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Abstract. Secret-key agreement between two parties Alice and Bob,
connected by an insecure channel, can be realized in an information-
theoretic sense if the parties share many independent pairs of correlated
and partially secure bits. We study the special case where only one-way
communication from Alice to Bob is allowed and where, for each of the
bit pairs, with a certain probability, the adversary has no information
on Alice’s bit. We give an expression which, for this situation, exactly
characterizes the rate at which Alice and Bob can generate secret key
bits.
This result can be used to analyze a slightly restricted variant of the
problem of polarizing circuits, introduced by Sahai and Vadhan in the
context of statistical zero-knowledge, which we show to be equivalent
to secret-key agreement as described above. This provides us both with
new constructions to polarize circuits, but also proves that the known
constructions work for parameters which are tight.
As a further application of our results on secret-key agreement, we show
how to immunize single-bit public-key encryption schemes from decryp-
tion errors and insecurities of the encryption, a question posed and par-
tially answered by Dwork, Naor, and Reingold. Our construction works
for stronger parameters than the known constructions.

1 Introduction

Consider two parties, Alice and Bob, connected by an authentic but oth-
erwise fully insecure communication channel. It is well known that it is
impossible for Alice and Bob to establish information-theoretically se-
cure private communication (see [16, 11]). In particular, they are unable
to generate an unconditionally secure key. This changes dramatically if
we additionally assume that Alice and Bob have access to some correlated
randomness on which an adversary has only partial information.
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The initial correlation shared by Alice and Bob can originate from
various sources. For example, Wyner [20] and, subsequently, Csiszár and
Körner [3] have studied a scenario where Alice and Bob are connected by a
noisy channel on which an adversary has only limited access. Maurer [11]
(cf. also [1]) proposed to consider a setting where a satellite broadcasts
uniform random bits with low signal intensity, such that Alice, Bob, and
also Eve cannot receive them perfectly. It has been shown that, in both
settings, Alice and Bob can indeed generate an information-theoretically
secure key and thus communicate secretly.

In this paper, we study one-way secret-key agreement, i.e., we assume
that only one-way communication from Alice to Bob is allowed. We fully
analyze the case where Alice and Bob hold many independent pairs of
correlated bits, and where the only secrecy guarantee is that, for each of
these pairs, with a certain probability, the adversary has no information
about Alice’s value. It turns out that this particular kind of information-
theoretic secret-key agreement has interesting applications, even in the
context of computational cryptography.

1.1 Secret-Key Agreement

Previous Work: Information-theoretically secure secret-key agreement
from correlated information has first been proposed by Maurer in [11].
He considered a setting where Alice, Bob, and Eve hold many indepen-
dent realizations of correlated random variables X, Y , and Z, respectively,
with joint probability distribution PXY Z . The (two-way) secret-key rate
S(X;Y |Z), i.e., the rate at which Alice and Bob can generate secret-key
bits per realization of (X, Y, Z), has further been studied in [1] and later
in [12], where the intrinsic information I(X;Y ↓Z) is defined and shown
to be an upper bound on S(X;Y |Z), which, however, is not tight [13].

For one-way communication, it is already implied by a result in [3]
and has later been shown in [1] that the secret-key rate S→(X;Y |Z) is
given by the supremum of H(U |ZV )−H(U |Y V ), taken over all possible
random variables U and V obtained from X.1 However, as this is a purely
information-theoretic result, it does not directly imply that there exists
an efficient key-agreement protocol.

Our Contributions: In Section 2, we show that H(U |ZV )−H(U |Y V ) is
the exact rate at which Alice and Bob can efficiently generate a secret

1 This result is proven with respect to a slightly different definition of the secret-key
rate than we use. For completeness, we thus provide a new proof for this.



key. The methods used to show this are not new, but as far as we know
this result has not appeared anywhere else in the literature.

Furthermore, we study the class of distributions PXY Z where X and Y
are random variables over {0, 1} with some bounded error Pr[X 6= Y ],
and where all that is known about Z is that, with a certain probability, it
does not give any information on X.2 This class will be important for our
applications. Using novel techniques, we give an explicitly computable
lower bound on the one-way secret-key rate as well as a tight charac-
terization of the parameters for which one-way secret-key agreement is
possible.

1.2 Circuit Polarization

Previous Work: In [17], Sahai and Vadhan introduced the promise prob-
lem statistical difference. This problem is defined for parameters α and β,
α > β as follows: given two circuits which, on uniform random input, pro-
duce output distributed according to C0 and C1 with the promise that the
statistical distance of the distributions is either bigger than α or smaller
than β, decide which of the two is the case. If α2 > β, Sahai and Vadhan
show (cf. also [18]) how to polarize such a pair of circuits, i.e., they give
an efficient construction which takes a pair of circuits and outputs a pair
of circuits such that, if the statistical distance of the initial pair was at
least α to begin with, the statistical distance of the resulting distributions
is very high (i.e., at least 1−2−k for an arbitrary k), and if the statistical
distance of the pair was at most β, then the resulting statistical distance
is very small (i.e., at most 2−k).

