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We show a transitivity property of nonlocal correlations: There exist tripartite nonsignaling correlations

of which the bipartite marginals between A and B as well as B and C are nonlocal and any tripartite

nonsignaling system between A, B, and C consistent with them must be such that the bipartite marginal

between A and C is also nonlocal. This property represents a step towards ruling out certain alternative

models for the explanation of quantum correlations such as hidden communication at finite speed.

Whereas it is not possible to rule out this model experimentally, it is the goal of our approach to

demonstrate this explanation to be logically inconsistent: either the communication cannot remain hidden,

or its speed has to be infinite. The existence of a three-party system that is pairwise nonlocal is of

independent interest in the light of the monogamy property of nonlocality.
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Introduction.—In a classical world, correlations between
distant observers are either due to preshared information or
communication [1]. Shared quantum information, i.e., mea-
surements on two (or more) distant parts of an entangled
quantum state, however, can lead to correlations which are,
on one hand, stronger than what can be achieved by shared
information, but, on the other hand, do not allow for com-
munication. These correlations are called nonlocal [2,3],
and the formalism of quantum physics predicts that they
occur no matter the distance between the observers nor the
position in space-time they perform their measurements at.

While quantum theory is well-established and no experi-
ment has contradicted its predictions, the question remains
open whether there could be other physical theories de-
scribing our world. The fact that correlations predicted by
quantum theory are nonlocal and occur even when mea-
surements are performed in a spacelike separated way [4]
implies that such a theory cannot be limited to local hidden
variables [3] and communication at the speed of light.
Among alternative models which could explain the experi-
mental observations, one proposition is to consider a physi-
cal theory based on local hidden variables augmented by
superluminal hidden communication (in a preferred refer-
ence frame) for transmitting the nonlocal correlations. If
this superluminal communication were of infinite speed,
this model would be consistent with the predictions of
quantum theory; however, is it possible that it occurs at
some finite speed (possibly much faster than the speed of
light)? It has been pointed out that such communication
alone is insufficient [5,6]; but what if it is augmented with
hidden variables?

If the cause of nonlocal correlations was hidden com-
munication at finite speed, then the correlations could only
be observed between two observers as long as the hidden
communication can travel from one to the other; in case
the observers measure their systems ‘‘too simultaneously,’’
their correlations would have to turn local. Experiments
can, therefore, give a lower bound on the required speed of
such a communication in a specific reference frame [7];
however, they can never exclude that the hidden commu-
nication occurred at an even higher, but still finite, speed.
Hence, no experiment can rule out any finite speed.
For that reason, it is our goal to rule out this model

in principle, by showing that the assumptions that the
communication is both hidden and of finite speed lead
to a logical contradiction. This can be done by a
Gedankenexperiment [5,6], for which we need to find
correlations between three parties Alice, Bob, and
Charlie that are ‘‘transitive’’ in the following way:
Assume Alice and Bob as well as Bob and Charlie are
both close enough for the hidden communication to arrive,
i.e., the correlations AB and BC are nonlocal, while Alice
and Charlie are far apart (see Fig. 1) [8]. Now, if the
marginal bipartite correlations AB and BC are such that
any consistent nonsignaling correlation must also be non-
local between Alice and Charlie, then the speed of any
hidden communication would necessarily have to be infi-
nite. Therefore, this ‘‘transitivity of nonlocality’’ rules out
finite-speed communication as its explanation in principle,
independently of any possible experiment.
Note that under the assumption that the correlations

are obtained by measurements on a quantum state �ABC,
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nonlocality between Alice and Charlie can be inferred even
from correlations between Alice and Bob (�AB) and be-
tween Bob and Charlie (�BC) which are local. The reason is
that the bipartite marginals of a state (almost always)
determine the full state [9]. However, since it is our goal
to compare quantum physics to alternative models, we
must reason beyond the quantum formalism, i.e., in terms
of input-output systems instead of quantum states.

In summary, it is our goal to find nonlocal correlations
AB and BC that imply nonlocality between AC under any
nonsignaling composition. We show that such correlations,
which we call transitive nonlocal, do indeed exist, even
with respect to Bell inequalities with as little as four
measurement settings and two outcomes. It is an open
question whether the correlations we describe are consis-
tent with quantum theory and whether we could find a
tripartite quantum state �ABC and measurements which
lead to the input-output systems of AB and of BC that
imply nonlocality between A and C. This would rule out
any explanation of quantum-physically achievable nonlo-
cality based on finite-speed hidden communication.

