Bounded-Variable Fixpoint Queries are
PSPACE-complete *

Stefan Dziembowski
stdGmimuw.edu.pl

Warsaw University, Institute of Informatics, Banacha 2, 02-097 Warszawa, Poland,
phone: (448-22) 658-31-65, fax: (+48-22) 658-31-64

Abstract. We study the complexity of the evaluation of bounded-variable
fixpoint queries in relational databases. We exhibit a finite database such
that the problem of deciding whether a closed fixpoint formula using only
2 individual variables is satisfied in this database is PSPACE-complete.
This clarifies the issues raised by Vardi in [Var95]. We study also the com-
plexity of query evaluation for a number of restrictions of fixpoint logic.
In particular we exhibit a sublogic for which the upper bound postulated

by Vardi holds.

1 Introduction

In [Var95] Vardi studies computational complexity of queries expressed in various
logics. There are three notions of the complexity of query evaluation.

1. We can fix a database and evaluate many different queries expressible in a
certain logic against this database. In this case we measure the complexity
as a function of the length of the expression denoting the query. We call it
the expression complexity of the logic.

2. We can fix a query and evaluate this query against different databases. In
this case we measure the complexity as a function of the size of the database
(data complezxity of the logic).

3. We can evaluate many different queries against many different databases and
measure the complexity as a function of the combined size of the database
and the expression denoting the query (combined complexity of the logic).

Vardi remarks that for many logical languages there is a gap between the
data complexity on the one side, and the expression and combined complexities
on the other. For example the data complexity of the first order logic (FO) is AC®
while the expression and combined complexities are complete for PSPACE; the
data complexity of the fixpoint logic (FP) is PTIME, while the expression and
the combined complexities are EXPTIME-complete.

* Partially supported by Polish KBN grant No. 8 T11C 002 11. Part of this work
was done at BRICS, the Center for Basic Research in Computer Science, Aarhus,
Denmark.

The main idea of [Var95] is that for logics with a uniformly bounded number
of individual variables this gap narrows. The syntax restriction captures the well-
known technique of database programmers of avoiding large intermediate results.

We study the problem of measuring the expression and the combined com-
plexities of the bounded-variable version of the fixpoint first-order logic (FPk).
We show that both of them are PSPACE-complete. In [Var95] Vardi has pro-
posed an NP algorithm for this problem, however the algorithm works only for
a subclass of FP® formulas. Recall that data complexity of FP* is PTIME.

We also consider various restrictions of the FP* syntax and study their com-
plexity. At first, we restrict the number of second-order variables. We show that
in this case the expression complexity is in ALOGTIME, but the combined com-
plexity is still PSPACE-complete. Since ALOGTIME # PSPACE this is, up to
our knowledge, the first provable gap between the expression complexity and the
combined complexity. We also study the combined and the expression complex-
ities of the prefix version of FP* (with formulas of the form: prefix of fixpoint
operators . first-order formula . arguments), showing the PSPACE-completeness of
both problems. Finally we present a sublogic of FP* for which the NP N co-NP
upper bound for the combined complexity holds.

Our results confirm Vardi’s idea that bounding the number of variables may
lead to narrowing the gap between the data and the combined complexity. Whether
this gap is indeed more narrow depends on the hypothesis that PSPACE # EX-
PTIME.

2 Basic Definitions

The definitions presented in this section are based on the definitions from [CH82,
Var82]. We change them a bit introducing the notion of database signature, which
is similar to the standard notion of signature used in mathematical logic. This
technical modification makes the proofs in the paper more readable.

2.1 Databases and Queries
Definition1. A database signature is a pair (S, C, ar), where

— the set of relational symbols S and the set of constants C' are finite disjoint
sets of natural numbers, and
— ar : S — IN is a function giving for each symbol in the set S its arity.

Definition2. A (relational) database of the signature o = (S, C, ar) is a tuple
B={|B|,0,[]s)
where

— the carrier set |B| is a finite set of natural numbers, and
— the interpretation [-]s is a function giving for each ¢ € C' an element of |B]
and for each s € S a relation on |B| of arity ar(s).

The restriction that the set of symbols and the carrier set are sets of natural
numbers is technical (we need it, for example in the Definition 4). Usually we
will not respect it and name symbols and carrier set elements in more convenient
ways.

The expression (B) denotes a database B with the carrier set B of the signature
(@,C, []8), such that C = B and for every ¢ € C' we have [c]z = c.

Any database can be extended by adding to it a new symbol with its interpreta-
tion. Formally we define it in the following way.

