
Efficient Synchronization-Light Work Stealing
Rafael Custódio

r.custodio@campus.fct.unl.pt
Department of Computer Science,
NOVA School of Science and

Technology, NOVA University Lisbon
Portugal

Hervé Paulino
herve.paulino@fct.unl.pt

Department of Computer Science &
NOVA LINCS, NOVA School of
Science and Technology, NOVA

University Lisbon
Portugal

Guilherme Rito
guilherme.teixeira@inf.ethz.ch

Department of Computer Science,
ETH Zurich
Switzerland

ABSTRACT
Work Stealing (WS) is a provably efficient scheduler of parallel
computations. In WS each processor owns a deque that it uses as
a call stack; when out of work, processors try to steal tasks from
other processors’ deques. Unfortunately, the concurrent nature of
processors’ deques entails expensive synchronization even when
processors access their own deques. Recently, Rito and Paulino
have found that the use of split deques allows to provably avoid
most synchronization costs while keeping WS’s asymptotically
optimal expected runtime [27]; in Low-CostWork Stealing (LCWS)—
the variant of WS introduced in their work—processors need not
synchronization for most local accesses to their (split) deques.

In this paper we assess the concrete efficiency gains of LCWS
in practice. More concretely, we implemented LCWS in the Parlay
library and show how it compares against Parlay’s original work
stealing algorithm on the execution of the benchmarks from the
Problem-Based Benchmark Suite (PBBS). Experimental results show
that our signal-based LCWS implementation obtains speedups with
regard toWS for at least 65% of PBBS’ benchmarks in three different
computers.

CCS CONCEPTS
• Computing methodologies→ Concurrent algorithms; Shared
memory algorithms; Parallel computing methodologies.

KEYWORDS
scheduling; load balancing; work stealing; synchronization-light;
runtime systems

ACM Reference Format:
Rafael Custódio, Hervé Paulino, andGuilherme Rito. 2023. Efficient Synchronization -
Light Work Stealing. In Proceedings of the 35th ACM Symposium on Par-
allelism in Algorithms and Architectures (SPAA ’23), June 17–19, 2023, Or-
lando, FL, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3558481.3591099

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SPAA ’23, June 17–19, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9545-8/23/06.
https://doi.org/10.1145/3558481.3591099

1 INTRODUCTION
1.1 Motivation
Parallel programming is key to take full advantage of modern com-
puter chips’ processing capabilities. In this context, numerous par-
allel programming aids have been developed, from programming
libraries like the Java concurrency API [14] and Intel’s TBB [20],
among others [7, 8, 17, 19], to extensions of programming lan-
guages, such as OpenMP [6], natively supported constructs, such as
C++’s async [18] and Go’s goroutines [13], and even entirely new
programming languages like Cilk++ [21] and X10 [15]. A primary
objective of these programming tools is to provide developers with
a straightforward method for specifying how their program’s ex-
ecution can be divided into smaller units called tasks, which can
be run concurrently. Once this information is provided, these tools
then determine the scheduling of the program’s execution.

Work Stealing (WS) is a provably efficient scheduler of parallel
computations: the expected runtime of WS for executing a com-
putation with total work (i.e. total number of instructions)𝑊 and
span (i.e. critical-path length) 𝑆 on 𝑃 processors (or workers) is
𝑂 (𝑊/𝑃 + 𝑆), which is a constant factor away from optimal [4, 9].
WS’s efficiency is not just theoretical: it is the de facto standard
scheduler used in the runtime systems of parallel programming
aids like the ones mentioned above. In WS each processor owns a
deque that it treats as a call stack: processors add (push) and take
(pop) tasks from the bottom of the deques they own as needed
throughout a computation’s execution. When a processor runs out
of work (i.e. of tasks to execute) it becomes a thief and repeatedly
tries to steal tasks from the top of other processors’ deques until it
finds some task to execute.

One issue with WS is that, because processors’ deques can be
accessed by multiple processors concurrently, synchronization is
necessary. In fact, as shown by Attiya et al. in [5], expensive syn-
chronization operations are necessary even for the deque’s owner
when it is operating locally, only accessing the bottom of its deque.
In recent work, Rito and Paulino have shown that replacing WS’s
fully concurrent deques with split deques allows to (provably) elim-
inate most synchronization operations when processors are operat-
ing locally on their deques [27]. More concretely, they prove that
their scheduling algorithm—Low-Cost Work Stealing (LCWS)—not
only maintains WS’s asymptotically optimal expected runtime but
also provably avoids most synchronization operations: for a com-
putation with total work𝑊 and span 𝑆 the total expected time
that processors spend executing synchronization operations in a

39

https://orcid.org/0009-0008-6045-0237
https://orcid.org/0000-0001-7958-9740
https://orcid.org/0000-0002-0080-8670
https://doi.org/10.1145/3558481.3591099
https://doi.org/10.1145/3558481.3591099
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3558481.3591099
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3558481.3591099&domain=pdf&date_stamp=2023-06-17


SPAA ’23, June 17–19, 2023, Orlando, FL, USA Rafael Custódio, Hervé Paulino, and Guilherme Rito

𝑃-processor execution using LCWS is upper bounded (roughly) by
𝑂 (𝑆.𝑃). 1

Multiprogrammed Environments. In standard computing envi-
ronments like desktop and mobile devices, the aforementioned
parallel programming aids are responsible for scheduling a pro-
gram’s computation through user-level threads (to which we refer
to as processors). However, these tools usually allocate resources
without considering the global load of the system. As a result, when
multiple runtime systems coexist in a computing system, they com-
pete for available processing power instead of cooperating, leading
to interference and reduced overall performance.

To address this issue, various works have focused on dynamic
assignment and reallocation of hardware resources (such as process-
ing cores, caches, and memory bandwidth) either among runtime
systems [11, 16, 22, 23], among jobs within an runtime system [32]
or at operating system level [25]. This means that, on one hand,
when a parallel computation has access to all available computing
resources, its runtime scheduler can fully utilize these resources for
efficient execution. On the other hand, even when only a fraction
of the computing resources are available, the runtime scheduler
should still effectively utilize them. We, however, observe that it not
the case: the impact of WS’s synchronization costs intensify when
the number of processors is low, given that most tasks are executed
by the processor that generates them and, thus, synchronization
should not have been necessary.

In this paper we address this problem by using (an implementa-
tion of) the LCWS scheduler [27] to efficiently load-balance compu-
tations in scenarios with both high and low number of processors.
Our goal is to ensure a high efficiency of the runtime system inde-
pendently of how much resources are used by the runtime system:
when many processors are used we aim at performances on par
with WS, and in the case of few processors being used we aim at
performances surpassing WS.

1.2 Contributions
In this paper we study the performance of LCWS in practice, com-
paring it to the standardWS scheduler.We evaluate these implemen-
tations in the context of the Parlay parallel processing toolkit [8],
applying it to all input instances of all benchmarks that compose
the Problem-Based Benchmark Suite (PBBS) Version 2 [3]. Our
contributions are:

(1) A set of work stealing-based schedulers that embody the
concepts presented in LCWS. We present and discuss the
rationale behind several implementations:
• User space only implementation of LCWS (Sections 3 and
3.2). This is mostly an approximation to a concrete C++
implementation of LCWS [27] which requires no interven-
tion of the operating system. As will be discussed ahead,
this implementation does not correspond to a provably
efficient version of LCWS, and suffers from issues similar
to Lace [31].

