
Optimally Efficient Multi-Valued Byzantine Agreement

Matthias Fitzi
∗

University of Aarhus, Denmark

fitzi@daimi.au.dk

Martin Hirt
ETH Zurich, Switzerland

hirt@inf.ethz.ch

ABSTRACT
All known protocols for Byzantine agreement (BA) among
n players require the message to be communicated at least
Ω(n2) times, which results in an overall communication com-
plexity of at least Ω(`n2) bits for an `-bit message. We
present the first BA protocol in which the message is com-
municated only O(n) times (the hidden factor is less than
2). More concretely, for a given synchronous broadcast pro-
tocol which communicates B(b) bits for reaching agreement
on a b-bit message with security parameter κ, our construc-
tion yields a synchronous BA protocol with communication
complexity O(`n + nB(n + κ)) bits. Our reduction is in-
formation theoretically secure and tolerates up to t < n/2
corrupted players, which is optimal for the consensus variant
of BA. Although this resilience is not optimal for the broad-
cast (Byzantine generals) variant, it is sufficient for most dis-
tributed applications that involve BA protocols since they
typically require t < n/2.

ACM Classification: C.2.4 [Computer-Communication
Networks]: Distributed Systems; F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms
and Problems;
General Terms: Algorithms, Performance, Reliability, Se-
curity, Theory.
Key words: Byzantine agreement, communication com-
plexity, cryptographic security, information-theoretic secu-
rity.

1. INTRODUCTION

1.1 Byzantine Agreement, Consensus, and
Broadcast

The problem of Byzantine agreement (BA), as originally
proposed by Pease, Shostak, and Lamport [PSL80], is the
following: n players P1, . . . , Pn want to reach agreement on
some message m, but up to t of the players are malicious

∗Supported by the European project SECOQC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’06,July 22–26, 2006, Denver, Colorado, USA.
Copyright 2006 ACM 1-59593-384-0/06/0007 ...$5.00.

and try to prevent the others from reaching agreement. The
misbehavior of players is modeled with a central adversary
who corrupts up to t players and takes full control over them.
There are two flavors of the BA problem: In the broadcast
(aka Byzantine generals) problem, a designated player (the
sender) holds an input message m, and all players should
learn m and agree on it. In the consensus problem, every
player Pi holds a (supposedly the same) message mi, and the
players want to agree on this message. More formally, an
n-player protocol is a broadcast protocol, when the following
properties are satisfied:

• every honest Pi eventually outputs a message mi (ter-
mination),

• the outputs of all honest players are equal, i.e., mi =
m′ for some m′ (consistency),

• if the sender is honest then m′ = m (validity).

Analogously, an n-player protocol is a consensus protocol,
when the following properties are satisfied:

• every honest Pi eventually outputs a message mi (ter-
mination),

• the outputs of all honest players are equal, i.e., mi =
m′ for some m′ (consistency),

• if every honest Pi holds the same message mi = m for
some m, then m′ = m (validity).

We say that a specific protocol tolerates up to t corrup-
tions when the above requirements are satisfied even in pres-
ence of an adversary that corrupts up to t of the players.
Note that in principal, broadcast can be achieved for any
threshold t < n, whereas consensus can be achieved only
for t < n/2. However, within this limitation, broadcast and
consensus protocols are mutually reducible: Given a consen-
sus protocol, a broadcast protocol can be constructed as fol-
lows: First, the sender sends the message m to every player.
Then, the players use the consensus protocol to reach agree-
ment on m. On the other hand, given a broadcast protocol,
a consensus protocol can be constructed as follows: First,
every player broadcasts his message mi among all players.
Then every player defines as output the message that he has
received most often. Note that this reduction requires n in-
vocations to the broadcast protocol in order to realize one
single consensus.