Definition3. An eztension of a database B = (|B|, (S, C, ar), [-]s) with a sym-
bol T with an interpretation U and arity a is the database:

B =(|B|,(SU{T},C,ar'), [1s)

where [-]s is equal to the function [-]s on the set S\ {T'}, and on the argument
T it is equal to U, and similarly, functions ar’ and ar are equal on S\ {T'} and
ar’(T) = a. Such an extension will be denoted by B[U/T : a]. When the arity a
is clear from the context we will use an abbreviation writing B[U/T] instead of

B[U/T : a].

Definition4. For every database signature o and every natural number n any
function

Q@ : {B: B is under signature o} — P(IN")
such that Q(B) C |B|" will be called a database query of a signature ¢ — n.

Definition5. A query language is a set of expressions £ together with a function
Q giving for every e € £ a query Q..

Because in the paper we study complexity issues we make here the formal as-
sumption that, together with a language, we are given a standard way of encoding
its elements. We also fix some standard way of encoding databases. We skip here
the details.

2.2 Logics as Query Languages

In [Var95] Vardi studied various logical languages (interpreted in relational struc-
tures) considered as query languages. Every formula ¢ (without function sym-
bols) of any such logic £ induces a query defined in the following way. Suppose
that the free first-order variables of ¢ belong to the set {z1,...,2;}, and the free
second-order variables (with arity given by the function ar) belong to the set
S. Any database B of the signature (S,C,ar) can be considered as a relational
structure. For such a database the expression e = ((#1,...,21)p, (S, ar)) defines
the query:

QE(B) = {(bl""’bl_) € |B|l :B) [bl/zl)"'abl/ml] ':13 30}

of arity (S,C,ar) — l. (Where [b1/x1,...,b/2;] denotes a valuation v of first-
order variables such that for each z; we have v(x;) = b;.)

The following abbreviation is useful. We often write B,a = ¢(t) instead of
B, a[t/x] E ¢(x) (where x is a tuple of variables, t is a tuple of the carrier set
elements and a[t/x] denotes the valuation equal to a outside the variables x and
such that for every z; we have that a(z;) = t;).

2.3 Complexity

In this paper we study the complexity of queries. We are interested in compar-
ing the complexity of queries expressible in different logical languages. Because
queries are functions, we translate our task to the decision problem: given a tu-
ple t, an expression e and a database B, does t € Q.(B) 2 hold ? Generally
this problem has 3 parameters: t, e and B. Here we focus on the following two
instances:

— the database B and the language £ are fixed, we measure the complexity of
the decision problem of the set:

Answerg(B,-,-) = {{t,e) |e € Land t € Q.(B)}

— only the language £ is fixed, we measure the complexity of the decision
problem of the set:

Answerg(-,-,-) = {(t,B,e) |e € Land t € Q.(B)}.

The complexity of the problems Answers (B, -,) is called the ezpression com-
plexity; we say that

— the expression complerity of a language L belongs to a complexity class C iff
for every B, the Answerg(B,-,) problem is in C, and

— the expression complexity of a language L s hard for a complezity class C iff
there exists a database B, such that the Answers(B, -,) problem is hard for
C.

The complexity of Answerg(-,-,-) is called the combined complexity of the lan-
guage L. Note that for every B we have that Answerg(B,-,-) is reducible in
PTIME to Answerg(-,-,-), but there need not be any B such that the con-
verse holds. Therefore Answerg(-, -,) is in general harder than Answerg (B, -,).
Consequently the expression complexity of £ is not higher than its combined
complexity.

3 Fixpoint First-Order Logic

The FP language 1s an extension of the standard first-order logic with two dual fix-
point operators: g and v, denoting the least and the greatest fixpoint, respectively
[CH82]. The syntax is extended in the following way. For an arbitrary FP for-
mula ¢ and any second-order /-ary variable V appearing positively in it (i.e. not

2 From here on, t and B are understood to be of the correct arity.

appearing under negation), the expressions: (uV(z1,...,z1).¢)(v1,...,) and
Ve, ..., z1).9)(y1, ..., y) (where z1,...2; are distinct first order variables
and yy, ...,y are first order variables or constants) are formulas. Note that we
allow nesting of fixpoint operators.

The set free;(y) of free first-order variables in ¢ is defined as in the standard
first-order logic. For the fixpoint formulas we have:

free (OV(z1,.. ., 21) @) (1, - m) = (freea (@) /{ar, - ed) Udwn, -)

The set frees () of free second-order variables in ¢ is also defined in the standard
way (second-order variables are bound by p and v operators).