In order to achieve this only two operations are used, where one of
them increases the statistical distance of the distributions at hand and
the other reduces the distance. These operations share a certain similarity
to operations used in secret-key agreement protocols (cf. [11] and [19]),
and indeed, in [5], Dwork et al. note that their construction to immunize
public-key encryption is inspired by [17].

Our Contributions: In this work, we make the connection anticipated in
[5] explicit by showing that one-way secret-key agreement for the class
of distributions given in Section 2.3 is equivalent to the task of circuit
polarization, as long as one is restricted to black-box constructions (i.e.,
the description of the circuits given may not be used), only gives inde-
pendent and uniform random inputs to the circuits, and directly outputs
2 As the exact distribution of the initial randomness—especially the part held by

Eve—is usually not known, it is natural to consider such classes.



the samples of the circuits. These restrictions may seem quite strong at
first, but the method given in [18] is of this form. Using our bounds for
secret-key agreement, we show that such a polarization method does only
exist if α2 > β, i.e., the bounds given in [18] are optimal for this class of
constructions.

1.3 Immunization of Public-Key Encryption

Previous Work: Assume that a public-key encryption scheme for single
bits is given, which has the property that the receiver may succeed in
decrypting correctly only with probability (1 + α)/2, and also that a
potential eavesdropper Eve may have probability up to (1 + β)/2 to find
the message, for some constants (or functions of a security parameter) α
and β. In [5], the question was posed whether such a scheme can be used
to get a public-key encryption scheme in the usual sense. Furthermore, the
question was answered in the positive sense in two cases: if α2 > cβ, for
some absolute constant c� 1, a scheme is given. Also, for every constant
β < 1 a construction which works for some constant α < 1 is given.
However, this construction is not very strong: for example, for β = 1/2,
the constant α is about 1−2−15. Note that Dwork et al. make no attempt
to optimize these constants.

In [7] a similar question was asked for key agreement where Alice and
Bob may communicate an arbitrary number of rounds.

Our Contributions: Using a lemma from [7], we improve the result of [5]
and show that, for constants α and β, immunizing such an encryption
scheme is possible if α2 > β. Furthermore we show that, in a setting
which is sufficiently black-box, this is optimal.

1.4 Notation

Throughout the paper, we use calligraphic letters (e.g. X , Y, U) to denote
sets. Uppercase letters (X, Y , U) are used to denote random variables,
and lowercase letters denote values of these random variables.

For distributions PX and PY over the same domain X , we denote by
‖PX − PX′‖ = 1

2

∑
x∈X |PX(x)− PX′(x)| the statistical distance between

PX and PX′ . If X and X ′ are the corresponding random variables we
sometimes slightly abuse notation and write ‖X −X ′‖ instead.

The min-entropy (or Rényi entropy of order ∞) of a random vari-
able X over X is defined as H∞(X) := − log(maxx∈X PX(x)), and the



Rényi entropy of order zero is H0(X) := log(|{x ∈ X |PX(x) > 0}). More
generally, the conditional Rényi entropies are

H∞(X|Y ) := − log
(

max
x∈X ,y∈Y

PX|Y (x|y)
)
,

H0(X|Y ) := log
(
max
y∈Y

∣∣{x ∈ X |PX|Y (x|y) > 0}
∣∣).

Additionally, we use the following smoothed versions of these entropy
measures [14], which are defined for any ε ≥ 0:

Hε
∞(X) := max

PX′ :‖PX−PX′‖≤ε
H∞(X ′),

Hε
∞(X|Y ) := max

PX′Y ′ :‖PXY −PX′Y ′‖≤ε
H∞(X ′|Y ′).

For a random variable X, we write U ← X if, for any other random
variable Z, U ↔ X ↔ Z is a Markov chain. It other words, one can think
of U as being obtained from X by sending it through a channel without
considering anything else.

2 One-Way Secret-Key Agreement

2.1 Notation and Definitions

A one-way secret-key agreement protocol has three important parameters,
which are denoted by the same letters throughout the paper: the length m
of the secret key produced, a security parameter k, and the number n of
instances of the initial random variables used. It will be convenient in
applications to assume that, for given m and k, n can be computed by a
function n(k, m).

