring to Appendix A). In
order to make this statement formal, we need to define how a protocol πBS,
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attached to the resource [1-AUTn→1, 1-AUTn←1,A-INSn→1], naturally makes use
of ΣBS. First, πBS runs GenS for every sender Si, for i ∈ [n], generating key-pairs
(ssk1, spk1), . . . , (sskn, spkn), as well as GenR for the receiver R, generating the
key-pair (rsk, rpk). Then it transmits the sender public keys spk1, . . . , spkn to the
receiver through 1-AUTn→1 and the receiver public key rpk to each of the senders
through 1-AUTn←1. After that, once a sender Si inputs a message m on its
interface, πBS uses sski and rpk to generate σ ← Sgnsski,rpk(m), and inputs (m,σ)
to the interface Si of A-INSn→1. Once the receiver R inputs ⋄ on its interface,
πBS also inputs ⋄ to the interface R of A-INSn→1, obtaining a set O ⊆ N×M×S,
and outputs the set {(j,m, i) | ∃ (j,m, σ) ∈ O, i ∈ [n] : Vrfrsk,spki(m,σ) = 1} to
R. We call πBS the protocol using ΣBS in the natural way.

Definition 5. A bilateral signature scheme ΣBS is (n, ε)-composably secure if

[1-AUTn→1, 1-AUTn←1,A-INSn→1] p
πBS,ε
====⇒ A-AUTn→1,

where πBS is the protocol using ΣBS in the natural way.

Finally, we show that game-based security of bilateral signatures implies their
composable security (we defer the proof to Appendix F.1).

Theorem 1. There exists a reduction system C such that, if a bilateral signature
scheme ΣBS is (n, ε)-UF-IK-secure, then it is (n, εC)-composably secure.

4 Achieving De-Anonymizable Authenticity

In the previous section we studied a way to achieve the anonymous resource
A-AUTn→1, at the cost of assuming additional one-time authenticated information
from the receiver to all senders. In this section we tackle what can be interpreted
as the dual problem, that is, we study what can at most be achieved by only
assuming one-time authenticated information from the receivers to the sender
(in addition to an insecure channel). Considering to our impossibility result from
Appendix B, we know that the constructed resource will need to be weaker than
A-AUTn→1.

Considering the constraint on the assumed resources, intuitively we need a
scheme that, on the sender side, requires the same input as regular signatures,
that is, just a secret key and a message. But since anonymity is unachievable if
both the message and the signature are disclosed, one either needs to relax the
security definition of digital signatures, or to slightly change their syntax.

A first workaround to this impossibility was initially studied by Yang et
al. [YWDW06], and subsequently refined independently by Fischlin [Fis07] and
Zhang and Imai [ZI09], where the first approach is taken and essentially the
anonymity of the signature alone is considered. Modeling such a security definition
composably, makes it apparent how, from an application point of view, this
approach is moot: it requires to assume that an adversary only sees signatures
in transit, but not messages. Clearly, a different kind of assumed resources is
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needed; ideally, the message should be transmitted over a confidential channel.
Composably, this hints to the fact that anonymous signatures might only be
appropriate in a context where one wants to combine signatures with public-key
encryption. This can be interpreted as the study of anonymity preservation of
signcryption, and we briefly discuss this in Appendix G.

A different workaround, following the second approach, was independently
taken later by Saraswat and Yun [SY09] and by Bellare and Duan [BD09]. There,
the syntax of regular DSS was slightly modified to allow the signature to bear
some form of anonymity. More precisely, the security definitions are changed to
capture anonymity when the message and only a portion of the signature are
disclosed, and authenticity only once the full signature is disclosed. We remark
that the two works essentially introduce the same syntax and security notions,
but [SY09] uses the term anonymous signatures introduced earlier in [YWDW06],
whereas [BD09] adopts the new term partial signatures, which we will adopt here
as well. More precisely, in such a scheme the signing function returns a signature
that is defined as a tuple (σ, τ), where σ is called the stub, τ the tag, and (σ, τ)
the full signature. Then the stub σ alone guarantees anonymity of the sender
on a message m (but not its authenticity), whereas authenticity of m (but not
anonymity anymore) is guaranteed once the tag τ is subsequently disclosed.

Definition 6 (Partial Signature Scheme). A partial signature scheme (PSS)
ΣPS

.
= (Gen, Sgn, Vrf) over message-space M, stub-space S, and tag-space T

(with ⊥ /∈M∪ S ∪ T ), is such that

– Gen is a distribution over the key-spaces SK × PK;
– Sgn : SK ×M→ S × T is a probabilistic function;
– Vrf : PK ×M×S × T → {0, 1} is a deterministic function.

We require the above to be efficiently samplable/computable. For key-pair (sk, pk) ∈
SK × PK we use the short-hand notation Sgnsk(·) for Sgn(sk, ·) and Vrfpk(·, ·, ·)
for Vrf(pk, ·, ·, ·). Moreover, we assume correctness of ΣPS, that is, for all key-
pairs (sk, pk) distributed according to Gen, all messages m ∈M, and all signatures
(σ, τ) ∈ S × T , Vrfpk(m,σ, τ) = 1{(σ, τ) ∈ supp (Sgnsk(m))}.

4.1 Game-Based Security of Partial Signatures

We begin our study of the semantics of partial signatures by defining their game-
base security. Originally, in [YWDW06] anonymous signatures (the precursors
of partial signatures), were only defined to be unforgeable and anonymous, by
requiring that no adversary can forge valid signatures and distinguish signatures
when messages are withheld, respectively. In [SY09] and [BD09], for the succeeding
partial signatures, the unforgeability notion is essentially unchanged, whereas
anonymity is defined with a game where the adversary sees only a part of the
signatures, but also the whole associated messages. Additionally, both works
realize that a crucial third security guarantee is also necessary: unambiguouity
(named unpretendability in [SY09]). This notion ensures that only the original
creator of a signature is able to later show that it indeed generated it. This security
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guarantee is modeled via a game where an adversary tries to come up with two
messages m0,m1, a stub σ, and two tags τ0, τ1, such that Vrfpk0(m0, σ, τ0) =
Vrfpk1(m1, σ, τ1) = 1, for two different public keys pk0, pk1, which in our setting
must be two of the n known (and fixed) sender public keys. In Appendices D.2
and E.2 we relate those notions from the literature to the new definitions we
introduce next.

In order to define the security of a fixed scheme ΣPS, we define the following
systems (where the dependency on ΣPS is implicit), parameterized by keys
sk ∈ SK, pk ∈ PK, pk .

= (pk1, . . . , pkn) ∈ PKn, for any n ∈ N.

– ⟨Ssk,Vpk⟩:
• On input m ∈M, return (m,σ, τ) ∈M× S × T , for (σ, τ)← Sgnsk(m).
• On input (m,σ, τ) ∈M× S × T , return m if Vrfpk(m,σ, τ) = 1 and ⊥
otherwise.

– ⟨Ssk,V
⊥⟩: Set the (potentially) shared set Q ⊆M×S × T to ∅ and then:

• On input m ∈M, return (m,σ, τ) ∈M× S × T , for (σ, τ)← Sgnsk(m),
and set Q to Q∪ {(m,σ, τ)}.

• On input (m,σ, τ) ∈ M × S × T , return m if (m,σ, τ) ∈ Q and ⊥
otherwise.

– S−sk: On input m ∈M, return (m,σ) ∈M× S, for (σ, ·)← Sgnsk(m).
– Kpk: On input ⋄, output pk.

In our definitions, all keys will always be random variables distributed (as
key-pairs) according to ΣPS’s Gen.

We begin by defining a combined notion for bilateral signatures capturing
both authenticity and unambiguity at once. For this, we define a distinction
problem between a real system that correctly generates and verifies signatures, via
signing and verification oracles for n (different) senders, and an ideal system that
also correctly generates signatures for n (different) senders, but only correctly
verifies signatures previously signed by any signing oracle.

Definition 7 (UF-UA-Secure Partial Signature). A partial signature scheme
ΣPS is (n, ε)-unforgeable-and-unambiguous (or (n, ε)-UF-UA-secure) if

[⟨Ssk1 ,Vpk1⟩, . . . , ⟨Sskn ,Vpkn⟩,Kpk] ≈ε [⟨Ssk1 ,V
⊥⟩, . . . , ⟨Sskn ,V

⊥⟩,Kpk],

for key-pairs (sk1, pk1), . . . , (skn, pkn)← Gen and pk
.
= (pk1, . . . , pkn).

As we formally show in Appendix D.2, it is easy to see that if a partial
signature scheme is ε-UF-secure and (n, ε′)-UA-secure (as defined there), then it
is (n, n · εC + ε′)-UF-UA-secure, for a specific reduction C.

We next define anonymity of partial signatures. For this, we define a distinction
problem between a real system that correctly generates only stubs, via (reduced)
signing oracles for n (different) senders, and an ideal system that also correctly
generates only stubs, but via n copies of (reduced) signing oracles for the same
(randomly selected) sender.

18



Definition 8 (IK-Secure Partial Signature). A partial signature scheme ΣPS

is (n, ε)-anonymous (or (n, ε)-IK-secure) if

[S−sk1 , . . . ,S
−
skn

,Kpk] ≈ε [S
−
skI

, . . . ,S−skI ,Kpk]

for key-pairs (sk1, pk1), . . . , (skn, pkn)← Gen, pk
.
= (pk1, . . . , pkn), and random

variable I $← [n].

Unlike what we did for bilateral signatures (and will later do for ring signa-
tures as well), it is not possible to define a combined security notion for partial
signatures capturing both UF-UA-security and IK-security at once. This is because
a unified distinction problem would necessarily require a full signing oracle, in
order to model unforgeability, thus making it possible to trivially distinguish sig-
natures generated by different senders, that is, making the modeling of anonymity
impossible.