• Signal-based versions (Sections 4, 4.1.1 and 4.1.2) that
make use of signaling among threads to improve efficiency
when the number of processors is high. We experiment

1This is in sharp contrast to WS, where the total expected time processors spend
executing synchronization operations can be up to𝑂 (𝑊 + 𝑆.𝑃 ) .

with different variants, such as share half, that differ in
the amount of work that is made visible to thieves.

(2) The integration of the schedulers in the Parlay toolkit, mak-
ing them available for the community to use: the code can be
accessed from https://bitbucket.org/marrow-project/lcws/.
Any software system build atop Parlay can benefit from the
properties of the proposed schedulers without changing the
system’s source code.

(3) A comprehensive evaluation (Section 5) that compares our
schedulers against the (default, unchanged) WS scheduler
of Parlay. Our evaluation is based on PBBS Version 2, and
in particular uses all input instances of all benchmarks that
compose PBBS. Experimental results show that our signal-
based LCWS implementation obtains speedups with regard
to WS of 65% to 69% of all benchmarks configurations exe-
cuted in three different computers.

2 RELATEDWORK
The LCWS Algorithm [27]. In traditional WS schedulers proces-

sors need to execute expensive synchronization instructions when
accessing deques [5] to guarantee correctness. While this is neces-
sary in standardWS schedulers due to the fully concurrent nature of
its deques—wherein every item/task in the deque can be taken from
any processor at any time—recent work by Rito and Paulino [27]
has shown it is possible to avoid most of these synchronization
overheads by using split-deques—a concurrent deque hand-tuned
for WS that by default keeps tasks local to the owner (thus not re-
quiring synchronization when accessing such local items), but still
allowing tasks to be taken by other processors (when the deque’s
owner chooses to share them, allowing for load balancing). For a
comprehensive discussion of approaches to avoid synchronization
costs we refer the reader to [27]; below, we focus only on imple-
mentations of WS algorithms that aim at reducing synchronization
by making part (or the entirety) of deques private to their owners.

A Note on Signaling and the LCWS Algorithm [27]. Instead of
using signals, the original LCWS scheduler relies on a custom notifi-
cation mechanism embedded into the scheduler itself [27]. As stated
in [27, First paragraph of Section 3.2], the reason behind this is that
the goal of their work is to bound the synchronization costs of their
algorithm (LCWS) and so it is crucial to make all possible sources
of synchronization explicit. Nevertheless, in [27, First Paragraph
of Section 3.2 and Point 2 of Section 1.1] it is noted that LCWS’s
notification mechanism could in practice be implemented using
signals: as long as work exposure requests are attended in constant
time, the expected runtime of LCWS is asymptotically optimal.

Lace [31]. Dijk and Pol propose a variant of WS—one which is
rather similar to LCWS—wherein split deques are also used in place
of the typical fully concurrent deques [31]. Similarly to LCWS, their
scheduler also relies on thieves requesting their victims to expose
work via a flag. However, in sharp contrast to LCWS (and to the
signal-based LCWS implementations we give in this paper), their
scheduler does not handle work exposure requests in constant time:
busy processors only check if they have been requested work when
they access their deque.We note that our user space implementation
of LCWS suffers from a similar issue (see Section 3). To understand

40

https://bitbucket.org/marrow-project/lcws/


Efficient Synchronization-Light Work Stealing SPAA ’23, June 17–19, 2023, Orlando, FL, USA

the difference, consider the case of computations that consist of
large sequential tasks: while both LCWS and our implementation
of LCWS guarantee that a busy processor executing one such task
will make work available to be stolen in a timely manner after being
requested, in Lace, a busy processor would only expose work (i.e.
allow for parallelism) after executing the entire long sequential
task (as it would only access its deque at that point). Thus, for such
computations their approach gives a small room for parallelism, in
contrast to LCWS (and our signal-based implementation of LCWS).
In summary, and apart from the different work exposure strategies
used by LCWS and Lace (which are discussed below), the main
difference between the schedulers is that LCWS (and our signal-
based implementations) guarantees work exposure requests are
handled in constant time (which, as mentioned in the paragraph
above, is crucial to ensure the provably asymptotically optimal
expected runtime of LCWS) whereas Lace (and our LCWS user
space implementation) does not.

Work Exposure Strategies of LCWS [27] and Lace [31]. In LCWS,
when a task is exposed—i.e. when a processor transfers the task to
the public part of its split deque, making it available for thieves to
steal—it is never “unexposed”—i.e. transferred to the private part
of the split deque’s owner, so it cannot be taken by thieves. This
is in contrast to Lace [31], where it is possible that a task that was
exposed is “unexposed”; this can occur if the owner of a split deque
realizes that the private part of its split deque is empty but the
public part (where the tasks are exposed to thieves) is not.

WS with Private Deques [2]. Acar et al. propose to avoid syn-
chronization by making deques entirely private to their owners [2];
when load balancing, thieves communicate (synchronously) with
victims to request work. This in particular means that even when
processors are busy (working locally on their deques), they still
need to check for incoming work requests by thieves. Although
Acar et al. noted that one could resort to interrupts in order to
make the polling more efficient (see [2, Section 4, Handling of large
sequential tasks]), this is not how their scheduler is implemented:
instead, to ensure load balancing requests are handled in a timely
manner their scheduler relies on an additional processor that pe-
riodically interrupts busy processors to make sure they handle
incoming work requests (if any).

Fence-Free WS for Bounded TSO Processors [24]. Taking the ar-
chitecture of modern TSO chips into account, Morrison and Afek
avoid the synchronization overheads of WS schedulers by keeping
part of processors deques entirely private [24]; the size of the part
of deques that is kept private is calculated based on the specifi-
cations of the underlying physical microprocessors used. While
this approach allows to fully eliminate synchronization overheads
for local deque accesses while maintaining correctness, since the
bottommost items in processors’ deques are not available for other
processors to take, load balancing is limited.

Lazy Binary-Splitting WS. Tzannes et al. propose a WS scheduler
where processors keep all their work entirely private except for the
topmost task, which is stored in a shared cell [30]. While ensuring
the topmost task can always be taken by other processors is key
to proper load balancing, their approach has limitations for com-
putations where processors may need to access the topmost nodes

public part

public part

push_bottom/
pop_bottom

synchronization-free
private part

Thief Thief Thief

pop_top

bot

public_bot

pop_public_bottom

Thief Thief Thief

pop_top

bot
public_bot

processor

processor

Figure 1: The split deque built from an array of elements. top
points to the deque’s top-most element, public_bot points
to node below the bottom-most element of the deque’s
public part, and bot points to the empty slot below the
deque’s bottom-most element. The processor operates on
the synchronization-free part of the deque, while the thieves
steal work from the public part.

of their deques regularly. As mentioned in [2], a similar limitation
has been identified in Chase-Lev concurrent deques [10].

Automatic Granularity Control. The concept of Automatic Gran-
ularity Control (AGC) is also close to our work, given that it can
be used to reduce synchronization overheads when the processor
count is low. AGC requires either: (a) rewriting the code to provide
both parallel and sequential versions of it, as well as cost functions,
such as in [1], or (b) sophisticated analysis to create versions of
the tasks with different granularities, such as in [29]. The former
requires changing the source code, while our approach does not;
all benchmarks of PBBS used in Section 5 ran unmodified. The
shortcomings of the latter include knowing the number of (and
which) versions to generate, how to do it when in the presence of
calls to external libraries and the overhead imposed by the runtime
system to choose the best version to use at any given time.

