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Abstract. A group signature scheme allows members of a group to sign
messages on the group's behalf such that the resulting signature does not
reveal their identity. Only a designated group manager is able to identify
the group member who issued a given signature. Previously proposed
realizations of group signature schemes have the undesirable property
that the length of the public key is linear in the size of the group. In
this paper we propose the �rst group signature scheme whose public key
and signatures have length independent of the number of group members
and which can therefore also be used for large groups. Furthermore, the
scheme allows the group manager to add new members to the group
without modifying the public key. The realization is based on methods
for proving the knowledge of signatures.

1 Introduction

A group signature scheme allows members of a group to sign messages on behalf
of the group. Signatures can be veri�ed with respect to a single group public key,
but they do not reveal the identity of the signer. Furthermore, it is not possible
to decide whether two signatures have been issued by the same group member.
However, there exists a designated group manager who can, in case of a later
dispute, open signatures, i.e., reveal the identity of the signer.

Group signatures could for instance be used by a company for authenticating
price lists, press releases, or digital contracts. The customers need to know only
a single company public key to verify signatures. The company can hide any
internal organizational structures and responsibilities, but still can �nd out which
employee (i.e., group member) has signed a particular document.

The concept of group signatures was introduced by Chaum and van Heyst
[11] and they also proposed the �rst realizations. Improved solutions were later
presented by Chen and Pedersen [12], Camenisch [7], and Petersen [22]. However,
all previously proposed solutions have the following undesirable properties:

{ the length of the group's public key and/or the size of a signature depends
on the size of the group. This is very problematic for large groups.

{ to add new group members, it is necessary to modify at least the public key.

In this paper we present the �rst e�cient group signature schemes which
overcome these problems1. The lengths of the public key and of the signatures

1 The only previously proposed schemes with �xed size public keys [21,17] were broken.



are, as well as the computational e�ort for signing and verifying, independent of
the number of group members. Furthermore, the public key remains unchanged
if new members are added to the group. The schemes even conceal the size of
the group.

For realizing such schemes we employ novel techniques of independent inter-
est, such as e�cient proofs of (or signatures of) knowledge of double discrete
logarithms, of e-th roots of discrete logarithms, and of e-th roots of components
of representations. Of particular interest is a method for proving the knowledge
of a signature.

2 Group Signature Schemes

In this section we present the concept of a group signature scheme and explain
the basic idea underlying our realizations.

2.1 The Concept of a Group Signature Scheme

A group signature scheme consists of the following four procedures:

Setup: a probabilistic interactive protocol between a designated group manager
and the members of the group. Its result consists of the group's public key
Y , the individual secret keys x of the group members, and a secret adminis-
tration key for the group manager.

Sign: a probabilistic algorithm which, on input a messagem and a group mem-
ber's secret key x, returns a signature s on m.

Verify: an algorithm which, on input a message m, a signature s, and the
group's public key Y , returns whether the signature is correct.

Open: on input a signature s and the group manager's secret administration
key this algorithm returns the identity of the group member who issued the
signature s together with a proof of this fact.

It is assumed that all communications between the group members and the
group manager are secure. A group signature scheme must satisfy the following
properties:

1. Only group members are able to correctly sign messages (unforgeability).
2. It is neither possible to �nd out which group member signed a message

(anonymity) nor to decide whether two signatures have been issued by the
same group member (unlinkability).

3. Group members can neither circumvent the opening of a signature nor sign
on behalf of other group members; even the group manager cannot do so
(security against framing attacks).

A consequence of the last property is that the group manager must not know
the secret keys of the group members.

In an extended model it may be desirable to assign the di�erent roles of the
group manager, namely managing the membership list of the group and opening
signatures, to di�erent parties. Furthermore, these roles could be shared among



several parties (i.e. among the group members) in order to increase the security
against a cheating group manager.

With regard to the e�ciency of a group signature scheme the following pa-
rameters are of particular interest:

{ the size of the group public key Y ,
{ the length of signatures,
{ the e�ciency of the algorithms Sign and Verify,
{ and the e�ciency of the protocols Setup and Open.

In all previously proposed schemes, the length of the public key is at least
linear in the size of the group and therefore also the running time of the veri�ca-
tion algorithm depends on the number of group members. In some schemes also
the length of the signature and the running time of the signing algorithm depend
on the group size. In Sections 4 and 6 we propose new group signature schemes
which overcome these problems. Both solutions are based on the following idea.