Preliminaries.—We characterize a tripartite (physical)
system by the probabilities of the measurement results
given the choice of measurement, i.e., a conditional proba-
bility distribution PXYZjUVW , where U and X are Alice’s

choice of measurement and measurement result, respec-
tively, and similarly, V and Y are associated with Bob, and
W and Z with Charlie. The system PXYZjUVW is called

nonsignaling if by interacting with any marginal side no
information about the choice of measurement at the other
side(s) can be obtained. For example, it is nonsignaling

from Charlie to Alice and Bob if for all x, y, u, v, w, w0 it
holds that

X

z

PXYZjUVWðx;y;z;u;v;wÞ¼
X

z

PXYZjUVWðx;y;z;u;v;w0Þ:

(1)

We require the system to be nonsignaling between all
possible two disjoint subsets of Alice, Bob, and Charlie.
A system is called local deterministic if the output on

each side is a deterministic function on the input only on
this side, i.e.,

PXYZjUVWðx; y; z; u; v; wÞ ¼ �fðuÞx�gðvÞy�hðwÞz;

where f : U � X is a function mapping each input to a
fixed output, and similarly for g and h. A system is called
local if it is a convex combination of local deterministic
systems. Local systems are exactly the ones which can be
described by local hidden variables. A system which is
nonsignaling, but not local, is called nonlocal.
Note that both the space of nonsignaling as well as the

space of local systems form a convex polytope (for any
number of inputs and outputs). The polytope of local
systems is (in general) strictly contained in the space of
nonsignaling systems.
Bell inequalities [3,10] are linear in the probabilities

PXYZjUVWðx; y; z; u; v; wÞ and fulfilled by any local system.

If we write ~p for the vector where the entries are all
conditional probabilities PXYZjUVWðx; y; z; u; v; wÞ, a Bell

inequality is of the form ~b⊺ ~p � c, where ~b contains the
linear coefficients describing the Bell inequality, and c is a
scalar. For example, the half-spaces determining the local
polytope are Bell inequalities. Conversely, this also implies
that any nonlocal system must necessarily violate some
Bell inequality. For a system PXYZjUVWðx; y; z; u; v; wÞ (not
necessarily local) described by ~p0, we will say that it

reaches a Bell value of c0 if ~b⊺ ~p0 ¼ c0.
For a given system PXYZjUVWðx; y; z; u; v; wÞ, the ques-

tion whether this system is local can be cast as a linear-
programming problem, i.e., an optimization problem
where the objective function is a linear function of some
vector ~x, and the constraints are linear equalities or in-
equalities in ~x (see, e.g., [11] for a good introduction to
linear programming). More precisely, by solving

max:
X

i

qi s:t:: A � ~q � ~p qi � 0 for all i;

where qi are the entries of the vector ~q to be optimized
over, and the columns of A are all possible local determi-
nistic systems of this number of inputs and outputs. If the
optimal value is 1, then the system is local, if it is smaller
than 1, it is nonlocal [12] (see also [13]).

FIG. 1. The correlations between Alice, Bob, and Charlie, if
Alice and Charlie measure their system at t ¼ 0. Depending on
when Bob performs his measurement, his correlation with them
can be either: local (before the hidden communication arrived),
nonlocal but nonsignaling (the hidden communication but no
signal arrived), signaling (light signal arrived). Our result states
that there are nonlocal correlations between Alice and Bob and
between Bob and Charlie which, if they could be observed,
would exclude the existence of the sector where only AB and
BC are nonlocal, whereas AC is local.
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Additionally, note that the nonsignaling conditions (1)
are linear in the probabilities, more precisely of the form

An-s ~p ¼ ~0. The same holds for the conditions defining a
probability distribution, i.e., normalization (Anorm ~p ¼ 1)
and positivity (pi � 0 for all i). This implies that the
maximum or minimum Bell values reachable by a non-
signaling (or local) system can be calculated by a linear
program. For example, the maximum Bell value reachable
by a nonsignaling system corresponds to [14]

max: ~b⊺ � ~p s:t:: An-s � ~p ¼ ~0

Anorm � ~p ¼ 1 pi � 0 for all i:

On the other hand, we can minimize the Bell value
consistent with certain constraints (such as, for example,
a fixed marginal) and, therefore, test whether these
constraints are sufficient to imply a Bell inequality
violation.

