On the Frequency Distribution of Non-Independent Random Values

Thomas Holenstein Renato Renner
Department of Computer Science
Swiss Federal Institute of Technology (ETH), Zurich
CH-8092 Zurich, Switzerland
\{thomahol,renner\}@inf.ethz.ch

November 2003

Abstract

Let $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{n}\right)$ be an n-tuple of random variables and let \mathcal{P} be a convex set containing all conditional probability distributions $P_{Z_{i} \mid Z_{1}=z_{1} \cdots Z_{i-1}=z_{i-1}}$. We show that the frequency distribution of the elements in the n-tuple \mathbf{Z} is contained in an ε-environment of \mathcal{P}, except with small probability.

1 Preliminaries

Definition 1.1. The variational distance between two probability distributions P and Q over the same range \mathcal{Z} is defined by

$$
\delta(P, Q):=\frac{1}{2} \sum_{z \in \mathcal{Z}}|P(z)-Q(z)|
$$

Definition 1.2. Let $\varepsilon \geq 0$. The ε-environment $\mathcal{B}_{\varepsilon}(\mathcal{P})$ of a set of probability distributions \mathcal{P} with range \mathcal{Z} is the set of probability distributions P^{\prime} with range \mathcal{Z} such that $\delta\left(P, P^{\prime}\right) \leq \varepsilon$ for some $P \in \mathcal{P}$.

Definition 1.3. Let $\mathbf{z}:=\left(z_{1}, \ldots, z_{n}\right)$ be an n-tuple of elements of a set \mathcal{Z}. The frequency $Q_{\mathbf{z}}$ of \mathbf{z} is the function from \mathcal{Z} to $[0,1]$ defined by

$$
Q_{\mathbf{z}}(z):=\frac{\left|\left\{i: z_{i}=z\right\}\right|}{n}
$$

for $z \in \mathcal{Z}$.
It is easy to see that the frequency $Q_{\mathbf{z}}$ is a probability distribution on \mathcal{Z}.
Definition 1.4. A martingale is an $n+1$-tuple $\left(Z_{0}, \ldots, Z_{n}\right)$ of random variables on \mathbb{R} such that,

$$
E\left[Z_{i} \mid Z_{1}=z_{1}, \ldots, Z_{i-1}=z_{i-1}\right]=z_{i-1}
$$

for any $i \in\{1, \ldots, n\}$ and $z_{1}, \ldots, z_{n-1} \in \mathcal{Z}\left(\right.$ if $\left.\operatorname{Prob}\left[Z_{1}=z_{1}, \ldots, Z_{i-1}=z_{i-1}\right]>0\right)$.

Theorem 1.5 (Azuma's Inequality). Let $\left(Z_{0}, \ldots, Z_{n}\right)$ be a martingale with $Z_{0}=0$ and

$$
\left|Z_{i}-Z_{i-1}\right| \leq 1
$$

for all $i \in\{1, \ldots, n\}$. Then, for any $\mu>0$,

$$
\operatorname{Prob}\left[Z_{n}>\mu \sqrt{n}\right]<e^{-\mu^{2} / 2}
$$

Proof. See, e.g., p. 95 of [1].

2 Main Theorem and Proof

Theorem 2.1. Let $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{n}\right)$ be an n-tuple of random variables with alphabet \mathcal{Z} and let \mathcal{P} be a convex set of probability distributions on \mathcal{Z} such that

$$
P_{Z_{i} \mid Z_{1}=z_{1}, \ldots, Z_{i-1}=z_{i-1}} \in \mathcal{P}
$$

for all $i \in\{1, \ldots, n\}$ and $z_{1}, \ldots, z_{i-1} \in \mathcal{Z}$ (if $\operatorname{Prob}\left[Z_{1}=z_{1}, \ldots, Z_{i-1}=z_{i-1}\right]>0$). Then, for any $\varepsilon \geq 0$,

$$
\operatorname{Prob}\left[Q_{\mathbf{Z}} \in \mathcal{B}_{\varepsilon}(\mathcal{P})\right]>1-2^{|\mathcal{Z}|} e^{-n \varepsilon^{2} / 2}
$$

Proof. Let \mathcal{A} be any fixed nonempty proper subset of \mathcal{Z}. For $i \in\{1, \ldots, n\}$, let B_{i} be the binary random variable which takes the value 1 if $Z_{i} \in \mathcal{A}$ and 0 otherwise, let p_{i} be the function on \mathcal{Z}^{i-1} defined by

$$
p_{i}\left(z_{1}, \ldots, z_{i-1}\right):=\operatorname{Prob}\left[B_{i}=1 \mid Z_{1}=z_{1}, \ldots, Z_{i-1}=z_{i-1}\right]
$$

and let

$$
D_{i}:=B_{i}-p_{i}\left(Z_{1}, \ldots, Z_{i-1}\right)
$$

For $i \in\{0, \ldots, n\}$, let

$$
S_{i}:=\sum_{j=1}^{i} D_{i}
$$

We show that the $n+1$-tuple $\left(S_{0}, \ldots, S_{n}\right)$ is a martingale, i.e.,

$$
\begin{equation*}
E\left[S_{i} \mid S_{0}=s_{0}, \ldots, S_{i-1}=s_{i-1}\right]=s_{i-1} \tag{1}
\end{equation*}
$$