In the sequel we interpret FP formulas in databases such that for each free second-
order variable in a formula there is a corresponding relation in a database. The
semantics of FP should be rather clear, except for the semantics of the fixpoint
subformulas. Consider a subformula (uV{(z1,...,21).¢)(y1,...,) in a database
B. We can treat a second-order variable V'in the formula ¢ as a relational symbol
and evaluate this formula in a database B extended with this symbol. In this way,
after fixing a valuation « of the free first-order variables in ¢ we get an operator
on [-ary relations, defined in the following way:

@(U) = {(21,...,21) cBU/V), alz1/y1, -, z1/u] FEre ¢}

Note that ¢ may contain free variables other than yy, ..., y;. Because the variable
V occurs in the formula ¢ positively, the operator @ is monotone. Thus by the
Knaster-Tarski theorem [Tar55] there exists the least fixpoint of this operator,
equal to the sum of the following sequence:

b2 Ce@®)c:-- (1)
Denote this sum by . In this way, for a given valuation «, the expression

uV{y1,...,u).¢ in the database B can be understood as an [-ary predicate. We
can now define the semantics of p-formulas as follows:

B ok (pViy, .- w)0) (e, ..., z) iff (v(z1),...,v(z)) € %

(where v is equal to « on the set of variables and equal to [] on the set of
constants). Similarly we define the semantics of v.S(x).¢(t) as the greatest fixpoint
of @ (in this case we take the intersection of the sequence |B|*l 2 &(|B|I*) D
B(B(BI) 2)

If a formula ¢ has no free variables, we often write B =p ¢ instead of B, a |=¢p .
The following lemma is useful.

Lemma6. Let B be an arbitrary database, o an arbitrary valuation and ¢(x)
an arbitrary formula. Then the set V = {t : B, |Erp (uV(x).0(x))(t)} is equal
to

{t: BV/V], a l=ep o(t)} (2)
(where t denotes a tuple of the carrier set elements, and x a tuple of the first-
order variables, such, that [t] = |x|).

o AOO)

Proof. Let @ be an operator induced by ¢(x). We have that V = $®° = §(¢
?(V), which is equal to (2).

ol

4 The Complexity of FP*

In [Var95] Vardi considers several languages £*, each one obtained from a certain
language £ by restricting the set of individual variables allowed in the formulas to
{z1,...,z;}. Note that this does not bound the quantifier depth since variables
may be reused. In this way we get FP* from FP. Below we show that there exists
a database B such that Answergp:2(B,-,) is PSPACE-hard and consequently,
that Answergpz(-, -, -) is PSPACE-hard. This is the best lower bound because for
every k the straightforward algorithm for Answergpx (-, -,) operates in PSPACE
and consequently for every B we have that Answerpx (B, -,) is in PSPACE.

Theorem 7. There exists a database BB such that Answergp:(B, -,) is PSPACE-
complete.

Proof. From the previous remarks it is sufficient to show PSPACE-hardness. The
proof goes by the reduction of the Quantified Boolean Formulas (QBF) problem.
Recall that the syntax of QBF is given by the following grammar.

Fu=FAF|FVF|Ve.F|3z. F|a |

The variables take the boolean values T and F. We can assume that each z; is
quantified only once. The QBF problem is the set {¢ : ¢ is closed and |=qgr ¥}.
At first sight, one may think that we can reduce QBF to FPk by taking a database
B = ({T,F}) and translating a given QBF formula into a first-order formula by
translating every «; to (z; = T) and —; to (x; = F). This attempt is not satis-
factory however, because the number of variables cannot be bounded. Therefore
we have to use a more sophisticated method and make use of fixpoint operators.
Let B = ({T,F,A}). A function ¢ transforming QBF formulas to FP? formulas is
defined by structural induction.

E(h1 ANpa) = (Y1) NE(Y2)
E(h1 VPa) = (Y1) V E(Y2)

¢(Vait) = Wy € {T,F}. uVi(e). (Vi A g(ﬁ) ()

§(Friy) = Jy € {T,F}. pVi(z). <\/z i 2 2 E(Z)y>)
§(2:) = Vi(T)
E(—x;) = V3(F)

Note that in this construction there is a bijection between variables z1, ..., z,
of a QBF formula and V3,...,V,, of an FP formula. In formulas pVj - - - there
is a free variable y, so the least fixpoint defined by this formula depends on
the actual value of y. If it is T then in the first iteration T enters the least
fixpoint (F will never enter). This information is further used in the evaluation
of subformulas V;(T) and V;(F). The proof of the following lemma completes
the proof of the theorem (note that for any closed FP formula ¢ we have that

(0, O) € Answer(B, -,) iff B [=rp).

Lemma8. qar ¢ iff B |=rp £().

Proof. The proof goes by induction on the structure of the QBF formula. We show
the following more general fact. Let ¢(z1,...,2;) be an arbitrary QBF formula.

Then))
for every valuation v of the variables x1, ..., x;

v e ¥ iff T¥(v) [orp £(1) 3)

where TY(v) = B[{v(z1)}/Va,...,{v(z:)}/Vi] is the database B extended with
the unary symbols V7, ..., V.