4.2 Composable Security of Partial Signatures

As it is made clear by the concrete construction given in [BD09], partial signature
schemes inherently involve a special form of commitment. In fact, such straight-
forward construction from a regular signature scheme and a commitment scheme
involves generating a normal signature on the message, and committing to it
and the verification key. The resulting commitment bitstring will then be the
stub σ (the one ensuring anonymity, but not authenticity), and the opening (or
“decommital key”) will correspond to the tag τ (the one ensuring authenticity,
but not anonymity). More details are found in Appendix E.2.

From this, it becomes immediately apparent that trying to capture security
of partial signatures in a composable fashion, would necessarily incur the so-
called simulator commitment problem. In this specific case, the issue is as follows:
Intuitively, in the real world a sender Si, for i ∈ [n], generates a full signature
(σ, τ) on a message m, and in a first phase sends only (m,σ) to the receiver R,
while in a second phase it sends (m,σ, τ), which must satisfy Vrfpki(m,σ, τ) = 1.
But in the ideal world, during the first phase the simulator only receives the
message m from D-AUTn→1, and does not know who the sender is (in particular,
it does not know the value i ∈ [n]). Even though it emulates all n secret/public
keys ski, pki of the senders, it must output a partial signature σ by producing a
full signature (σ, τ) for m using a different random secret key sk (this difference
in the real and ideal worlds is what exactly captures anonymity of the stub σ).
In the second phase, once it obtains the identity i of the sender Si who sent m,
the simulator must be able to output, along with the previously defined stub σ,
a valid tag τ that satisfies Vrfpki(m,σ, τ) = 1. But because upon generation of σ
from m, the simulator did not use ski, it is infeasible for it to correctly generate
such a valid τ .

Recently, a generic workaround to this problem was put forth by Jost and
Maurer [JM20], where the use of a new type of relaxation, the so-called interval-
wise relaxation, allows to make formal statements capturing security notions that
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in regular composability frameworks would incur in the commitment problem.
The interval-wise relaxation builds upon the combination of two other relaxations,
the from-relaxation and the until-relaxation. Informally, given a resource R and
two monotone2 predicates P1, P2 (on the history of events happening globally in
an experiment involving R), the from-relaxation R[P1 consists of all resources
behaving arbitrarily until P2 is true and exactly as R afterwards, whereas the
until-relaxationRP2] consists of all resources behaving exactly asR until P1 is true
and arbitrarily afterwards. Hence, intuitively the combined relaxation R[P1,P2]

consist of all resources behaving exactly as R from when P1 is true and until
P2 is true, and arbitrarily otherwise (technically, it actually corresponds to the
transitive closure of taking the from- and until-relaxation in alternating order).
Finally, for a function ε : Θn → [0, 1], the interval-wise relaxation R[P1,P2]:ε

informally corresponds to all resources in R[P1,P2] that are also ε-close to R.
Formally, this is defined using the ε-relaxation introduced in Section 2.2 as
R[P1,P2]:ε .

= ((R[P1,P2])ε)[P1,P2] (see [JM20] for more details).
Recall that we want to define composable security of a partial signature scheme

ΣPS as the construction of the resource D-AUTn→1 from the resources 1-AUTn→1,
and A-INSn→1 (instantiated with X = ({cmt}×M×S)∪ ({aut}×M×S ×T ),
referring to Appendix A). In order to make this statement formal, we need
to define how a protocol πPS, attached to the resource [1-AUTn→1,A-INSn→1],
naturally makes use of ΣPS. First, πPS runs Gen for every sender Si, for i ∈ [n],
generating key-pairs (sk1, pk1), . . . , (skn, pkn). Then it transmits the public keys
pk1, . . . , pkn to the receiver through 1-AUTn→1. After that, for each sender Si

it sets up two look-up tables, modeled here as sets Hi ⊆ N ×M× S × T and
H′i ⊆ N×M×S, as well as a handle value hi ∈ N, initially set to 0. Then sender
Si might input messages of two different types on its interface:

– (cmt,m), for some m ∈ M: in this case, πPS uses ski to generate (σ, τ) ←
Sgnski(m), and inputs (cmt,m, σ) to the interface Si of A-INSn→1. Then it
sets hi ← hi + 1 and Hi ← Hi ∪ {(hi,m, σ, τ)}.

– (aut, h), for some h ∈ N: in this case, πPS first checks whether (h,m, σ, τ) ∈ Hi,
for some m,σ, τ . If that is the case, then πPS inputs (aut,m, σ, τ) to the
interface Si of A-INSn→1.

Once the receiver R inputs ⋄ on its interface, πPS also inputs ⋄ to the interface R of
A-INSn→1, obtaining a set O ⊆ (N×{cmt}×M×S)∪ (N×{aut}×M×S×T ).
Then it sets H′ ← H′ ∪ {(j,m, σ) | (j, (cmt,m, σ)) ∈ O}, computes the sets
O′

.
= {(cmt, j,m) | ∃σ ∈ S : (j, (cmt,m, σ)) ∈ O}, O′′ .

= {(aut, j′, j, i) | ∃m ∈
M, σ ∈ S, τ ∈ T : (j′, aut,m, σ, τ) ∈ O, (j,m, σ) ∈ H′, Vrfpki(m,σ, τ) = 1}, and
outputs the set O′ ∪O′′ to R. We call πPS the protocol using ΣPS in the natural
way.

Intuitively, we model composable security of a partial signature scheme by
making a statement for each interval defined by a sequence of inputs at the sender
interfaces {Si}ni=1 that are of the same type, that is, either all are of the form
(cmt, ·) (messages), or all are of the form (aut, ·) (handles). This way, we make

2 A monotone predicate is a predicate that once becomes true cannot be false anymore.
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sure that the individual security statement is within an interval in which the
simulator cannot incur the commitment problem. For this we define the following
predicates:

– Pmsg(j): true if j-th sender input is a message m (E would obtain (m,σ));
– Phnd(j): true if j-th sender input is a handle h (E would obtain (m,σ, τ));
– Pfst(j): true at first consecutive sender input of same type as the j-th;
– Plst(j): true at last consecutive sender input of same type as the j-th.

Definition 9. A partial signature scheme ΣPS is (n, t, εm, εh)-composably secure
if for all C ⊆ {Si}ni=1,

πCPS[1-AUTn→1,A-INSn→1]
∗C ⊆

⋂
(P1,P2,ε)∈Ω (D-AUT

∗C∪{E}
n→1 )[P1,P2]:ε,

for Ω = {(Pfst(j), Plst(j), εm)}j∈[t]:Pmsg(j)
∪{(Pfst(j), Plst(j), εh)}j∈[t]:Phnd(j)

, where t ∈
N is an upper-bound on the number of transmitted messages and πPS is the
protocol using ΣPS in the natural way.

Finally, we show that game-based security of partial signatures implies their
composable security (we defer the proof to Appendix F.2).

Theorem 2. There exist reduction systems Cm and Ch such that, if a partial
signature scheme ΣPS is (n, εm)-IK-secure and (n, εh)-UF-UA-secure, then it is
(n, t, εCm

m , εCh

h )-composably secure, for any t ∈ N.

Remark 1. It is natural to ask whether regular signatures would also achieve
the notion of Definition 9. This would correspond to asking whether a partial
signature scheme with empty strings as stubs would still satisfy Theorem 2.
The short answer is no, because it is easy to see that such a scheme does not
necessarily achieve unambiguity. Nevertheless, we point out that in principle
it should be possible to construct unambiguous regular signature schemes, but
still we chose to use partial signatures instead because they offer more: If the
adversary also publishes its public-key, then non-empty stubs and unambiguity
ensure that it cannot falsely claim any message of the honest senders. This would
follow trivially by appropriately extending our definitions, but it would not if a
regular signature scheme was used instead. We leave the problem of formalizing
this variant open for future work.

5 Achieving Receiver-Side Anonymous Authenticity

One of the first alternative signature schemes providing some form of anonymity
were group signatures, introduced by Chaum and Van Heyst [CvH91]. The main
idea is that members of a group share a public verification key, which can be
used to verify a message-signature pair generated by any of the group members
using their own (different) secret keys. Anonymity is enforced by ensuring that
the verification process does not reveal any partial information about the secret
key used to generate the signature, hence effectively allowing a member to
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anonymously sign a message on behalf of the group. Technically, this is achieved
by assigning the role of group manager to a selected member, which is responsible
for generating all members’ secret keys as well as the group’s public verification
key. Therefore, the group manager also has the ability to reveal the original
signer.

This drawback of group signatures was later circumvented by Rivest, Shamir,
and Tauman [RST01], who introduced ring signature. In this new scheme, a
signature is generated by using not only the sender secret key, but also all the
public keys of the group’s members, called a ring in this context. Therefore, a
signature must be transmitted along with the list of all public keys used, and
anonymity is again enforced by requiring that the verification process does not
reveal any partial information about the secret key used to generate the signature.
Another advantage of ring signatures, compared to group signatures, is that
the ring can be dynamically chosen by the sender, and does not require any
cooperation.

The syntax of a ring signature scheme, for a fixed ring size of n ∈ N, extends
that of a regular DSS as follows: each sender generates its key-pair (ski, pki), for
i ∈ [n], but in order to generate a signature σ on a message m, in addition to ski,
the list pk

.
= (pk1, . . . , pkn) of all other senders public keys is needed. Moreover,

also the index i itself is required by the signing function, in order to link the
given secret key to the public key of the sender. Then, the receiver can verify
that σ is a valid signature for m by using pk, and be assured that the message
was authentically transmitted by one of the known senders, and no external
adversary.