Broadcast and consensus are probably the most important
primitives in distributed cryptography. They are used in
almost any task that involves multiple players, like, e.g.,
voting, bidding, secure function evaluation, threshold key

generation etc — just to mention a few. The restriction of
consensus to at most t < n/2 corrupted players is usually no
drawback since the protocol that invokes the consensus sub-
protocol often cannot deal with more corruptions anyway.

1.2 Models and Bounds
We assume that the players are connected with a com-

plete synchronous network of pairwise authenticated chan-
nels. Complete means that each pair of players shares a
channel. Synchronous means that all players share a com-
mon clock and that the message delay in the network is
bounded by a constant. We consider both classical models
distinguished by whether or not a public-key infrastructure
(PKI) is set up among the players.

• In the model where no PKI is set up among the players,
information-theoretically secure consensus (as well as
broadcast) is achievable if at most t < n/3 players
are corrupted. This bound cannot be improved even
when only cryptographic security is required and/or
the pairwise channels are secret.

• In the model where an information-theoretic PKI (i.e.,
a PKI with respect to an information-theoretically se-
cure pseudo-signature scheme [CR90, PW96]) is set
up among the players, information-theoretically secure
consensus is achievable if t < n/2 players are cor-
rupted. Broadcast is even achievable secure against
any number of corrupted players.

• In the model where a cryptographic PKI (i.e., a PKI
with respect to a cryptographically-secure signature
scheme) is set up among the players, cryptographi-
cally secure consensus is achievable if at most t < n/2
players are corrupted. Broadcast is even achievable for
any number of corrupted players.

Note that, in the latter two models, the pairwise chan-
nels need not be authenticated since authentication can be
achieved by exploiting the PKI.

1.3 Efficiency of Byzantine Agreement
We are interested in the communication complexity of BA

protocols. The bit complexity of a protocol is defined as the
overall number of bits transmitted by all honest players dur-
ing the whole protocol or, alternatively, the overall number
of bits received and processed by all honest players. The
messages transmitted by corrupted players are only taken
into account as far as they are actually read by an honest
player as, inherently, the adversary can make the corrupted
players send arbitrarily long messages.

In the model where no PKI is set up, both broadcast and
consensus among n players with t corruptions are achiev-
able for t < n/3 with communicating O(`n2) bits, where `
denotes the length of the message [BGP92, CW92]. These
protocols are optimally-efficient for ` = O(1) [DR85]. In
the model with an information-theoretic PKI, consensus on
` bits is possible for t < n/2 with O(`n3 + n7κ) bits of com-
munication, and broadcasting ` bits is possible for t < n
with O(`n2 + n6κ) bits of communication [PW96], where κ
denotes the security parameter (i.e., the error probability
ε < 2−κ`). In the model with a cryptographic PKI, con-
sensus is possible for t < n/2 with Ω(`n3 + n4κ) bits of
communication, and broadcast is possible for t < n with

O(`n2 + n3κ) bits of communication [DS83] — here, κ de-
notes the length of a signature, which is typically larger than
a security parameter in an information-theoretic protocol.
All models have in common that the most efficient known
BA protocols require a communication of at least Ω(`n2)
bits for an ` bit message. For large `, this term dominates
the overall communication complexity.

1.4 Multi-Valued Byzantine Agreement
Broadcast and consensus are the probably most vital sub-

protocols in many distributed applications. However, in
real-life applications typically agreement must be reached
on long messages rather than on single bits. For exam-
ple, in a voting protocol, the authorities must agree on the
set of all ballots to be tallied (which can be gigabytes of
data). Multi-valued Byzantine agreement is also relevant
in secure multi-party computation, where many broadcast
invocations can be parallelized and thereby optimized to a
single invocation with a long message.

