
Distributing the Setup in Universally Composable
Multi-Party Computation

Jonathan Katz
∗

Dept. of Computer Science,
University of Maryland.
jkatz@cs.umd.edu

Aggelos Kiayias
†

Dept. of Informatics and
Telecommunications,
University of Athens

aggelos@di.uoa.gr

Hong-Sheng Zhou
‡

Dept. of Computer Science,
Virginia Commonwealth

University
hszhou@vcu.edu

Vassilis Zikas
§

Dept. of Computer Science,
UCLA

vzikas@cs.ucla.edu

ABSTRACT
Universally composable (UC) protocols retain their security
properties even when run concurrently alongside arbitrary
other protocols. Unfortunately, it is known that UC multi-
party computation (for general functionalities, and without
assuming honest majority) is impossible without some form
of setup. To circumvent this impossibility, various types of
setup assumptions have been proposed.

With only a few notable exceptions, past work has viewed
these setup assumptions as being implemented by some ideal,
incorruptible entity. Any such entity is thus a single point of
failure, and security fails catastrophically in case the setup
entity is subverted by an adversary.

We propose here a clean, general, and generic approach
for distributing trust among m arbitrary setups, by model-
ing potential corruption of setups within the UC framework,
where such corruption might be fail-stop, passive, or arbi-
trary and is in addition to possible corruption of the parties
themselves. We show several feasibility and impossibility
results in this model, for different specifications of the cor-
ruptible sets. For example, we show that given m complete
setups, up to t of which might be actively corrupted in an

∗Work supported in part by NSF awards #1111599
and #1223623.
†Work supported by ERC grant CODAMODA.
‡Work supported in part by an NSF CI postdoctoral fellow-
ship, and mainly done while at the University of Maryland.
§Work supported in part by the Swiss National Science
Foundation (SNF), project no. 200020-132794, and mainly
done while at the University of Maryland.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC’14, July 15–18, 2014, Paris, France.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2944-6/14/07 ...$15.00.
http://dx.doi.org/10.1145/2611462.2611480.

adaptive manner, general multiparty computation with no
honest majority is possible if and only if t < m/2.

1. INTRODUCTION
Secure multi-party computation (MPC) is a quintessential

cryptographic problem. The strongest and most desirable
level of security that can be attained by such a protocol is
universal composability (UC) [2]. Unfortunately, results by
Canetti and Fischlin [5] and Canetti, Kushilevitz, and Lin-
dell [6] show that unless a majority of the parties are honest,
most “interesting” functionalities cannot be realized in the
UC framework. These impossibility results can be circum-
vented if one is willing to assume a trusted setup: Canetti
and Fischlin [5] showed that the existence of a (trusted) com-
mon reference string (CRS) allows for circumventing their
impossibility result. Subsequently, Canetti et al. [7] showed
that a CRS is complete in that it can be used for UC com-
putation of arbitrary functionalities, for any number of cor-
rupted parties. Similarly, oblivious transfer (OT) [24], a
two-party primitive for sending one out of two inputs with-
out learning which one was actually delivered, was proven
to be complete for computing arbitrary functionalities with
information-theoretic (aka unconditional or statistical) secu-
rity [21]. Since then, researchers have suggested a variety of
setups, e.g., [1, 18, 8, 20], and showed them to be complete;
we refer to [3] for a (now slightly outdated) survey.

With only a few exceptions [15, 14, 12] (discussed below),
prior work in this line of research has viewed setup assump-
tions as being implemented by some ideal, incorruptible en-
tity. In reality, however, most setups would have to be im-
plemented by some mechanism that could be subverted, or
by some party that could be compromised. (As an example,
NIST is planning to run a “random beacon” that could func-
tion as a CRS—cf. https://beacon.nist.gov/home and
http://www.nist.gov/itl/csd/ct/nist_beacon.cfm; their
implementation could be hacked, or contain unexpected de-
sign flaws.) To cope with such situations, recent works [15,
14, 12] have suggested distributing trust among more than
one such (setup-)mechanisms, so that security is not com-
promised even when some of them fail.

