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Abstract

We consider lower bounds on the rate-distortion performance for the binary erasure source
(BES) introduced by Martinian and Yedidia, using sparse graph codes for compression. Our
approach follows that of Kudekar and Urbanke, where lower bounds on the rate distortion
performance of low-density generator matrix (LDGM) codes for the binary symmetric source
(BSS) are derived. They introduced two methods for deriving lower bounds, namely the counting
method and the test channel method. Based on numerical results they observed that the two
methods lead to the same bound. We generalize these two methods for the BES and prove that
indeed both methods lead to identical rate-distortion bounds for the BES and hence, also for
the BSS.

I. INTRODUCTION

Following the remarkable success of sparse graph codes for the channel coding problem,
a natural progression is to explore the capabilities of such codes for the source coding
problem. One of the first contributions in this direction was made in [1], where Martinian
and Yedidia introduced the binary erasure source (BES), and showed that duals of good
sparse-graph channel codes for the binary erasure channel (BEC) are good sparse-graph
compression codes for the BES.

Ciliberti, Mezard, and Zecchina used the statistical-physics-based replica method to
show in [2] that a low-density generator matrix (LDGM) code with a Poisson generator de-
gree distribution can achieve the Shannon rate-distortion function of the binary symmetric
source (BSS) as the average degree increases. Based on this method, they also designed a
message-passing encoding algorithm termed Survey Propagation (SP). It was later shown
by Wainwright and Maneva [3], and independently by Braunstein and Zecchina [4], that
in the context of sparse-graph code compression using decimation over LDGM codes
the SP algorithm can be interpreted as a special case of the Belief Propagation (BP)
algorithm. More recently Filler and Friedrich proposed a decimation-based BP algorithm,
termed bias propagation, that can also perform close to Shannon’s rate distortion bound
using optimized degree distributions for LDGM codes [5]. A compound sparse-graph code
construction was proposed by Martinian and Wainwright in [6], [7], [8], where desirable
features of LDPC codes and LDGM codes were combined. They further showed that
a randomly chosen code from such ensembles under optimal encoding and decoding
achieves the rate-distortion bound with high probability.

Another interesting approach to code construction for lossy compression is based on
polar codes introduced by Arikan [9]. Polar codes are based on a deterministic code
construction that achieves the channel capacity. It was subsequently shown by Korada
and Urbanke that polar codes are also optimal for various lossy compression problems
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including those for the BES and the BSS [10]. In terms of implementation, however, the
encoding and decoding complexities of polar codes are higher than the corresponding
complexities for codes on sparse graphs with iterative message-passing.

The first performance bounds for LDGM-based lossy compression of a BSS were
derived by Dimakis, Wainwright, and Ramchandran in [11] for ensembles of codes. In
contrast Kudekar and Urbanke derived lower bounds on the rate-distortion performance
of individual LDGM codes for the BSS [12], using two different methods to compute the
rate-distortion bounds; namely the counting method and the test channel method. Based
on numerical results it was observed in [12] that the two methods lead to identical bounds.

For the BES, it was shown in [1] that sparse graph codes can achieve the optimal
rate only for zero distortion. Furthemore, so far the analysis for lossy compression using
sparse-graph codes was mainly focus on the BSS case and there are no known bounds
for the BES case. The use of a more general source such as the BES would allow to gain
fundamental insight into the behaviour of sparse-graph codes used as lossy compressors.
As our main contributions in this paper we derive lower bounds for the rate-distortion
performance of a BES using LDGM codes by generalizing the counting method and the
test channel method proposed in [12], and subsequently prove that both methods lead to
identical bounds. Since a BSS is a special case of a BES with zero erasure probability,
we also implicitly show the equality of the two bounds for a BSS.

The remainder of the paper is organized as follows. In Section II we formally state
the problem and provide the necessary background and definitions. The lower bound for
the BES based on the counting method is derived in Section III, and the derivation of
the lower bound based on the test channel method is detailed in Section IV. Finally, we
prove the equality of the two bounds in Section V and conclude by an open question in
Section VI.