The first generic reduction from long-message broad-
cast to short-message broadcast was given by Turpin and
Coan [TC84]. The idea of their reduction is as follows: First,
the sender sends his input message m to every player. Sec-
ond, every player echoes the received message to every other
player. Third, every player broadcasts one bit, depending
on whether or not he has received at least n − t identical
messages in the second step. If at least n − t players have
seen at least n−t identical messages, then all players output
the message they have received most often. Otherwise, all
players output some default value, denoted as ⊥.1 One can
easily verify that this protocol is correct for t < n/3 (but
not for t < n/2). The communication complexity of the
protocol is O(`n2 + nB(1)) bits for `-bit broadcast.

An obvious approach towards a more efficient reduction
(where the message is communicated only O(n) times) is
as follows: The sender sends the message m bilaterally to
every player, and broadcasts the hash value of m (using
some short-message broadcast protocol). Then, every player
broadcasts one bit, indicating whether or not the message
he received fits the broadcasted hash value. If at least n −
t players accept the sender’s message, then m is accepted
as the broadcasted message; otherwise, the broadcast failed
and all players set m =⊥. This approach suffers from two
limitations: First, it requires a cryptographic hash function,
as broadcasting for example a universal hash value does not
work (the sender could derive two different messages m and
m′ fitting the chosen universal hash function). Second, and
more importantly, even when the broadcast was accepted,
there are up to t honest players who did not receive m, and
the accepting players must deliver m to the rejecting players.
In the case of t < n/2, there might be only a single honest
accepting player, so every accepting honest player must send
m to every rejecting player, which sums up to Ω(`n2) bits
of communication.

1.5 Our Results
We present a reduction for BA (broadcast or consensus)

with long messages to BA (broadcast or consensus) with

1Typically, we assume ⊥ to be outside of the domain of BA
in order to make this value distinguishable from a regular
outcome. In order to rigorously comply with the definition
of BA, this symbol can be mapped to a default value inside
of the respective domain.

short messages. Given a BA protocol which communicates
B(b) bits for reaching agreement on a b-bit message, we con-
struct a protocol that reaches agreement on an `-bit message
with complexity O(`n + nB(n + κ)), where κ denotes a se-
curity parameter. This is the first BA protocol in which the
message is communicated only O(n) times, in contrast to
previous protocols which communicate the whole message at
least Ω(n2) times. Communicating the message O(n) times
is optimal both for broadcast and for consensus; no protocol
can achieve broadcast or consensus of an `-bit message with
complexity o(`n).

The round complexity of the resulting protocol is (up to
a constant factor) the same as the round complexity of the
underlying BA protocol. In particular, constant-round BA
protocols for short messages are transformed into very effi-
cient constant-round BA protocols for long messages.2

The reduction is information-theoretically secure with an
arbitrarily small error probability (negligible in the security
parameter). The reduction is robust against an active ad-
versary corrupting up to t < n/2 of the players, which is
optimal for consensus, but not optimal for broadcast when
an appropriate key setup is established. We give a security
analysis only for the case of a static adversary that cor-
rupts players at the beginning of the protocol; however, the
protocol is also secure with respect to an adaptive adversary
that can corrupt players during the protocol execution, given
that the employed broadcast protocol for short messages is
adaptively secure.

Applying our reduction to the most efficient BA protocols
in the literature, this yields the following complexities:

• In the model without key setup, information-
theoretically secure broadcast and consensus are possi-
ble for t < n/3 by communicating Ω(`n2) bits [BGP92,
CW92]. Our construction reduces the required com-
munication to O(`n + n3(n + κ)).

• In the model with an information-theoretic key setup,
information-theoretically secure broadcast is possible
for t < n by communicating Ω(`n2 + n6κ) bits, and
information-theoretically secure consensus for t < n/2
requires Ω(`n3 + n7κ) bits [PW96]. Our construction
reduces the required communication to O(`n + n7κ).

• In the model with a cryptographic public-key setup,
cryptographically secure broadcast is possible for t < n
by communicating Ω(`n2 +n3κ) bits, and consensus is
possible for t < n/2 by communicating Ω(`n3 + n4κ)
bits [DS83]; Our construction reduces the required
communication to O(`n + n4(n + κ)).