Definition 1 (Protocol). A one-way secret-key agreement (OW-SKA)
protocol on X × Y consists of the function n(k, m) : N × N → N; a
function family, called Alice, with parameters k and m, mapping n in-
stances of X to a bit string SA ∈ {0, 1}m (the secret key) and a bit
string Γ ∈ {0, 1}∗ (the communication); and a function family, called
Bob, with parameters k and m, mapping Γ and n instances of Y to a bit
string SB ∈ {0, 1}m. The protocol is efficient if n(k, m), Alice, and Bob
can be computed by probabilistic Turing machines in time poly(k,m). The
rate of the protocol is limk→∞ limm→∞

n(k,m)
m .

The goal of secret-key agreement is to get a secure key (SA, SB), i.e.,
two strings which are likely to be equal and look like a uniform random
string to Eve. We can define this as follows:



Definition 2 (Secure Key). A pair (X, Y ) over {0, 1}m × {0, 1}m of
random variables is ε-secure with respect to Z if

‖PXY Z − PUU × PZ‖ ≤ ε,

where PUU is the probability distribution over {0, 1}m × {0, 1}m given by

PUU (x, y) =

{
2−m if x = y

0 otherwise.

We say that a protocol is secure if it generates a 2−k-secure key with
respect to the information Eve has after the protocol execution, that is,
the initial randomness Z1, . . . , Zn and the communication Γ . In some
cases it is desirable to have a protocol which works for a class of distri-
butions rather than for a single distribution (since one may not know the
exact distribution of the random variables).

Definition 3 (Secure protocol). A OW-SKA protocol on X × Y is
secure on a probability distribution PXY Z over X × Y × Z if, for any
k,m ∈ N, (SA, SB) is 2−k-secure with respect to (Z1, . . . , Zn(k,m), Γ ).

A protocol is secure on a set P = {PXY Z} of tripartite probability
distributions if it is secure for every distribution PXY Z ∈ P.

This way, we can study the secret-key rate of classes of distributions,
and also of single distributions.

Definition 4 (One-way secret-key rate). The one-way secret key
rate S→(P) of a set P = {PXY Z} of probability distributions is the supre-
mum of the rate of any OW-SKA protocol which is secure on P.

We also write S→(X;Y |Z) to denote the one-way secret-key rate of a
single distribution, i.e., S→(X;Y |Z) := S→({PXY Z}).

2.2 A General Expression for the One-Way Secret-Key Rate

In this section, we derive a simple expression for the one-way secret-key
rate of a general tripartite probability distribution. As mentioned in the
introduction, Theorem 1 has already been known to hold for general (not
necessarily efficient) protocols [3, 1].

Theorem 1. Let PXY Z be a probability distribution. Then

S→(X;Y |Z) = sup
V←U←X

H(U |ZV )−H(U |Y V ).

Moreover, the same identity holds if only efficient secret-key agreement
protocols are considered.



For the (two-way) secret-key rate no comparable expression is known.
We prove Theorem 1 in two steps: We first give an efficient protocol for
any rate which is below supV←U←X H(U |ZV )−H(U |Y V ) (Theorem 2)
and then show that no protocol can achieve a higher rate (Theorem 3).

The protocol is based on the following proposition. A proof can be
found in [6]; the idea is to concatenate a random linear code with a Reed-
Solomon code such that the decoding can be done in polynomial time.

Proposition 1. For any memoryless channel and any rate s below the
capacity it is possible to design codes C : X ` → X n of growing length
`→∞ with overall complexity (construction, encoding, and decoding) of
order n2 and decoding error probability 2−cs·n where the constant cs only
depends on the channel and the rate s.

Furthermore, we use the following from [15]:

Proposition 2. Let PXY Z be a probability distribution. For any ε, ε′ ≥ 0,

Hε+ε′
∞ (X|Y ) ≥ Hε

∞(XY )−H0(Y )− log
( 1

ε′

)
Hε+ε′
∞ (XY ) ≥ Hε

∞(X) + Hε′
∞(Y |X).

More generally, the statement still holds if all entropies are conditioned
on some additional random variable Z.

Also, we use the following from [8].3

Proposition 3. Let (X1, Y1), . . . , (Xn, Yn) i.i.d. according to PXY . Then,

Hε
∞(X1, . . . , Xn|Y1, . . . , Yn) ≥ nH(X|Y )− 4

√
n log(1/ε) log(|X |).

Also, we need the left-over hash-lemma, first given in [9] (see also [2]).
The function Ext used is a two-universal hash-function.

Proposition 4 (Left-Over Hash-Lemma). Let X be a random vari-
able over {0, 1}n. Let Un and Um be independent and uniform over {0, 1}n
and {0, 1}m, respectively. There exists an efficiently computable function
Ext : {0, 1}n×{0, 1}n → {0, 1}m such that, if H∞(X|Z) ≥ m+2 log(1/ε),
then ‖(Ext(X, Un), Un, Z)− (Um, Un, Z)‖ ≤ ε.

3 Note that a non-quantitative version of this statements follows directly from the
asymptotic equipartition property (see, e.g., [4]). A slightly different quantitative
version can be found in [9].