1. The proof of the hypothesis for the literals z; and —z; 1s easy. We show it for
—z;. Let us fix a valuation v. If v |=qgf —&; then v(z;) = F. Thus |[V,-]]7—¢(U) =
{F}. Therefore T¥(v) Erp &(—2;). On the other hand, if v Eqer —2; then
v(z;) = T. Thus [Vi]7v) = {T}. Therefore TV (v) Frp E(mx;).

2. To prove the hypothesis for A let us fix a valuation v and QBF formulas 1
and 5. Now:

v =qeF Y1 A2 iff v |=qer Y1 and v =qeF Y2 (4)

- N Toi e el
(by the induction hypothesis) iff < M s (0) e £(42) ®)

This, after extending T (v) and T¥2 (v) to TPz (v) is equivalent to

TV2(v) fpe £(¢1) and TV2"V2(v) [=rp £(12)
which holds if and only if 7%1"¥2(v) =gp €(¥1 A ¥b2). The proof for V is

analogous.

3. The case of quantifiers is the most interesting one. Let us consider the uni-
versal quantifier (the proof for existential quantifier is similar). Take a QBF
formula Vz;.¢) and an arbitrary valuation v of its free variables. Suppose (3)
holds for . From the definition of ¢ we get:

E(Vauip) =Yy € {T,F}.(uVi(z) .oz, y))(A) (6)
where
ple,y) = <V2 i 2 2 Z}Zf’) ' @

The formula (pV;(z).¢(x,y))(A) has exactly one free variable: y. Now we
prove that

for every value p € {T,F} (8)
TV (v) re (nVi(x).o(z,p))(A) iff v[p/zi] Fqer .

This fact easily implies the induction hypothesis, because:

TV (v) Erp Yy € {T,F}.(uVi(2).¢(z,y))(A)
iff for every p € {T,F} we have T%(v) =ep (uVi(z).0(z, p))(A)
iff (from (8)) for every p € {T,F} we have v[p/z;] EqBF ¥
iff v ':QBF szw

Let us now prove (8). Take an arbitrary p € {T, F} as a value for y. We have
that

T (v) ere (1Vi(2).¢(2,p))(A) (9)
is equivalent to
AecV (10)
where V denotes the least fixpoint:
V=A{r:T"(v) Ere (nVi(2).0(z,p)(r)}. (11)
Now, applying the Lemma 6 to the formulain (11), we get
V= {r: TY(0)V/Vi] Fre (r.p)} (12)

This equation is sufficient for determining the value of V. We are mostly
interested in the value of this predicate on A. However, to evaluate it we
have to know the value of V on the set {T, F}. Take an arbitrary q € {T, F}.
By (12) we have that g € V if and only if 7% (v)[V/V;] =rp ¢(q, p) which,
by the definition of ¢ (7), is equivalent to

ANg=p
T W)Y/ Vi <v 77) 13
Because g £ A we have that (13) is equivalent to 7% (v)[V/V;i] =ep (g = p).
Thus:
every q € {T,F} belongs to V if and only if g = p. (14)

Let us now evaluate the value of V on A, (i.e. evaluate (10)). Note that in the
formula ¢ the variable V; occurs only in the subformulas of the form V;(T)
and V;(F). Thus, after applying (14) to the equation (12), we get that the set
V is equal to {r : 7% (v)[{p}/Vi] Erp ¢(r,p)}. By the definition of 7% we
have 7% (v)[{p}/Vi] = T¥(v[p/z;]), thus by the definition of ¢ we get that
(10) holds if and only if

AZANA=p
Y .
T (vlp/z:]) Fre (VA =A A £ > (15)
which is equivalent to
TY (vlp/:]) Fee £() (16)
Now by the induction hypothesis (16) is equivalent to v[p/x;] [Eqer ¢ This
observation completes the proof. |

5 Complexity of restrictions of FP*

In this section we study the complexity of queries over languages obtained from
FPk by various restrictions of the syntax.

5.1 Bounded Number of Second-Order Variables

One can ask whether the bijection between V;’s and x;’s in the proof of the
Theorem 7 is essential, i.e. whether it is possible to prove PSPACE-hardness
when we restrict also the number of second-order variables. In this section we
show that the answer i1s positive when we ask about the combined complexity,
but is negative for the expression complexity.

Let FPZ be a sublogic of FP* such that the number of first-order variables in
its formulas is bounded by k& and the number of second-order variables in its
formulas is bounded by n.

Combined Complexity. We prove now the following

Theorem 9. For every k > 3, n > 2 the Answergpx (-, -,) problem is PSPACE-
complete. "

Proof. The membership in PSPACE is trivial. It remains to prove the PSPACE-
hardness of Answeerg. Let us fix a QBF formula ¢ (with variables 1, ..., zn).