2. THE PROTOCOL IN A NUTSHELL
In this section we present the main ideas and the struc-

ture of our protocol. Technically, we construct an efficient
consensus protocol for long messages based on access to a

2Note that the round complexity of expected constant-round
BA protocols is not preserved automatically, because our
construction invokes the underlying BA protocol O(n) times
in parallel. However, known BA protocols with expected
constant rounds [FM89] can easily be modified such that
arbitrarily many parallel invocations require only expected
constant rounds (by using the same common coins for all
parallel instances), which suffices to make our construction
expected constant round as well.

given (slow) broadcast primitive for short messages. Note
that, with respect to the complexity of the final protocol,
this special case optimally represents all four possible cases
where the long-message protocol as well as the short-message
protocol are either broadcast or consensus. This is since
broadcast can be achieved with one single invocation of con-
sensus.

The construction assumes authenticated channels among
the players and black-box access to the given broadcast
primitive; yielding a consensus protocol for t < n/2 that
is as secure as the given broadcast protocol — up to a neg-
ligible error probability.3

The protocol proceeds in three stages, where each stage
brings the players “closer” to agreement. The protocol may
be aborted in any stage when (provably) inconsistencies
among honest players’ inputs are detected. In this case,
every player picks a default output message, denoted as ⊥.

In the sequel, we describe the three stages. For the sake of
conciseness, we write P for the set of players and Phonest ⊆
P for the subset of honest players. Note that Phonest is
typically not known and cannot be computed; we just use
it for the analysis of the protocol. Furthermore, we denote
the inputs to the consensus protocol by mi and the outputs
by m′

i.

Checking Stage
In the Checking Stage, the players in P compare their respec-
tive messages and jointly determine an “accepting subset”
Pacc ⊆ P of size at least n− t, such that all accepting play-
ers hold the same message, and all (honest) players holding
this message are accepting. This stage can be aborted when
inconsistencies among honest players are detected. More
formally, the checking stage must satisfy the following prop-
erties:

(1) If all honest players Pi ∈ Phonest hold the same input
message mi = m, then the checking stage succeeds, i.e.,
does not abort (completeness).

(2) All accepting honest players Pi ∈ Pacc∩Phonest hold the
same input message mi = m for some m (consistency).

(3) If all honest players Pi ∈ Phonest hold the same input
message mi = m, then they all accept, i.e., Phonest ⊆
Pacc (unambiguity).

Consolidation Stage
In the Consolidation Stage, the accepting players help the
other players to receive the right message. This will result
in a (commonly known) “happy subset” Pok ⊆ P, such that
all happy players hold the same message, and the majority
of happy players is honest. Also this stage may be aborted
in case of inconsistencies among the honest players’ inputs.4

More formally, the consolidation stage must satisfy the fol-
lowing properties:

(4) If all honest players accept the checking stage, i.e.,
Phonest ⊆ Pacc, then the consolidation stage succeeds
(completeness).

3Implying that, given broadcast with resilience t < n/3, the
resulting protocol will achieve only this resilience as well.
4We stress that we do not require that Phonest ⊆ Pok, even if
all honest players hold the same input message mi. The only
requirements are that all players in Pok (claim to) hold the
same (valid output) message m, and that a strict majority
of players in Pok is honest.

(5) All happy players Pi ∈ Pok ∩ Phonest hold the same
output message m′

i = m′ for some m′ (consistency).

(6) The output message m′ is equal to the input message
mi of an accepting honest player Pi ∈ Pacc ∩ Phonest

(validity).

(7) The majority of happy players is honest i.e., |Pok ∩
Phonest| > |Pok|/2 (unambiguity).