Definition 10 (Ring Signature Scheme). A ring signature scheme (RSS)
ΣRS

.
= (Gen, Sgn, Vrf) for n ≥ 2 users over message-spaceM and signature-space

S (with ⊥ /∈M∪ S), is such that

– Gen is a distribution over the key-space SK × PK;
– Sgn : [n]× SK × PKn ×M→ S is a probabilistic function;
– Vrf : PKn ×M×S → {0, 1} is a deterministic function.

We require the above to be efficiently samplable/computable. For index i ∈ [n]
and keys sk ∈ SK, pk .

= (pk1, . . . , pkn) ∈ PKn, for any n ∈ N, we use the short-
hand notation Sgni,sk,pk(·) for Sgn(i, sk,pk, ·) and Vrfpk(·, ·) for Vrf(pk, ·, ·).
Moreover, we assume correctness of ΣRS, that is, for all n ≥ 2, all i ∈ [n],
all possible lists of n key-pairs (sk1, pk1), . . . , (skn, pkn) distributed according to
Gen, with pk

.
= (pk1, . . . , pkn), all messages m ∈ M, and all signatures σ ∈ S,

Vrfpk(m,σ) = 1
{
σ ∈

⋃n
i=1 supp (Sgni,ski,pk(m))

}
.

5.1 Game-Based Security of Ring Signatures

When ring signatures were introduced in [RST01], no formal game-based security
definitions were given, this was only done later in [BKM06]. There, a stronger
model than the one considered here was introduced, namely one where the
adversary can generate and publish its own public key, which, as discussed in
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Section 2.3, would require a certificate authority. Therefore, here we use adapted
versions of the weaker security notions of unforgeability against fixed-ring attacks
and basic anonymity from [BKM06]. In Appendices D.3 and E.3 we relate those
notions from the literature to the new combined definition we introduce next.

In order to define the security of a fixed scheme ΣRS, we define the following
systems (where the dependency on ΣRS is implicit), parameterized by index
i ∈ [n] and keys sk ∈ SK, pk .

= (pk1, . . . , pkn) ∈ PKn, for any n ∈ N.

– ⟨Si,sk,pk,Vpk⟩:
• On input m ∈M, return (m,σ) ∈M× S, for σ ← Sgni,sk,pk(m).
• On input (m,σ) ∈M×S, return m if Vrfpk(m,σ) = 1 and ⊥ otherwise.

– ⟨Si,sk,pk,V
⊥⟩: Set Q ⊆M×S to ∅, and then:

• On input m ∈ M, return (m,σ) ∈ M× S, for σ ← Sgni,sk,pk(m), and
set Q to Q∪ {(m,σ)}.

• On input (m,σ) ∈M× S, return m if (m,σ) ∈ Q and ⊥ otherwise.
– Kpk: On input ⋄, output pk.

In our definitions, all keys will always be random variables distributed (as
key-pairs) according to ΣRS’s Gen.

We define a combined notion for ring signatures capturing both authenticity
and anonymity at once. For this, we define a distinction problem between a real
system that correctly generates and verifies signatures, via signing and verification
oracles for n (different) senders, and an ideal system that also correctly generates
signatures and only correctly verifies signatures previously signed, but via n
copies of signing and verification oracles for the same (randomly selected) sender.

Definition 11 (UF-IK-Secure Ring Signature). A ring signature scheme
ΣRS is (n, ε)-unforgeable-and-anonymous (or (n, ε)-UF-IK-secure) if

[⟨S1,sk1,pk,Vpk⟩, . . . , ⟨Sn,skn,pk,Vpk⟩,Kpk]

≈ε

[⟨SI,skI ,pk,V
⊥⟩, . . . , ⟨SI,skI ,pk,V

⊥⟩︸ ︷︷ ︸
n times

,Kpk],

for key-pairs (sk1, pk1), . . . , (skn, pkn)← Gen, pk
.
= (pk1, . . . , pkn), and random

variable I $← [n].

As we formally show in Appendix D.3, it is easy to see that if a ring signature
scheme is (n, ε)-UF-secure and (n, ε′)-IK-secure (as defined there), then it is
(n, εC + ε′)-UF-IK-secure, for a specific reduction C.

5.2 Composable Security of Ring Signatures

We continue our study of the semantics of ring signatures by defining their
composable security in the constructive cryptography framework. Composable
security notions for ring signatures have been previously studied in [YO07] within
the universal composability (UC) framework. There, an ideal functionality was
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introduced, and it was shown to be securely realized by a protocol employing ring
signatures. Unlike with our approach, such functionality was completely tailored
to the ring signature scheme used by the protocol, that is, it exported operations
such as signing and verifying, it did not model a communication channel between
senders and receiver. Here we define an ideal resource, independent of any
cryptographic scheme, and show that (among other possible ones), a protocol
employing ring signatures indeed realizes such a resource.

Recall that we want to define composable security of a ring signature scheme
ΣRS as the construction of the resource RA-AUTn→1 from the resources 1-AUTn⟲1

and A-INSn→1 (instantiated with X =M×S, referring to Appendix A). In order
to make this statement formal, we need to define how a protocol πRS, attached to
the resource [1-AUTn⟲1,A-INSn→1], naturally makes use of ΣRS. First, πRS runs
Gen for every sender Si, for i ∈ [n], generating key-pairs (sk1, pk1), . . . , (skn, pkn).
Then it transmits the public keys pk

.
= (pk1, . . . , pkn) to the receiver and all

senders through 1-AUTn⟲1. After that, once a sender Si inputs a message m on its
interface, πRS uses ski and pk to generate σ ← Sgni,ski,pk(m), and inputs (m,σ)
to the interface Si of A-INSn→1. Once the receiver R inputs ⋄ on its interface, πRS

also inputs ⋄ to the interface R of A-INSn→1, obtaining a set O ⊆ N×M× S,
and outputs the set {(j,m) | ∃ (j,m, σ) ∈ O : Vrfpk(m,σ) = 1} to R. We call πRS

the protocol using ΣRS in the natural way.

Definition 12. A ring signature scheme ΣRS is (n, ε)-composably secure if

[1-AUTn⟲1,A-INSn→1] p
πRS,ε
====⇒ RA-AUTn→1,

where πRS is the protocol using ΣRS in the natural way.

Finally, we show that game-based security of ring signatures implies their
composable security (we defer the proof to Appendix F.3).

Theorem 3. There exists a reduction system C such that, if a ring signature
scheme ΣRS is (n, ε)-UF-IK-secure, then it is (n, εC)-composably secure.

6 Concluding Remarks and Future Work

This work focused on filling a gap in the composable treatment of anonymity
preservation in the public-key setting. Being of definitional nature, it was centered
around providing clear composable semantics of existing schemes, as well as
showing how existing and new game-based security notions for such schemes
imply composable statements. This is very desirable in order to understand how
such schemes should be used in practice.

Still, since the scope of this work was very ample, we see it as merely paving the
way. For example, additional alternative solutions circumventing our impossibility
result, employing different schemes, might be interesting to analyze. Moreover,
all of our results hold under static corruptions, therefore a natural extension
would be to consider a stronger security model capturing adaptive corruptions.
This would allow to rely on stronger game-based notions from the literature for
partial signatures and ring signatures.
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A Formal Description of Resources

1-AUTn→1

k1, . . . , kn ∈ K ∪ {⊥}
Initialize:

k1, . . . , kn ← ⊥
Interface Si(k ∈ K):

ki ← k

Interface E(⋄):
O← {(i, ki) | i ∈ [n]}
return O

Interface R(⋄):
O← {(i, ki) | i ∈ [n]}
return O

1-AUTn←1

k ∈ K ∪ {⊥}
Initialize:

k ← ⊥
Interface Si(⋄):

return k

Interface E(⋄):
return k

Interface R(κ ∈ K):
k ← κ

1-AUTn⟲1

k1, . . . , kn ∈ K ∪ {⊥}
Initialize:

k1, . . . , kn ← ⊥
Interface Si(k ∈ K):

ki ← k

Interface Si(⋄):
O← {(i, ki) | i ∈ [n]}
return O

Interface E(⋄):
O← {(i, ki) | i ∈ [n]}
return O

Interface R(⋄):
O← {(i, ki) | i ∈ [n]}
return O

A-INSn→1

S,R ⊆ N×X , cS , cR, tS , tR ∈ N
Initialize:

S,R← ∅, cS , cR ← 1, tS , tR ← 0

Interface Si(x ∈ X ):
tS ← tS + 1, S← S ∪ {(tS , x)}

Interface E(⋄):
O← {(j, x) ∈ S | cS ≤ j ≤ tS}, cS ← tS + 1
return O

Interface E(x ∈ X ):
tR ← tR + 1, R← R ∪ {(tR, x)}

Interface R(⋄):
O← {(j, x) ∈ R | cR ≤ j ≤ tR}, cR ← tR + 1
return O

A-AUTn→1

S,R ⊆ (N×M× N) ∪ (N× {⊥}2), cS , cR, tS , tR ∈ N
Initialize:

S,R← ∅, cS , cR ← 1, tS , tR ← 0

Interface Si(m ∈M):
tS ← tS + 1, S← S ∪ {(tS ,m, i)}

Interface E(⋄):
O← {(j,m) ∈ N×M|∃ i ∈ [n] : (j,m, i) ∈ S, cS ≤ j ≤ tS}, cS ← tS +1
return O
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Interface E(j ∈ N):
if ∃m ∈M, i ∈ [n] : (j,m, i) ∈ S then

tR ← tR + 1, R← R ∪ {(tR,m, i)}
Interface R(⋄):

O← {(j,m, i) ∈ R | cR ≤ j ≤ tR}, cR ← tR + 1
return O

D-AUTn→1

S ⊆ ({cmt} × N×M× [n]× N) ∪ ({aut} × N2 ×M× [n]),
R ⊆ ({cmt} × N×M) ∪ ({aut} × N2 × [n]),
L ⊆ N2, cS , cR, tS , tR, h1, . . . , hn ∈ N
Initialize:

S,R,L← ∅, cS , cR ← 1, tS , tR, h1, . . . , hn ← 0

Interface Si(cmt,m ∈M):
tS ← tS + 1, hi ← hi + 1, S← S ∪ {(cmt, tS ,m, i, hi)}
return hi

Interface Si(aut, h ∈ N):
if ∃ j ∈ N,m ∈M : (cmt, j,m, i, h) ∈ S then

tS ← tS + 1, S← S ∪ {(aut, tS , j,m, i)}
Interface E(⋄):

O← {(cmt, j ∈ N,m ∈M) | ∃ i ∈ [n], h ∈ N : (cmt, j,m, i, h) ∈ S,
cS ≤ j ≤ tS} ∪ {(aut, j, j′,m, i) ∈ S | cS ≤ j ≤ tS}, cS ← tS + 1

return O

Interface E(j ∈ N):
if ∃m ∈M, i ∈ [n], h ∈ N : (cmt, j,m, i, h) ∈ S then

tR ← tR + 1, R← R ∪ {(cmt, tR,m)}, L← L ∪ {(j, tR)}
else if ∃ j′ ∈ N,m ∈M, i ∈ [n] : (aut, j, j′,m, i) ∈ S then

if ∃ j′′ ∈ N : (j′, j′′) ∈ L then
tR ← tR + 1, R← R ∪ {(aut, tR, j′′, i)}

Interface E(cmt,m ∈M):
tR ← tR + 1, R← R ∪ {(cmt, tR,m)}

Interface R(⋄):
O← {(cmt, j,m), (aut, j, j′, i) ∈ R | cR ≤ j ≤ tR}, cR ← tR + 1
return O

RA-AUTn→1

S,R ⊆ (N×M) ∪ (N× {⊥}), cS , cR, tS , tR ∈ N
Initialize:

S,R← ∅, cS , cR ← 1, tS , tR ← 0

Interface Si(m ∈M):
tS ← tS + 1, S← S ∪ {(tS ,m)}

Interface E(⋄):
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O← {(j,m) ∈ S | cS ≤ j ≤ tS}, cS ← tS + 1
return O

Interface E(j ∈ N):
if ∃m ∈M : (j,m) ∈ S then

tR ← tR + 1, R← R ∪ {(tR,m)}
Interface R(⋄):

O← {(j,m) ∈ S | cR ≤ j ≤ tR}, cR ← tR + 1
return O

B Impossibility of Anonymity Preservation from DSS

In this section we briefly formalize the simple intuition that regular digital
signature schemes (DSS) do not preserve anonymity. We do so in a more generic
and composable way: What we prove is that actually no protocol can enhance
an insecure channel to an authentic one while preserving its anonymity by only
having public one-time authentic information flowing from the receivers to the
sender. Clearly, using DSS in the usual way is just one of the possible such
protocols.

Proposition 1. For any protocol π, any corruption set C, and any ε < 1− 1
n ,

πC [1-AUTn→1,A-INSn→1]
∗C ̸⊆ ((A-AUTn→1)

∗C∪{E})ε.

Proof. Let π be any n-protocol and sim any simulator. We prove the statement
by showing that there is a distinguisher D such that

∆D(π[1-AUTn→1,A-INSn→1], sim
E A-AUTn→1) ≥ 1− 1

n
,

where we choose the corruption set C = ∅, which is sufficient to prove the claim.
D works as follows. First, it chooses a random message m $←M and a random
index i $← [n], and inputs m at interface Si. Then it inputs ⋄ at interface E of
(possibly emulated) A-INSn→1, and obtains3 (0,m, σ). It subsequently inputs i at
interface E of (possibly emulated) 1-AUTn→1, obtains (possibly emulated) public
one-time authentic value pki, and then emulates the (fixed and publicly known)
protocol π on input pki and (m,σ) at interface R. Finally, D outputs 0 if and only
if it obtains (m, i) from its emulation. We now analyze two cases. First, assume
that D is interacting with the real-world resource π[1-AUTn→1,A-INSn→1]. Then
by the correctness of π, D will obtain (m, i) with probability 1 from its emulation.
On the other hand, if D is interacting with the ideal-resource simE A-AUTn→1

instead, then D will obtain (m, i) with probability at most 1
n from its emulation.

This is because sim has no better choice than to actually emulate π as well, and
choose at random one of the n public one-time authentic values from emulated
A-AUTn→1 to generate σ (since it does not obtain the index of the sender from
A-AUTn→1). Therefore, D’s advantage is at least 1− 1

n . ⊓⊔
3 Note that we are assuming (w.l.o.g.) that π always transmits m.
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C Composability of Anonymous Constructions

First of all, note that the construction notion from Definition 1 directly implies
composability via the transitivity of the subset relation.

Lemma 1. For any specifications R,S, T ⊆ Φ and constructors γ, γ′ : Φ→ Φ,

R γ−−→ S ∧ S γ′

−−→ T =⇒ R γ′◦γ−−−−→ T .

Proof. γ′ ◦ γ(R) ⊆ γ′(S) ⊆ T . ⊓⊔

We are interested in relaxations that are compatible with constructors, that
is, for a constructor γ we consider a relaxation ρ to be compatible if there exists
another relaxation ργ depending on γ, where the superscript makes dependency
on γ explicit, such that γ(Sρ) ⊆ γ(S)ργ

, for any specification S. In this case we
say that ρ is compatible with γ via ργ . This property can be interpreted as a
special kind of commutativity, since it is equivalent to γ ◦ ρ(S) ⊆ ργ ◦ γ(S). All
relaxation considered in this work satisfy this property, and we will later show
exactly how (that is, for a specific relaxation ρ and arbitrary constructor γ, we
will explicitly construct ργ). We now show how this property is useful to show
composability in general.

Lemma 2. Let ρ : Φ→ 2Φ be a relaxation compatible with constructor γ : Φ→ Φ
via relaxation ργ : Φ→ 2Φ, that is, γ(Sρ) ⊆ γ(S)ργ

, for any specification S ⊆ Φ.
Then we have

R γ−−→ S =⇒ Rρ γ−−→ Sρ
γ

.

Proof. γ ◦ ρ(R) ⊆ ργ ◦ γ(R) ⊆ ργ(S). ⊓⊔

This fact allows us to compose two construction statements where the assumed
specification of the second statement appears relaxed as the constructed spec-
ification of the first statement. Concretely, using Lemma 1 and Lemma 2, we
have

R γ−−→ Sρ ∧ S γ′

−−→ T =⇒ R γ′◦γ−−−−→ T ργ′

. (2)

In our specific setting, since constructors are instantiated by n-protocols, the
compatibility condition γ(Sρ) ⊆ (γ(S))ργ

from Lemma 2 translates into πSρ ⊆
(πS)ρπ

. Moreover, it is easily verified that:

– For any C ⊆ {Si}ni=1, the ∗C-relaxation is compatible with πC, for any
π ∈ Σn+1, via ∗C : For any specification S ⊆ Φn, we have

πCS∗C = πC{αCS |S ∈ S, α ∈ Σn+1}

= {πCαCS |S ∈ S, α ∈ Σn+1}

= {αC(πCS) |S ∈ S, α ∈ Σn+1}

= (πCS)∗C ,

where the third step follows from the fact that C ∩ C = ∅.
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– For any ε : Θn → [0, 1], if we define επ(D)
.
= ε(Dπ), for any distinguisher

D ∈ Θn, then the ε-relaxation is compatible with any π ∈ Σn+1 via επ: For
any specification S ⊆ Φn, we have

πSε = π{S ∈ Φn | ∃R ∈ S : S ≈ε R}
= {πS |S ∈ Φn,∃R ∈ S : S ≈ε R}
⊆ {πS |S ∈ Φn,∃R ∈ S : πS ≈επ πR}
= {T ∈ πΦn | ∃U ∈ πS : T ≈επ U}
⊆ {T ∈ Φn | ∃U ∈ πS : T ≈επ U}
= (πS)ε

π

where the third step follows from the fact that S ≈ε R =⇒ πS ≈επ πR,
which is true because ∆D(πS, πR) = ∆Dπ(S,R) ≤ ε(Dπ), for any D ∈ Θn.

Together with (2), the above observations directly imply that the anonymous
construction statements compose in the following way:

R∗C πC
1−−→ (S∗C∪{E})ε1 ∧ S∗C πC

2−−→ (T ∗C∪{E})ε2

=⇒ R∗C πC
2 π

C
1−−−−→ (T ∗C∪{E})ε

πC
2

1 +ε2 ,

where we used the fact that for any specification R and any functions ε1, ε2, we
have (Rε1)ε2 = Rε1+ε2 , with (ε1 + ε2)(D)

.
= ε1(D) + ε2(D) [JM20, Theorem 2].

D Relations Among Game-Based Notions

In the following we use the trivial fact that for distinguisher D and systems
S1, . . . ,Sn,

∆D(S1,Sn) ≤
n−1∑
i=1

∆D(Si,Si+1),

which directly implies

∀i ∈ [n− 1] : Si ≈εi Si+1 =⇒ S1 ≈ε Sn, for ε(D)
.
=

n−1∑
i=1

εi(D). (3)

This is essentially the hybrid argument. Moreover, since for any distinguisher D,
reduction system C, and systems S and T such that S ≈ε T,

∆D(CS,CT) = ∆DC(S,T) ≤ ε(DC)
.
= εC(D),

we have

S ≈ε T =⇒ CS ≈εC CT. (4)
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D.1 Bilateral Signatures

In this section we first define separate notions of authenticity (UF security) and
anonymity (IK security) for bilateral signatures, and then show that they imply
the UF-IK security notion from Definition 4. We further relate the UF and IK
notions we introduce here to those from the literature in Appendix E.1.