3 USER SPACE IMPLEMENTATION
In Low-Cost Work Stealing (LCWS) each processor owns a (lock-
free) split deque [27]. As illustrated in Figure 1, a split deque is
divided into a public part and a private part: the private part is
only accessible to the deque’s owner, who uses it as a regular
(synchronization-free) call stack; the public part is also accessi-
ble by thieves, and is used for load balancing. As in Work Stealing
(WS), when a processor is out of work it tries to steal tasks from
other processors’ split deques. However, and in contrast to WS,
thieves cannot always steal tasks directly from their victims split
deques: they can only steal the ones that are in the public part
of a victim’s split deque. To ensure proper load balancing while
keeping the private part of processors’ split deques synchronization-
free, LCWS relies on an asynchronous notification mechanism that
thieves use to inform their victims they were targeted (for work
stealing). Once notified, a victim (i.e. the targeted processor) trans-
fers the topmost task of the private part of its deque (if any) to the

41



SPAA ’23, June 17–19, 2023, Orlando, FL, USA Rafael Custódio, Hervé Paulino, and Guilherme Rito

1 template<typename Task> struct scheduler {
2 vector<deque<Task>> deques; // One deque per processor
3 vector<bool> targeted; // One targeted flag per processor

4 // ...
5 Task* get_task(size_t id) { // id: the processor's id
6 if (finished(id)) return nullptr;
7 auto task = deques[id].pop_bottom();
8 if (task) {
9 if (targeted[id]) {
10 targeted[id] = false;
11 deques[id].update_public_bottom();
12 }
13 return task;
14 }
15 task = deques[id].pop_public_bottom();
16 if (task) return task;
17 targeted[id] = false;
18 while (true) {
19 if (finished(id)) return nullptr;
20 auto target = choose_target(id);
21 task = deques[target].pop_top();
22 if (task == PRIVATE_WORK) targeted[target] = true;
23 else if (task) return task;
24 }
25 }
26 }

Listing 1: Main methods of a C++ implementation of the
User-Space LCWS (USLCWS) algorithm.

public part, making such task stealable by a future thief that targets
this victim.

3.1 Scheduler
Listing 1 presents a user space C++ implementation of the LCWS
algorithm (USLCWS). As in the original algorithm, each processor
owns a flag, targeted, that is used to implement a simple notifi-
cation mechanism: the flag indicates if a thief targeted the flag’s
owner for work stealing since the last scheduling round. However,
contrary to LCWS, this notification is provided at the task- rather
than instruction-level. Consequently, USLCWS does not ensure that
work exposure requests are processed in constant time, and thus,
does not guarantee the synchronization bounds of LCWS. However,
we have chosen to implement it in order to investigate whether, in
real-world scenarios, it is advantageous to sacrifice the theoretical
bounds in favor of an implementation that operates entirely in
user-space (i.e., without relying on intervention from the operating
system).

In USLCWS, when looking for work, a processor first tries to
obtain a task from the private part of its split deque: if successful
the processor then checks if it should transfer work to the deque’s
public part (via the update_public_bottom method), resets its
targeted flag (lines 8 to 11), and returns the task; if the private
part of the processor’s split deque is empty, it searches for work in
the public part (line 15, as illustrated in Figure 2). If the public part
is also empty the processor resets its targeted flag and starts a
stealing phase. Otherwise, the processor removes the bottom-most
task in the public part of its split deque and starts executing it.

The stealing phase is similar to the one of the WS algorithm:
thieves pick their victims uniformly at random (line 20) and invoke
the pop_top method to try stealing a task from the public part of

public part

public part

push_bottom/
pop_bottom

synchronization-free
private part

Thief Thief Thief

pop_top

bot

public_bot

pop_public_bottom

Thief Thief Thief

pop_top

bot
public_bot

processor

processor

Figure 2: If all work is public, the processor has to compete
with the thieves to retrieve work from the deque’s public part.
For that purpose, it must use method pop_public_bottom.

the victim split deques (line 21). If the steal attempt fails (pop_top
returns PRIVATE_WORK), the thief sets the victim’s targeted flag
to true (line 22), and proceeds to find another victim. If the steal
attempt succeeds, the thief simply starts executing the stolen task.

3.2 Split Deque
Listing 2 presents a concrete implementation of the split deque

proposed in [27]. A split deque comprises a (memory aligned) ar-
ray of tasks (deq), the index below the bottom-most task in the
deque (bot), the two-field structure age (comprising the top of
the deque and a tag necessary to avoid the ABA problem [12]),
and additionally a field public_bot that is used to keep track of
where the current split is (i.e. where, currently, the private part
of the split deque ends and the public part begins). We note that,
contrary to the standard concurrent deque implementations for WS,
neither push_bottom nor pop_bottom need any synchronization
instructions (see [27, Lemmas 1 and 2]).

pop_bottom - removes and returns the bottom-most node of the
deque’s private part. If it is empty, returns a null pointer.

pop_public_bottom - removes and returns the bottom-most node
of the deque’s public part. If the deque is empty, it returns
a null pointer. The operation alters the values of two public
variables that can also be read by thieves, therefore requiring
some form of communication. This led to the insertion of two
memory fences. The first one is on line 12. It synchronizes
with thieves, allowing the prior decrement on line 11 to be
visible to thieves. It also makes sure that the worker reads
an up-to-date age value. The last memory fence is present
on line 27 and it ensures thieves do not read incorrect val-
ues (e.g. reading an updated age and an old public_bot),
which could lead to multiple executions of the same task.
These memory fences are both necessary and cannot be re-
placed by simple load or store operations using sequential
memory ordering. This is due to public_bot not being an
atomic variable and can only have its accesses reordered by
a memory fence.

pop_top - attempts to remove and return the top-most node of the
deque’s public part. If the operation aborts, it has no effect
and returns ABORT. If the deque is empty it returns a null
pointer. If only the public part of the deque is empty it returns
the PRIVATE_WORK special value. This method’s only type

42



Efficient Synchronization-Light Work Stealing SPAA ’23, June 17–19, 2023, Orlando, FL, USA

1 template<typename Task> struct deque {

2 unsigned int public_bot, bot;

3 atomic<age_t> age;

4 array<alligned_task_t, size> deq;

5 void push_bottom(Task* task) { deq[bot++].task = task; }

6 Task* pop_bottom() {

7 return bot == public_bot ? nullptr : deq[--bot].task;

8 }

9 Task* pop_public_bottom() {

10 if (public_bot == 0) return nullptr;

11 public_bot--;

12 atomic_thread_fence(memory_order_seq_cst);

13 auto task = deq[public_bot].task;

14 auto old_age = age.load(memory_order_relaxed);

15 if (public_bot > old_age.top) {

16 bot = public_bot;

17 return task;

18 }

19 bot = 0;

20 auto new_age = age_t {old_age.tag + 1, 0};

21 auto local_bot = public_bot;

22 public_bot = 0;