Claiming Stage
In the Claiming Stage, the happy players distribute the mes-
sage to the unhappy players. In order to keep the commu-
nication low, every happy player is distributing only part of
the message rather than the full-length message. This stage
will never be aborted. More formally, the claiming stage
must satisfy the following properties:

(8) All players Pi ∈ Phonest \ Pok pick the same output
message m′

i = m′ (consistency).

(9) The output message satisfies m′ = m′
i for some honest

happy player Pi ∈ Pok ∩ Phonest (validity).

3. CHECKING STAGE

3.1 The Protocol
The goal of the checking stage is to identify a set Pacc ⊆ P

of size at least n−t, such that all honest players in Pacc hold
the same input message m. Furthermore, Pacc must contain
all honest players if they all hold the same message.

The checking protocol is based on multilateral equality
checks. These equality checks will be realized with a family
of ε-almost two-universal hash functions [CW79]. This is a
family U = {Uk : k = 0, . . . , 2κ − 1}, where each hash func-
tion Uk maps arbitrary strings {0, 1}∗ to κ-bit strings. The
family is almost-universal when for any distinct messages
m1 and m2, the probability that the hash values Uk(m1)
and Uk(m2) are equal for a random key k ∈ {0, . . . , 2κ − 1},
is bounded by 2−κ`, where ` denotes the bit-length of the
longer message.

A universal hash function can for example be constructed
as follows: The message m is interpreted as a polynomial
fm over GF(2κ) with degree d /̀κe.5 The hash function is
defined as Uk(m) = fm(k). The probability that two given
messages collide on a randomly chosen key is 2−κ · d /̀κe.

The protocol for the checking stage is given in the box
“Protocol Checking”.

3.2 Security Analysis
We prove that the protocol satisfies the requirements (1)–

(3) of Section 2:

(1) Completeness: Assume that all honest players Pi ∈
Phonest hold input mi = m for some m. Then every
broadcasted hash value hi will either match all mi or
no mi.

6 Hence, every Pi ∈ Phonest will broadcast the
same vector ~vi, and there are at least |Phonest| ≥ n− t
such vectors, and the stage succeeds.

5In order to guarantee that the polynomials fm and fm′ for
two different messages m 6= m′ differ, we append a 1-bit to
the message.
6Note that all honest players receive the same hash values
hi, as a broadcast protocol (for short messages) is used for
distributing hi.

Protocol Checking
1. Every player Pi ∈ P selects at random a key k

for a universal hash function Uk, computes hi =
(k, Uk(mi)), and broadcasts hi using the given
broadcast protocol.

2. Every player Pj ∈ P checks the received hash val-
ues against his own message mj and prepares a
vector ~vj ∈ {accept, reject}n, where the i-th en-
try in the vector denotes whether or not Pi’s hash
value is consistent with Pj ’s message. Note that
the j-th position of ~vj is always accept. Finally, Pj

broadcasts the vector ~vj among all players in P.

3. If at least n − t of the broadcasted vectors are
equal (and ~vi has accept in the i-th position), we
denote this vector by ~v and denote the set of play-
ers broadcasting ~v by Pacc. Otherwise, we abort
the checking stage.

(2) Consistency: If two honest players Pi, Pj ∈ Phonest

hold different input messages mi 6= mj , then with high
probability, Pi will not accept the hash value broad-
casted by Pj , and vice versa. However, both Pi and Pj

will accept their own hash value. Hence, the vectors ~vi

and ~vj will be different, and either Pi or Pj (or both)
will not accept the checking stage, i.e., {Pi, Pj} 6⊆ Pacc.

(3) Unambiguity: According to the proof of (1), we know
that if all honest players Pi ∈ Phonest hold the same
input message mi, then they will broadcast the same
vector ~vi, and all honest players will accept, i.e.,
Phonest ⊆ Pacc.

3.3 Communication Complexity
The checking protocol communicates 2nB(κ) + nB(n)

bits, where B(b) denotes the communication complexity for
broadcasting a b-bit message with the short-message broad-
cast protocol.