We show how to construct in polynomial time a pair (database By, and an FP3

formula p()), such that:

Faer ¥ iff By e p() (17)

In the construction we define a database in such a way that we are able to
remember the valuation, representing it by relations in B. Let

By ={1,...,n, T,F,A} [{1,...,n}/Var, 0/Vo]

Below we present a function p that transforms the formula ¢ to a FPf‘l formula,
proceeding top-down. In ¢ we use binary relation variables V;. Then we show
how to reduce the number of V;’s to 2. States in the database By (all, except A)
are used to remember the valuation in the following way. The subformulas (c.f.
definition below) Vg4 - - - represent the valuation of the propositional variables
x1,..., %, in the sense that Vg(i, T) holds iff the value of x; is T and Vg4(i, F)
holds iff the value of z; is F. Note that the actual value of such subformulas
depends on the value of variables that occur free in this formula. In this way,
using fix-point formulas we are be able to capture the whole tree of possible
valuations. We define a transformation p() = £(v, 0) using an auxiliary function

&(1 : QBF formulas, d : IN) which is defined inductively by the following clauses.

§(v1 A2, d) = E(r, d) AE(1)a, d)
(1 V 2, d) = E(n,d) V E(1ha, d)
(Vaiap,d) = Yy € {T,F}.

r=1Nz=y
uVagi(z,z). |V Var(z) A <\/ T#IA Vd(x,z)) (A,0)
r=A A E(p,d+1)

5(3-’1311?;‘1) =dye {Ta F}

<
2

r=1Nz=y
lLtVd+1(.I‘,Z_). V ’I"(QL‘) A <\/
A

zF#i N Vd(a:,z_)> (A,0)
r=A E(p,d+1)
£($2)d) = Vd(iaT)
5(_'$i)d) = Vd(ia F)

We claim that (17) holds. The proof is similar to the one in Section 4. We skip
it, showing only the induction hypothesis:

For every QBF formula ¢ with free variables z1,..., 2z,
every valuation v of these variables and every d € IN we have that (18)

a Eqer ¢ ff By[{(i,a(z)) 1 i=1,...,n}/ V4] Erp £(¢, d).

Now observe that in each subformula of p(1) of the form uVg41(z, 2).¢, we have
that frees(¢) N {Vq,...} = {Va}, therefore all other V;’s “are not visible” from
¢ and can be reused. Formally we do it by gluing all V2, ’s into one variable and
all V25,41’s into another one. O

Expression Complexity. In the above construction the size of the database is
not bounded, and can be even linear in the size of the given QBF formula. Below
we argue that the linear lower bound is essential by showing the upper bound
for the expression complexity. The proof is similar to the proof establishing the
complexity of Answerggr in [Var95]. The key observation is that for a fixed
database, and a fixed number of the first- and second-order variables, the arity
of all relations is fixed too, and thus the number of all definable relations (and
relations on relations) is bounded. This gives us PTIME as an easy upper bound.
We can improve it however by using a technique from [Lyn77]. Recall that a
parenthesis grammar is a context-free grammar with two distinguished terminals:
“(” and “)” such that each production is of the form A — (z) with 2 parenthesis
free. Such a grammar generates a parenthesis language. In our proof we make
use of the the fact from [Bus87] that all parenthesis languages are recognisable
in ALOGTIME.

Theorem 10. The Answergpx (B, -,) problem is in ALOGTIME for every data-
base B every k and every n.

Proof sketch. Fix a database B, a number k of the first-order variables and a
number n of the second-order variables. We show how to construct a parenthesis

grammar G, such that for every formula ¢ € FPf’l and for every tuple t of the
length [

Bt Ere (y1,-- e T (tEep (1, m)e) € L(G). (19)

Suppose that zy, ...,z are first order variables and Vi, ..., V,, are second-order
variables (each of arity ar(V;)). Let B = {|B|, o, [-]} be an arbitrary database.
Moreover let Val be the set of all valuations of the variables zy,... 2, let B
be the set of all extensions of the database B with symbols V1,...,V,,, and let
P(B x Val) ={T1,...,Ti}. The grammar consists of

— the initial symbol S and a set of nonterminal symbols: {71,...,7;}
— a set of terminal symbols: all first-order variables, all tuples of them, all
second order variables and all symbols in B, =, A, V, (,), Erp, ., g, v,Fand V
— productions:
For every T;, T;,, Ti,,
every two tuples of variables x and y we have:

every (D,v) € T; every two variables z and y and

S = (t Erp (y1,.- -, w)Ty) where t = ((v(y1),-..,v(w)))
T, = (z=y) iff v(z) = v(y)

T, = (z £ y) iff v(z) £ v(y

T; = (Rj(x)) iff T; = {(D,v) : D,v Fep (R;(x)}
T; = (~Rj(x)) iff T; = {(D,v) : D, v [erp (Ry(x)}

