On the Frequency Distribution of Non-Independent Random Values

Thomas Holenstein Renato Renner

Department of Computer Science Swiss Federal Institute of Technology (ETH), Zurich CH-8092 Zurich, Switzerland {thomahol,renner}@inf.ethz.ch

November 2003

Abstract

Let $\mathbf{Z} = (Z_1, \ldots, Z_n)$ be an *n*-tuple of random variables and let \mathcal{P} be a convex set containing all conditional probability distributions $P_{Z_i|Z_1=z_1\cdots Z_{i-1}=z_{i-1}}$. We show that the frequency distribution of the elements in the *n*-tuple \mathbf{Z} is contained in an ε -environment of \mathcal{P} , except with small probability.

1 Preliminaries

Definition 1.1. The variational distance between two probability distributions P and Q over the same range \mathcal{Z} is defined by

$$\delta(P,Q) := \frac{1}{2} \sum_{z \in \mathcal{Z}} |P(z) - Q(z)| .$$

Definition 1.2. Let $\varepsilon \geq 0$. The ε -environment $\mathcal{B}_{\varepsilon}(\mathcal{P})$ of a set of probability distributions \mathcal{P} with range \mathcal{Z} is the set of probability distributions P' with range \mathcal{Z} such that $\delta(P, P') \leq \varepsilon$ for some $P \in \mathcal{P}$.

Definition 1.3. Let $\mathbf{z} := (z_1, \ldots, z_n)$ be an *n*-tuple of elements of a set \mathcal{Z} . The *frequency* $Q_{\mathbf{z}}$ of \mathbf{z} is the function from \mathcal{Z} to [0, 1] defined by

$$Q_{\mathbf{z}}(z) := \frac{|\{i: z_i = z\}|}{n}$$

for $z \in \mathcal{Z}$.

It is easy to see that the frequency $Q_{\mathbf{z}}$ is a probability distribution on \mathcal{Z} .

Definition 1.4. A martingale is an n + 1-tuple (Z_0, \ldots, Z_n) of random variables on \mathbb{R} such that,

$$E[Z_i|Z_1 = z_1, \dots, Z_{i-1} = z_{i-1}] = z_{i-1}$$

for any $i \in \{1, \ldots, n\}$ and $z_1, \ldots, z_{n-1} \in \mathcal{Z}$ (if $\operatorname{Prob}[Z_1 = z_1, \ldots, Z_{i-1} = z_{i-1}] > 0$).

Theorem 1.5 (Azuma's Inequality). Let (Z_0, \ldots, Z_n) be a martingale with $Z_0 = 0$ and

 $|Z_i - Z_{i-1}| \le 1$

for all $i \in \{1, \ldots, n\}$. Then, for any $\mu > 0$,

$$\operatorname{Prob}[Z_n > \mu \sqrt{n}] < e^{-\mu^2/2}$$

Proof. See, e.g., p. 95 of [1].

2 Main Theorem and Proof

Theorem 2.1. Let $\mathbf{Z} = (Z_1, \ldots, Z_n)$ be an n-tuple of random variables with alphabet \mathcal{Z} and let \mathcal{P} be a convex set of probability distributions on \mathcal{Z} such that

$$P_{Z_i|Z_1=z_1,\dots,Z_{i-1}=z_{i-1}} \in \mathcal{P}$$

for all $i \in \{1, ..., n\}$ and $z_1, ..., z_{i-1} \in \mathcal{Z}$ (if $\operatorname{Prob}[Z_1 = z_1, ..., Z_{i-1} = z_{i-1}] > 0$). Then, for any $\varepsilon \ge 0$,

$$\operatorname{Prob}[Q_{\mathbf{Z}} \in \mathcal{B}_{\varepsilon}(\mathcal{P})] > 1 - 2^{|\mathcal{Z}|} e^{-n\varepsilon^2/2}$$
.

Proof. Let \mathcal{A} be any fixed nonempty proper subset of \mathcal{Z} . For $i \in \{1, \ldots, n\}$, let B_i be the binary random variable which takes the value 1 if $Z_i \in \mathcal{A}$ and 0 otherwise, let p_i be the function on \mathcal{Z}^{i-1} defined by

$$p_i(z_1,\ldots,z_{i-1}) := \operatorname{Prob}[B_i = 1 | Z_1 = z_1,\ldots,Z_{i-1} = z_{i-1}],$$

and let

$$D_i := B_i - p_i(Z_1, \dots, Z_{i-1})$$
.