4. CONSOLIDATION STAGE

4.1 The Protocol
In the consolidation stage, the (at least) n − t accepting

players in Pacc (who all hold the same message m) help the
other players to learn the message. However, in order to
keep the message complexity small, we will allow every ac-
cepting player to help only one non-accepting player. There-
fore, we assign an accepting player to every non-accepting
player. This is formalized with an injective mapping func-
tion Φ : (P \Pacc → Pacc). For example, the player with the
smallest index in P \Pacc is associated with the player with
the smallest index in Pacc, etc. The protocol for the consol-
idation stage is given in the box “Protocol Consolidation”.

4.2 Security Analysis
We prove that the protocol satisfies the requirements (4)–

(7) of Section 2. We again stress that we do not require
Phonest ⊆ Pok (it might be that Pok contains just a single
player, who then is honest and knows the valid message m).

(4) Completeness: Recall that all honest accepting players
Pi ∈ Pacc ∩ Phonest hold the same message mi = m.

Protocol Consolidation
1. For every non-accepting player Pj ∈ (P\Pacc), the

accepting player Pi = Φ(Pj) sends m = mi to Pj ,
who denotes the received message with m?

j .

2. Every player Pj ∈ (P \ Pacc) (uniformly) selects a
random key k defining the hash function Uk, and
computes and broadcasts hj = (k, Uk(m?

j)).

3. Every player Pi ∈ Pacc checks every hj against
the message m = mi, and broadcasts a vector
~vi ∈ {accept, reject}|P\Pacc|, where the j-th en-
try indicates whether or not the j-th hash value
matches m.

4. If at least n−t of the broadcasted vectors are equal,
we denote this vector by ~v. Let Prej ⊆ (P \ Pacc)
denote those players whose corresponding entry in
~v is reject. We set Pok = (P \ Prej \ {Φ(Pj) :
Pj ∈ Prej}). Every player Pi ∈ Pok ∩ Pacc sets
his output message m′

i = mi, and every player
Pi ∈ (Pok \ Pacc) sets m′

i = m?
i . If no n− t of the

broadcasted vectors are equal, the consolidation
stage is aborted.

Hence, whatever hash values hi are broadcasted in
Step 2 of the consolidation protocol, all honest play-
ers in Pacc will broadcast the same vectors ~vj . If
Phonest ⊆ Pacc, there are at least |Phonest| ≥ n − t
identical vectors ~vj , and the consolidation stage suc-
ceeds.

(5) Consistency: Let m denote the message of the honest
players in Pacc. Consider an arbitrary honest happy
player Pj ∈ Pok ∩ Phonest. If Pj ∈ Pacc, then m′

j =
mj = m. If Pj /∈ Pacc, then Pj has received mj from
Φ(Pj) in Step 2 of the Consolidation protocol. As Pj ∈
Pok, the hash value of mj has been confirmed by at
least n − t (> t) players in Pacc, hence at least one
honest player Pi (holding mi = m) has confirmed mj ,
what means that with overwhelming probability, mj =
m.

(6) Validity: As shown in the proof of (5), all honest happy
players Pi ∈ Pok ∩Phonest set m′

i = m, where m is the
message held by every honest player in Pacc.

(7) Unambiguity: Consider the set P \ Pok. This set con-
sists of pairs {Pi,Pj} with Pi = Φ(Pj), where Pj ’s
hash was rejected by at least n − t players in Pacc,
hence by at least one honest player (n− t > t). Hence
either Pi is corrupted (and did not send the message
mi = m to Pj), or Pj is corrupted (and did not broad-
cast the correct hash value of the received message).
As at least half of the players in P \Pok are corrupted,
but the majority of players in P is honest, it follows
that the majority of players in Pok is honest.

4.3 Communication Complexity
The consolidation protocol communicates `n + 2nB(κ) +

nB(n) bits.