23 if (!(local_bot == old_age.top &&

age.compare_exchange_strong(old_age, new_age,

memory_order_relaxed, memory_order_relaxed)) {

↩→
↩→

24 age.store(new_age, memory_order_relaxed);

25 task = nullptr;

26 }

27 atomic_thread_fence(memory_order_seq_cst);

28 return task;

29 }

30 Task* pop_top() {

31 auto old_age = age.load(memory_order_relaxed);

32 if (public_bot > old_age.top) {

33 auto task = deq[old_age.top].task;

34 auto new_age = old_age;

35 new_age.top = new_age.top + 1;

36 if (age.compare_exchange_strong(old_age, new_age,

memory_order_relaxed, memory_order_relaxed))↩→
37 return task;

38 return ABORT; // set to nullptr

39 } else return (public_bot < bot) ? nullptr : PRIVATE_WORK;

40 }

41 void update_public_bottom() {

42 if (public_bot < bot) public_bot++;

43 }

44 }

Listing 2: A C++ split deque implementation

of synchronization comes from the use of a compare-and-
swap instruction. This is necessary to ensure that each task
is only taken by one processor.

update_public_bottom - transfers the top-most node of the deque’s
private part to the bottom of the public part, not returning
any value.

2 4 8 16 32 64
0%

0.2%

0.4%

0.6%

(a) USLCWS memory fences/WSmemory fences

2 4 8 16 32 64
10%
20%
30%
40%
50%

(b) USLCWS CAS/WS CAS

2 4 8 16 32 64
20%

40%

60%

80%

100%

(c) successful steals USLCWS/successful steals WS

2 4 8 16 32 64
20%

40%

60%

80%

(d) Percentage of exposed work that is not stolen in USLCWS

Figure 3: Profile of USLCWS varying the number of proces-
sors. Each box reports the values measured for all bench-
marks of PBBS on machine AMD32 (see Table 1)

3.3 Preliminary Evaluation of User Space LCWS
We made a preliminary evaluation of our user space implemen-
tation of LCWS. For that purpose, we followed the methodology
defined for the experimental evaluation of Section 5, restricted to
machine AMD32 (see Table 1). Therefore, the box plots depict the
results obtained for all input instances of all benchmarks featured
in Problem-Based Benchmark Suite (PBBS), run with 2 to 64 worker
threads.

The experimental results, depicted in Figures 3a and 3b, confirm
our expectation that LCWS greatly reduces the number of memory
fences and CAS operations and when compared with WS. Note,
in particular, that USLCWS uses less than 1% of memory fences
and less 40% of CAS operations than WS. This is due to all local
operations in USLCWS being synchronization free.

43



SPAA ’23, June 17–19, 2023, Orlando, FL, USA Rafael Custódio, Hervé Paulino, and Guilherme Rito

1 thread_local unsigned thread_id; // Thread's scheduling id
2 vector<pthread_t> pthread_handles; // Threads' pthread handle

3 static void signal_handler(int) {
4 deques->at(thread_id).update_public_bottom();
5 }

6 Task* get_task(size_t id) {
7 // ...
8 if (task == PUBLIC_EMPTY && !targeted[target]) {
9 targeted[target] = true;
10 pthread_kill(pthread_handles[target], SIGUSR1);
11 }
12 // ...
13 }

Listing 3: LCWS C++ implementation: main modification’s
to the scheduler (Listing 1) to accommodate signals.

Naturally, this decrease in synchronization does not necessarily
translate into performance gains. Given their nature, LCWS-based
schedulers are more prone to unsuccessful steal attempts: the need
to notify a processor to expose work delays the actual stealing of
work, preventing the computation to progress as swiftly as it could.
Figure 3c shows the ratio of successful steal attempts against WS,
being observable that USLCWS’s relative performance gets worse
as the number of threads scale.

A second issue has to do with the amount of work that is exposed
(i.e. transferred to the public part of the deque) but not stolen (see
Figure 3d). The execution of such tasks induces synchronization
overheads for both exposing the task (i.e., for transferring it to the
public part of the split deque) and for taking it from the public part
of the split deque for execution. Given that the number of exposed
but not stolen tasks increases with the number of processors, then so
does the synchronization overhead. The phenomenon is observable
in Figure 3a, with a considerable increase in the number of memory
fences, with regard to WS, as the number of processors scales. In
summary—and as will be noticeable in Section 5—USLCWS per-
forms well with a small number of processors but its performance
degrades as this number increases. The main issue with the user
space LCWS implementation is its notification mechanism: busy
processors only expose work after finishing their current task, thus
making thieves wait until then to enable parallelism. Since task
duration is not bounded, coarse grained tasks significantly impact
the scheduler’s performance.

4 SIGNAL-BASED IMPLEMENTATION
In this section, we present a truthful implementation of LCWS

that provides the bounds formally proved for the scheduler and
avoids the issues of the user space implementation. To that end,
we resort to signaling among threads/processors, which will allow
processors to handle work exposure requests in constant time2. As
depicted in Listing 3, the scheduler’s state now includes a thread lo-
cal variable with a thread’s scheduling identifier, as well as pthread
handles of all threads. The former is needed in the signal handler to
identify the thread that must transfer work to the public part of its
deque (lines 3 to 5), and the latter is needed to obtain the pthread

2Up to the time that the underlying Operating System takes to deliver signals.

handle of the processor (target) to notify (line 8). To avoid poten-
tially harmful compiler optimizations, the deque’s state modified
in the signal handling function—namely the public_bot field—is
declared volatile3.

While not needed, we have retained the targeted flag with an
updated purpose, which is to prevent unnecessary system calls to
pthread_kill. This user space mechanism is much more efficient
than resorting to signal masks. Hence, the flag continues to be set
whenever a notification (signal) is sent. However, contrarily to our
user space implementation, it is only reset to false when a task
is removed from the deque’s public part or the target processor
pushes a new task to the deque. Ergo, if there is no work to share
or the one previously shared is still accessible, no new notifications
are dispatched.

A Subtlety in the Signal-Based Implementation. The use of sig-
nals may give rise to data races when a processor 𝑃1 executes
method pop_bottom (Listing 2) to retrieve work from the private
part of its deque and concurrently a thief 𝑃2 signals 𝑃1 to expose
work. Assume that the deque has a single task and that 𝑃1, in the
process of executing pop_bottom, has already evaluated condition
bot == public_bot to true, when the notification arrives. Given
that the value of bot was not yet updated in the execution of
pop_bottom, the signal handler modifies the value of public_bot
making the task public (i.e. exposed for thieves to take). When 𝑃1
resumes the execution of pop_bottom it assumes the task is still
private, and accesses the deque without the needed synchroniza-
tion.

A solution that keeps method pop_bottom synchronization-free
is to decrement field bot prior to the comparison with public_bot
and change the comparison itself to an inequality:

Task* pop_bottom() {
return --bot < public_bot ? nullptr : deq[bot].task; }

If the comparison’s condition evaluates to false, the method’s
side-effects are the same of the original version, but otherwise bot’s
decrement should not of occur. However, if pop_bottom returns
null (lines 7 to 15 of Listing 1), pop_public_bottom is invoked
called and thus bot is reset public_bot ≠ 0 (see lines 15 and 18
of Listing 2). To ensure the correctness in the remainder cases we
slightly modify method pop_public_bottom to reset bot to 0 when
public_bot is 0.