II. DEFINITIONS AND BACKGROUND

The BES(ε) is a ternary-alphabet source with alphabet set A = {0, 1, ?}. The symbol
? denotes the erasure symbol, which can be encoded into any of the other two symbols
at no cost in terms of distortion. Let S = {S1, · · · , Sm}, S ∈ Am be a random source
string, where P{Si = ?} = ε, P{Si = 0} = P{Si = 1} = 1−ε

2
, i ∈ {1, · · · ,m}. We denote

the set of all source sequences of length m by S. The number of erasures in a sequence
s ∈ S is denoted by HE(s). We use the notation Sb to denote the set of all source
sequences having b erasures, i.e., Sb = {s ∈ S, s.t. HE(s) = b}. We are interested in the
lossy compression of a BES(ε) using a LDGM code. Thus, the reconstruction alphabet
is Â = {0, 1}.

Let a ∈ A and â ∈ Â. Then the distortion between a and â is given by,

d(a, â) =

{
0, if a = ? or a = â,
1, otherwise. (1)

The Shannon rate-distortion function Rsh
E (D) for a BES(ε) can easily be shown to be

Rsh
E(D) =

{
(1− ε)

[
1− h

(
D

1−ε
)]
, if D < 1−ε

2
,

0, if D ≥ 1−ε
2
,

(2)

where h(·) is the binary entropy function. In order to compress a source sequence s ∈ S,
it is mapped to one of the 2mR index words w ∈ W = FmR2 . Let f : s 7→ w be this
encoding map. Further let ŝ denote the reconstructed word associated to w: ŝ = wG,
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where G is the generator matrix of the LDGM code of interest. We denote the set of all
2mR reconstruction sequences by Ŝ = {wG : ∀w ∈ FmR2 }. Let g : w 7→ ŝ be this decoding
map ŝ = wG. The distortion between s and ŝ is given by d(s, ŝ) =

∑m
i=1 d(si, ŝi). As in

[12], we call the mR components of the index word the generators, w = {w1, · · · , wmR}.
The nodes corresponding to generators in the factor graph representing the LDGM code
are called the generator nodes. We denote the fraction of generator nodes with degree i
by Li.

The average normalized distortion is 1
m

E [d(S, g (f(S)))], where the average is over all
source sequence realizations. Let Cb(D) be the set of source sequences having b erasures
and having an overall normalized distortion less or equal to D with respect to some
codeword. Similarly, ∀ŝ ∈ Ŝ , Bb(ŝ, D) is the set of source sequences having b erasures
and having a normalized distortion less than or equal to D from the codeword ŝ. Then,
Cb(D) = ∪ŝ∈ŜBb(ŝ, D).

We are interested in finding lower bounds on the rate and average normalized distortion
trade-off for the BES(ε) which is valid for all LDGM codes of any length with desired
rate, generator degree distribution L(x), and over all encoding functions. In the next
section, we derive a lower bound by generalizing the counting method of [12] to the
BES(ε).

III. BOUNDS VIA COUNTING

The main idea behind the counting method is to find an upper bound on |Cb(D)|, the
cardinality of Cb(D). We show that we are only interested in the cardinality of Cb(D) for
b = mε. Before doing that, we give asymptotic approximation for binomial coefficient in
the next lemma.

Lemma III.1. For ε ∈ [0, 1] and large m, the binomial coefficient
(
m
εm

)
can be approxi-

mated as (
m

εm

)
=

2mh(ε)√
2πmε(1− ε)

(1 + o(1)).

Further, for ∆ ∈
[
−
√
m(logm)

1
3 ,
√
m(logm)

1
3

]
(

m

εm+ ∆

)
=

(
m

εm

)(
ε

1− ε

)−∆

e−
∆2

2mε(1−ε) (1 + o(1).

Proof: The proof is based on the saddle point approximation of coefficients of power
of polynomials. A detailed explanation of which can be found in Appendix D of [13].
The approximations for binomial coefficients can be found in [13, p. 513].

In the next lemma, we derive a lower bound on the average distortion in terms of
|Cεm(D)|.