For $i \in \{0, ..., n\}$, let

$$S_i := \sum_{j=1}^i D_i$$

We show that the n + 1-tuple (S_0, \ldots, S_n) is a martingale, i.e.,

$$E[S_i|S_0 = s_0, \dots, S_{i-1} = s_{i-1}] = s_{i-1}$$
(1)

for all $i \in \{1, \ldots, n\}$ and s_0, \ldots, s_{n-1} . Since B_i is binary, we have

$$E[B_i|Z_1 = z_1, \dots, Z_{i-1} = z_{i-1}] = p_i(z_1, \dots, z_{i-1})$$
,

and, by the definition of D_i ,

$$E[D_i|Z_1 = z_1, \ldots, Z_{i-1} = z_{i-1}] = 0$$
.

The values of (D_1, \ldots, D_n) are uniquely determined by the values of (Z_1, \ldots, Z_n) . We thus have

$$E[D_i|D_1 = d_1, \dots, D_{i-1} = d_{i-1}] = 0$$

and, using the definition of S_i ,

$$E[S_i|D_1 = d_1, \dots, D_{i-1} = d_{i-1}] = E[\sum_{j=1}^i D_i|D_1 = d_1, \dots, D_{i-1} = d_{i-1}] = \sum_{j=1}^{i-1} d_j .$$

which implies (1). Since $S_0 = 0$ and $|S_i - S_{i-1}| = |D_i| \le 1$ for all $i \in \{1, \ldots, n\}$, we can apply Theorem 1.5 leading to

$$\operatorname{Prob}[S_n > \mu \sqrt{n}] < e^{-\mu^2/2} .$$
(2)

For any $\mathcal{A} \subseteq \mathcal{Z}$, let $s_{\mathcal{A}}$ be the function

$$s_{\mathcal{A}}: \quad P \longmapsto \sum_{z \in \mathcal{A}} P(z) ,$$

defined on the set of probability distributions on \mathcal{Z} . For any $\mathbf{z} = (z_1, \ldots, z_n)$, let $P_{\mathbf{z}}$ be the probability distribution on \mathcal{Z} defined by

$$P_{\mathbf{z}}(z) := \frac{1}{n} \sum_{j=1}^{n} \operatorname{Prob}[Z_j = z | Z_1 = z_1, \dots, Z_{j-1} = z_{j-1}]$$
(3)

for $z \in \mathcal{Z}$. Since, by the definition of $\mathbf{B} = (B_1, \ldots, B_n)$,

$$s_{\mathcal{A}}(Q_{\mathbf{Z}}) = Q_{\mathbf{B}}(1) = \frac{1}{n} \sum_{j=1}^{n} B_j$$

and, by the definition of p_j and P_z ,

$$s_{\mathcal{A}}(P_{\mathbf{Z}}) = \frac{1}{n} \sum_{j=1}^{n} p_j(Z_1, \dots, Z_{j-1})$$

we find

$$s_{\mathcal{A}}(Q_{\mathbf{Z}}) - s_{\mathcal{A}}(P_{\mathbf{Z}}) = \frac{1}{n} \sum_{j=1}^{n} (B_j - p_j(Z_1, \dots, Z_{j-1})) = \frac{1}{n} \sum_{j=1}^{n} D_j = \frac{1}{n} S_n$$
.

It follows from (2) that

$$\operatorname{Prob}[s_{\mathcal{A}}(Q_{\mathbf{Z}}) - s_{\mathcal{A}}(P_{\mathbf{Z}}) > \frac{\mu}{\sqrt{n}}] < e^{-\mu^2/2} .$$

$$\tag{4}$$

The variational distance between $Q_{\mathbf{Z}}$ and $P_{\mathbf{Z}}$ can be written as

$$\delta(Q_{\mathbf{Z}}, P_{\mathbf{Z}}) = \max_{\mathcal{A} \subset \mathcal{Z}} \left(s_{\mathcal{A}}(Q_{\mathbf{Z}}) - s_{\mathcal{A}}(P_{\mathbf{Z}}) \right)$$

where the maximum ranges over all non-empty proper subsets \mathcal{A} of \mathcal{Z} . Applying the union bound for all $2^{|\mathcal{Z}|} - 2$ subsets \mathcal{A} , we conclude from (4)

$$\operatorname{Prob}[\delta(Q_{\mathbf{Z}}, P_{\mathbf{Z}}) > \frac{\mu}{\sqrt{n}}] < (2^{|\mathcal{Z}|} - 2)e^{-\mu^2/2} < 2^{|\mathcal{Z}|}e^{-\mu^2/2} .$$

The assertion then follows from the observation that the probability distribution $P_{\mathbf{z}}$, as defined in (3), is a convex combination of distributions from the set \mathcal{P} , i.e., since \mathcal{P} is convex, $P_{\mathbf{z}} \in \mathcal{P}$, for any \mathbf{z} , and, consequently, $P_{\mathbf{Z}} \in \mathcal{P}$.

References

[1] N. Alon and J. H. Spencer. *The probabilistic method*. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, second edition, 2000.