2.2 Schemes with Fixed Size Public Key and Signatures

Using the techniques of Brassard et al. [6] or Boyar et al. [3] for proving the
knowledge of a satisfying assignment of a boolean circuit, a group signature
scheme with �xed length public key and signatures can be constructed as follows.

The group manager computes a key pair of an ordinary digital signature
scheme, denoted (sigM ; verM ), and a key pair of a probabilistic public-key en-
cryption scheme, denoted (encrM ; decrM ), and publishes the two public keys as
the group public key. Alice can join the group in the following way: she chooses
a random secret key x and computes a membership key z = f(x), where f is a
one-way function. She commits herself to z, e.g., by signing it, and then sends z
to the group manager who returns to her the membership certi�cate v = sigM (z).
Alice's group secret key consists of the triple (x; z; v).

To sign a message m on behalf of the group, Alice encrypts the pair (m; z)
using the group manager's encryption key, i.e., d = encrM (r; (m; z)), where r
is a su�ciently large random string. She computes a non-interactive minimum-
disclosure proof p that she knows values x0, v0, and r0 satisfying the following
equations:

d = encrM (r0; (m; f(x0))) and verM (v0; f(x0)) = correct :

The resulting signature on the message m consists of the pair (d; p) and can
be veri�ed by checking the proof p. To open this signature, the group manager
decrypts the ciphertext d to obtain the membership key z which reveals Alice's
identity. A proof of this fact consists of z, Alice's commitment to it, and a non-
interactive proof that d encrypts (m; z).

It can easily be veri�ed that all security properties hold:

1. Only group members who know a membership certi�cate can construct a
valid proof p.

2. Because the proof p does not reveal information about x, z, or v, and be-
cause (m; z) is probabilistically encrypted, signatures are anonymous and
unlinkable.



3. Group members cannot circumvent the opening of signatures because they
prove that the value d contains their membership key.

Note that instead of encrypting the message m in d, one could instead make the
proof p message-dependent (see Section 3).

The disadvantage of this solutions is that the general techniques for proving
statements in minimum-disclosure make the resulting signatures very large and
impractical. The rest of the paper describes techniques for the construction of
more e�cient scheme based on proofs (or signatures) about the knowledge of
double discrete logarithms and about the knowledge of roots of logarithms.

3 Preliminaries and Techniques

After giving notational and number theoretic preliminaries, we present some well
known techniques for proving knowledge of discrete logarithms and extend them
to the building blocks for our group signature schemes.

3.1 Notations

The symbol k denotes the concatenation of two (binary) strings (or of binary
representations of integers and group elements) and ` ' denotes the empty string.
By c[i] we denote the i-th rightmost bit of the string c. If A is a set, a 2R A
means that a is chosen at random from A according to the uniform distribution.
For an integer q, Zq denotes the ring of integers modulo q and Z�

q denotes the
multiplicative group modulo q. Finally, we assume a collision resistant hash
function H : f0; 1g� ! f0; 1gk (k � 160).

3.2 Number Theoretic Preliminaries

Let G = hgi be a cyclic group of order n, and let a be an element of Z�

n. The
discrete logarithm of y 2 G to the base g is the smallest positive integer x
satisfying gx = y. Similarly, the double discrete logarithm of y 2 G to the bases
g and a is the smallest positive integer x satisfying

g(a
x) = y ;

if such an x exists. In the sequel, the parameters n, G, g, and a should be chosen
such that computing discrete logarithms in G to the base g and in Z�

n to the
base a is infeasible.

An e-th root of the discrete logarithm of y 2 G to the base g is an integer x
satisfying

g(x
e) = y ;

if such an x exists. Note that if the factorization of n is unknown, for instance
if n is an RSA modulus (see [24]), computing e-th roots in Z�

n is assumed to be
infeasible.



3.3 Signature of Knowledge of Discrete Logarithms

Throughout this paper we make use of \proof systems" that allow one party
to convince other parties about its knowledge of certain values, such that no
useful information is leaked. Various such systems have been proposed, for in-
stance minimum-disclosure proofs [6] and zero-knowledge proofs of knowledge
[15]. We will make use of constructions based on the Schnorr signature scheme
[25] to prove knowledge. However, to avoid confusions with the notion of proofs
of knowledge of [15] and to point out that these proofs also serve as signatures,
we call them signatures of knowledge. All these signatures of knowledge can be
proved secure in the random oracle model [2,15] and their interactive versions
are zero-knowledge (given that several rounds with small challenges are used).

