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Abstract

In the setting where two parties knowing random variables X and Y , respectively, want to
generate a secret key by communication accessible to an adversary who additionally knows a finite
random variable Z, the so-called intrinsic information between X and Y given Z, I(X;Y ↓Z),
proved useful for determining the number of extractable secret key bits. Given a tripartite
probability distribution PXY Z , this information measure is, however, hard to compute in general
since a minimization has to be made over all possible discrete-output channels PZ|Z the adversary
could use for processing her information. We strongly simplify this by showing that it can,
without loss of generality, be assumed that the output alphabets of these channels equal their
input alphabet; this implies in particular that there exists an optimal channel which achieves the
minimum, since the set of such channels is compact. The proofs of our results combine techniques
from point-set topology, measure theory, and convex geometry.

1 Introduction

In the context of unconditionally secure key agreement, the following measure for conditional mutual
information, called the intrinsic information, between two discrete random variables X and Y , given
a third variable Z, was defined as follows in [4].

Definition 1. [4] The intrinsic conditional mutual information (intrinsic information for short)
between X and Y given Z is defined as

I(X;Y ↓Z) := inf
Z

(I(X;Y |Z)) , (1)

where the infimum is taken over all discrete random variables Z such that XY → Z → Z is a Markov
chain.

The minimization in (1) includes, in other words, all discrete conditional probability distributions,
or discrete channels, PZ|Z .

The intrinsic information is useful in a context where two parties, being connected by a public
channel, and having access to (repeated realizations of) random variables X and Y , respectively, want
to generate a key being secret even if a possible adversary has some additional knowledge specified
by Z. In fact, it was shown [4] that I(X;Y ↓Z) is an upper bound on the rate S = S(X;Y ||Z)
at which such a key can be extracted. Later results allowed for clarifying the role of I(X;Y ↓Z)
in secret-key agreement: In [5] it is shown that another information measure, the reduced intrinsic
information of X and Y , given Z, can be defined as a variation of I(X;Y ↓Z) and yields an even
better (tight?) upper bound on S. The result of the present paper, namely a simplification of the
representation of I(X;Y ↓Z) in terms of PXY Z , immediately carries over to the reduced intrinsic
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information measure. Another recent (unpublished) result states that I(X;Y ↓Z) is a lower bound
on the rate at which secret-key bits are required for distributing pieces of information X and Y by
public communication, leaving a possible wire-tapper with no more information than Z.

The main disadvantage of the intrinsic information measure is obvious: Since it is the infimum of
the conditional mutual information I(X;Y |Z), taken over the set of all possible discrete conditional
probability distributions PZ|Z , it is a priori not easy to compute — by the same reason as, for
instance, the capacity of a noisy communication channel can be hard to determine. In particular,
for proving that I(X;Y ↓Z) > 0 holds it is not enough to show that I(X;Y |Z) is strictly positive
for all Markov chains XY → Z → Z [2]: The minimum might not be taken by any channel since
the space of discrete channels (more precisely, the set of channels with a fixed input alphabet and
discrete yet unbounded output alphabet) is not a compact set. In this paper, we take a step towards
understanding I(X;Y ↓Z) better: We prove that the minimum is indeed taken by a specific channel
PZ|Z and, moreover, that we can assume without loss of generality that the alphabet of Z equals (or
is contained in) the alphabet of Z. In other words, in order to reach the minimum, it is not necessary
to extend the range of Z when computing Z.

A consequence is that the following is true for all random variables X, Y , and Z (where the
range Z of Z is finite): If there exists a Markov chain XY → Z → Z such that I(X;Y |Z) = 0 holds,
then there exists in particular a Markov chain XY → Z → Zfin, where Zfin is now a finite random
variable with Zfin = Z, such that I(X;Y |Zfin) = 0 holds.

2 Simplifying the Representation of the Intrinsic Information —
The Minimum is Taken and the Range Need Not Be Extended

Let us state the main result of this paper.

Theorem 1. If the range Z of Z is finite, then there exists a finite random variable Z, having the
same range Z, such that XY → Z → Z is a Markov chain and

I(X;Y ↓ Z) = I(X;Y |Z) .