Lemma 1. Let PXY Z be an arbitrary tripartite probability distribution
and let r < H(X|Z) − H(X|Y ). There exists a constant dr (depending
on PXY Z and r) and an efficient OW-SKA protocol secure on PXY Z such
that n ≤ max(m/r, k · dr).

Proof. Let γ be such that r + 3γ = H(X|Z) − H(X|Y ). Let ⊕ be an
arbitrary group operation over X . For the channel which maps x to a
pair (X ⊕ x, Y ) (by choosing X and Y according to PXY , this channel
has capacity H0(X) − H(X|Y )), we use Proposition 1 to get a code C
with rate s := H0(X)−H(X|Y )− γ.

Choose n such that n ≥ m
r , n ≥ 32k log2 |X |

γ2 , n ≥ 2k
cs

and such that there
exists a code of this length in the family guaranteed by Proposition 1.
From the code of this length, Alice now choses a random word C =
(C1, . . . , Cn) and sends, for all i, Ci ⊕Xi to Bob, who gets (Yi, Ci ⊕Xi).
Using the property of the code, Bob can find the original codeword C with
probability 1−2−cs·n ≥ 1−2−2k. Alice then sends a randomly chosen seed
of a two-universal hash-function which maps the codeword to a string of
length m. Both parties apply the hash-function and output SA and SB,
respectively.

We show that Eve gets no information with probability 2−k. For this,
we set ε := 2−2k. From Proposition 2 and using H∞(C|Zn) = ns (which
follows from the fact that the codeword is chosen uniformly at random),
we get

H2ε
∞(C|(Xn ⊕ C)Zn)

≥ H∞(C|Zn) + Hε
∞(Xn ⊕ C|CZn)−H0(Xn ⊕ C|Zn)− log(

1
ε
)

= ns + Hε
∞(Xn|Zn)− nH0(X)− 2k.

From Proposition 3 we get Hε
∞(Xn|Zn) ≥ nH(X|Z) − 4 log(|X |)

√
2nk.

Together, we obtain

H2ε
∞(C|(Xn ⊕ C)Zn)

≥ n(H(X|Z)−H(X|Y )− γ)︸ ︷︷ ︸
=n(r+2γ)

− 4 log(|X |)
√

2nk︸ ︷︷ ︸
=
√

32nk log2 |X |≤nγ

−2k

≥ nr + nγ − 2k.

From Proposition 4 we see that it is possible to extract a secret key of
length nr + nγ − 6k > nr ≥ m such that Eve gets no information except
with probability 2ε + ε = 3 · 2−2k ≤ 2−k. ut



Theorem 2. Let PXY Z be an arbitrary probability distribution and let
r be a constant satisfying r < supV←U←X H(U |ZV ) −H(U |Y V ). There
exists a constant dr and an efficient OW-SKA protocol which is secure on
PXY Z and uses at most max(m/r, k · dr) instances of the initial random
variables.

Proof. For any random variables U and V such that V ← U ← Z, Alice
can compute an instance of U and V locally from an instance of X, and
then send V over the channel to Bob (and Eve). The result then follows
from Lemma 1.

Theorem 3. Let PXY Z be a probability distribution. Then

S→(X;Y |Z) ≤ sup
V←U←X

H(U |ZV )−H(U |Y V ).

Proof (sketch). We show that supV←U←X H(U |ZV )−H(U |Y V ) does not
increase by any step of a one-way key-agreement protocol. More precisely,
it does not increase by local processing of either Alice or Bob, or sending
a message from Alice to Bob. Furthermore, taking n copies of X, Y ,
and Z at most multiplies this quantity by n. Finally, if Alice and Bob
share a secret key of length m, then this quantity is arbitrarily close to m
(depending on k). Hence, the initial quantity is at least m. ut

Proof (Theorem 1). From Theorems 2 and 3. ut

2.3 The Secret Key Rate of a Class of Binary Distributions

In this section we study the one-way secret-key rate of a general class
of distributions. Namely, for parameters α and β, we assume that Alice
and Bob are given binary random variables X and Y which have the
property that they are equal with probability at least (1 + α)/2 (i.e., X
and Y have correlation at least α). Furthermore, we assume that with
probability 1 − β, the random variable Z does not give any information
about X. This class will also be of interest for Sections 3 and 4.

Definition 5. Let D(α, β) be the set of probability distributions PXY Z

over {0, 1} × {0, 1} × Z satisfying

– Pr[X = 0] = Pr[X = 1] = 1
2 ,

– Pr[X = Y ] ≥ 1+α
2 ,

– there exists an event E such that H(X|ZE) = 1 and Pr[E ] ≥ 1− β.