The �rst primitive we de�ne is a signature of the knowledge of the discrete
logarithm of y to the base g. It is basically a Schnorr signature [25] on a message
m of the entity knowing the discrete logarithm of y.

De�nition 1. A pair (c; s) 2 f0; 1gk � Z�

n satisfying c = H(m k y k g k gsyc) is
a signature of knowledge of the discrete logarithm of the element y 2 G to the
base g on the message m. ut
Such a signature can be computed if the secret key x = logg(y) is known, by
choosing r at random from Z

�

n and computing c and s according to

c := H(m k y k g k gr) and s := r � cx (mod n):

This technique for constructing a signature of the knowledge of a discrete loga-
rithm can also be used to build signatures that involve more complex statements,
such as the knowledge of a representation of y to the bases g and h, i.e., a pair
(�; �) satisfying y = g�h� (see [4] for a discussion of the representation prob-
lem). Even signatures of knowledge of complex relationships among di�erent
representations are possible [5,8,16].

Before we de�ne such signatures of knowledge let us explain our notation
with the following example: a signature of knowledge, denoted

SKREP
�
(�; �) : y = g� ^ z = g�h�

�
(m);

is used for `proving' the knowledge of the discrete logarithm of y to the base g
and of a representation of z to the bases g and h, and in addition, that the h-part
of this representation equals the discrete logarithm of y to the base g. This is
equivalent to the knowledge of a pair (�; �) satisfying the equations on the right
side of the colon. In the sequel, we use the convention that Greek letters denote
the elements whose knowledge is proven and all other letters denote elements
that are known to the veri�er. We now generalize these types of signatures of
knowledge.

De�nition 2. A signature of the knowledge of representations of y1, : : : , yw
with respect to the bases g1; : : : ; gv on the message m is denoted as follows

SKREP

�
(�1; : : : ; �u) :

�
y1 =

`1Y
j=1

g
�e1j
b1j

�
^ : : : ^

�
yw =

`wY
j=1

g
�ewj
bwj

��
(m) ;



where the indices eij 2 f1; : : : ; ug refer to the elements �1; : : : ; �u and the
indices bij 2 f1; : : : ; vg refer to the base elements g1; : : : ; gv. The signature
consists of an (u+1) tuple (c; s1; : : : ; su) 2 f0; 1gk�Zu

n satisfying the equation

c = H
�
m


y1

:::

yw

g1

:::

gv

ffeij ; bijg`ij=1gwi=1

yc1

`1Y
j=1

g
se1j
b1j



:::

ycw
`wY
j=1

g
sewj
bewj

�

SKREP can be computed in the same way as the simple signature of knowledge
of a discrete logarithm if a u-tuple (�1; : : : ; �u) is known which satis�es the
given equations. One �rst chooses ri 2R Zn for i = 1, : : : ; u, computes c as

c := H
�
m


y1

: : : 

ffeij ; bijg`ij=1gwi=1



`1Y
j=1

g
re1j
b1j



: : :

 `wY
j=1

g
rewj
bewj

�
;

and then sets si := ri � c�i (mod n) for i = 1, : : : ; u.
Signatures of knowledge of representations are a powerful tool for construct-

ing various cryptographic systems, but we will also employ signatures of the
knowledge of double discrete logarithms (see [26]) and of roots of logarithms.

De�nition 3. Let `�k be a security parameter. An (`+ 1) tuple (c; s1; :::; s`)
2 f0; 1gk �Z` satisfying the equation

c = H(m k y k g k a k t1 k : : : k t` ) with ti =

(
g(a

si ) if c[i] = 0

y(a
si ) otherwise

is a signature the knowledge of a double discrete logarithm of y to the bases g
and a, and is denoted SKLOGLOG