Lemma III.2. Consider lossy compression of BES(ε) using LDGM code G with encoding
map f : s 7→ w, where s ∈ S and w is an index word of length mR. Let ŝ be the
reconstruction associated to the word w with the decoding map g given ŝ = wG. If

lim
m→∞

1

m
log

(
εεm
(

1− ε
2

)m−εm
|Cεm(D)|

)
< 0, (3)

then
1

m
E [d(S, g (f(S)))] ≥ D(1 + o(1)). (4)
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Proof: We observe that, ∀s ∈ Sb,

d (s, g (f (s))) ≥
{

0, if s ∈ Cb(D),
mD, if s /∈ Cb(D).

and |Sb| =
(
m
b

)
2m−b. Defining δ(m) =

√
m(logm)1/3 and using the above arguments, we

obtain

1

m
E [d(S, g (f(S)))] =

1

m

m∑
b=0

P{S ∈ Sb}E [d(S, g (f(S)))|S ∈ Sb],

≥ 1

m

εm+δ(m)∑
b=εm−δ(m)

P{S ∈ Sb}E [d(S, g (f(S)))|S ∈ Sb],

≥ 1

m

εm+δ(m)∑
b=εm−δ(m)

P{S ∈ Sb}
∑
s∈Sb

P{S = s|S ∈ Sb}d (s, g(f(s))) ,

≥ 1

m

εm+δ(m)∑
b=εm−δ(m)

(
m

b

)
εb(1− ε)m−b

∑
s∈Sb\Cb(D)

Dm(
m
b

)
2m−b

,

≥ D

εm+δ(m)∑
b=εm−δ(m)

(
m

b

)
εb(1− ε)m−b︸ ︷︷ ︸

A

−D
εm+δ(m)∑
b=εm−δ(m)

εb
(

1− ε
2

)m−b
|Cb(D)|︸ ︷︷ ︸

B

. (5)

As |Cb(D)| = eo(m)Cεm(D) for b ∈ [εm−a(m), εm+a(m)], summation B is of the order
of o(1) due to (3). We use Stirling’s formula and Laplace’s method of summation [14,
p. 755] to show that A = 1 + o(1).

A =

εm+δ(m)∑
b=εm−δ(m)

(
m

b

)
εb(1− ε)m−b,

(i)
=

∆=δ(m)∑
∆=−δ(m)

(
m

εm+ ∆

)
εεm+∆(1− ε)m−εm−∆,

(ii)
=

∆=δ(m)∑
∆=−δ(m)

e−
∆2

2mε(1−ε)√
2πmε(1− ε)

(1 + o(1)),

(iii)
=

1√
2πmε(1− ε)

∫ ∞
x=−∞

e−
x2

2mε(1−ε) (1 + o(1)),

= 1 + o(1).

In step (i), we do a change of variable b = εm+ ∆. Step (ii) follows from Lemma III.1,
where we use the approximation of

(
m
mε

)
and the approximation of

(
m

mε+∆

)
in terms of(

m
mε

)
. In step (iii), we replace the sum by an integral, as the “variance” of summation
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terms, which is equal to mε(1− ε), tends to infinity as m tends to infinity [14, p. 761].
This completes the proof of the lemma.

In the next theorem, we state the rate-distortion bound using counting.

Theorem III.1. Consider lossy compression of a BES(ε) using a LDGM code of block-
length m with generator node degree distribution L(x). Let Ŝ be the set of codewords
of the LDGM code. Further let

f(x) =
d∏
i=0

(1 + xi)Li , a(x) =
d∑
i=0

iLi
xi

1 + xi
, (6)

R(x) = (1− ε)
(
1− h

(
x

1+x

))
1− log2

(
f(x)

xa(x)

) , (7)

D(x) =
x(1− ε)

1 + x
−R(x)a(x). (8)

Then, for any block-length m, the achievable rate-distortion performance of a LDGM code
of rate R and generator degree distribution L(x) is lower bounded by the parametric
curve (D(x), R(x)), x ∈ [0, 1].

Proof: As was argued in [12], we only need to prove our bound for the limit of
block-length tending to infinity. We use Lemma III.2 to prove the theorem. Thus, we
need to bound the cardinality of Cεm(D). Pick w ∈ N such that Dm + w ≤ m−εm

2
.