1.1 Our Contribution
We propose here a new approach for modeling potential

failure/corruption of setups within the UC framework that
is more general and, arguably, more natural than prior at-
tempts. Informally, for an arbitrary setup functionality F
we consider three ways F might be compromised. In the fail-
stop case, an adversary can cause F to halt at any point.
Passive corruption allows the adversary to read the entire
internal state of F , but not change its behavior. Finally, in
the active case the adversary gains complete control over F
and can cause it to behave arbitrarily. This is in addition
to any possible corruption of the parties running the pro-
tocol. Clearly, access to a single setup that can be actively
corrupted is no different than having no setup at all. But
our framework allows us to analyze the scenario where the
parties have access to multiple setups, some subset of which
might be corrupted.

In most of our results, we allow the adversary to adaptively
choose the parties and the setups to corrupt. Note that,
similarly to party-corruption, adaptive corruption of setups
is an important consideration: Consider, for example, the
following mechanism used by two parties having access to
several setups (some of which might be corrupted): in order
to increase their probability of using uncorrupted setups, the
parties start any protocol by agreeing on a random subset
of setups to be used (e.g., by executing a coin-tossing pro-
tocol to determine this subset). Clearly adaptively choosing
the corrupted setups (after the coins have been flipped and
the decision of which setups to be used is taken) gives the
adversary advantage in such a protocol over the adversary
with static setup corruption.

As our main technical contribution, we study feasibil-
ity of general secure computation with no honest major-
ity within the framework discussed above. We show, for
example, that given m arbitrary complete setups, any t of
which might be actively corrupted, secure computation of ar-
bitrary (well-formed) functionalities is possible if and only
if t < m/2. We also prove that this bound is tight even for
passive corruption of setups. We further extend our charac-
terization to the setting of mixed (i.e., active and passive)
corruption: given m arbitrary complete setups, where any
ta might be actively corrupted and, simultaneously, any tp
might be passively corrupted, secure computation of arbi-
trary (well-formed) functionalities is possible if and only if
ta + tp < m/2. We further generalize the above threshold
results to the case of arbitrary “corruption structures” that
enumerate the allowable sets of corruptible setups; there, we
show that secure computation of arbitrary functionalities is
possible if and only if no two corruptible sets cover the entire
set of available setups.

Additionally, we show that for many setups considered
in the literature, one can do better than the above generic
bounds. (The negative results stated hold for arbitrary com-
plete setups; for specific setups it may be possible to do bet-
ter.) In particular, we introduce the class of passively im-
mune setups (which includes a natural variant of the CRS
functionality) we show that given m complete setups in this
class, any ta of which might be actively corrupted, secure
computation of arbitrary functionalities is possible if and
only if ta < m/2 even if all m setups can simultaneously be
passively corrupted.

All the above mentioned results hold for an adversary who,
in addition to corrupting functionalities, is allowed to ac-

tively corrupt arbitrary many parties. In a slightly different
direction, we give a “best-of-both worlds” result for the set-
ting where there is either a corrupted majority of setups,
or a corrupted majority of parties. Due to space limitation,
some of the details of our results are deferred to the full
version of the current extended abstract.

1.2 Prior Work on Corruptible Setups
Corruptible UC setups were first considered by Groth and

Ostrovsky [15] for the special case of a Common Reference
String (CRS). In particular, they studied the “multi-CRS”
model where there are m common reference strings and the
adversary is allowed to replace any t of them with strings of
his own choice. Building on their work, Goyal and Katz [14]
looked at the case where there is a single CRS, and either the
CRS is compromised (as in [15]) but a majority of the parties
are honest, or the CRS is not compromised but a majority of
the parties is no longer honest. Finally, in TCC 2011 Garg et
al. [12] initiated the study of feasibility of UC computation
with potentially different setups that can “fail” in certain
ways. Our work unifies, abstracts, and extends the above
results, as we now explain.

Comparison to the work of Groth and Ostrovsky [15].
In contrast to [15], our corruption model is both more

general and more broadly applicable. We consider active,
passive, and fail-stop1 corruption of setup functionalities,
and in the active case we allow the adversary to arbitrarily
control the setup (e.g., an actively corrupted CRS can send
different strings of the adversary’s choice to different parties,
something not considered in [15]). Moreover, we consider
corruption of general setup functionalities, not just a CRS,
and give results for general corruption structures.

On a technical level, Groth and Ostrovsky [15, Theo-
rem 4] prove impossibility of implementing non-interactive
zero-knowledge for languages that are not in P/poly when
more than half the CRSs are faulty. In contrast, we show un-
conditionally that any set of arbitrary (even different) setup
functionalities becomes trivial (i.e., implementable from se-
cure channels without further assumptions) as soon as half
of them are faulty.