5. CLAIMING STAGE
In the claiming stage, the players in P \ Pok must have

the possibility to receive the message. However, we cannot
allow these players to ask any player in Pok for the message,
because corrupted players could misuse this freedom to ask
every player for the message, which would imply the com-
munication of Ω(`n2) bits. We apply a trick to reduce the
communication complexity.

The message m is transformed into a polynomial fm over
GF(2c) with degree d − 1 for appropriate values c and d.7

In order to compute the polynomial and thus the mes-
sage, one needs d points on this polynomial, so we set
d = d(|Pok| + 1)/2e, and c = d(` + 1)/de. Every player
Pi ∈ Pok sends fm(i) to every player in P \ Pok. The re-
ceiving player can (with help of the other players in Pok)
distinguish good points from bad points, and ends up with
d(|Pok|+ 1)/2e good points, which help him interpolate fm

and derive m. The protocol for the claiming stage is given
in the box “Protocol Claiming”.

Protocol Claiming
1. Every Pi ∈ Pok computes c, d, and fm as described

above, and sends the c-bit piece yi = fm(i) to
every Pj ∈ (P \ Pok).

2. Every Pi ∈ Pok selects at random a key k for a uni-
versal hash function Uk, computes the hash value
hi = (k, Uk(fm(1)), . . . , Uk(fm(n))), and sends it
to every Pj ∈ (P \ Pok).

3. Every Pj ∈ (P \ Pok) checks each piece yi (for
each i with Pi ∈ Pok) against the i-th entry of ev-
ery hash value hm (for each m with Pm ∈ Pok). If
more than |Pok|/2 of the hash values match a piece
yi, then the piece is accepted, otherwise rejected.
Then Pj interpolates the polynomial fm from the
(at least) d accepted pieces yi and derives his out-
put message m′

j .

5.1 Security Analysis
The majority of players in Pok is honest, so a good piece

yi of an honest player Pi ∈ Pok will be confirmed by the ma-
jority of players in Pok. Hence, Pj will accept all pieces yi

of honest players Pi. As all honest players Pi hold the same
message mi = m, all these pieces indeed lie on a polynomial
of degree d − 1, and the d pieces allow a unique interpola-
tion of this polynomial, and a correct reconstruction of the
message m.

5.2 Communication Complexity
The claiming protocol communicates (` + n)n + n3κ bits.

6. COMPLEXITY ANALYSIS
The communication complexity of each stage is given in

the following table:

Checking 2nB(κ) + nB(n) bits
Consolidation `n + 2nB(κ) + nB(n) bits
Claiming (` + n)n + n3κ bits

Total 4nB(κ) + 2nB(n) + 2`n + n3κ+n2 bits
7Again, we append a 1-bit to the message.

This is less than 2`n + 6nB(n + κ) + n3κ + n2. As all
broadcast protocols in the literature have complexity at least
n2 per broadcasted bit, we can write the complexity of our
consensus protocol as O(`n + nB(κ + n)). One can easily
transform this consensus protocol into a broadcast protocol
with the same complexity.

The following table states the overall bit complexities for
agreeing on an `-bit message with security parameter κ, both
for the most efficient protocols in the literature and for the
protocol presented in this paper (instantiated with the most
efficient BA protocol). Note that “our” protocol has the
same complexity for consensus and for broadcast.

Model Lit.
Broadcast
Consensus

Ours

no PKI
[BGP92],
[CW92]

Ω(`n2)
Ω(`n2)

O(`n+n3(n+κ))

i.t. PKI [PW96]
Ω(`n2+n6κ)
Ω(`n3+n7κ)

O(`n+n7κ)

crypt. PKI [DS83]
Ω(`n3κ)
Ω(`n4κ)

O(`n+n4(n+κ))

The following table indicates a lower bound on the mes-
sage size ` such that our protocol is strictly better than
previously achieved.