Let Am(w) denote the number of codewords of Hamming weight at most w. From the
arguments in [12], we obtain

|Cεm(D)| = |
⋃
ŝ∈Ŝ

Bεm(ŝ, D)| ≤ 1

Am(w)

∑
ŝ∈Ŝ

∣∣∣Bεm (ŝ, D +
w

m

)∣∣∣ . (9)

Then by using ∣∣∣Bεm (ŝ, D +
w

m

)∣∣∣ =

(
m

εm

)Dm+w∑
i=0

(
m− εm

m− εm− i

)
, (10)

Stirling’s approximation, and the observation that the entropy function h(x) is increasing
for x ∈ [0, 1/2] and decreasing for x ∈ [1/2, 1], we obtain∣∣∣Bεm (ŝ, D +

w

m

)∣∣∣ ≤ 2mh(ε)2(m−εm)h(Dm+w
m(1−ε))+o(m−εm). (11)

As was shown in [12], Am(w) ≥
∑w

i=0 coef(f(x)mR, xi), where coef(f(x)mR, xi) denotes
the coefficient in front of xi in the expansion of f(x)mR. From Theorem 1 in [15],

coef(f(x)mR, xw) ≤ inf
x>0

f(x)mR

xw
=
f(xω)mR

xwω
≤ Am(w), (12)

where xω is the unique positive solution to the equation a(x) = ω and we define ω =
w/(mR). As Dm + w ≤ m1−ε

2
, the maximum of the summation term in (10) occurs at

i = Dm+ w. Thus, we obtain

|Cεm(D)| ≤ 2
m

»
−R log2

f(xω)

x
a(xω)
ω

+R+h(ε)+(1−ε)h(D+Ra(xω)
1−ε )+

–
+o(m−εm)

, (13)
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where the relation a(xω) = ω. From Lemma III.2 we know that if εεm
(

1−ε
2

)m−εm |Cεm(D)|
is exponentially small in comparison to m, then the average distortion is at least D. We
now upper bound the growth rate εεm

(
1−ε

2

)m−εm |Cεm(D)| using (13), and we obtain

lim
m→∞

[
1

m
log2

(
εmε
(

1− ε
2

)m(1−ε)
|Cεm(D)|

)]
≤ g(D,R), (14)

where
g(D,R) = inf

D+a(x)R≤ 1−ε
2

x≥0

h1(x), (15)

with
h1(x) = −R log2

f(x)

xa(x)
+R + (1− ε)

(
h

(
D +Ra(x)

1− ε

)
− 1

)
. (16)

If g(D,R) < 0 the average normalized distortion is lower bounded by D, and thus, we
obtain the rate-distortion bound by considering the condition

g(D,R) = 0. (17)

In order to compute the infimum in (15), we take the derivative of h1(x) and obtain

dh1(β, x)

dx
= Ra′(x) log2

[
x

(
1

α
− 1

)]
, (18)

where α = D+Ra(x)
1−ε . The vanishing derivative conditions imply that

α =
x

1 + x
. (19)

From (19), we see that if x ≤ 1, then D+Ra(x) ≤ (1−ε)/2. By using (19), the condition
g(D,R) = 0, and varying x over the interval x ∈ [0, 1], we obtain the desired parametric
lower bound on the rate-distortion performance.

Remark: Based on the arguments of [12], the parametric bound can be improved for low
rates using the straight-line bound. More precisely, let L′ = L′(1) and if R ∈

[
0, 1

L′(1)

]
,

then

D =
1

2

(
1−RL′

(
1− 2

(
x
(

1
L′

)
(1− ε)

1 + x
(

1
L′

) −
a
(
x
(

1
L′

))
L′

)))
, (20)

where x
(

1
L′

)
is the unique solution of R(x) = 1

L′
, and R(x) is defined in (7).

In the next section, we derive the rate-distortion bound by using the test-channel-based
probabilistic arguments developed in [12].

IV. BOUNDS VIA TEST CHANNEL

In this section we use a probabilistic argument to bound the cardinality of Cb(D). We
consider the test channel model represented in Figure 1(a) with the binary error/erasure
channel represented in Figure 1(b). More precisely, choose an index word w ∈ W at
random. This generates the corresponding codeword Ŝ, then send each component of Ŝ
through the binary error/erasure channel defined in Figure 1(b).

We prove the rate-distortion bound in the following theorem. We only consider the
regular case for the sake of simplicity of exposition. As was argued in [12], it suffices to
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prove the bound only for the limit of block-length tending to infinity. Also, the obtained
bound can be strengthened for low rates using the straight-line bound.

Theorem IV.1. Consider lossy compression of a BES(ε) using a LDGM code with
codeword set Ŝ, regular generator degree distribution L(x) = xl, block-length m, and
rate R. Then for an average normalized distortion D, the rate R is lower bounded by,

R ≥ sup
D≤d≤ 1−ε

2

(1− ε) (1− log2(1− ε)) + (1−D − ε) log2(1− ε− d) +D log2(d)

1− log2

(
1 +

(
d

1−ε−d
)l) .