T — (Vi(x) iff T, ={(D,v) :D,v=re (Vj(x)}

Ty = (Ti, ATL) i T =T, N T,

Ty — (T, V) it T =T, UT,

T = 3y Th) iff T, ={(D,v) :3p. (D,v[p/y]) € Th}
Ti — (VyTn) iff T, ={(D,v) :Yp. (D,v[p/y]) € Th}

The most interesting is the case of the fixpoint formulas. Note that for every
nonterminal symbol 7}, and every tuple x of variables we have the following
operator on relations on |B|.

prn x(V) = {z: (DV/Vj], v[z/x]) € Ti}

If the operator pr, x is monotone then it has the least fixpoint p7, . For
arbitrary tuples y and z (of the length ar(V})) of first-order variables we set

Ti = ((1V5(x).Th)(y)) iff Ti = {(D,v) : (vly1), .-, v(w)) € p7, -
The production for the greatest fixpoint is defined similarly.

We skip here the formal proof of (19). m|

5.2 Prefix Form
Define Wk formulas as FP® formulas of the form

prefix of fix-point operators . first-order formula . arguments

(where arguments can be variables or constants). In the FP" formulas we write
pV(x)+(y).p instead of (uV(x).¢)(y) for the sake of readability. In this section

we show that the expression and the combined complexities of FP" are PSPACE-
complete. Namely we show the following.

Theorem 11. There erists a database B, such that the Answergsx (B,) prob-
lem 1s PSPACE-complete.

Proof sketch. 1t is sufficient to show PSPACE-hardness. Let
B =({0,1,Set, T,F}) [{1}/Wp_,].

For a given QBF formula ¢ = Vpi13ps...Vpr—13pn. (where ¢ is a sentence
which variables are among p1, ..., pn) we show how to construct in PTIME an

Wk formula y such that

Faer ¢ iff B e x (20)

This will complete the proof since the QBF problem remains PSPACE-complete,
even when we restrict ourselves to formulas in the prefix form. The formula y is
complex. To define it we first define a function & by the following clauses.

E(p1 A pa) = E(p1) NE(w2) &(—pi) = Wp,(F)
E(p1 V) = E(p1) VE(p2) E(pi) = Wh(T)

Then using it we define a formula FORM:® (Table 1). Finally we set x =
f@RMO(Set, T,0). Note that in subformulas of the form

W, (2) (). (FORM™ (2, 2)) (21)

there are two parameters: y and z. Thus the value of the fixpoints defined by them
depends on the value of y and z. Moreover it can be shown, by applying 2«(n—1)+
1 times Lemma 6 to (21), that every ®,y,z € {T,F,0, 1} satisfy (21) iff # = y or
@ = z. In this way we are able remember valuations of QBF variables. We define
C(p1,...,p;) to be an extension of the database B with symbols Wp,, ..., Wp_.
The interpretation of these symbols is given in the following table (here we assume
that ¢ is even).

WPO WPl WPz WPS """ WPi_z WPi_l WPi WPi+1 """ WPn_1 WPn
07T 17p1 07p2 17p3 Ovpi_2 17p1‘_1 07pg‘ 07p1 Ovpg‘ 07pg‘

i—1

(in case i odd we have Wy, . = {1,p;_s}, Wp,_, ={0,p;_ 1} and W, = ... =
W, = {1,p;}). In the proof we show by induction on i that for every odd
i=1,...,n we have that

Bl=re x iff Vp,3ps....3pi_ Vp; Clpy, ..., p;) Erp FORM T (Set, p;,0)

FORM (2,y,2) = pVp, (v,y,2)(2,9y,2). utWp, (x)(z).

uVp.. (x,y,z)(—(x,y,.z). uWp,, (z)+(z).

(z =Set A Wp_, (1) A W, (0) A Wp, (0)
A ((Vp, (Set, T, 1)) A (Vp,(Set, F,1))))
V (z = Set A Wy, (0) A Wy, (1) A W, (1)
A ((Vpy (Set, T,0)) V (Vp,(Set,F,0))))

V (z = Set A Wy, (0) A WP1+1(1) A WP1+2(1)

A ((Vpry2(Set, T,0)) V (Vi ,(Set,F,0))))
V (z =Set A Wm+1(1) AWpiya (0) A WPI+3(O)

A ((VP!+3(Set7Ta1)) A (VPL+3(Set7F71))))

V (5= Set A Wy, _o(0) AWy, _,(1) A W, (1)
A (Vono(Set. T,0)) V' (Vi _, (Set,F,0))))
V (& =Set AWy, (1) AW, _,(0) A Wy, (0)

A ((Vpa(Set, T,1)) A (Vp,(Set,F,1))))

V (z = Set A Wyp_(0) A Wy, (1)
A E(9))

Table 1. The definition of FORM:® (we assume that the number I occurring in the
formula is even)