�
� : y = g(a

�)
�
(m). ut

An SKLOGLOG
�
� : y = g(a

�)
�
(m) can be computed only if the double discrete

logarithm x of the group element y to the bases g and a is known. We assume
that there is an upper bound � on the length of x, i.e., 0 � x < 2� (� = jnj is
an example, but for certain applications, smaller bounds can be used). Let � > 1
be a constant. One �rst computes the values

t�i := g(a
ri )

for i = 1; : : : ; ` with randomly chosen ri 2 f0: : : : ; 2�� � 1g. Then, c is set to
H(m k y k g k a k t�1 k : : : k t�` ), and �nally,

si :=

(
ri if c[i] = 0,

ri � x otherwise:

for i = 1; : : : ; `. It can easily be veri�ed that the resulting tuple (c, s1; : : : ; s`)
satis�es the veri�cation equation. Note that if the order of a 2 Z�

n is known, the
computations of the si can be \reduced" modulo this order.

De�nition 4. An (` + 1) tuple (c; s1; : : : ; s`) 2 f0; 1gk � Z�

n
` satisfying the

equation



c = H(m k y k g k e k t1 k : : : k t` ) with ti =

(
g(s

e
i ) if c[i] = 0

y(s
e
i ) otherwise

is a signature of the knowledge of an e-th root of the discrete logarithm of y to
the base g, and is denoted SKROOTLOG

�
� : y = g�

e �
(m). ut

Note that the values s1; : : : ; s` belong to Z�

n and therefore must not be zero.
Such a signature can be computed if the e-th root x of the discrete logarithm

of y to the base g is known. One �rst computes the values

t�i := g(r
e
i )

for i = 1; : : : ; ` with randomly chosen ri 2 Z�

n. Then, c is set to H(m k y k g k e k
t�1 k : : : k t�` ), and �nally,

si :=

(
ri if c[i] = 0,

ri=x (mod n) otherwise:

for i = 1; : : : ; `. It can easily be seen that the resulting tuple (c, s1; : : : ; s`)
satis�es the veri�cation equation.

4 The Basic Group Signature Scheme

In this section we propose a �rst realization of a group signature scheme based
on the ideas presented in the end of Section 2. In this solution, the opening of
signatures can even be realized in a simpler way.

4.1 System Setup

The group manager computes the following values:

{ an RSA public key (n; e),
{ a cyclic group G = hgi of order n in which computing discrete logarithms is
infeasible (e.g. G could be a subgroup of Z�

p, for a prime p with nj(p� 1)),
{ an element a 2 Z�

n (a should be of large multiplicative order modulo both
prime factors of n), and

{ an upper bound � on the length of the secret keys and a constant � > 1
(these parameters are required for the SKLOGLOG signatures)

The group's public key is Y = (n; e;G; g; a; �; �).

4.2 Generating Membership Keys and Certi�cates

When Alice is to join the group, she chooses her secret key x 2R f0; : : : ; 2�� 1g
and computes the value y := ax (mod n) and her membership key z = gy. She
commits herself to y, for instance by signing it. She then sends y and z to the
group manager and proves to him that she knows the discrete logarithm of y to



the base a (this can be done with techniques similar to those for signatures of
knowledge of a discrete logarithm, with the di�erence that the group order is un-
known). When the group manager is convinced that Alice knows this logarithm,
he returns to her the membership certi�cate

v � (y + 1)1=e (mod n) :

It seems infeasible to construct such a triple (x; y; v) without the help of the
group manager: on one hand, if y is correctly formed then it is infeasible to
compute the e-th root of y + 1 because the factorization of n is unknown. On
the other hand, if y+1 is computed as we for some value w then it is infeasible
to compute the discrete logarithm of we � 1 to the base a. Furthermore, even if
several group members pool their values, they still seem unable to construct a
new such triple.

4.3 Signing Messages

To sign a message m, Alice computes the following values:

{ ~g := gr for r 2R Z�

n

{ ~z := ~gy

{ V1 := SKLOGLOG
�
� : ~z = ~ga

��
(m)

{ V2 := SKROOTLOG
�
� : ~z~g = ~g�

e�
(m)

The resulting signature on the message m consists of (~g, ~z, V1, V2) and can be
veri�ed by checking the correctness of the signatures of knowledge V1 and V2.

We now explain brie
y why this signature really proves that Alice belongs
to the group. On one hand, because of V1 the value ~z~g must be of the form

~z~g = ~ga
�+1

for an integer � Alice knows. On the other hand, V2 proves that Alice knows
an e-th root of (a� + 1), which means that Alice knows the secret key and a
membership certi�cate of her membership key.