We begin by defining authenticity of bilateral signatures. For this, we define
a distinction problem between a real system that correctly generates and verifies
signatures, via a signing oracle for one sender and a verification oracle for one
receiver, and an ideal system that correctly generates signatures, but only correctly
verifies signatures previously output by the signing oracle.

Definition 13 (UF-Secure Bilateral Signature). A bilateral signature scheme
ΣBS is ε-unforgeable (or ε-UF-secure) if

[⟨Sssk,rpk,Vrsk,spk⟩,Kspk,rpk] ≈ε [⟨Sssk,rpk,V
⊥⟩,Kspk,rpk],

for key-pairs (ssk, spk)← GenS and (rsk, rpk)← GenR.

Note that usually when authenticity is interpreted as unforgeability, as we do
here, the related security notion is defined as a game where an adversary must
first interact with a system implementing some oracles, and eventually attempt
to come up with a concrete forgery. Nevertheless, defining unforgeability (hence,
authenticity) through a distinction problem is not uncommon (see [Ros18] for
example). The latter suits us better because it more directly relates to composable
notions of security, and moreover it can be easily shown that it is implied by
the former: as opposed to the real system, valid forgeries in the ideal system
are falsely reported to be incorrect, thus trivially allowing to distinguish (see
Appendix C.2 of [BM20] for a more detailed discussion).

We next define anonymity of bilateral signatures. For this, we define a dis-
tinction problem between a real system that correctly generates and verifies
signatures, via signing and verification oracles for n (different) senders and one
receiver, and an ideal system that also correctly generates and verifies signa-
tures, but via n copies of signing and verification oracles for the same (randomly
selected) sender and one receiver.

Definition 14 (IK-Secure Bilateral Signature). A bilateral signature scheme
ΣBS is (n, ε)-anonymous (or (n, ε)-IK-secure) if

[⟨Sssk1,rpk,Vrsk,spk1⟩, . . . , ⟨Ssskn,rpk,Vrsk,spkn⟩,Kspk,rpk]

≈ε

[⟨SsskI ,rpk,Vrsk,spkI ⟩, . . . , ⟨SsskI ,rpk,Vrsk,spkI ⟩︸ ︷︷ ︸
n times

,Kspk,rpk],

for key-pairs (ssk1, spk1), . . . , (sskn, spkn) ← GenS, (rsk, rpk) ← GenR, spk
.
=

(spk1, . . . , spkn), random variable I $← [n], and where both systems are such that
if a signature obtained from the i-th signing oracle is input to the j-th verification
oracle, for j ̸= i, then ⊥ is output.
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We now show that these two notions together imply our combined notion
from Definition 4.

Lemma 3. There exists a reduction system C such that, if a bilateral signature
scheme ΣBS is ε-UF-secure and (n, ε′)-IK-secure, then it is (n, εC + ε′)-UF-IK-
secure.

Proof. By assumption, recalling Definitions 13 and 14, we have

[⟨Sssk,rpk,Vrsk,spk⟩,Kspk,rpk] ≈ε [⟨Sssk,rpk,V
⊥⟩,Kspk,rpk]

and
[⟨Sssk1,rpk,Vrsk,spk1⟩, . . . , ⟨Ssskn,rpk,Vrsk,spkn⟩,Kspk,rpk]

≈ε′

[⟨SsskI ,rpk,Vrsk,spkI ⟩, . . . , ⟨SsskI ,rpk,Vrsk,spkI ⟩︸ ︷︷ ︸
n times

,Kspk,rpk].

We can now easily define a reduction system C such that

C[⟨S,V⟩,Kspk,rpk] = [⟨S,V⟩, . . . , ⟨S,V⟩︸ ︷︷ ︸
n times

,Kspk,rpk],

for ⟨S,V⟩ ∈ {⟨Sssk,rpk,Vrsk,spk⟩, ⟨Sssk,rpk,V
⊥⟩}. C simply emulates n copies of

⟨S,V⟩, and samples n − 1 key-pairs and an index I $← [n], and then emulates
Kspk,rpk by constructing spk such that spkI = spk and using the other public
keys from the sampled key-pairs. This way, we clearly have that

C[⟨Sssk,rpk,Vrsk,spk⟩,Kspk,rpk]

= [⟨SsskI ,rpk,Vrsk,spkI ⟩, . . . , ⟨SsskI ,rpk,Vrsk,spkI ⟩︸ ︷︷ ︸
n times

,Kspk,rpk]

and

C[⟨Sssk,rpk,V
⊥⟩,Kspk,rpk] = [⟨SsskI ,rpk,V

⊥⟩, . . . , ⟨SsskI ,rpk,V
⊥⟩︸ ︷︷ ︸

n times

,Kspk,rpk].

Then by (4) we have

[⟨SsskI ,rpk,Vrsk,spkI ⟩, . . . , ⟨SsskI ,rpk,Vrsk,spkI ⟩︸ ︷︷ ︸
n times

,Kspk,rpk]

≈εC

[⟨SsskI ,rpk,V
⊥⟩, . . . , ⟨SsskI ,rpk,V

⊥⟩︸ ︷︷ ︸
n times

,Kspk,rpk].

Finally, by (3) we have

[⟨Sssk1,rpk,Vrsk,spk1⟩, . . . , ⟨Ssskn,rpk,Vrsk,spkn⟩,Kspk,rpk]

≈εC+ε′

[⟨SsskI ,rpk,V
⊥⟩, . . . , ⟨SsskI ,rpk,V

⊥⟩︸ ︷︷ ︸
n times

,Kspk,rpk],
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which according to Definition 4 concludes the proof. ⊓⊔

D.2 Partial Signatures

In this section we first define separate notions of authenticity (UF security) and
unambiguity (UA security) for partial signatures, and then show that they imply
the UF-UA security notion from Definition 7. We further relate the UF and UA
notions we introduce here to those from the literature in Appendix E.2.

We begin by defining authenticity of partial signatures. For this, we define a
distinction problem between a real system that correctly generates and verifies
signatures (stub-tag pairs) and an ideal system that correctly generates signatures,
but only correctly verifies signatures previously output by the signing oracle.

Definition 15 (UF-Secure Partial Signature). A partial signature scheme
ΣPS is ε-unforgeable (or ε-UF-secure) if

[⟨Ssk,Vpk⟩,Kpk] ≈ε [⟨Ssk,V
⊥⟩,Kpk],

for key-pair (sk, pk)← Gen.

We next define unambiguity of partial signatures. For this, we first need to
define the following additional systems (where the dependency on a fixed ΣPS

scheme is implicit), parameterized by keys sk1, . . . , skn ∈ SK and pk1, . . . , pkn ∈
PK, for any n ∈ N. Here, we will additionally assume that such systems implicitly
share state with other systems that are identical up to the sampled key-pair.

– ⟨Sski ,V
⊥
pki
⟩: Set the shared set Qi ⊆ S to ∅ and then:

• On input m ∈M, return (m,σ, τ) ∈M× S × T , for (σ, τ)← Sgnsk(m),
and set Qi to Qi ∪ {σ}.

• On input (m,σ, τ) ∈M× S × T , return m if σ ∈ Qi and ⊥ otherwise.

We can now define a distinction problem between a real system that correctly
generates and verifies signatures, via signing and verification oracles for n (dif-
ferent) senders, and an ideal system that also correctly generates signatures for
n (different) senders, but for each only correctly verifies signatures previously
signed by its associated signing oracle. This property can be thought of as the
analogue of robustness of PKE from [ABN10] for (partial) signatures.

Definition 16 (UA-Secure Partial Signature). A partial signature scheme
ΣPS is (n, ε)-unambiguous (or (n, ε)-UA-secure) if

[⟨Ssk1 ,Vpk1⟩, . . . , ⟨Sskn ,Vpkn⟩,Kpk] ≈ε [⟨Ssk1 ,V
⊥
pk1
⟩, . . . , ⟨Sskn ,V

⊥
pkn
⟩,Kpk],

for key-pairs (sk1, pk1), . . . , (skn, pkn)← Gen and pk
.
= (pk1, . . . , pkn).

We now show that these two notions together imply our combined notion
from Definition 7.
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Lemma 4. There exists a reduction system C such that, if a partial signature
scheme ΣPS is ε-UF-secure and (n, ε′)-UA-secure, then it is (n, n · εC + ε′)-UF-
UA-secure.

Proof. By assumption, recalling Definitions 15 and 16, we have

[⟨Ssk,Vpk⟩,Kpk] ≈ε [⟨Ssk,V
⊥⟩,Kpk],

and

[⟨Ssk1 ,Vpk1⟩, . . . , ⟨Sskn ,Vpkn⟩,Kpk] ≈ε′ [⟨Ssk1 ,V
⊥
pk1
⟩, . . . , ⟨Sskn ,V

⊥
pkn
⟩,Kpk].

We can now easily define a reduction system C such that

C[⟨S,V⟩,Kpk] = [⟨Ssk1 ,V
⊥
pk1
⟩, . . . , ⟨SskI−1

,V⊥pkI−1
⟩, ⟨S,V⟩,

⟨SskI+1
,V⊥pkI+1

⟩, . . . , ⟨Sskn ,V
⊥
pkn
⟩,K(pk1,...,pkI−1,pk,pkI+1,...,pkn)

],

for ⟨S,V⟩ ∈ {⟨Ssk,Vpk⟩, ⟨Ssk,V
⊥⟩} and I $← [n], and where C also keeps an

appropriate set QI for the verification oracle V. This way, we clearly have that

C[⟨Ssk,Vpk⟩,Kpk] = [⟨Ssk1 ,V
⊥
pk1
⟩, . . . , ⟨Sskn ,V

⊥
pkn
⟩,Kpk]

and
C[⟨Ssk,V

⊥⟩,Kpk] = [⟨Ssk1 ,V
⊥⟩, . . . , ⟨Sskn ,V

⊥⟩,Kpk].