(21)

BEC

BEC

BEC

BEC

W3

W4

W2

W1

LDGM

S7

Ŝ5

Ŝ4

S6

S5

S4

Ŝ7

Ŝ6

...
...

...

1

0

1

0

∗

1

d

d ε

ε

1− ε− d

1− ε− d

1

(a) (b)
Figure 1: (a) Test channel, (b) Binary error/erasure channel.

Proof: We will use Lemma III.2, so we will focus on source words with number of
erasures equal to εm. Consider a particular s ∈ Cεm(D). This implies that ∃ŝ ∈ Ŝ such
that d(s, ŝ) ≤ Dm. Let c = d

1−ε−d and D ≤ d ≤ (1− ε)/2. Then,

P{S = s}
=

∑
ŝ′∈Ŝ P{S = s, Ŝ = ŝ′}, (22)

=
∑m

w=0

∑
ŝ′∈Ŝ:d(ŝ′,ŝ)=w P{S = s, Ŝ = ŝ′}, (23)

= 2−mRεεm(1− ε− d)m−εm
∑m

w=0

∑
ŝ′∈Ŝ:d(ŝ′,ŝ)=w c

d(s,ŝ′), (24)
(i)
≥ 2−mRεεm(1− ε− d)m−εm

∑m
w=0

∑
ŝ′∈Ŝ:d(ŝ′,ŝ)=w c

d(s,ŝ)+d(ŝ,ŝ′), (25)
(ii)
≥ 2−mRεεm(1− ε− d)m−εm

∑m
w=0

∑
ŝ′∈Ŝ:d(ŝ′,ŝ)=w c

Dm+w, (26)

≥ 2−mReεm(1− ε− d)m−εm
∑m

w=0Am(w)cDm+w, (27)

where step (i) follows since d ≤ 1−ε
2

, and step (ii) follows since d(ŝ, s) ≤ Dm and
d(ŝ, ŝ′) = w.

Assuming Rcl

1+cl
< 1

l
, we obtain the following inequality (see [12] for proof),

m∑
w=0

Am(w)cw ≥ 1

m

(
1 + cl

)mR
. (28)

Thus for s ∈ Cεm(D),

P{S = s} ≥ 1

m
2−mR

(
1 + cl

)mR
εεm(1− ε− d)m(1−D)−εmdDm. (29)

Also, (
m

εm

)
εεm (1− ε)m−εm =

∑
s∈Sb

P{S = s} ≥
∑

s∈Cb(D)

P{S = s}. (30)
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We obtain the following upper bound on |Cb(D)| by combining (29) and (30)

|Cεm(D)| ≤ m2mR(1 + cl)−mR(1− ε− d)−m(1−D)(1− ε)md−Dm
(
m

εm

)(
1− ε− d

1− ε

)εm
.

(31)
By using Lemma III.2, we know that

1

m
E [d(S, g (f(S)))] ≥ D(1 + o(1)),

if (3) is true i.e.

lim
m→∞

1

m
log

(
εεm
(

1− ε
2

)m−εm
|Cεm(D)|

)
< 0.

We use the bound on Cεm(D) from (31), plug it in the above condition, and obtain that
if

R−R log2(1 + cl) + (1− ε)(−1 + log2(1− ε))
− (1−D − ε) log2(1− ε− d)−D log2(d) < 0, (32)

then the distortion is at least D. This proves (21).
We still need to prove that Rcl

1+cl
< 1

l
, which is trivially fulfilled for R < 1

l
since c < 1.

Assuming R > 1
l
, we need to prove that d < 1−ε

1+(Rl−1)
1
l
. By taking the derivative of the

LHS of (32) with respect to d, we find the expression for our optimal d to be

d =
1− ε

1 +
[
Rl
d−D − 1

] 1
l

.

As D ≤ d ≤ 1−ε
2

, it implies d−D < 1. This in turn implies that the optimal d is less than
1−ε

1+(Rl−1)
1
l
. This gives us the desired result. Thus the inequality Rcl

1+cl
< 1

l
always holds

and we get (28).
Remark: Note that the lower bound on the rate in (21) is lower bounded by the Shannon

rate distortion function. In order to see this, we put d = D on the LHS of (21). This
give,

(1− ε)(1− log2(1− ε)) + (1−D − ε) log2(1− ε−D) +D log2(D).