It is not hard to see that we could similarly look at the distributions
which satisfy ‖PY |X=0−PY |X=1‖ ≥ α and ‖PZ|X=0−PZ|X=1‖ ≤ β, where
Y does not have to be binary. This condition implies that Bob can apply a
function to Y such that a distribution from D(α, β) results. Furthermore,
all distributions in D(α, β) satisfy this characterization.

Some distributions in D(α, β) have a higher secret-key rate than oth-
ers, of course. We will see that the following distribution has the lowest
secret-key rate of all distributions in D(α, β). Intuitively, this distribu-
tion gives as much information to Eve as possible, and makes X and Y as
independent as possible under the constraints of Definition 5. For a ran-
dom variable X, let4 λ(X) be the random variable describing the out-
put of a binary symmetric channel taking input X, i.e., P

λ(X)|X=0(0) =
P

λ(X)|X=1(1) = 1+λ
2 .

Definition 6. For fixed α, β, the characteristic distribution PXY Z of
D(α, β) is given by the following random process: we chose X ∈ {0, 1}
uniformly at random. Then, Y is given as α(X), and Z over {0, 1,⊥}
is given as the output of an erasure channel with symmetric error prob-
ability 1 − β on input X, i.e., Pr[Z = X] = β, independently of X, and
Pr[Z = ⊥] = 1− β.

We are now ready to formulate our main statement of this section,
namely an easily computable expression for S→(D(α, β)):

Theorem 4. For any α, β, let PXY Z be the characteristic distribution of
D(α, β). Then,

S→(D(α, β)) = max
λ

H( λ(X)|Z)−H( λ(X)|Y ). (1)

In particular, if α2 > β then S→(D(α, β)) ≥ 1
7(α2 − β)2 and if α2 ≤ β

then S→(D(α, β)) = 0.

Since the term in the maximum of (1) only involves random variables
whose distribution is explicitly known (cf. Definition 6) we can get the
following form of it (where h(x) is the binary entropy function):

gα,β(λ) := H( λ(X)|Z)−H( λ(X)|Y )

= (1− β) + βh
(1 + λ

2

)
−h

(1 + αλ

2

)
(2)

4 The symbol is supposed to look like a binary symmetric channel, and can be
pronounced as noise.
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Fig. 1. Plot of gα,β(λ) with α = 0.8 and β = 0.59.

In order to prove Theorem 4, we need a few properties of gα,β (see
also Fig. 1). As they can be obtained with standard tools from calculus,
the (not very interesting) proof is omitted.

Lemma 2. Let the function gα,β : [−1, 1] → R be as in (2). If α2 ≤ β,
then gα,β(λ) ≤ 0 for all λ ∈ [−1, 1] and gα,β is concave. If α2 > β,
then gα,β has one local minimum at λ = 0 with gα,β(0) = 0 and two
local maxima at −λ+ and λ+, λ+ ∈ (0, 1] with gα,β(−λ+) = gα,β(λ+) ≥
1
7(α2 − β)2. Furthermore, gα,β is concave in [−1,−λ+] and [λ+, 1].

We first give an upper bound on S→(X;Y |Z) for the distribution from
Definition 6.

Lemma 3. Let PXY Z be the characteristic distribution of D(α, β). Then,
S→(X;Y |Z) ≤ maxλ gα,β(λ), where gα,β is defined by (2).

Proof. We know that S→(X;Y |Z) = supV←U←X H(U |ZV ) −H(U |Y V )
(Theorem 1). Let PU |X and PV |U be fixed channels. It is sufficient to show
that H(U |ZV )−H(U |Y V ) ≤ maxλ gα,β(λ).

We can rewrite H(U |ZV )−H(U |Y V ) as

H(U |ZV )−H(U |Y V ) = H(UZV )−H(UY V )− (H(ZV )−H(Y V ))
= H(Z|UV )−H(Y |UV )− (H(Z|V )−H(Y |V )).

(3)

Consider now a fixed pair (u, v). Setting 1+λuv
2 := Pr[X=0|U=u, V =v]

and 1+λv
2 := Pr[X=0|V =v], a straightforward computation yields:

H(Z|U=u, V =v)−H(Y |U=u, V =v) = h(β) + βh
(

1+λuv
2

)
− h

(
1+αλuv

2

)
H(Z|V =v)−H(Y |V =v) = h(β) + βh

(
1+λv

2

)
− h

(
1+αλv

2

)
.



Because gα,β differs from these expressions only by a constant, together
with (3) this gives

H(U |ZV )−H(U |Y V ) = E
uv

[gα,β(λuv)]−E
v
[gα,β(λv)].

Using Eu[λuv] = λv, where u is chosen according to the probability dis-
tribution PU |V =v, we thus obtain

H(U |ZV )−H(U |Y V ) = E
v

[
E
u
[gα,β(λuv)]− gα,β(E

u
[λuv])

]
.