Then by (4) and the union bound we have

[⟨Ssk1 ,V
⊥
pk1
⟩, . . . , ⟨Sskn ,V

⊥
pkn
⟩,Kpk]

≈n·εC

[⟨Ssk1 ,V
⊥⟩, . . . , ⟨Sskn ,V

⊥⟩,Kpk].

Finally, by (3) we have

[⟨Ssk1 ,Vpk1⟩, . . . , ⟨Sskn ,Vpkn⟩,Kpk]

≈n·εC+ε′

[⟨Ssk1 ,V
⊥⟩, . . . , ⟨Sskn ,V

⊥⟩,Kpk],

which according to Definition 7 concludes the proof. ⊓⊔

D.3 Ring Signatures

We begin by defining authenticity of ring signatures. For this, we first need
to define the following additional systems (where the dependency on a fixed
ΣRS scheme is implicit), parameterized by keys sk

.
= (sk1, . . . , skn) ∈ SKn and

pk
.
= (pk1, . . . , pkn) ∈ PKn, for any n ∈ N.

– ⟨Ssk,pk,Vpk⟩:
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• On input (i,m) ∈ [n]×M, return (m,σ) ∈M×S, for σ ← Sgni,sk,pk(m).
• On input (m,σ) ∈M×S, return m if Vrfpk(m,σ) = 1 and ⊥ otherwise.

– ⟨Ssk,pk,V
⊥⟩: Set Q ⊆M×S to ∅, and then:

• On input (i,m) ∈ [n]×M, return (m,σ) ∈M×S, for σ ← Sgni,sk,pk(m),
and set Q to Q∪ {(m,σ)}.

• On input (m,σ) ∈M× S, return m if (m,σ) ∈ Q and ⊥ otherwise.

We can now define a distinction problem between a real system that correctly
generates and verifies signatures, via a signing oracle for one sender and a
verification oracle for one receiver, and an ideal system that correctly generates
signatures, but only correctly verifies signatures previously output by the signing
oracle.

Definition 17 (UF-Secure Ring Signature). A ring signature scheme ΣRS

is (n, ε)-unforgeable (or (n, ε)-UF-secure) if

[⟨Ssk,pk,Vpk⟩,Kpk] ≈ε [⟨Ssk,pk,V
⊥⟩,Kpk],

for key-pairs (sk1, pk1), . . . , (skn, pkn) ← Gen, sk
.
= (sk1, . . . , skn), and pk

.
=

(pk1, . . . , pkn).

We next define anonymity of ring signatures. For this, we define a distinction
problem between a real system that correctly generates and verifies signatures,
via signing and verification oracles for n (different) senders, and an ideal system
that also correctly generates and verifies signatures, but via n copies of signing
and verification oracles for the same (randomly selected) sender.

Definition 18 (IK-Secure Ring Signature). A ring signature scheme ΣRS is
(n, ε)-anonymous (or (n, ε)-IK-secure) if

[⟨S1,sk1,pk,Vpk⟩, . . . , ⟨Sn,skn,pk,Vpk⟩,Kpk]

≈ε

[⟨SI,skI ,pk,Vpk⟩, . . . , ⟨SI,skI ,pk,Vpk⟩︸ ︷︷ ︸
n times

,Kpk],

for key-pairs (sk1, pk1), . . . , (skn, pkn)← Gen, pk
.
= (pk1, . . . , pkn), random vari-

able I $← [n], and where both systems are such that if a signature obtained from
the i-th signing oracle is input to the j-th verification oracle, for j ̸= i, then ⊥ is
output.

We now show that these two notions together imply our combined notion
from Definition 11.

Lemma 5. There exists a reduction system C such that, if a ring signature
scheme ΣRS is (n, ε)-UF-secure and (n, ε′)-IK-secure, then it is (n, εC + ε′)-UF-
IK-secure.
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Proof. By assumption, recalling Definitions 17 and 18, we have

[⟨Ssk,pk,Vpk⟩,Kpk] ≈ε [⟨Ssk,pk,V
⊥⟩,Kpk]

and
[⟨S1,sk1,pk,Vpk⟩, . . . , ⟨Sn,skn,pk,Vpk⟩,Kpk]

≈ε′

[⟨SI,skI ,pk,Vpk⟩, . . . , ⟨SI,skI ,pk,Vpk⟩︸ ︷︷ ︸
n times

,Kpk].

We can now easily define a reduction system C such that

C[⟨Ssk,pk,V⟩,Kpk] = [⟨Ssk,pk(I, ·),V⟩, . . . , ⟨Ssk,pk(I, ·),V⟩︸ ︷︷ ︸
n times

,Kpk],

for I $← [n], V ∈ {Vpk,V
⊥}, and where Ssk,pk(i, ·), for i ∈ [n], is the system

Ssk,pk where the first argument of the queried tuple is fixed to i. This way, we
clearly have that

C[⟨Ssk,pk,Vpk⟩,Kpk] = [⟨SI,skI ,pk,Vpk⟩, . . . , ⟨SI,skI ,pk,Vpk⟩︸ ︷︷ ︸
n times

,Kpk]

and

C[⟨Ssk,pk,V
⊥⟩,Kpk] = [⟨SI,skI ,pk,V

⊥⟩, . . . , ⟨SI,skI ,pk,V
⊥⟩︸ ︷︷ ︸

n times

,Kpk].

Then by (4) we have

[⟨SI,skI ,pk,Vpk⟩, . . . , ⟨SI,skI ,pk,Vpk⟩︸ ︷︷ ︸
n times

,Kpk]

≈εC

[⟨SI,skI ,pk,V
⊥⟩, . . . , ⟨SI,skI ,pk,V

⊥⟩︸ ︷︷ ︸
n times

,Kpk].

Finally, by (3) we have

[⟨S1,sk1,pk,Vpk⟩, . . . , ⟨Sn,skn,pk,Vpk⟩,Kpk]

≈εC+ε′

[⟨SI,skI ,pk,V
⊥⟩, . . . , ⟨SI,skI ,pk,V

⊥⟩︸ ︷︷ ︸
n times

,Kpk],

which according to Definition 11 concludes the proof. ⊓⊔

E Relations with Previous Notions and Schemes

In this section we relate our new game-based notions to the ones from the
literature. We also discuss known schemes achieving them, which therefore also
achieve our composable notions.
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E.1 Bilateral Signatures

As we pointed out earlier, bilateral signatures share the same syntax of designated
verifier signatures (DVS). This does not mean that, as a cryptographic scheme,
they are the same. In fact, what matters are also the semantics of such scheme,
that is, how its security is defined. On a high level, for DVS (game-based) security
corresponds to being unable to tell whether a signature was produced by the
sender or by the receiver, and therefore anonymity in not necessarily guaranteed
among signatures generated by different senders. Instead, for bilateral signatures,
the latter property is exactly what defines security, in terms of anonymity.
Moreover, the characterizing feature of DVS is irrelevant: For bilateral signatures,
we do not want to (necessarily) hide the role of the sender, or respectively of the
receiver; a bilateral signature scheme in principle allows an adversary to tell that
the signature was generated by one of the senders, and in particular, not by the
receiver, and therefore such a scheme would not be a secure DVS. Recently, in
[MPR21] this characterizing feature of DVS that hides both the sender and the
receivers has been modeled composably, where guarantees are provided not only
to honest parties, but also to dishonest ones.

Nevertheless, in [JSI96], where DVS were originally introduced, the concept
of strong DVS was mentioned, requiring a DVS scheme to additionally provide
indistinguishably of signatures produced by different senders (the same property
capturing anonymity of bilateral signatures). This notion was later formalized in
[LV05], and it was shown how to enhance any DVS scheme to additionally satisfy
this stronger notion, dubbed PSI-CMA-security. Clearly, such a DVS scheme
would also be a bilateral signature scheme, albeit not minimal, in the sense that
it would provide additional unnecessary security guarantees.

We now informally argue that the concrete scheme DVSBMH from [LV05]
achieves our composable notion for bilateral signatures, that is, it constructs
A-AUTn→1 from [1-AUTn→1, 1-AUTn←1,A-INSn→1] when used in the natural
way. To do so, it suffices to relate the notions DVSBMH has been shown to
satisfy to our game-based notions of UF-security and IK-security; then Lemma 3
implies that DVSBMH is also UF-IK-secure, and by Theorem 1 it is therefore
also composably secure, as per Definition 5. Note that, syntactically, DVSBMH is
actually a universal DVS (UDVS) scheme, that is, a regular signature scheme
equipped with additional functions emulating those of a DVS scheme. Therefore,
using DVSBMH in the natural way means in particular to first produce a signature
with the base signing function, and then feeding it along with the message and
the receiver’s public key to a further “designation” function, which will produce
the final signature to be transmitted.

Unforgeability. In [LV05] DVSBMH has been shown to be ST-DV-UF-secure, a
notion introduced in [SWP04] which is a stronger version of the earlier notion of
DV-UF-security from [SBWP03]. The former is stronger in the sense that, unlike
the latter, it provides the attacker access to the verification oracle (in addition
to a signing one), and therefore it directly relates to our UF-security notion for
bilateral signatures from Definition 13.
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Anonymity. In [LV05] DVSBMH has been shown to be PSI-CMA-secure, a notion
introduced there and that also relates to our counterpart for bilateral signatures,
IK-security from Definition 14, but less directly. This is because PSI-CMA-security
is essentially defined as key-indistinguishability of signatures, but only for two
senders and one receiver, and therefore the IK-security of DVSBMH incurs a
loss of multiplicative factor (n− 1), which can be shown via a standard hybrid
argument.