To sum up, we end up with a correct version that keeps method
pop_bottom synchronization-free for a rather small price: an extra
decrement whenever there is no private work and, additionally, an
extra assignment whenever there is also no public work.

4.1 Signal-Based Variants
We implemented two variants of the signal-based version of LCWS.
The differences between these variants and the signal-based imple-
mentation discussed above lie in the conditions for work exposure
requests to be made and in how they are handled.

4.1.1 Conservative Exposure. The first variant applies a different
strategy to tackle the previously mentioned data race. It diverges

3Note that public_bot being declared volatile does not imply the execution of any
synchronization operation when accessing it.

44



Efficient Synchronization-Light Work Stealing SPAA ’23, June 17–19, 2023, Orlando, FL, USA

from the base implementation in that a processor only reveals work
when it possesses a minimum of two tasks in the private part of
its split deque. This means that the variant keeps the original im-
plementation of pop_bottom, the update_public_bottommethod
only updates field public_bot if public_bot + 1 < bot, and the
notification condition (of Listing 3) becomes:

if (task == PUBLIC_EMPTY && !targeted[target] &&
deques[target].has_two_tasks())

As its name implies, method has_two_tasks returns true if and
only if the deque has at least two tasks.

4.1.2 Expose Half. In our second variant of LCWS’s signal-based
implementation, when a processor is requested by a thief to expose
work, it exposes half of the tasks in the private part of its split deque.
We note that in this Expose Half variant, thieves still can only steal
one task at a time.

Let r be the number of tasks in the private part of a processor’s
split deque. To implement the Expose Half variant, we modified the
update_public_bottom method making it so that if r is at least 3,
the worker exposes round(r / 2) tasks (and otherwise only exposes
at most one task).

Although this work exposure policy is similar to Lace’s, in our im-
plementation a processor does not “unexpose” previously exposed
tasks [31]. Another important difference is, as noted in Section 2,
that in our implementation, work exposure requests are handled in
constant time.

Implementation Details. We initially used the round function
provided by the C++ standard library [26]. However, this led to a
significant increase—by an order of magnitude—in variant’s the
runtime, when compared with the base implementation. An alter-
native could be using integer division, but this is also known to be
slow. Aiming for a computationally lighter solution, our choice fell
on a function inspired in lua_number2int32—a function featured
in the Lua language’s library [28]:

int double2int(double r) {
r += 6755399441055744.0;
return reinterpret_cast<int&>(r);

}

5 EVALUATION
To compare the performance of our schedulers against a state of
the art implementation of the Work Stealing (WS) algorithm we
used the (default, unaltered) Parlay parallel programming library
as baseline, which relies on a well-tuned implementation of WS for
load balancing [8]. Having set the baseline, we then implemented
our algorithms on Parlay—replacing its WS scheduler and deque
implementations by our own.

For our evaluation we resorted to the standard (unchanged)
Problem-Based Benchmark Suite (PBBS) Version 2 [3], which fea-
tures algorithms for graph processing, text processing, compu-
tational geometry, among others. For each benchmark the suite
includes multiple input instances, each defining different work-
loads [3]. As an example, for the Integer Sort benchmark PBBS
includes the following input instances: 1. 𝑟𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑞_100𝑀_𝑖𝑛𝑡 , 2.
𝑒𝑥𝑝𝑡𝑆𝑒𝑞_100𝑀_𝑖𝑛𝑡 , 3. 𝑟𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑞_100𝑀_𝑖𝑛𝑡_𝑝𝑎𝑖𝑟_𝑖𝑛𝑡 and lastly 4.

Table 1: Computers used in the experimental evaluation.

Name CPU Cores/Threads Memory
Intel12 2 x Intel Xeon E5-2620 v2 12/24 64 GiB DDR3 1600 MHz
AMD32 4 x AMD Opteron 6272 32/64 64 GiB DDR3 1600 MHz
Intel16 2 x Intel Xeon E5-2609 v4 16/16 32 GiB DDR4 2400 MHz

𝑟𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑞_100𝑀_256_𝑖𝑛𝑡_𝑝𝑎𝑖𝑟_𝑖𝑛𝑡 . We define a benchmark con-
figuration as a triple

⟨𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠⟩

where 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 ranges from 1 up to the number of
cores of each of the machines used in the experiments. The experi-
mental results given in this section (and also Section 3.3) correspond
to the execution of all the default benchmark configurations defined
by PBBS, using either one of our (4) schedulers, or Parlay’s default
WS scheduler. All the values presented are calculated from the av-
erage of 10 runs. The experiments were carried out in 3 different
computing nodes with disparate hardware specifications, presented
in Table 1, running Debian GNU/Linux 11 (bullseye), kernel version
5.10.0 and version 10.2.1 of the GNU C compiler.

5.1 User-Space LCWS versus Work Stealing
Figure 4 shows the speedups obtained by the User-Space LCWS
(USLCWS) implementation against Parlay’s WS scheduler. The box
plots depict the distribution of the results obtained for the execution
of all benchmark configurations.

The overall conclusion is that USLCWS, for the reasons explained
in Section 4, performs worse than WS when the number of pro-
cessors is close to the number of cores. Although it is able to
obtain speedups for some benchmarks, such as ⟨invertedIndex,
wikipedia250M, 32⟩ (11% in machine AMD32), and ⟨breadthFirst-
Search, rMatGraph_J_12_16000000, 𝑛⟩ (10% for 𝑛 = 32 in machine
AMD32 and 16% for 𝑛 = 16 in machine Intel16), ⟨nearestNeighbors,
2DinCube_10000000, 32⟩ (8% in machine AMD32), and ⟨convexHull,
2DinSphere_100000000, 16⟩ (29% in machine Intel16), among oth-
ers, the average results for the machine’s number of cores range
from ≈ 92% to ≈ 95% of WS’s performance. As it is perceivable in
Figure 4, there are several benchmark configurations that, specially
on machine AMD32, perform below 75% ofWS, reaching even a low
of 49% for ⟨histogram, randomSeq_100M_100K_int, 32⟩. These bad
results happen essentially on benchmarks that have very small exe-
cution times (benchmarks that execute in approximately 20 seconds
without using the total amount of threads). USLCWS has a rather
slow start, due to the notification mechanism delaying the sharing
of work, being, thus, more tailored for more compute-intensive
computations.

With fewer resources available, the results are considerably bet-
ter, with USLCWS consistently gaining against WS. Figure 5 shows
that USLCWS obtains speedups higher than 1, across all machines,
when the number of processors is less than 50% the number of cores.
These speedups range from 2% to 4% on AMD32 and Intel12, and
from 0.1% to 6% in Intel16. Moreover, Figure 6 shows that from the
50% mark under, USLCWS obtains speedups for 50% to 80% of the
benchmark configurations on AMD32, 68% to 80% on Intel12 and
59% to 78% on Intel16.

45



SPAA ’23, June 17–19, 2023, Orlando, FL, USA Rafael Custódio, Hervé Paulino, and Guilherme Rito

12481632
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3

(a) AMD32

124812
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3

(b) Intel12

124816
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3

(c) Intel16

Figure 4: Box plot of the speedup of USLCWS wrt. WS, varying the number of processors across all input instances of all
benchmarks.