for all $i \in\{1, \ldots, n\}$ and s_{0}, \ldots, s_{n-1}. Since B_{i} is binary, we have

$$
E\left[B_{i} \mid Z_{1}=z_{1}, \ldots, Z_{i-1}=z_{i-1}\right]=p_{i}\left(z_{1}, \ldots, z_{i-1}\right)
$$

and, by the definition of D_{i},

$$
E\left[D_{i} \mid Z_{1}=z_{1}, \ldots, Z_{i-1}=z_{i-1}\right]=0
$$

The values of $\left(D_{1}, \ldots, D_{n}\right)$ are uniquely determined by the values of $\left(Z_{1}, \ldots, Z_{n}\right)$. We thus have

$$
E\left[D_{i} \mid D_{1}=d_{1}, \ldots, D_{i-1}=d_{i-1}\right]=0
$$

and, using the definition of S_{i},

$$
E\left[S_{i} \mid D_{1}=d_{1}, \ldots, D_{i-1}=d_{i-1}\right]=E\left[\sum_{j=1}^{i} D_{i} \mid D_{1}=d_{1}, \ldots, D_{i-1}=d_{i-1}\right]=\sum_{j=1}^{i-1} d_{j}
$$

which implies (1). Since $S_{0}=0$ and $\left|S_{i}-S_{i-1}\right|=\left|D_{i}\right| \leq 1$ for all $i \in\{1, \ldots, n\}$, we can apply Theorem 1.5 leading to

$$
\begin{equation*}
\operatorname{Prob}\left[S_{n}>\mu \sqrt{n}\right]<e^{-\mu^{2} / 2} . \tag{2}
\end{equation*}
$$

For any $\mathcal{A} \subseteq \mathcal{Z}$, let $s_{\mathcal{A}}$ be the function

$$
s_{\mathcal{A}}: \quad P \longmapsto \sum_{z \in \mathcal{A}} P(z),
$$

defined on the set of probability distributions on \mathcal{Z}. For any $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right)$, let $P_{\mathbf{z}}$ be the probability distribution on \mathcal{Z} defined by

$$
\begin{equation*}
P_{\mathbf{z}}(z):=\frac{1}{n} \sum_{j=1}^{n} \operatorname{Prob}\left[Z_{j}=z \mid Z_{1}=z_{1}, \ldots, Z_{j-1}=z_{j-1}\right] \tag{3}
\end{equation*}
$$

for $z \in \mathcal{Z}$. Since, by the definition of $\mathbf{B}=\left(B_{1}, \ldots, B_{n}\right)$,

$$
s_{\mathcal{A}}\left(Q_{\mathbf{Z}}\right)=Q_{\mathbf{B}}(1)=\frac{1}{n} \sum_{j=1}^{n} B_{j}
$$

and, by the definition of p_{j} and $P_{\mathbf{z}}$,

$$
s_{\mathcal{A}}\left(P_{\mathbf{Z}}\right)=\frac{1}{n} \sum_{j=1}^{n} p_{j}\left(Z_{1}, \ldots, Z_{j-1}\right)
$$

we find

$$
s_{\mathcal{A}}\left(Q_{\mathbf{Z}}\right)-s_{\mathcal{A}}\left(P_{\mathbf{Z}}\right)=\frac{1}{n} \sum_{j=1}^{n}\left(B_{j}-p_{j}\left(Z_{1}, \ldots, Z_{j-1}\right)\right)=\frac{1}{n} \sum_{j=1}^{n} D_{j}=\frac{1}{n} S_{n} .
$$

It follows from (2) that

$$
\begin{equation*}
\operatorname{Prob}\left[s_{\mathcal{A}}\left(Q_{\mathbf{Z}}\right)-s_{\mathcal{A}}\left(P_{\mathbf{Z}}\right)>\frac{\mu}{\sqrt{n}}\right]<e^{-\mu^{2} / 2} \tag{4}
\end{equation*}
$$

The variational distance between $Q_{\mathbf{Z}}$ and $P_{\mathbf{Z}}$ can be written as

$$
\delta\left(Q_{\mathbf{Z}}, P_{\mathbf{Z}}\right)=\max _{\mathcal{A} \subset \mathcal{Z}}\left(s_{\mathcal{A}}\left(Q_{\mathbf{Z}}\right)-s_{\mathcal{A}}\left(P_{\mathbf{Z}}\right)\right)
$$

where the maximum ranges over all non-empty proper subsets \mathcal{A} of \mathcal{Z}. Applying the union bound for all $2^{|\mathcal{Z}|}-2$ subsets \mathcal{A}, we conclude from (4)

$$
\operatorname{Prob}\left[\delta\left(Q_{\mathbf{Z}}, P_{\mathbf{Z}}\right)>\frac{\mu}{\sqrt{n}}\right]<\left(2^{|\mathcal{Z}|}-2\right) e^{-\mu^{2} / 2}<2^{|\mathcal{Z}|} e^{-\mu^{2} / 2}
$$

The assertion then follows from the observation that the probability distribution $P_{\mathbf{z}}$, as defined in (3), is a convex combination of distributions from the set \mathcal{P}, i.e., since \mathcal{P} is convex, $P_{\mathbf{z}} \in \mathcal{P}$, for any \mathbf{z}, and, consequently, $P_{\mathbf{Z}} \in \mathcal{P}$.

References

[1] N. Alon and J. H. Spencer. The probabilistic method. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, second edition, 2000.