E.2 Partial Signatures

Our game-based definitions for partial signatures closely resemble the ones
from the literature, except that we chose to phrase the notions as distinction
problems, whereas [BD09] defines unforgeability and unambiguity as forgery
problems and anonymity as a bit-guessing problem. [BD09] also introduces
various constructions satisfying their definitions, one being the so-called StC (sign-
then-commit) construction. This partial signature scheme is based on a regular
signature scheme and a commitment scheme, and works as follows: to create
a stub-tag pair (σ, τ) on a message m under secret-key sk (and corresponding
public-key pk), the new signing function simply produces a regular signature s on
m using the base signature scheme, then produces a commitment-decommitment
pair (c, d) on the concatenation of s and pk, and finally sets σ

.
= c and τ

.
= (s, d).

Verification is then defined in the straightforward way.
We now informally argue that the simple StC construction4 achieves our

composable notion for bilateral signatures, that is, it constructs D-AUTn→1 from
[1-AUTn→1,A-INSn→1] when used in the natural way. To do so, it suffices to
relate the notions StC has been shown to satisfy to our game-based notions of
UF-security, UA-security, and IK-security; then Lemma 4 implies that StC is also
UF-UA-secure, and by Theorem 2 it is therefore also composably secure, as per
Definition 9.

Unforgeability. In [BD09] StC has been shown to be unforgeable if the base
signature scheme is unforgeable and the base commitment scheme is hiding.
The unforgeability notion for partial signatures from [BD09] is slightly stronger
than ours, in the sense that the signing oracle only returns stubs, and allows
the adversary to later selectively see any associated tags. Such notion can be
appropriately weakened, and then shown to be equivalent to our distinction
problem from Definition 15, since being able to distinguish the two systems
implies being able to find a valid forgery. Therefore, StC also satisfies our UF-
security notion for partial signatures.

Unambiguity. In [BD09] StC has been shown to be unambiguous if the base
commitment scheme is binding. The unforgeability notion for partial signatures
from [BD09] is slightly stronger than ours, in the sense that the adversary can
choose itself public keys, messages, stub and tags of the forgery. Such notion can

4 One could make analogous arguments for the other constructions from [BD09].
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be appropriately weakened, and then shown to be equivalent to our distinction
problem from Definition 16, since being able to distinguish the two systems
implies being able to find a valid forgery. In more detail, this is so because the
two systems behave identically until the distinguisher manages to come up with a
verification query (m′, σ, τ ′) for the j-th verification oracle such that it previously
queried the i-th signing oracle on m, for i ̸= j, and obtained (σ, τ), and hence
distinguishing between the two implies finding such a forgery. Therefore, StC also
satisfies our UA-security notion for partial signatures.

Anonymity. In [BD09] StC has been shown to be anonymous if the base commit-
ment scheme is hiding. The anonymity notion for partial signatures from [BD09]
is slightly different than ours because it is only defined for two senders, and it is
phrased as a bit-guessing problem. Nevertheless, it can be shown to be equivalent
to our distinction problem from Definition 8, up to a multiplicative loss factor
of (n − 1), via a standard hybrid argument. Therefore, StC also satisfies our
IK-security notion for partial signatures.

E.3 Ring Signatures

Our game-based definitions for ring signatures closely resemble the ones from the
literature, except that we chose to phrase the notions as distinction problems,
whereas [BKM06] defines unforgeability as a forgery problem and anonymity
as a bit-guessing problem. [BKM06] also introduces a construction satisfying
their (stronger) definitions, which we call the BKM construction here. This
ring signature scheme is based on a public-key encryption scheme, a regular
signature scheme, a ZAP (i.e., a two-round public-coin witness-indistinguishable
proof system, where the first round is a random string from the verifier to the
prover), and roughly works as follows: Sender Si initially generates a public-key
encryption key-pair (skEi , pk

E
i ) and a regular signature key-pair (skSi , pk

S
i ). In

order to generate a ring signature on a message m, Si first produces a regular
signature σ′ on m with its signing key skSi . Then Si produces ciphertexts C

∗
j , for

j ∈ [n], using encryption keys pkS1 , . . . , pk
S
n , where C∗i is the encryption of σ′ and

the other ciphertexts are encryptions of random bit-strings instead. Finally, using
the ZAP Si produces a proof π, stating that one of the ciphertexts is indeed
an encryption of a valid signature on m with respect to the public verification
key of one of the ring members (that is, pkSi ). Verification is then defined in the
straightforward way.

We now informally argue that the BKM construction achieves our com-
posable notion for ring signatures, that is, it constructs RA-AUTn→1 from
[1-AUTn⟲1,A-INSn→1] when used in the natural way. To do so, we first ob-
serve that the stronger notions of unforgeability w.r.t. insider corruption and
anonymity against attribution attacks that BKM has been shown to satisfy in
[BKM06], trivially imply the weaker notions of unforgeability against fixed-ring
attacks and basic anonymity, respectively, that [BKM06] also defines. It then
suffices to relate the latter notions to our game-based notions of UF-security
and IK-security, respectively, since Lemma 5 then implies that BKM is also
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UF-IK-secure, which by Theorem 3 is therefore also composably secure, as per
Definition 12.

Unforgeability. In [BKM06] the BKM construction has been shown to be unforge-
able against insider corruption, and therefore also against fixed-ring attacks, if
the base signature scheme is unforgeable. The original notion of unforgeability
against fixed-ring attacks, [BKM06, Definition 5], can be shown to be equivalent
to our distinction problem from Definition 15, since being able to distinguish
the two systems implies being able to find a valid forgery. Therefore, the BKM
construction also satisfies our UF-security notion for ring signatures.

Anonymity. In [BKM06] the BKM construction has been shown to be anonymous
against attribution attacks, and therefore it also satisfies basic anonymity, if the
base public-key encryption scheme is IND-CPA-secure and the ZAP is witness-
indistinguishable. The original notion of basic anonymity, [BKM06, Definition
5], is slightly different than our IK-security notion because it is only defined for
two senders, and it is phrased as a bit-guessing problem. Nevertheless, it can be
shown to be equivalent to our distinction problem from Definition 18, up to a
multiplicative loss factor of (n− 1), via a standard hybrid argument. Therefore,
the BKM construction also satisfies our IK-security notion for ring signatures.

F Proofs of Main Results

To prove anonymous construction statements, we will rely on the following lemma.

Lemma 6. For an n-protocol π, a function ε, and n-resources R,S, if there

exists a simulator sim ∈ Σ such that πR ≈ε sim
E S, then R pp π,ε===⇒ S.

Proof. Since by definition πR ∈ (simE S)ε ⊆ (S∗E )ε, we have {πR} ⊆ (S∗E )ε.

Then it clearly follows that πCR∗C ⊆ (S∗C∪{E})ε for any C ⊆ {Si}ni=1. ⊓⊔

F.1 Anonymous Authenticity

Theorem 1. There exists a reduction system C such that, if a bilateral signature
scheme ΣBS is (n, ε)-UF-IK-secure, then it is (n, εC)-composably secure.

Proof. Let define systems

R
.
= [⟨Sssk1,rpk,Vrsk,spk1⟩, . . . , ⟨Ssskn,rpk,Vrsk,spkn⟩,Kspk,rpk],

S
.
= [⟨SsskI ,rpk,V

⊥⟩, . . . , ⟨SsskI ,rpk,V
⊥⟩︸ ︷︷ ︸

n times

,Kspk,rpk],

for key-pairs (ssk1, spk1), . . . , (sskn, spkn) ← GenS , (rsk, rpk) ← GenR, and ran-
dom variable I $← [n]. Then by Definition 4, ΣBS is such that R ≈ε S. We now
need to provide a simulator sim and a reduction system C such that

CR = πBS[1-AUTn→1, 1-AUTn←1,A-INSn→1],

CS = simE A-AUTn→1.
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This way we have ∆DC(R,S) ≤ ε(DC) = εC(D), for any distinguisher D, and
therefore

∆D(πBS[1-AUTn→1, 1-AUTn←1,A-INSn→1], sim
E A-AUTn→1) ≤ εC(D),

which by Lemma 6 proves the theorem.

The simulator sim first sets Q ← ∅ and samples a random index I $←
[n]. Then it generates n sender key-pairs (ssk1, spk1), . . . , (sskn, spkn) ← GenS
as well as one receiver key-pair (rsk, rpk) ← GenR, and once the adversary
inputs ⋄ to the interfaces E emulating 1-AUTn→1 and 1-AUTn←1, sim outputs
{(i, spki) | i ∈ [n]} and rpk, respectively, at the same interface. Whenever the
adversary inputs ⋄ to the interfaces E emulating A-INSn→1, sim also inputs ⋄ to
the interface E of A-AUTn→1, obtaining a set O ⊆ N×M. It then outputs the set
{(j,m, SgnsskI ,rpk(m)) | ∃ (j,m) ∈ O} to E, and sets Q ← Q∪O. Whenever the
adversary inputs (m,σ) to the interface E emulating A-INSn→1, if (j,m, σ) ∈ Q
for some j ∈ N, then sim inputs j to the E interface of A-AUTn→1.

The reduction system C interacts with a system [⟨S1,V1⟩, . . . , ⟨Sn,Vn⟩,K],
which is eitherR or S.C works by emulating πBS[1-AUTn→1, 1-AUTn←1,A-INSn→1],
but replacing any call to GenR, GenS by K, any call to Sgnsski,rpk by Si, and any
call to Vrfrsk,spki byVi. Then clearlyCR = πBS[1-AUTn→1, 1-AUTn←1,A-INSn→1],

and it is also easy to see that CS = simE A-AUTn→1. ⊓⊔

F.2 De-Anonymizable Authenticity

Theorem 2. There exist reduction systems Cm and Ch such that, if a partial
signature scheme ΣPS is (n, εm)-IK-secure and (n, εh)-UF-UA-secure, then it is
(n, t, εCm

m , εCh

h )-composably secure, for any t ∈ N.