48121620242832

0.94
0.96
0.98
1
1.02
1.04
1.06
1.08

(a) AMD32

24681012

0.94
0.96
0.98
1
1.02
1.04
1.06
1.08

User Cons
Signal Half

(b) Intel12

246810121416

0.94
0.96
0.98
1
1.02
1.04
1.06
1.08

(c) Intel16

Figure 5: Average speedups wrt. WS, varying the number of processors across all input instances of all benchmarks. User refers
to the user-space version of Section 3, Signal refers to the signal-based version of Section 4, Cons refers to the Conservative
Exposure variant of Section 4.1.1 and Half refers to the Expose Half variant of Section 4.1.2.

In conclusion, the overall gains of USLCWS over WS are in
average ≈ 3.8% for AMD32, ≈ 1% for Intel12 and ≈ 1.3% for Intel16.
So, the results are promising and already constitute an important
step towards our goals: have a scheduler that is synchronization-
light and, with that, remove the scheduling overhead when the
amount of resources available, and hence parallelism, is low.

If we focus on the best-performing configuration for each bench-
mark, we are able to achieve speedups ranging from 3.5% to 25.3%.
Conversely, if we select the least favorable configurations, we ob-
serve speed reductions ranging from -0.8% to -102%. These sub-
optimal configurations often involve a large number of workers
and short execution times, which pose challenges for the Low-Cost
Work Stealing (LCWS) algorithm, as it takes longer for balancing
the load.

5.2 Signal-Based LCWS versus Work Stealing
With the aim of closing the gap to WS when the number of proces-
sors is close to the number of cores, we developed the signal-based
version of LCWS. The speedup results against Parlay’s WS are pre-
sented in Figure 7. Compared with the previous results of USLCWS
in Figure 4, we have that the performance for the number of proces-
sors equals the number of cores is much better, being in average on
a par with WS: 99% of WS’s performance on AMD32 to ≈ 102% on
the remainder machines. For the remainder configurations there is
also an overall improvement, making the results clearly superior to
the ones of WS, as detailed in the following statistics:

• Speedup greater than 1 for 65% of the benchmark executions,
and gains of 5%, 10%, 15% and 20% for, respectively, 32%, 17%,
7% and 2% of the executions on AMD32.

• Speedup greater than 1 for 69% of the benchmark executions,
and gains of 5%, 10% and 15% for, respectively, 27%, 13% and
2% of the executions on Intel12.

• Speedup greater than 1 for 69% of the benchmark executions,
and gains of 5%, 10%, 15% and 20% for, respectively, 32%, 18%,
10% and 4% of the executions on Intel16.

These performance gains are evident in the box plots of Figure 7,
with most of the boxes being above the 1 threshold and usually
having much more elements on the first quartile than on the third.
They are also visible in the plots of Figure 5, with an exception for
4 processors in AMD32. The performance on the Intel processor is
particularly good, with gains on 60% and 70% with the number of
processors equals the number of cores, to values that reach the 80%
mark when using fewer processors (such as 2 or 4), observable in
Figure 6.

By analyzing the best and worst-performing configurations for
each benchmark, similarly towhatwe did for USLCWS,we observed
speedups of 2% to 22.8% and speed-downs of 6.80% to −61%, respec-
tively. Despite the low occurrence of significant fluctuations in this
version’s results, its performance was subpar in specific benchmark
configurations with a disproportionately high number of steals, that
led to an escalation in the signaling overhead. These configurations

46



Efficient Synchronization-Light Work Stealing SPAA ’23, June 17–19, 2023, Orlando, FL, USA

48121620242832

30%
40%
50%
60%
70%
80%
90%
100%

(a) AMD32

24681012

30%
40%
50%
60%
70%
80%
90%
100%

User Cons
Signal Half

(b) Intel12

246810121416

30%
40%
50%
60%
70%
80%
90%
100%

(c) Intel16

Figure 6: Percentage of benchmark configurations that the algorithms obtained a speedup > 1, varying the number of processors.
User refers to the user-space version of Section 3, Signal refers to the signal-based version of Section 4, Cons refers to the
Conservative Exposure variant of Section 4.1.1 and Half refers to the Expose Half variant of Section 4.1.2.

12481632
0.8
0.9
1

1.1
1.2
1.3

(a) AMD32

124812
0.8
0.9
1

1.1
1.2
1.3

(b) Intel12

124816
0.8
0.9
1

1.1
1.2
1.3

(c) Intel16

Figure 7: Box plot of the speedup of the signal-based version wrt. WS, varying the number of processors across all input
instances of all benchmarks.

are ⟨classify/decisionTree, (covtype,data), 𝑛⟩ for 𝑛 ∈ {16, 32} and
⟨breadthFirstSearch/backForwardBFS, 3Dgrid_J_64000000, 32⟩.

5.3 Signal-Based versus User-Space LCWS
Figures 8a to 8h present a profile of the signal-based LCWS im-
plementation, comparing it to WS and USLCWS. Specifically, Fig-
ures 8a and 8b visually confirm the previously observed decrease
in memory fences and CAS operations with regard to WS, which
was also noted in the preliminary profiling of USLCWS (Figure 3).
Further analysis of the results shown in Figures 8e and 8f reveals
that the number of memory fences and CAS operations is even
lower than what was observed for USLCWS, especially when using
2 workers. This behavior is correlated with the ability of the algo-
rithm to avoid unnecessary work exposures, as shown in Figure 8h,
while still maintaining the number of successful steal attempts on
par with USLCWS (Figure 8g) .

As explained in Section 4, the number of unnecessary work expo-
sures is directly related to the number of memory fences. Therefore,
in order to keep local operations synchronization-free, it is crucial
to only share work that will be effectively stolen.

5.4 Conservative Exposure and Expose Half
TheConservative Exposure variant (presented in Section 4.1.1) shares
the same virtues of the standard signal-based version just evaluated.
By also making use of signals, the variant is also able to have a

reduced number of unnecessary work exposures, while maintaining
USLCWS’s ratio of successful steal attempts.

Accordingly, despite the conservative nature of the algorithm,
we can observe that it behaves quite well on all machines, even
providing better average speedup results in many configurations
(Figure 5). The algorithm demonstrates to be the best option for
≈ 33% of the benchmark configurations, versus the ≈ 49% result
of the signal-based version. So, despite not being the fastest on
average, it is still very competitive, performing particularly well
on benchmarks such as integerSort, wordCounts, invertedIndex,
maximalMatching and nearestNeighbors.

Concerning the Expose Half variant (presented in Section 4.1.2),
the results show that there is a slight increase in the number of
steals and a decrease in the number of idle iterations by thieves.
This was to be expected since more tasks are being made public.
The single problem with this strategy is that it also increases the
number of tasks that were made public and ended up not being
stolen. Since pop_bottom is the most expensive operation in the
deque, this led to execution times not differing much from the
single-share versions of the algorithms.