Corollary 2. If the range Z of Z is finite, then

I(X;Y ↓ Z) = min
Z

I(X;Y |Z)

where the minimum is taken over all random variables Z with range Z such that XY → Z → Z is
a Markov chain.

Corollary 3. If the range Z of Z is finite, then the following statements are equivalent:

1. There exists a discrete random variable Z such that XY → Z → Z is a Markov chain, and X
and Y are independent conditioned on Z.

2. There exists a finite random variable Z with range Z such that XY → Z → Z is a Markov
chain, and X and Y are independent conditioned on Z.

3. I(X;Y ↓ Z) = 0.

Corollary 2 is a direct consequence of Theorem 1, stating that the infimum over discrete channels
from Z to Z in the definition of the intrinsic information can be replaced by a minimum over channels
having an output alphabet of size |Z|.

Corollary 3 follows from the simple fact that, if (and only if) for some random variable Z, the
conditional mutual information I(X;Y |Z) is zero, then, conditioned on Z, the two random variables
X and Y are independent.
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The proof of Theorem 1 is based on Carathéodory’s Fundamental Theorem [3] (Lemma 4), which
can be used to derive a general statement about the expectation of functions of random variables
defined on an affine space (Lemma 5). This then leads to a property of the expectation of functions
defined on probability distributions (Lemma 6), from which, finally, Theorem 1 follows.

Let us introduce some notation to be used for the proof of Theorem 1. The expectation of a
function f = f( · ) of some random variable U is denoted by EU [f(U)] = E[f(U)]. Similarly, for a
function g( · , · ) of two arguments, the expectation EU [g(U, · )] is a function (of one argument), map-
ping its argument x to EU [g(U, x)]. It turns out to be convenient to express the mutual information
I(U ;V ) between two random variables U and V as a function of their distribution PUV = PUV ( · , · ),
i.e., I(PUV ( · , · )) := I(U ;V ). The conditional mutual information I(U ;V |W ) can then be written
as EW [I(PUV |W ( · , · ,W ))].

Lemma 4. Let D be a discrete random variable with range D, being a subset of an n-dimensional
affine space W over R. Then, there exists a random variable F with range F of size |F| ≤ n + 1
such that F ⊆ D and E[F ] = E[D].

Proof. The expectation values E[D] and E[F ], being elements of W, can be regarded as convex
combinations of elements of D and F , respectively. The statement is thus a direct consequence of
Carathéodory’s Fundamental Theorem [3], saying that each point in the convex hull of a set S in
Rn is a convex combination of n + 1 or fewer points of S.

Lemma 5. Let W be an n-dimensional affine space over R, f a real-valued function on W, and V
a finite random variable taking values in W (i.e., its range V is a finite subset of W).

Then, there exists a random variable U with range U ⊆ V of size at most n + 1, satisfying

E[U ] = E[V ] and E[f(U)] ≤ E[f(V )] . (2)

Proof. Let U be a random variable with minimal range U ⊆ V (i.e., |U| is minimal) such that (2)
is satisfied for U = U , and assume by contradiction that |U| > n + 1. Since (2) trivially holds for
U = V , |U| is bounded by |V|, i.e., |U| ≤ |V| < ∞. The minimal value |U| is thus well-defined.

According to Lemma 4, there is a random variable U
′ with range U ′ such that E[U ′] = E[U ],

U ′ ⊆ U , and |U ′| ≤ n + 1. Let the set U ′ be restricted to values with strictly positive probability,
i.e., for all v ∈ U ′, P

U
′(v) > 0, and define α(v) := PU (v)/P

U
′(v) for all v ∈ U ′.

Let v0 be an element of U ′ such that α(v) is minimal for v = v0, i.e., α(v) ≥ α(v0) for all v ∈ U ′,
and let α0 := α(v0). Note that∑

v∈U ′

(P
U

′(v)− PU (v)) = 1− Prob [U ∈ U ′] > 0 ,

where the last inequality follows from the fact that, by assumption, the range of U is minimal and
|U| > n + 1 ≥ |U ′|, i.e., Prob [U /∈ U ′] > 0. There is thus at least one element v ∈ U ′ such that
PU (v) < P

U
′(v) holds. Hence we have α(v) < 1 and, consequently, α0 < 1.