For every fixed v, we can use Lemma 2 to obtain the following upper
bound on the term in the expectation:

E
u
[gα,β(λuv)]− gα,β(E

u
[λuv]) ≤ max

λ
gα,β(λ)− gα,β(0) = max

λ
gα,β(λ),

which can now be inserted in the above expression. ut

Next, we show that for every distribution in D(α, β) we can achieve at
least this rate by sending X over a fixed channel. As we want a protocol
which works for every distribution in D(α, β), it is important that this
processing only depends on the parameters α and β.

Lemma 4. Let α, β be fixed, PXY Z ∈ D(α, β), gα,β as in (2), λ ∈ [0, 1].
Then H( λ(X)|Z)−H( λ(X)|Y ) ≥ gα,β(λ).

Proof. Using a simple calculation we see that H( λ(X)|Z) ≥ (1 − β) +
βh(1+λ

2 ). To see that H( λ(X)|Y ) ≤ h(1+αλ
2 ), let B be a uniform random

bit, which is independent of X and Y . Then we obtain H( λ(X)|Y ) =
H( λ(X ⊕B)|Y ⊕B,B) ≤ H( λ(X ⊕B)|Y ⊕B) = h

(
1+αλ

2

)
. ut

We are now ready to prove Theorem 4.

Proof (Theorem 4). From Theorem 1, Lemmata 2, 3, and 4. ut
Furthermore, together with the results of the previous section, we

conclude that for any α, β with α2 > β there exists an efficient one-way
secret-key agreement protocol secure on D(α, β).

Corollary 1. Let α, β be constant with α2 > β. There exists an effi-
cient one-way secret-key agreement protocol with rate (α2 − β)2/8 which
is secure on D(α, β).

Proof. From Theorems 1 and 4.5 ut
5 Technically speaking, Theorem 1 only guarantees that such a protocol exists for one

single distribution, and in general the protocol will depend on the distribution at
hand. Of course the protocol cannot depend on the distribution of PZ|XY , but the
distribution PY |X can vary in D(α, β), so we have to be careful. However, since the
protocol just uses an error correcting code which is too strong for some distributions,
it is easy to see that this is not a problem.



3 Circuit Polarization

3.1 Polarization and Oblivious Polarization

Circuit polarization was introduced by Sahai and Vadhan in [17] in the
context of statistical zero knowledge. It can be described as follows: as-
sume that two circuits are given, which on uniform random input yield
output distributions C0 and C1 over {0, 1}`, respectively. We look for an
efficient method to polarize the circuits: if ‖C0 − C1‖ ≥ α, for some pa-
rameter α, the method should output circuits which are near disjoint, if
‖C0 − C1‖ ≤ β, for some parameter β, then the method should output
circuits which produce very close distributions.

In general, such a method uses a description of the circuits given.
Here, we focus on methods which use the given circuits in a black-box
manner, obliviously and with random input only.

Definition 7. An oblivious polarization method for parameters α and β
is a randomized algorithm which, on input k and b, outputs “query bits”
Q1

b , . . . , Q
n
b and a string Rb. For two distributions C0 and C1 it satisfies:

‖C0 − C1‖ ≥ α =⇒ ‖(CQ1
0
, . . . , CQn

0
, R0)− (CQ1

1
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1
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‖C0 − C1‖ ≤ β =⇒ ‖(CQ1
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1
, R1)‖ ≤ 2−k.

The method is efficient if the algorithm runs in time polynomial in k.

Note that the method given in [18] to polarize circuits is oblivious
in this sense.6 The method given to invert the statistical distance is not
oblivious (and cannot possibly be).

3.2 Equivalence of Polarization and Secret-Key Agreement

The goal of this section is to prove that an oblivious polarization method
for parameters α and β is equivalent to a secret-key agreement protocol
(for a one bit key) secure on D(α, β), as defined in Section 2.3.

Theorem 5. There exists an oblivious polarization method for parame-
ters α and β if and only if there exists a one-way secret-key agreement
protocol secure on D(α, β). Moreover, there exists an efficient oblivious
polarization method if and only if there exists a protocol with efficient
encoding (i.e., Alice is efficient).

6 In fact, R0 and R1 are empty in the method given.



We prove Theorem 5 in both directions separately, and start by show-
ing that a polarization method implies the existence of a one-way secret-
key agreement protocol:

Lemma 5. Let an oblivious polarization method for parameters α, β be
given. Then there exists a one-way secret-key agreement protocol which
is secure on D(α, β). Furthermore, if the polarization method is efficient,
then Alice is efficient.

Proof. It is sufficient to show how to get a one-way secret-key agreement
protocol for m := 1 bit.