Proof. Let t ∈ N and define systems

Rm
.
= [S−sk1 , . . . ,S

−
skn

,Kpk],

Sm
.
= [S−skI , . . . ,S

−
skI︸ ︷︷ ︸

n times

,Kpk],

Rh
.
= [⟨Ssk1 ,Vpk1⟩, . . . , ⟨Sskn ,Vpkn⟩,Kpk],

Sh
.
= [⟨Ssk1 ,V

⊥⟩, . . . , ⟨Sskn ,V
⊥⟩,Kpk],

for key-pairs (sk1, pk1), . . . , (skn, pkn) ← Gen, pk
.
= (pk1, . . . , pkn), and random

variable I $← [n]. Then by Definitions 8 and 7, ΣPS is such that Rm ≈εm Sm and
Rh ≈εh Sh. We now need to provide simulators simh, simm and reduction systems
Ch, Cm so that during interval [Pfst(j), Plst(j)], for any j ∈ [t] such that Pmsg(j),

Cm Rm = πPS[1-AUTn→1,A-INSn→1],

Cm Sm = simE
m D-AUTn→1,
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and during interval [Pfst(j), Plst(j)], for any j ∈ [t] such that Phnd(j),

Ch Rh = πBS[1-AUTn→1,A-INSn→1],

Ch Sh = simE
h D-AUTn→1.

This way we have

∆DCm(Rm,Sm) ≤ εm(DCm) = εCm
m (D)

and
∆DCh(Rh,Sh) ≤ εh(DCh) = εCh

h (D),

for any distinguisher D, and therefore

∆D(πPS[1-AUTn→1,A-INSn→1], sim
E D-AUTn→1) ≤ εCm

m (D),

during interval [Pfst(j), Plst(j)] for any j ∈ [t] such that Pmsg(j), and

∆D(πPS[1-AUTn→1,A-INSn→1], sim
E D-AUTn→1) ≤ εCm

m (D),

during interval [Pfst(j), Plst(j)] for any j ∈ [t] such that Phnd(j). By appropriately
adapting Lemma 6 to intervals, this proves the theorem.

For any j ∈ [t] such that Pmsg(j), the simulator simm first samples a random
index I $← [n]. Then it generates n key-pairs (sk1, pk1), . . . , (skn, pkn) ← Gen,
and once the adversary inputs ⋄ to the interfaces E emulating 1-AUTn→1, simm

outputs {(i, pki) | i ∈ [n]} at the same interface. Whenever the adversary inputs
⋄ to the interfaces E emulating A-INSn→1, simm also inputs ⋄ to the interface
E of D-AUTn→1, obtaining a set O ⊆ {cmt} × N ×M.5 It then outputs the
set {(j, cmt,m, σ) | (σ, ·) ← SgnskI (m),∃ (cmt, j,m) ∈ O} to E. Whenever the
adversary inputs (m,σ) to the interface E emulating A-INSn→1, simm inputs
(cmt,m) to the E interface of D-AUTn→1.

The reduction system Cm interacts with a system [S−1 , . . . ,S
−
n ,K], which

is either Rm or Sm. For any j ∈ [t] such that Pmsg(j), Cm works by emulating
πPS[1-AUTn→1,A-INSn→1] during interval [Pfst(j), Plst(j)], but replacing any call

to Gen by K, any call to Sgnski by S−i , and using pki from K to implement

Vrfpki . Then clearly Cm Rm ∈ (πPS[1-AUTn→1,A-INSn→1])
[Pfst(j),Plst(j)], and it is

also easy to see that Cm Rm ∈ (simE
m D-AUTn→1)

[Pfst(j),Plst(j)].
For any j ∈ [t] such that Phnd(j), the simulator simh first sets Q ← ∅.

Then it generates n key-pairs (sk1, pk1), . . . , (skn, pkn) ← Gen, and once the
adversary inputs ⋄ to the interfaces E emulating 1-AUTn→1, simh outputs
{(i, pki) | i ∈ [n]} at the same interface. Whenever the adversary inputs ⋄ to
the interfaces E emulating A-INSn→1, simh also inputs ⋄ to the interface E of
D-AUTn→1, obtaining a set O ⊆ {aut} × N2 ×M× [n].6 It then outputs the
set T

.
= {(j, aut,m, Sgnski(m)) | ∃ (aut, j, j′,m, i) ∈ O} to E, and sets Q ← Q∪

5 Recall that simm is working in an interval [Pfst(j), Plst(j)] for j ∈ [t] such that Pmsg(j).
6 Recall that simh is working in an interval [Pfst(j), Plst(j)] for j ∈ [t] such that Phnd(j).
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{(j,m, σ, τ) | (j, aut,m, σ, τ) ∈ T}. Whenever the adversary inputs (m,σ, τ) to
the interface E emulating A-INSn→1, if (j,m, σ, τ) ∈ Q for some j ∈ N, then sim
inputs j to the E interface of D-AUTn→1.

The reduction system Ch interacts with a system [⟨S1,V1⟩, . . . , ⟨Sn,Vn⟩,K],
which is either Rh or Sh. For any j ∈ [t] such that Phnd(j), Ch works by emulating
πPS[1-AUTn→1,A-INSn→1] during interval [Pfst(j), Plst(j)], but replacing any call
to Gen by K, any call to Sgnski by Si, and any call to Vrfpki by Vi. Then clearly

Ch Rh ∈ (πPS[1-AUTn→1,A-INSn→1])
[Pfst(j),Plst(j)], and it is also easy to see that

Ch Rh ∈ (simE
h D-AUTn→1)

[Pfst(j),Plst(j)]. ⊓⊔

F.3 Receiver-Side Anonymous Authenticity

Theorem 3. There exists a reduction system C such that, if a ring signature
scheme ΣRS is (n, ε)-UF-IK-secure, then it is (n, εC)-composably secure.

Proof. Let define systems

R
.
= [⟨S1,sk1,pk,Vpk⟩, . . . , ⟨Sn,skn,pk,Vpk⟩,Kpk],

S
.
= [⟨SI,skI ,pk,V

⊥⟩, . . . , ⟨SI,skI ,pk,V
⊥⟩︸ ︷︷ ︸

n times

,Kpk],

for key-pairs (sk1, pk1), . . . , (skn, pkn)← Gen, and random variable I $← [n]. Then
by Definition 11, ΣRS is such that R ≈ε S. We now need to provide a simulator
sim and a reduction system C such that

CR = πRS[1-AUTn⟲1,A-INSn→1],

CS = simE RA-AUTn→1.

This way we have ∆DC(R,S) ≤ ε(DC) = εC(D), for any distinguisher D, and
therefore

∆D(πBS[1-AUTn⟲1,A-INSn→1], sim
E RA-AUTn→1) ≤ εC(D),

which by Lemma 6 proves the theorem.
The simulator sim first sets Q ← ∅ and samples a random index I $←

[n]. Then it generates n key-pairs (sk1, pk1), . . . , (skn, pkn) ← Gen, sets pk
.
=

(pk1, . . . , pkn), and once the adversary inputs ⋄ to the interfaces E emulating
1-AUTn⟲1, sim outputs {(i, pki) | i ∈ [n]} at the same interface. Whenever the
adversary inputs ⋄ to the interfaces E emulating A-INSn→1, sim also inputs ⋄ to
the interface E of RA-AUTn→1, obtaining a set O ⊆ N×M. It then outputs the
set {(j,m, SgnskI ,pk(m)) | ∃ (j,m) ∈ O} to E, and sets Q ← Q∪O. Whenever the
adversary inputs (m,σ) to the interface E emulating A-INSn→1, if (j,m, σ) ∈ Q
for some j ∈ N, then sim inputs j to the E interface of RA-AUTn→1.

The reduction system C interacts with a system [⟨S1,V1⟩, . . . , ⟨Sn,Vn⟩,K],
which is either R or S. C works by emulating πRS[1-AUTn⟲1,A-INSn→1], but
replacing any call to Gen by K, any call to Sgni,ski,pk by Si, and any call to
Vrfpk by Vi (for any i ∈ [n]). Then clearly CR = πRS[1-AUTn⟲1,A-INSn→1],
and it is also easy to see that CS = simE RA-AUTn→1. ⊓⊔

44



G On Anonymous Signatures and Signcryption

In this section we briefly discuss anonymous signatures, the precursors of partial
signatures. As we mentioned above, in the setting we are considering such scheme’s
security would not be possible to model, since we fixed the anonymous insecure
channel A-INSn→1 as the assumed resource. But if we would strengthen this
assumption, it would then be possible to model anonymous signatures’ security
as well. More concretely, if we additionally include to the assumed resources the
anonymous confidential channel A-CNFn→1, as informally described in Section 1.2,
it would then be possible to define composable security of a protocol πAS using
anonymous signatures as the construction of the anonymous secure channel
A-SECn→1, also informally described in Section 1.2, from 1-AUTn→1, A-INSn→1,
and A-CNFn→1, that is,

[1-AUTn→1,A-INSn→1,A-CNFn→1] p
πAS===⇒ A-SECn→1.

Intuitively, πAS would use A-INSn→1 to transmit the signature, and A-CNFn→1

for the message, so that the latter is not leaked to the adversary, which therefore
cannot use it to verify and hence break anonymity.

Furthermore, the resource A-CNFn→1 could in principle be constructed from
1-AUTn←1 and A-INSn→1 via a protocol πAPKE making use of a public-key en-
cryption scheme satisfying appropriate anonymity properties. Then, similarly as
the result from [KMO+13], one could show that

[1-AUTn←1,A-INSn→1] p
πAPKE====⇒ A-CNFn→1.

Finally, one could compose the two schemes using the encrypt-and-sign paradigm,
resulting in an anonymous signcryption scheme. The composed protocol πSC =
πAS ◦ πAPKE would then imply the construction

[1-AUTn→1, 1-AUTn←1,A-INSn→1] p
πSC===⇒ A-SECn→1.
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