Let U
′′ be a new random variable on the set U with

P
U

′′(v) :=
1

1− α0

(
PU (v)− α0 · PU

′(v)
)

(3)

for all v ∈ U . The random variable U
′′ is well-defined since, as an immediate consequence of the

definition of α(v) and α0 ≤ α(v), the probabilities P
U

′′(v) are non-negative (for all v ∈ U), and,
additionally, sum up to one:∑

v∈U

P
U

′′(v) =
1

1− α0

(∑
v∈U

PU (v)− α0

∑
v∈U

P
U

′(v)
)

= 1 .
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Let U ′′ ⊆ U be the minimal set such that P
U

′′(v) is strictly positive for all v ∈ U ′′. By definition, v0

is contained in U ′ ⊂ U . On the other hand, since

P
U

′′(v0) =
1

1− α0

(
PU (v0)− α0 · PU

′(v0)︸ ︷︷ ︸
PU (v0)

)
= 0 ,

v0 is not contained in U ′′ ⊆ U . The set U ′′ is thus strictly smaller than the set U , i.e., |U ′′| < |U|.
Rewriting equation (3) as PU (v) = (1 − α0) · PU

′′(v) + α0 · PU
′(v), the expectation of g(U), for

any function g defined on U , can be expressed as

E[g(U)] = (1− α0) · E[g(U ′′)] + α0 · E[g(U ′)] . (4)

Letting g be the identity function, and recalling that E[U ′] = E[U ] and α0 < 1, we directly obtain

E[U ′′] = E[U ′] = E[U ] .

Furthermore, for g = f , it follows directly from (4) that E[f(U ′)] and E[f(U ′′)] can not both be
larger than E[f(U)] ≤ E[f(V )], i.e., (2) holds for either U = U

′ or U = U
′′ (or both). Since

|U ′| ≤ n + 1 < |U| and |U ′′| < |U|, this is a contradiction to the assumption that U has minimal
range.

Lemma 6. Let (Zi, V i)i∈N be a sequence of pairs of discrete random variables where the range of
Zi is a finite set Z (for all i ∈ N).

Then, for any real-valued continuous function f defined on the set of all probability distributions
over Z, P(Z), there is a pair (Z, V ) of finite random variables, both having range Z, satisfying

PZ = lim
i→∞

PZi (5)

EV [f(PZ|V ( · , V ))] ≤ lim
i→∞

EV i [f(PZi|V i( · , V i))] (6)

(if these limits are defined).

Proof. The probability distribution of Zi conditioned on V i (for i ∈ N) can be considered as a
random variable Xi := PZi|V i( · , V i) with range P(Z). The expectation value on the right-hand
side of (6) can then be written as

E[f(Xi)] = EV i [f(PZi|V i( · , V i))] , (7)

and the expectation of Xi satisfies

E[Xi] = EV i [PZi|V i( · , V i)] =
∑

v

PV i(v)PZi|V i( · , v) = PZi( · ) . (8)

Since, for each i ∈ N, the value of the random variable Xi is fully determined by the value of the
discrete random variable V i, Xi must be discrete as well. Therefore, for each εi > 0, there is a finite
subset U i of the range of Xi such that the random variable U i, defined by PU i(v) := PXi|v∈Ui(v)
(for v ∈ U i), satisfies

|E[f(U i)]− E[f(Xi)]| ≤ εi (9)

and, for all z ∈ Z,
|E[U i](z)− E[Xi](z)| ≤ εi . (10)
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The range U i of U i, consisting of elements of P(Z), is a finite subset of the (n− 1)-dimensional
affine space {v = (v1, . . . , vn) ∈ R :

∑n
i=1 vi = 1} where n := |Z|. We can thus apply Lemma 5 which

implies that there exists a random variable T i with range T i ⊆ U i of size (at most) n satisfying

E[f(T i)] ≤ E[f(U i)] (11)
and E[T i] = E[U i] . (12)

Let εi := 1/i. Then, combining (11) with (7) and (9), and, similarly, combining (12) with (8) and
(10), leads to

E[f(T i)] ≤ EV i [f(PZi|V i( · , V i))] + 1/i (13)

and, for all z ∈ Z,
|E[T i](z)− PZi(z)| ≤ 1/i (14)

(for all i ∈ N).
Let v(1), . . . , v(n) be the n elements of the range T i ⊆ P(Z) and define the function

pi : Z × {1, . . . , n} −→ R+

(z, k) 7−→ PT i(v(k)) · v(k)(z) .