Model `

no PKI ω(n(n+κ))
i.t. PKI ω(n5κ)
crypt. PKI ω(n2(n + κ))

7. LOWER BOUNDS
In this section we prove that any broadcast or consensus

protocol which tolerates a constant fraction of the players
to be corrupted (i.e., t ∈ Ω(n)), requires the communication
of at least Ω(`n) bits for agreeing on an `-bit message.

7.1 The Broadcast Case
The broadcast case is trivial: Every player Pi ∈ P must

learn the `-bit message, hence the protocol requires the com-
munication of Ω(`n) bits.

7.2 The Consensus Case
In the consensus case, consider the following setting: In

a protocol with n players, all but t players start with the
same message m. If these t players are corrupted, then the
protocol would not need to communicate at all, and every
player could output m. If these t players are honest, then
the protocol would not need to communicate at all, and
every player could output, say, ⊥. However, these two cases
are indistinguishable. Hence the protocol must ensure that
the t players not knowing the message learn the message.
Therefore, each of these t players must receive the message,
which (for t ∈ Ω(n)) requires the communication of Ω(`n)
bits.

8. CONCLUSIONS & OPEN PROBLEMS
We have proposed a reduction that converts any broadcast

protocol into a highly efficient consensus protocol for long
messages. The reduction is constant-round and information-
theoretically secure, for a negligibly small error probability.

The reduction immediately yields broadcast and consen-
sus protocols for n players, in which the message is com-
municated only O(n) times. This improves on all previous
known protocols that require the message to be transmit-
ted at least Ω(n2) times. Communicating the message only
O(n) times is optimal both for broadcast and for consensus.

It seems that the reduction is also possible in the asyn-
chronous world; however, this is left as an open problem.

9. ACKNOWLEDGMENTS
Special thanks go to Krzysztof Pietrzak for his help

for making the reduction constant-round, and to Thomas
Holenstein for many fruitful discussions on further optimiza-
tions and analysis of the protocol.

10. REFERENCES
[BGP92] P. Berman, J. A. Garay, and K. J. Perry. Bit

optimal distributed consensus. Computer Science
Research, pp. 313–322, 1992. Preliminary version
appeared in STOC ’89.

[CR90] D. Chaum and S. Roijakkers. Unconditionally
secure digital signatures. In CRYPTO ’90, LNCS
537, pp. 206–214. Springer, 1990.

[CW79] L. Carter and M. N. Wegman. Universal classes
of hash functions. Journal of Computer and
System Sciences (JCSS), 18(4):143–154, 1979.
Preliminary version appeared in STOC ’77.

[CW92] B. A. Coan and J. L. Welch. Modular
construction of a Byzantine agreement protocol
with optimal message bit complexity.
Information and Computation, 97(1):61–85, Mar.
1992. Preliminary version appeared in PODC ’89.

[DR85] D. Dolev and R. Reischuk. Bounds on
information exchange for Byzantine agreement.
Journal of the ACM, 32(1):191–204, Jan. 1985.

[DS83] D. Dolev and H. R. Strong. Authenticated
algorithms for Byzantine agreement. SIAM
Journal on Computing, 12(4):656–666, Nov. 1983.
Preliminary version appeared in STOC ’82.

[FM89] P. Feldman and S. Micali. An optimal
probabilistic algorithm for synchronous
Byzantine agreement. Automata, languages and
programming, 372:341–378, 1989. Preliminary
version appeared in STOC ’88.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching
agreement in the presence of faults. Journal of
the ACM, 27(2):228–234, Apr. 1980.

[PW96] B. Pfitzmann and M. Waidner.
Information-theoretic pseudosignatures and
byzantine agreement for t >= n/3. Technical
report, IBM Research, 1996.

[TC84] R. Turpin and B. A. Coan. Extending binary
Byzantine agreement to multivalued Byzantine
agreement. Information Processing Letters,
18(2):73–76, Feb. 1984.