Analyzing the charts on Figures 5 and 6, we may conclude that
the impact is short of what was initially expected. Nonetheless,
the results for 25% of the cores in Intel16 are promising and may
justify further research. We observe speedups of 1.20% to 23.20%
and speed-downs of 4.30% to -52%. The configurations with the
poorest performance align with those of the standard signal-based

47



SPAA ’23, June 17–19, 2023, Orlando, FL, USA Rafael Custódio, Hervé Paulino, and Guilherme Rito

2 4 8 16 32
0%

0.1%

(a) Signal mem. fences/WSmem. fences

2 4 8 16 32
0%

20%

40%

(b) Signal CAS/WS CAS

2 4 8 16 32
0%

25%

50%

75%

100%

(c) Signal Steals/WS Steals

2 4 8 16 32
0%

20%

40%

(d) Signal Unstolen

2 4 8 16 32
0%

50%

100%

150%

(e) Signal mem. fences/WSmem. fences

2 4 8 16 32
0%

50%

100%

150%

(f) Signal CAS/WS CAS

2 4 8 16 32
0%

50%

100%

150%

(g) Signal Steals/USLCWS Steals

2 4 8 16 32
0%

50%

100%

150%

(h) Signal Unstolen/USLCWS Unstolen

Figure 8: Profile of signal-based LCWS varying the number of processors for all benchmarks of PBBS on machine AMD32.
Steals denotes the number of successful steals and Unstolen denotes percentage of exposed work that was not stolen.

implementation, but the overall results are better. This outcome
was anticipated due to the reduced number of signals needed to
steal multiple tasks.

6 CONCLUSIONS
In this paper we presented and evaluated multiple implementations
of the Low-Cost Work Stealing (LCWS) algorithm. By integrating
the proposed schedulers in the Parlay toolkit and performing a
comprehensive evaluation with Problem-Based Benchmark Suite
(PBBS), we demonstrated that our signal-based proposals are able to
be as good as the Work Stealing (WS) algorithm, when the number
of processors comes close to the computer’s number of processing
cores, and surpass WS, when the number of processors is dimin-
ished to a fraction of the computer’s processing cores.

Our findings indicate that these gains are more influenced by
the use of fractions of the computer’s core count rather than raw
number of cores, as illustrated in Figures 5 and 6 where the values
for 4 cores in computer AMD32 are quite different from the ones
for the name number of cores in computers Intel12 and Intel16.

The results obtained push the current state of the art by enabling
the efficient use of WS-based load balancing even in the presence of
resource managers that, dynamic and adaptively, allocate resources
(include processing cores) to co-existing runtime systems.

ACKNOWLEDGMENTS
This work is supported by NOVA LINCS (UIDB/04516/2020) with
the financial support of FCT.IP.

REFERENCES
[1] Umut A. Acar, Vitaly Aksenov, Arthur Charguéraud, and Mike Rainey. 2019.

Provably and practically efficient granularity control. In Proceedings of the 24th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2019, Washington, DC, USA, February 16-20, 2019, Jeffrey K. Hollingsworth
and Idit Keidar (Eds.). ACM, 214–228. https://doi.org/10.1145/3293883.3295725

[2] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2013. Scheduling Parallel
Programs by Work Stealing with Private Deques. In Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(Shenzhen, China) (PPoPP ’13). Association for Computing Machinery, New York,
NY, USA, 219–228. https://doi.org/10.1145/2442516.2442538

[3] Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, Magdalen Dobson, and
Yihan Sun. 2022. The Problem-Based Benchmark Suite (PBBS), V2. In Proceedings
of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (Seoul, Republic of Korea) (PPoPP ’22). Association for Computing Ma-
chinery, New York, NY, USA, 445–447. https://doi.org/10.1145/3503221.3508422

[4] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 2001. Thread Scheduling
for MultiprogrammedMultiprocessors. Theory Comput. Syst. 34, 2 (2001), 115–144.
https://doi.org/10.1007/s00224-001-0004-z

[5] Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M.
Michael, and Martin Vechev. 2011. Laws of Order: Expensive Synchronization
in Concurrent Algorithms Cannot Be Eliminated. In Proceedings of the 38th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Austin, Texas, USA) (POPL ’11). Association for Computing Machinery, New
York, NY, USA, 487–498. https://doi.org/10.1145/1926385.1926442

[6] Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay P. Hoeflinger, Yuan Lin,
Federico Massaioli, Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang.
2009. The Design of OpenMP Tasks. IEEE Trans. Parallel Distributed Syst. 20, 3
(2009), 404–418. https://doi.org/10.1109/TPDS.2008.105

[7] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Rohan
Kumar, Lukasz Lacinski, Ryan Chard, Justin M. Wozniak, Ian Foster, Michael
Wilde, and Kyle Chard. 2019. Parsl: Pervasive Parallel Programming in Python.
In Proceedings of the 28th International Symposium on High-Performance Parallel
and Distributed Computing (Phoenix, AZ, USA) (HPDC ’19). Association for
Computing Machinery, New York, NY, USA, 25–36. https://doi.org/10.1145/
3307681.3325400

[8] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. ParlayLib -
A Toolkit for Parallel Algorithms on Shared-Memory Multicore Machines. In
Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Archi-
tectures (Virtual Event, USA) (SPAA ’20). Association for Computing Machinery,
New York, NY, USA, 507–509. https://doi.org/10.1145/3350755.3400254

48

https://doi.org/10.1145/3293883.3295725
https://doi.org/10.1145/2442516.2442538
https://doi.org/10.1145/3503221.3508422
https://doi.org/10.1007/s00224-001-0004-z
https://doi.org/10.1145/1926385.1926442
https://doi.org/10.1109/TPDS.2008.105
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3350755.3400254


Efficient Synchronization-Light Work Stealing SPAA ’23, June 17–19, 2023, Orlando, FL, USA

[9] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multithreaded
Computations by Work Stealing. J. ACM 46, 5 (1999), 720–748. https://doi.org/
10.1145/324133.324234

[10] David Chase and Yossi Lev. 2005. Dynamic Circular Work-Stealing Deque. In Pro-
ceedings of the Seventeenth Annual ACM Symposium on Parallelism in Algorithms
andArchitectures (Las Vegas, Nevada, USA) (SPAA ’05). Association for Computing
Machinery, New York, NY, USA, 21–28. https://doi.org/10.1145/1073970.1073974

[11] Younghyun Cho, Camilo A. Celis Guzman, and Bernhard Egger. 2018. Maxi-
mizing System Utilization via Parallelism Management for Co-Located Paral-
lel Applications. In Proceedings of the 27th International Conference on Parallel
Architectures and Compilation Techniques (Limassol, Cyprus) (PACT ’18). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 14, 14 pages.
https://doi.org/10.1145/3243176.3243199

[12] Damian Dechev, Peter Pirkelbauer, and Bjarne Stroustrup. 2010. Understanding
and Effectively Preventing the ABA Problem in Descriptor-Based Lock-Free
Designs. In 13th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing, ISORC 2010, Carmona, Sevilla, Spain,
5-6 May 2010. IEEE Computer Society, 185–192. https://doi.org/10.1109/ISORC.
2010.10

[13] Alan AA Donovan and Brian W Kernighan. 2015. The Go programming language.
Addison-Wesley Professional.

[14] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, Doug Lea, and David
Holmes. 2006. Java concurrency in practice. Pearson Education.