Then, for all z ∈ Z,
n∑

k=1

pi(z, k) =
∑
v∈T i

PT i(v) · v(z) = E[T i](z) . (15)

Since the range of T i is a subset of P(Z), it follows that
∑

z∈Z
∑n

k=1 pi(z, k) = 1, which implies that
the functions pi (for i ∈ N) are bounded by the interval [0, 1]. Because the set of bounded functions
defined on a finite set is compact, the sequence (pi)i∈N has a convergent subsequence (pij )j∈N, i.e.,
the limes p := limj→∞ pij exists.

From (15) and (14), we obtain, for all z ∈ Z,

n∑
k=1

p(z, k) = lim
j→∞

n∑
k=1

pij (z, k) = lim
j→∞

E[T ij ](z) = lim
i→∞

PZi(z) . (16)

Since p is thus a probability distribution, we can define two random variables Z and V with range
Z = {z(1), . . . , z(n)}, such that

PZV (z, z(k)) = p(z, k)

(for all (z, k) ∈ Z × {1, . . . , n}). Equation (5) is then a direct consequence of (16). Furthermore,
from the continuity of f , we get

EV [f(PZ|V ( · , V ))] = lim
j→∞

E[f(T ij )] (17)

which, together with (13), implies (6) and thus concludes the proof.

Proof (of Theorem 1). The main idea of the proof is to express the mutual conditional information
I(X;Y |W ) (for some random variable W ) in terms of an expectation value of a function σ of
conditional probabilities, such that Lemma 6 can be applied.

Let P(Z) be the space of all probability distributions on the range Z of Z. For any random
variable W (with range W) such that XY → Z → W is a Markov chain, I(X;Y |W ) can be rewritten
as

I(X;Y |W ) =
∑
w∈W

PW (w) · I(PXY |W ( · , · , w))

=
∑
w∈W

PW (w) · σ(PZ|W ( · , w)) = EW [σ(PZ|W ( · ,W ))] .
(18)
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where σ is the function

σ : P(Z) −→ R
P 7−→ I

(∑
z∈Z PXY |Z( · , · , z) · P (z)

)
.

According to the definition of the intrinsic information, there is a sequence (W i)i∈N of discrete
random variables satisfying

lim
i→∞

I(X;Y |W i) = I(X;Y ↓ Z) (19)

such that XY → Z → W i is a Markov chain. Consequently, using (18) and (19), we obtain

I(X;Y ↓ Z) = lim
i→∞

EW i [σ(PZ|W i( · ,W i))] . (20)

Since σ is obviously continuous, we can directly apply Lemma 6 for (Zi, V i) := (Z,W i), leading
to a random variable V with range Z, such that XY → Z → V is a Markov chain and

EV [σ(PZ|V ( · , V ))] ≤ lim
i→∞

EW i [σ(PZ|W i( · ,W i))] .

Thus, using (18) (for W = V ) and (20), we finally have I(X;Y |V ) ≤ I(X;Y ↓ Z). Setting Z := V ,
Theorem 1 follows from the fact that the intrinsic information I(X;Y ↓ Z), being defined as an
infimum, cannot be larger than I(X;Y |V ).

3 Concluding Remarks

We have shown that the intrinsic information measure, which is of importance in the context of
unconditionally secure key agreement, is easier to compute, to understand, and to manipulate than
previously believed: The infimum in the definition of I(X;Y ↓Z), taken over the set of arbitrary
discrete-output channels, can be replaced by a minimum, taken over all channels whose output
alphabet equals the input alphabet.

Using this result, it is a much easier task to prove for instance that the intrinsic information of
a distribution is non-vanishing. Such proofs were used in [2] and [1] in order to analyze tripartite
probability distributions arising when so-called bound entangled quantum states are measured; these
distributions are believed to satisfy S(X;Y ||Z) = 0 whereas I(X;Y ↓Z) > 0. It is a fundamental
problem to prove the existence of such “bound information” which cannot be used for the generation
of a secret key by any protocol [2],[1],[5].
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