The number of random variables n := n(k, 1) the protocol uses is set
to the number of queries produced by the polarization method. Alice first
simulates the polarization method with input k and a uniform random
bit b which yields Rb and Q1

b , . . . , Q
n
b . Subsequently, Alice sends Rb as

well as (X1⊕Q1
b , . . . , Xn⊕Qn

b ) as communication to Bob, and outputs b
as secret bit.

We show that Bob can find b with high probability from the commu-
nication and Y n (this may not necessarily be efficient). Since PXY Z ∈
D(α, β) the random variables C0 := (X, Y ) and C1 := (1⊕X, Y ) satisfy
‖C0 − C1‖ ≥ α. Furthermore, Y1, . . . , Yn and the communication gives
Bob a sample of the distribution (CQ1

b
, . . . , CQn

b
, Rb). The definition of

the polarization method now implies that a statistical test can find b
except with probability exponentially small in k.

Also the protocol is secure against Eve: consider the random variable
D0 := (Z,X) and the random variable D1 := (Z,X ⊕ 1). Here, PXY Z ∈
D(α, β) implies ‖D0−D1‖ ≤ β, and Eve sees exactly a sample of (DQ1

b
, . . . ,

DQn
b
, Rb), which is independent of b except with probability exponentially

small in k. ut

On the other hand, a one-way secret-key agreement protocol yields a
polarization method:

Lemma 6. Let a one-way secret-key agreement protocol secure on D(α, β)
be given. Then, there exists an oblivious polarization method for parame-
ters α and β using n(k, 1) copies of the given distribution. Furthermore,
if Alice is efficient, then the polarization method is efficient.

Proof. Throughout the proof we only need key agreement for one key
bit and set m := 1. On input b and k, the polarization method first
chooses random (uniform and independent) queries Q1

b , . . . , Q
n
b . Then Al-

ice is simulated with random variables X1 := Q1
b , . . . , Xn := Qn

b , which



yields communication C, and a secret bit S. The string Rb is then defined
as Rb := (C,S ⊕ b).

We first show that ‖C0−C1‖ ≥ α implies that ‖(CQ1
0
, . . . , CQn

0
, R0)−

(CQ1
1
, . . . , CQn

1
, R1)‖ is exponentially close to 1. For this, it is enough to

show how to find b from (CQ1
b
, . . . , CQn

b
, Rb) with probability almost 1.

‖C0 − C1‖ ≥ α implies that there exists a function y (a statistical test)
such that setting Yi := y(CQi

b
) gives Pr[Yi = Qi

b] ≥
1+α

2 . Thus we can
use the decoding algorithm Bob of the secret key agreement protocol to
reconstruct S with very high probability. Since S⊕ b is also given, we can
find b.

Now assume that ‖C0 − C1‖ ≤ β. Consider the tripartite probability
distribution PXY Z where X = Y is a uniform random bit, and Z = CX .
It is not hard to see that PXY Z ∈ D(α, β). Thus, in the one-way secret-
key agreement protocol (using this distribution) Eve will see exactly a
sample of (CQ1

b
, . . . , CQn

b
, Rb) and the value S ⊕ b. The properties of the

protocol imply that this distribution is statistically independent (with
high probability) of S. Furthermore, in the construction above only S⊕ b
depends on b, which implies the lemma. ut

Proof (Theorem 5). Follows from Lemmata 5 and 6.

Furthermore, since we know for which parameters α and β a protocol
exists, we get:

Corollary 2. There exists an (efficient) oblivious black-box polarization
method for constant parameters α and β if and only if α2 > β.

Proof. Using Theorem 4 and Corollary 1. Additionally, we observe that
if S→(X;Y |Z) = 0 then no one-way secret-key agreement protocol can
exist, since one could use it to get a positive rate. ut

As mentioned before such a polarization method was already given in
[18]. However, it was unknown that this is tight for oblivious methods.

3.3 Further Improvements

Note that instead of using the code as guaranteed in Proposition 1, we
could have used a random linear code in this application (where the
code is chosen by Alice and a description is sent as communication).
In this case, the resulting polarization method is very efficient, as only
k · poly((α2 − β)−1) copies of the circuits are needed. If this method is



used in a statistical zero-knowledge proof system however, the prover
needs additional power since he needs to decode a random linear code.

Finally, a statistical zero knowledge proof for the promise problem
statistical difference (with parameters α and β) can be realized as follows:
the two given circuits are sampled obliviously and uniformly at random
by the verifier, sending the samples to the prover. The information which
circuit was sampled is used as random variables X1, . . . , Xn in a one-way
secret-key agreement protocol, whose communication is also sent to the
prover. Now, if the given instance produces distributions with statistical
distance at least α, then the prover gets the same information as Bob
does, and he can prove this to the verifier by sending back the secret key.
If the circuits produce distributions with statistical distance at most β,
the prover gets the same information as Eve does, and cannot find the
secret key. Thus, it can be useful to use protocols which yield more than
one secret bit, as this immediately reduces the error of the zero-knowledge
proof.