(for i even, the quantifier prefix is: Vp;.3p,....Vp,_;.3p;.). Thus for i = n we
get that B |=rp x holds iff

vp1'3p2' s Vpn—lzlpnc(pla s ;pn) IZFP (IORMH-I-l(Set,pn;O)) (22)

which is equivalent to

Vp,.dp,....Vp,_13p,- (23)
B{TH Wpe, {p1 Y/ Whp,, - AP}/ Wp,] Ere E(p) '

Now from the definition of £ it can be easily seen that (23) holds iff ¢ holds
(recall that py does not occur in &(¢p)). O

6 When Does the NP N co-NP Bound Hold?

In this section we show a syntax restriction of FPk, such that the combined
complexity of the restricted subset is in NP N co-NP.

Definition12. FP* formulas are the FP* formulas satisfying the following con-
dition.

e For every subformula (0V (21, ...,2n).¢)(¥1,...,Yn) we require the set of free
variables of ¢ to be contained in {z1,...,2n}.

In the sequel we will use some results on the modal p-calculus. We recall here
that the modal p-calculus, as introduced by Kozen [Ko0z83], is a modal logic with
two dual fixpoint operators p and v. Its formulas are evaluated in the structures
of the form:

M = (S, Aet, Prop,Q : Act — (S x S) = bool, p : Prop — S — bool)

where Act = {ay,...,a,} is the set of actions,
Prop = {p1,...,pm} 18 the set of propositional constants,
@ is a function assigning binary relations on S to actions in Aet, and
p is a function assigning the subset of S to every constant in Prop.
The syntax of the modal p-calculus is given by the following grammar.

F::=FAF|FVF|pux, Flve,. Fl(a)F |[a] F|la|p]| p

The formal definition of the modal g-calculus semantics can be found in [Koz83].
We write M, s =, 9 to mean that 1) is satisfied in a state s of M (i.e. s € [¥]m).
In the following two lemmas (13 and 14) we show that, for a fixed k& > 2, FP* is
in some sense PTIME-equivalent to the modal p-calculus.

Lemma 13. There exists a polynomial-time transformation that for a given
database B produces a model Mg and for a given FP* formula v produces a
modal p-calculus formula 7(v) such that for every tuple t € |B|* we have

t € Qo o)y (B) f Mg, tl,T(¥). (24)
Proof sketch.

— Every database B with the carrier set B and the relational symbols Ry, ..., R,
is translated to a model Mg = (S, Act, Prop, @, p)
where S = BF
Prop={Rely,..., Rel,,equality}
Act = {change,, ..., change, } U {l,..., k}*
(remember that k& > 2 is fixed)

p(Rel;) =[Ri]pfori=1,...,n
(w.0.l.g we assume that all relations are k-ary)
plequality) = {(z1,...,2g) : 21 = 22}

Q(change;) = {{((z1,. .., 2k), (T1,. ., i1, 2, Big1, ., T))
Ty,..., 25,2 €S}
Q((ll;;lk)) = {((Il;~-~;Ik);(mi1;~~-;$ik)> Xy, TR = S}

— The function 7 transforming FP* formulas into formulas of modal p-calculus
is given below. Recall that we consider here only formulas satisfying the
condition e. Thus if the arity of a relation variable is less than k& we can
always extend it. Therefore we can assume that all relation variables are
of arity k. The variables in a given modal p-calculus formula are 21 ...z,
and they correspond to the relational variables V3 ... V,, in the resulting Fp*

formula.
T(1r Apa) = 7(¥1) AT(th2)
T(P1 Viho) = (¢1)VT(¢)
7(Vz;.4) = [change;]T(¢))
ziab) =
i))
T (VV;(Ila Jmk)'lp)(mzli ,Iik) = . > Zi TW))

T(x; = x;) = [(4,5,1,...,1)]equality
T(Rj(l‘“, ,l‘ik_) = (il,.. ,lk)](Relj)
T(V_;'(l‘“, 5:E7:k_) = [(ila ;Zk)](zj)

Now it is easy to prove by structural induction that B, [t1/z1, ..., tx/zk] Erp ¢
iff t € [7(¢)]m,, which implies the correctness of the constructlon

Lemma 14. There exists a polynomial-time transformation that for a gien
model M produces a database Bpyq and for a given modal p-calculus formula
¢ produces an FP? formula &(p) such that for every element s of model M

M,sEu e iff 5 € Quye)(Bm)- (25)
Proof sketch.
— Every model M = (S, Act, Prop, @, p) is translated to a database
B = (S)lp(p1)/Pis - p(pn) [PallQ(a1)/ A, ... Q(am) [Am]
— We define the function ¢ transforming formulas as follows.