4.4 Opening Signatures

Linking two signatures (~g; ~z; V1; V2) and (~g0; ~z0; V 0

1 ; V
0

2), i.e., deciding whether
these signatures have been issued by the same group member or not, is only
possible by deciding whether log~g ~z = log~g0 ~z

0 . Generally, solving this problem
is infeasible and therefore the signatures of the group members are anonymous
and unlinkable. However, the group manager has an advantage: he knows the
relatively few possible values of log~g ~z, namely the discrete logarithms (to the
base g) of the membership keys of the group members, and can therefore perform
this test. Given only a signature (~g; ~z; V1; V2) for a messagem, the group manager
can �nd the group member who issued this signature by testing

~gyP
?
= ~z



for all group members P (where yP denotes discrete logarithm of P 's membership
key zP to the base g). A proof of this fact consists of the signer's membership
key zP , his commitment to this key, and a non-interactive proof of the equality
of logg z and log~g ~z. Unfortunately, this method is impractical for very large
groups. In Section 6 we present an extension that makes it possible to identify
group members directly.

4.5 Security and E�ciency Considerations

The security of the basic group signature scheme presented in this section is
based on the di�culty of the discrete logarithm problem and on the security of
the Schnorr [25] and of the RSA [24] signature schemes. It is also based on the
additional assumption that computing membership certi�cates of valid member-
ship keys is infeasible if the factorization of the modulus n is unknown. With
regard to the anonymity of group members, linking two signatures is as hard
as deciding whether two discrete logarithms are equal (for instance, undeniable
signatures [10] make also use of this assumption).

With the following values of the system parameters

k = 160, ` = 64, � = 170, � = 4=3, jnj = 600, and e = 3,

a signature is less than 7 KBytes long and the operations for signing messages
and for verifying signatures require the computation of approximately 140'000
modular multiplications with a 600 bit modulus (this corresponds to about 155
exponentiations with full 600 bit exponents).

5 E�cient SKROOTLOG

A disadvantage of the scheme presented in the previous section is that the sig-
natures SKROOTLOG and SKLOGLOG are quite ine�cient. In this section we
show how an e�cient SKROOTLOG can be realized when the exponent e is
small.

5.1 A Simple Observation

If e is small then it is possible to e�ciently convince somebody about one's
knowledge of the e-th root of the discrete logarithm of z = gx

e

to the base g by
computing the following e� 1 values:

z1 := gx; z2 := gx
2

; : : : ; ze�1 := gx
e�1

and showing with a signature of knowledge

U := SKREP
�
� : z1 = g� ^ z2 = z�1 ^ : : : ^ z = z�e�1

�
that the discrete logarithms `between' two subsequent values in the list g, z1,
: : : , ze�1, z are all equal and known. Therefore the following equations

z = z�e�1 = z�
2

e�2 = : : : = z�
e�1

1 = g�
e



must hold and the knowledge of an e-th root of z to the base g is assured. More
generally, one could use any addition chain for the integer e, but we restrict
ourselves to this simple case for the rest of the paper.

However, the problem of this approach is that the values z1; : : : ; ze�1 leak
additional information. In the next section we show how these values can be
randomized. This leads to an e�cient SKROOTLOG presented in the next but
one section.

5.2 E�cient Signatures Proving the Knowledge of Roots of
Representations

From now on we assume that an element h 2 G is available whose discrete
logarithm to the base g is unknown (for instance, h could be computed according
to a suitable pseudo-random process with g as seed). The element h is now used
to randomize (or blind) z and the zi's of the previous section, i.e., v becomes
hrz for some random r and one wants to `prove' the knowledge of a pair (�; �)
for which v = h�g�

e

holds. Such a signature can be given e�ciently by applying
the method described above.

Similar techniques have already been used in [13,19] for the purpose of prov-
ing properties of bit commitments.