[15] Yi Guo, Rajkishore Barik, Raghavan Raman, and Vivek Sarkar. 2009. Work-first
and help-first scheduling policies for async-finish task parallelism. In 23rd IEEE
International Symposium on Parallel and Distributed Processing, IPDPS 2009, Rome,
Italy, May 23-29, 2009. 1–12. https://doi.org/10.1109/IPDPS.2009.5161079

[16] Tim Harris, Martin Maas, and Virendra J. Marathe. 2014. Callisto: co-scheduling
parallel runtime systems. In Ninth Eurosys Conference 2014, EuroSys 2014, Ams-
terdam, The Netherlands, April 13-16, 2014, Dick C. A. Bulterman, Herbert Bos,
Antony I. T. Rowstron, and Peter Druschel (Eds.). ACM, 24:1–24:14. https:
//doi.org/10.1145/2592798.2592807

[17] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin D. F. Wong. 2019.
Cpp-Taskflow: Fast Task-Based Parallel Programming Using Modern C++. In
2019 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2019,
Rio de Janeiro, Brazil, May 20-24, 2019. IEEE, 974–983. https://doi.org/10.1109/
IPDPS.2019.00105

[18] ISO. 2012. ISO/IEC 14882:2011 Information technology — Programming languages —
C++. International Organization for Standardization, Geneva, Switzerland. 1338
(est.) pages. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=50372

[19] Hartmut Kaiser, Patrick Diehl, Adrian S. Lemoine, Bryce Lelbach, Parsa Amini,
Agustín Berge, John Biddiscombe, Steven R. Brandt, Nikunj Gupta, Thomas
Heller, Kevin A. Huck, Zahra Khatami, Alireza Kheirkhahan, Auriane Reverdell,
Shahrzad Shirzad, Mikael Simberg, Bibek Wagle, Weile Wei, and Tianyi Zhang.
2020. HPX - The C++ Standard Library for Parallelism and Concurrency. J. Open
Source Softw. 5, 53 (2020), 2352. https://doi.org/10.21105/joss.02352

[20] Alexey Kukanov and Michael J Voss. 2007. The Foundations for Scalable Multi-
core Software in Intel Threading Building Blocks. Intel Technology Journal 11, 4
(2007).

[21] Charles E. Leiserson. 2009. The Cilk++ Concurrency Platform. In Proceedings
of the 46th Annual Design Automation Conference (San Francisco, California)
(DAC ’09). Association for Computing Machinery, New York, NY, USA, 522–527.
https://doi.org/10.1145/1629911.1630048

[22] Martin Maas, Krste Asanovic, Tim Harris, and John Kubiatowicz. 2016. Taurus:
A Holistic Language Runtime System for Coordinating Distributed Managed-
Language Applications. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2016, Atlanta, GA, USA, April 2-6, 2016, Tom Conte and Yuanyuan Zhou
(Eds.). ACM, 457–471. https://doi.org/10.1145/2872362.2872386

[23] Amin Mohtasham and João Pedro Barreto. 2016. RUBIC: Online Parallelism
Tuning for Co-located Transactional Memory Applications. In Proceedings of the
28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016,
Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016, Christian Scheideler
and Seth Gilbert (Eds.). ACM, 99–108. https://doi.org/10.1145/2935764.2935770

[24] Adam Morrison and Yehuda Afek. 2014. Fence-Free Work Stealing on Bounded
TSO Processors. In Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems (Salt Lake City, Utah,
USA) (ASPLOS ’14). Association for Computing Machinery, New York, NY, USA,
413–426. https://doi.org/10.1145/2541940.2541987

[25] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N. Bhuyan. 2016. Tumbler:
An Effective Load-Balancing Technique for Multi-CPU Multicore Systems. ACM
Trans. Archit. Code Optim. 12, 4 (2016), 36:1–36:24. https://doi.org/10.1145/
2827698

[26] C++ Reference. 2023. std::round. https://en.cppreference.com/w/cpp/numeric/
math/round Accessed: 2023-04-12.

[27] Guilherme Rito and Hervé Paulino. 2022. Scheduling computations with provably
low synchronization overheads. J. Sched. 25, 1 (2022), 107–124. https://doi.org/
10.1007/s10951-021-00706-6

[28] The Lua programming language. 2023. Lua 5.2.4 source code - llimits.h. https:
//www.lua.org/source/5.2/llimits.h.html Accessed: 2023-04-12.

[29] Peter Thoman, Herbert Jordan, and Thomas Fahringer. 2014. Compiler multiver-
sioning for automatic task granularity control. Concurr. Comput. Pract. Exp. 26,
14 (2014), 2367–2385. https://doi.org/10.1002/cpe.3302

[30] Alexandros Tzannes, Rajeev Barua, and Uzi Vishkin. 2011. Improving Run-Time
Scheduling for General-Purpose Parallel Code. In 2011 International Conference
on Parallel Architectures and Compilation Techniques, PACT 2011, Galveston, TX,
USA, October 10-14, 2011, Lawrence Rauchwerger and Vivek Sarkar (Eds.). IEEE
Computer Society, 216. https://doi.org/10.1109/PACT.2011.49

[31] Tom van Dijk and Jaco C. van de Pol. 2014. Lace: Non-blocking Split Deque
for Work-Stealing. In Euro-Par 2014: Parallel Processing Workshops - Euro-Par
2014 International Workshops, Porto, Portugal, August 25-26, 2014, Revised Selected
Papers, Part II. Springer International Publishing, Cham, 206–217. https://doi.
org/10.1007/978-3-319-14313-2_18

[32] Zhe Wang, Chen Xu, Kunal Agrawal, and Jing Li. 2022. Adaptive scheduling of
multiprogrammed dynamic-multithreading applications. J. Parallel Distributed
Comput. 162 (2022), 76–88. https://doi.org/10.1016/j.jpdc.2022.01.009

49

https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/1073970.1073974
https://doi.org/10.1145/3243176.3243199
https://doi.org/10.1109/ISORC.2010.10
https://doi.org/10.1109/ISORC.2010.10
https://doi.org/10.1109/IPDPS.2009.5161079
https://doi.org/10.1145/2592798.2592807
https://doi.org/10.1145/2592798.2592807
https://doi.org/10.1109/IPDPS.2019.00105
https://doi.org/10.1109/IPDPS.2019.00105
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
https://doi.org/10.21105/joss.02352
https://doi.org/10.1145/1629911.1630048
https://doi.org/10.1145/2872362.2872386
https://doi.org/10.1145/2935764.2935770
https://doi.org/10.1145/2541940.2541987
https://doi.org/10.1145/2827698
https://doi.org/10.1145/2827698
https://en.cppreference.com/w/cpp/numeric/math/round
https://en.cppreference.com/w/cpp/numeric/math/round
https://doi.org/10.1007/s10951-021-00706-6
https://doi.org/10.1007/s10951-021-00706-6
https://www.lua.org/source/5.2/llimits.h.html
https://www.lua.org/source/5.2/llimits.h.html
https://doi.org/10.1002/cpe.3302
https://doi.org/10.1109/PACT.2011.49
https://doi.org/10.1007/978-3-319-14313-2_18
https://doi.org/10.1007/978-3-319-14313-2_18
https://doi.org/10.1016/j.jpdc.2022.01.009

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Related Work
	3 User Space Implementation
	3.1 Scheduler
	3.2 Split Deque
	3.3 Preliminary Evaluation of User Space LCWS

	4 Signal-Based Implementation
	4.1 Signal-Based Variants

	5 Evaluation
	5.1 User-Space LCWS versus Work Stealing
	5.2 Signal-Based LCWS versus Work Stealing
	5.3 Signal-Based versus User-Space LCWS
	5.4 Conservative Exposure and Expose Half

	6 Conclusions
	References