5(901/\50%)_5(301,)/\5(302))

E(p1 Vs, @)—5(301,)VE(W;)
{(prip,x) = (UVi(y)-£(e,) (x)
E(vaip, x) = (vVi(y) £(e,) (2)
E(ai)p,z) = Fy.(Ai(z,y AE(% Y))
([111]50,): VJ (Az(ma :g(Y))

§(@i,z) = Vi(z)
&(pi,z) = Pi(x)

§(=pi,) = —Fi(x)

Now we claim that M,s |=, ¢ iff Bau, [s/2] Erp &(¢). The proof goes by
structural induction and again we skip it. At first sight one may think that
the number of first-order variables cannot be fixed because in the clauses for
i, v and modalities new variables are introduced. It can be done however,
observing that two variables 2 and y used alternatively are sufficient. It 1s
also easy to see that the condition e is satisfied.

O

Since model-checking for the modal g-calculus is in NP N co-NP [EJS93], Lemma
13 gives us

Theorem 15. The Ams‘werFAP,c

(+,-,-) problem is in NP N co-NP.
By Lemma 14 all lower bounds for the complexity of the p-calculus model check-
ing apply also to Answerg (-, -,). Thus by [ZSS94] we get:

Theorem 16. The Ams‘werlgp,c

(+,+,-) problem is PTIME-hard.
It is worth to note that Lemmas 13 and 14 give us translations between models

and formulas independently. Thus the expression complexity of FP* is PTIME-
equivalent to the ezpression complexity of the modal p-calculus. The best known
lower bound for it is PTIME [DJN96].

We also want to emphasise that Vardi’s algorithm for evaluating FP* queries
given in [Var95] works properly for FP. Thus, as announced by Vardi, his algo-
rithm still can be viewed as a new proof of the membership of the model-checking
problem for the modal p-calculus in NP N co-NP.

7 Conclusion

Below we summarise the results of this paper.

Language | expression complexity | combined complexity

FPk PSPACE-complete PSPACE-complete
(= PSPACE-complete PSPACE-complete
FPE ALOGTIME PSPACE-complete
FP* NP N co-NP NP N co-NP

We recall that FP* denotes the fixpoint first-order logic with bounded number
of first-order variables, FP" denotes the prefix version of FP¥, FPi denotes the

sublogic of FP* with bounded number of second-order variables and FP* denotes
the sublogic of FP* defined in Definition 12.

Acknowledgements. T wish to thank several people for the help with my work.
First of all, T wish to express my deep gratitude to Damian Niwinski who spent
a lot of time patiently explaining me numerous details and discussing my ideas.
Without his interest, support and encouragement this paper would never come
into existence. I would also like to thank Igor Walukiewicz for his valuable com-
ments on my ideas and for patience and interest he showed when reading proofs.
I also wish to thank Grzegorz Grudzinski, Marcin Jurdzinski and all other War-
saw University Applied Logic Group people. I am also grateful to the anonymous
referee for his helpful suggestions.

References

[Bus87]

[CHS2]

S.R. Buss. The boolean formula value problem is in ALOGTIME. In Pro-
ceedings of the 19th Annual ACM Symposium on Theory of Computing (New
York City, May 25-27, 1987), pages 123-131, New York, 1987. ACM, ACM
Press.

A. Chandra and D. Harel. Structure and complexity of relational queries. J.
Comput. Syst. Sci., 25(1):99-128, August 1982.

[DIN96] S. Dziembowski, M. Jurdzifski, and D. Niwifiski. On the expression complex-

[EJS93]
[Koz83]
[Lyn77]
[Tar55]

[Var82]

[Var95]

[£5594]

ity of the modal p-calculus model checking. unpublished manuscript, 1996.
E. A. Emerson, C. S. Jutla, and A. Sistla. On model-checking for fragments
of p calculus. In CAV’93, volume 679 of LNCS, pages 385-396, 1993.

D. Kozen. Results on the propositional p-calculus. Theor. Comput. Sci.,
27(3):333-354, 1983.

N. Lynch. Log space recognition and translation of parenthesis languages. J.
ACM, 24:583-590, 1977.

A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285-309, 1955.

M.Y. Vardi. The complexity of relational query languages. In Proceedings
of the 14th Ann. ACM Symposium on Theory of Computing (San Francisco,
CA), pages 137146, New York, 1982. ACM, ACM Press.

M. Y. Vardi. On the complexity of bounded-variable queries. In Proceedings of
the 14th ACM Symposium on Principles of Database Systems, pages 266-276,
1995.

Shipei Zhang, Oleg Sokolsky, and Scott A. Smolka. On the parallel complexity
of model checking in the modal mu-calculus. In Proceedings, Ninth Annual
IEEE Symposium on Logic in Computer Science, pages 154-163, Paris, France,
4-7 July 1994. IEEE Computer Society Press.

This article was processed using the I¥TEX macro package with LLNCS style