In the above expression, we multiply and divide D by (1 − ε). After simplification we
obtain

(1− ε)
(

1 +

(
1− D

1− ε

)
log2

(
1− D

1− ε

)
+

D

1− ε
log2

(
D

1− ε

))
= (1− ε)

(
1− h

(
D

1− ε

))
,

which is the Shannon’s rate distortion function for BES(ε).
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V. THE BOUNDS DEFINED IN THEOREMS III.1 AND IV.1 ARE EQUAL

For the BSS it was numerically observed in [12] that the bounds obtained by the
counting method and the test channel method are identical. In the following theorem
we prove equality of the two bounds for a BES(ε). As the BES(0) is a BSS, we also
implicitly prove the equality of the two bounds for a BSS. Due to simplicity of exposition,
we prove our result for regular LDGM codes.

Theorem V.1. Consider lossy compression of a BES(ε) using a regular LDGM code with
codeword set Ŝ, and generator degree distribution L(x) = xl. Then the lower bounds on
the rate-distortion of Ŝ obtained in Theorem III.1 and Theorem IV.1 are identical.

Proof: Considering (21), we define the function v(d)

v(d) =
(1− ε) (1− log2(1− ε)) + (1−D − ε) log2(1− ε− d) +D log2(d)

1− log2

(
1 +

(
d

1−ε−d
)l) (33)

By determining the maximum of v(d) in parametric form, we show that the resulting
expression is the same as the bound in Theorem III.1.

We first do a change of variable in v(d) as x = d
1−ε−d and write v(d) as v(x),

v(x) =
(1− ε) (1− log2(1− ε)) + (1−D − ε) log2

(
1−ε
1+x

)
+D log2

(
(1− ε) x

1+x

)
1− log2 (1 + xl)

. (34)

In order to compute the maximum, we take the derivative of v(x) which is given by,

dv(x)

dx
=

1

1− log2(1 + xl)

×
(
D

x
− 1− ε

1 + x
+

lxl−1

(1 + xl)(1− log2(1 + xl))
((1− ε) (1− log2(1 + x)) +D log2(x))

)
.

Equating the derivative to zero and solving for D results in

D = (1− ε) x

1 + x
− a(x)(1− ε)

x
1+x

log2(x) + 1− log2(1 + x)

1− log2

(
f(x)

xa(x)

) ,

where

f(x) = 1 + xl, a(x) =
lxl

1 + xl
. (35)

Note that
1− h

(
x

1 + x

)
= 1− log2(1 + x) +

x

1 + x
log2(x).

This results in

D = (1− ε) x

1 + x
− (1− ε)a(x)

1− h
(

x
1+x

)
1− log2

(
f(x)

xa(x)

) = (1− ε) x

1 + x
− a(x)R(x), (36)

where R(x) is the expression for the rate given in Theorem III.1. This gives the same
expression for D as in Theorem III.1. Substituting the expression for D from (36) into
(34), we obtain the expression for R which is the same as that of Theorem III.1.
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VI. CONCLUSION AND OPEN QUESTIONS

We derived lower bounds on the rate-distortion performance of LDGM codes over the
BES using two different methods and then showed that these latter lead to the same result.
Although we considered regular LDGM codes for the sake of simplicity, the generalization
to the irregular case is straightforward and the two methods we used are valid for any
sparse graph code.

An open question was asked in [12]: “What is the relationship between the test channel
model and the rate-distortion problem?” It was further conjectured that a (R,D) pair
is only achievable for the BSS if the entropy H(s) = m in the test channel model.
The equivalent conjecture for BES(ε) will be that an (R,D) pair is only achievable if
H(s) = (1 − ε)m in the test channel model. Based on this conjecture and Gallager’s
bound, it was conjectured that for the BSS a stronger rate-distortion bound is valid. The
extension of this conjecture to BES(ε) would result in the following bound

R ≥
1− ε+ h(ε)−

(
ε log2

1
ε

+D log2
1
D

+ (1− ε−D) log2
1

1−ε−D
)

1−
∑l

f=0

(
l
f

)
εf
∑l−f

w=0

(
l−f
w

)
Dw(1− ε−D)l−f−wh

(
1

1+( D
1−ε−D )

l−f−2w

)
Our main future objective is to prove this conjecture.
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