De�nition 5. An e�cient signature of the knowledge of the e-th root of the
g-part of a representation of v to the bases h and g, denoted

E-SKROOTREP
h
(�; �) : v = h�g�

e
i
(m) ;

consists of an (e�1)-tuple (v1; : : : ; ve�1) 2 Ge�1 and of a signature of knowledge

U = SKREP
h
(
1; : : : ; 
e; �) : v1 = h
1g� ^ v2 = h
2v�1 ^ : : :

: : : ^ ve�1 = h
e�1v�e�2 ^ v = h
ev�e�1

i
(m) :

The signature of knowledge can be veri�ed by checking the correctness of U . ut

The following equation explains why a veri�er will be convinced of the prover's
knowledge of (�; �):

v = h
e
�
h
e�1

�
: : : h
2(h
1g�)�: : :

����
= h
e+
e�1�+:::+
2�

e�2+
1�
e�1

g�
e

=: h�g�
e

:

Such a signature can be computed if values r and x in Zn are known for which

v = hrgx
e

: one �rst computes the values vi := hrigx
i

for i = 1; : : : ; e � 1 with
randomly chosen ri 2 Zn. Then the signature of knowledge U is computed. Note
that the elements vi are truly random group elements and so do not leak any
information.



5.3 E�cient Signatures proving the Knowledge of Roots of
Logarithms

Based on the E-SKROOTREP's, it is now easy to construct an e�cient and
secure E-SKROOTLOG, by showing that z itself is not blinded:

De�nition 6. A e�cient signature on the knowledge of the e-th root of the
discrete logarithm of z to the base g, denoted

E-SKROOTLOG
h
� : z = g�

e
i
(m)

consists of the two signatures

E-SKROOTREP
h
(�; �) : z = h�g�

e
i
(m) and SKREP

�

 : z = g


�
(m)

where the discrete logarithm of h the base g must be unknown. ut
Since one can know only one representation of z to the bases h and g, it follows
that � � 0 (mod n) and 
 � �e (mod n) and that the prover knows the e-th
root of the discrete logarithm of z to the base g.

6 A More E�cient Variant

Because similar improvements as for SKROOTLOG signatures seem not be
possible for SKLOGLOG signature, an evident solution to design a more ef-
�cient group signature scheme is to modify it in a way that allows to replace
the SKLOGLOG by an SKROOTLOG signature. This is indeed possible if the
membership key is computed using y = xe (mod n) instead of y = hx (mod n).

As an immediate consequence, the group manager must be prevented from
learning the value y (otherwise he could compute an e-th root of y and sign on
behalf of group members). This problem can be solved by sending the group
manager only gy and adapting the protocol for issuing the membership certi�-
cates accordingly. Furthermore, because the group manager no longer knows y,
the method for opening signatures as described in Section 2.2 must be realized.

6.1 System Setup

The group manager computes the following values:

{ an RSA modulus n and two public exponents e1, e2 > 1, such that e2 is
relatively prime to '(n),

{ two integers f1, f2 > 1 whose e1-th roots and e2-th roots cannot be computed
without knowing the factorization of n,

{ a cyclic group G = hgi of order n in which computing discrete logarithms is
infeasible,

{ an element h 2 G whose discrete logarithm to the base g must not be known,
{ his public key yR = h� for a randomly chosen value � 2 Zn.

The group's public key consists of Y = (n; e1; e2; f1; f2; G; g; h; yR), whereas � and
the factorization of n remain the group manager's secret key. Possible choices
for the parameters e1, e2, f1, and f2 are discussed in section 6.5.



6.2 Membership Keys and Blind Issuing of Membership Certi�cates

To become a group member, Alice computes her membership key as follows:

{ y := xe1 (mod n) for x 2R Z�

n (see also discussion in Section 6.5)
{ z := gy

A certi�cate in this scheme is of the form

v = (f1y + f2)
1=e2 (mod n) :

To prevent the group manager from learning y, this certi�cate must be issued
using the blind RSA-signature scheme of Chaum [9]. Additionally, Alice must
send z to the group manager and convince him that the discrete logarithm of z to
the base g is a valid membership key and is contained in the blinded certi�cate.
More formally, Alice computes

{ ~y := re2(f1y + f2) (mod n) for r 2R Z�

n

{ U := E-SKROOTLOG
�
� : z = g�

e1
�
(` ')

{ V := E-SKROOTLOG
�
� : g~y = (zf1gf2)�

e2
�
(` ')

and sends ~y; z; U , and V to the group manager. If U and V are correct, the group
manager sends Alice the blinded certi�cate

~v = ~y1=e2 (mod n);

which Alice unblinds and thereby obtains her membership certi�cate

v = ~v=r = (f1y + f2)
1=e2 (mod n):

Let us now explain what the signatures of knowledge U and V actually mean.
The signature U shows that the element z is of the form g�

e1
for some � Alice

knows. The signature V assures that ~y = �e2(f1�
e1 + f2) (mod n) holds for

some � Alice knows, and therefore the group manager can conclude that ~y is a
correctly blinded membership key.