Transitivity.—In order to find a system that is transitive
nonlocal, we will use the Bell inequalities given in [15,16]
as candidates. Note that the best-known Bell inequality—
and the only one for the case of two inputs and outputs—
the CHSH inequality [10] is monogamous [14], i.e., a
nonsignaling system which violates it between Alice and
Bob cannot at the same time violate it between Bob and
Charlie. Consequently, we need to consider Bell inequal-
ities with a larger number of inputs and/or outputs. In the
following, this will be Bell inequalities with binary out-
comes but with up to four inputs.

To find a tripartite system which we can then test for
transitivity of nonlocality, we proceed as follows. We
choose two Bell inequalities, which Alice and Bob as
well as Bob and Charlie should violate. We then maximize
the sum of the values of these two Bell inequalities twice,
subject to the following constraints: (i) Alice, Bob, and
Charlie share a tripartite nonsignaling system. (ii) Alice,
Bob, and Charlie share a tripartite nonsignaling system of
which the marginal of Alice and Charlie is local. If the
optimal value obtained in the first optimization is higher
than the one obtained in the second optimization, the
tripartite system giving rise to this value cannot be local
between Alice and Charlie. A complete list of Bell inequal-
ities which have been tested using this approach and imply
transitivity of nonlocality can be found in [17].

The above approach tells us when a system between
Alice and Charlie must be nonlocal, i.e., must violate some
Bell inequality. It does not necessarily imply that there is a
specific Bell inequality which must be violated between
Alice and Charlie. Nevertheless, we can check whether this
is the case by taking the marginal systems of Alice and Bob
and Bob and Charlie obtained from the first optimization
above, and then minimize the Bell value of any tripartite
nonsignaling system consistent with these marginals. An
example of such a tripartite nonsignaling system which
must even violate a specific Bell inequality is given in
Fig. 2 (see also [17]).

FIG. 2. A tripartite nonsignaling system PXYZjUVW . The rows
contain the different possible inputs of Alice, Bob, and Charlie
and the columns the outputs.
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Figure 2 describes a tripartite nonsignaling system.
Consider the Bell inequalities I114422 and I34422 from [15]
determined by the following coefficients:

We used here the same notation as [15] to describe a Bell
inequality of a bipartite system with binary outputs and m
inputs; i.e., the table gives the coefficients associated with
the probabilities of the first output (which we denote here
by 1) of a bipartite system PXYjUV in the following way

It follows by a straightforward calculation that the system
given in Fig. 2 violates I114422 for the bipartite marginals AB
and BCwith a value of 2=3 each. Additionally, AC violates
I34422 reaching a value of 1=3. Minimizing this value for any

nonsignaling system consistent with the marginals AB and
BC, as obtained from Fig. 2, shows that this is at the same
time the minimal value which can be reached. The system
given in Fig. 2 is, therefore, transitive nonlocal with respect
to the Bell inequality I34422.

Concluding remarks and open questions.—
Measurements on entangled quantum systems can lead to
correlations which ask for explanations. Possible such
explanations are shared information (so-called hidden var-
iables) or some sort of communication (which would need
to be faster than the speed of light, as experiments have
indicated—so-called hidden communication). It has been
shown by Bell and by Gisin and Scarani, respectively, that
one of these two resources is insufficient to explain the
correlations in general. We provide strong evidence that
this even holds for both combined. More specifically, we
show that nonlocal correlations can have some sort of
transitivity property: There exist pairs of bipartite correla-
tions between AB and between BC—with identical mar-
ginal behavior in B—such that any composition thereof to
a three-party nonsignaling system ABCmust be such that A
and C also share nonlocal correlations. This is incompat-
ible with models where nonlocality is transmitted by finite-
speed hidden communication—whatever this speed might

be—as well as models where such correlations exist only
up to certain distances. The reason is that such models
predict situations where AB and BC are nonlocal, but AC is
local—for example, if A andCmeasure simultaneously but
B measures later. We believe that the existence of a three-
party system displaying pairwise nonlocality (and of a Bell
inequality allowing for this) is of independent interest
because of the monogamy property of nonlocality.
It is an open question whether the correlations we con-

sider are quantum-physically realizable, and, in particular,
whether there exists a tripartite quantum state �ABC whose
bipartite marginal systems allow for carrying out a similar
reasoning.
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