4 Immunizing Bit Encryption Schemes

In this section we study the implications of our work on the task of
immunizing bit encryption schemes. Thus, we assume that a public-key
encryption scheme for bits is given, which has a certain probability of
being correct, and a certain security.

Definition 8. A (α(k), β(k))-secure public-key bit encryption scheme is
a triple (G, E,D) of probabilistic polynomial time algorithms such that

– Algorithm G, on input 1k produces a pair (pk, sk).
– For a random bit b ∈ {0, 1}, Pr[Dsk(Epk(b)) = b] > 1+α(k)

2 , where the
probability is over the randomness of G (giving the pair (pk, sk)), E,
D, and the choice of b.

– For any polynomial time algorithm A, and a uniform random bit b:
Pr[A(pk, Epk(b)) = b] < 1+β(k)

2 , where the probability is over the ran-
domness of A, G, E, and the choice of b.

If such a scheme is (α, β)-secure for every function 1 − α = β ∈ 1
poly(k) ,

we say that it is a secure public-key encryption scheme.

We can combine information-theoretic and computational protocols
to obtain the following:

Lemma 7. Let α, β : N → [0, 1] be noticeable and computable in time
poly(k). Let (G, E,D) be a (α, β)-secure public-key bit encryption scheme.



If there exists an efficient one-way secret-key agreement protocol secure on
D(α, β), then there exists a secure public-key encryption scheme (G′, E′, D′).

The proof of this is very similar to the corresponding Lemma in [7]. Due
to space constraints it is only sketched here.

Proof (sketch). We only need one key bit, and therefore we will set m = 1
throughout the proof. On input 1k, algorithm G′ then does n(k, 1) invo-
cations of algorithm G with input 1k. This gives a key pair (pk′, sk′), such
that both the public- and the secret-key are n-tuples pk′ = (pk1, . . . , pkn)
and sk′ = (sk1, . . . , skn).

To encrypt a bit b with public key pk′, Alice first encrypts n random
bits X1, . . . , Xn with the underlying scheme, i.e., Xi is encrypted with
Epki

. It then uses the information-theoretic one-way secret-key agree-
ment protocol, where the Xi are used as random variables. Let SA be the
resulting secret bit. The output of algorithm E′ is then the encryption
of X1, . . . , Xn, the communication of the information-theoretic one-way
secret key agreement protocol, and SA ⊕ b.

It is easy to see that the communication together with the secret key
suffices to decode the encrypted bit. Furthermore, the security of the
protocol can be shown using a standard hybrid argument together with
the uniform hard-core lemma given in [7] (see also [10]). ut

Lemma 7 together with Corollary 1 implies that a (α, β)-secure public-
key cryptosystem can be used to get a secure public-key cryptosystem if
α2 > β. For a limited class of reductions this is tight: a strong black-box
reduction is a black-box reduction which allows Alice and Bob to use such
a cryptosystem only in a way such that it can be modeled by an oracle
where Alice and Bob obtain random bits X and Y , respectively, and an
attacking algorithm obtains information Z.7

Theorem 6. Let α and β be constants. There exists a strong black-box
reduction from a (α, β)-secure public-key cryptosystem to a secure public-
key cryptosystem if and only if α2 > β.

Proof. If α2 > β, this is implied by Lemma 7 and Corollary 1.
Assume now that α2 ≤ β, and assume that a reduction is given. It is

easy to see that for suitably chosen random variables X, Y and Z an at-
tacker can break every protocol in polynomial space from the information
given. Consequently, by giving the attacker access to a PSPACE-complete
oracle we can obtain a contradiction. ut
7 As an example, this excludes the possibility of using the (α, β)-secure cryptosystem

to obtain a one-way function.
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pendently repeated random experiments. manuscript, 2005.

9. Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random genera-
tion from one-way functions (extended abstract). In Proceedings of the 21st STOC,
pages 12–24, 1989.

10. Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In 36th
FOCS, pages 538–545, 1995.

11. Ueli Maurer. Secret key agreement by public discussion. IEEE Transaction on
Information Theory, 39(3):733–742, 1993.

12. Ueli Maurer and Stefan Wolf. Unconditionally secure key agreement and the intrin-
sic conditional information. IEEE Transaction on Information Theory, 45(2):499–
514, 1999.

13. Renato Renner and Stefan Wolf. New bounds in secret-key agreement: The gap be-
tween formation and secrecy extraction. In Eli Biham, editor, EUROCRYPT 2003,
volume 2656 of LNCS, pages 562–577, 2003.

14. Renato Renner and Stefan Wolf. Smooth Rényi entropy and applications. In
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