6.3 Signing Messages

To sign a message m on behalf of the group, Alice performs the following com-
putations:

{ ~z := hrgy for r 2R Z�

n

{ d := yrR

{ V1 := E-SKROOTREP
�
(�; �) : ~z = h�g�

e1
�
(m)

{ V2 := E-SKROOTREP
�
(
; �) : ~zf1gf2 = h
g�

e2
�
(m)

{ V3 := SKREP
�
("; �) : d = y"R ^ ~z = h"g�

�
(m)



The resulting signature on the messagem consists of (~z; d; V1; V2; V3) and is valid
if the three signatures of knowledge V1, V2, and V3 are correct.

The following explains brie
y why such a signature convinces a veri�er that
the signer knows the secret key of a certi�ed membership key. Consider the
signature V1: it `proves' that the signer knows a representation (�; �e1 ) of ~z
to the bases h and g and that she knows the e1-th root of the g-part of this
representation, i.e., �. The signature V2 `proves' the signer's knowledge of a
representation (
; �e2) of ~zf1gf2 to the bases h and g and her knowledge of the
e2-th root of �e2 . As the signer can know at most one representation of ~zf1gf2

to the bases h and g it follows that


 � � (mod n) and �e2 � f1�
e1 + f2 (mod n):

The fact that the signer knows an e1-th root of �
e1 and an e2-th root of �

e2 means
that she knows a membership certi�cate and the secret key of the corresponding
membership key.

Finally, consider the element d and the signature V3. The pair (d; ~z) is a
(modi�ed) ElGamal encryption [14] of gy encrypted under the group manager's
public key yR and enables the group manager to open signatures. The signature
V3 guarantees that this encryption is formed correctly.

6.4 Opening Signatures

When the group manager wants to open a signature (~z, d; V1, V2, V3) on the
message m, he computes ẑ := ~z=d1=� which corresponds to the signer's member-
ship key z. To prove that z is indeed encrypted in ~z and d, the group manager
computes

SKREP [� : ~z = zd� ^ h = y�R] (` ');

which he can do because 1=� (mod n) corresponds to his administration key.

6.5 Security and E�ciency Considerations

The security of the group signature scheme presented in this section is based on
the di�culty of the discrete logarithm problem and on the security of the RSA
and Schnorr signature schemes. The security of the scheme relies also on the
di�culty of computing certi�cates when the factorization of n is unknown. The
latter depends on the choices for the values e1, e2, f1, and f2. For instance, the
choice e1 = 2, e2 = 2, and f1 = 1, related to the Ong-Schnorr-Shamir signature
scheme [20], is not secure for any value of f2 as is shown in [1,23]. Generally, it
is regarded open problem to determine which types of polynomial congruences
with composite moduli are hard to solve [18]. Furthermore, it is also important
that when given several solutions of such a polynomial congruence it remains
hard to compute other ones.

In order to make it harder to forge membership certi�cates, it is possible
to modify the group signature scheme such that only solutions of the polyno-
mial equation are accepted that meet additional requirements. For instance, by
modifying the E-SKROOTLOG signature V1, one can e�ciently prove that the



secret key x is smaller than
p
n (the techniques are similar to those used for the

SKLOGLOG signatures). As a challenge, we propose to use this approach with
the following parameters:

e1 = 5; e2 = 3; f1 = 1; and, f2 such that its 3rd root is hard to compute.

For this choice and with k = 160 and jnj = 600, a signature is about 1.4 KByte
long and the operations for signing for verifying signatures require the compu-
tation of approximately 18'000 modular multiplications with a 600 bit modulus
(this corresponds to about 20 exponentiations with full 600 bit exponents).

7 Extensions

An obvious (and for the second scheme simple) extension would be to assign the
di�erent roles of the group manager to di�erent entities, i.e., to a membership
manager, who is responsible for adding new members to the group, and to a
revocation manager, who is responsible for opening signatures. The functionality
of these managers can also be shared among several entities. The realization is
straightforward.
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