Comparison to the work of Garg et al. [12].
Lin et al. [22] introduced the notion of a UC puzzle, and

showed that UC puzzles are complete for secure compu-
tation. (We sketch the definition of UC puzzles in Ap-
pendix A.) In the work of Garg et al., corruption of setups
is not modeled “directly”; rather, three types of “faulty” UC
puzzles are introduced, and corruption of a setup F is de-
fined by what type of faulty UC puzzle can be realized us-
ing F . A bit more specifically, given a setup F that can be
used to construct a UC puzzle, and the assumption that an
adversary can corrupt F to obtain the faulty setup F ′, the
“type” of this corruption model is defined to be exactly the
“type” of faulty UC puzzle that results from using F ′.

1The non-triviality of dealing with fail-stop corruption stems
from the fact that we aim for secure computation with unan-
imous abort [13]. Thus, it is not sufficient for a single party
to disqualify a setup when it observes a failure; rather, there
needs to be consensus that a failure occurred. And running
a consensus protocol is not an option as we allow arbitrary
many corrupted parties.

From a conceptual point of view we find our modeling
more appealing, as it speaks directly of the different ways
(fail-stop, passive, active) in which arbitrary setups can be
compromised, rather than indirectly in terms of what sort
of puzzle can be constructed. Moreover, the framework of
Garg et al. allows the faulty version F ′ of a setup F to be
arbitrary, even having no relation to F . (E.g., F could be
a CRS, while F ′ implements oblivious transfer. Our mod-
eling, instead, uses well-defined “wrappers” which ensure a
particular relationship between F and F ′. Although we only
deal with fail-stop, passive, and active faults in this paper,
our framework could easily be extended to deal with other
faults, e.g., dropped messages.

Our choice of modeling has technical consequences as well,
which are reflected both on our results and the correspond-
ing proofs (all our proofs here follow a different approach
than [12]). First, note that the framework of Garg et al.
only applies to setups F that can be used to construct UC
puzzles in the first place. In contrast, our framework ap-
plies to arbitrary, even incomplete, setups. Even restricting
attention to complete setups (which is the more interest-
ing case), it is not known whether all complete setups can
be used to construct UC puzzles: Indeed, even for a UC
complete setup R, the standard approach of replacing, in
an F-hybrid UC puzzle, calls to F by an R-hybrid protocol
computationally implementing F does not yield a R-hybrid
UC puzzle as it does not satisfy the statistical simulatability
property [22]. Second, observe that applying the results of
Garg et al. to some specific F (that is known to yield a UC
puzzle) and its faulty version F ′, would require the proto-
col designer to know (or somehow figure out) what type of
faulty UC puzzle can be constructed from F ′. It is not clear,
in general, how (or even if) this can be done. Finally, we
note that although Type 1 setups (as defined in [12]) can
be shown to correspond to the active corruptions we con-
sider here (at least for setups that can be handled by [12]),
such a correspondence does not seem to hold for the other
corruption types considered in our work.

With regard to differences in the results (as opposed to dif-
ferences in the models), we first note that the positive results
from [12] all rely on the construction of general multi-party
computation from UC puzzles from [22]. As a consequence,
(1) their protocols can only be computationally secure, even
when the assumed setups are complete for information-theoretic
secure computation; (2) their work only handled static ad-
versaries.2 In contrast, our possibility results rely on con-
structions of MPC from oblivious transfer (OT), yielding
information-theoretic constructions secure against adaptive
adversaries.

Finally, we mention that proving tightness of the positive
results was left as the main open question in [12]. Although
our results do not directly answer this question in their
model (since we use a different model), we are able to prove
tightness of all the positive results shown in this work.

Combiners for coping with malicious setups.

2Recent work of Dachman-Soled et al. [11] shows how to con-
struct adaptively secure MPC from UC puzzles. Plugging
this protocol into the feasibility result of [12] strengthens
their result to hold for adaptive corruption of parties (but
still static failure of setups). But the construction from [11]
relies on even stronger (non-standard) complexity assump-
tions than those used in [12].

In other work similar in spirit to our own, researchers
have studied the notion of combiners [16, 23, 26]. The goal
of that work is to construct a single primitive securely re-
alizing some task (e.g., oblivious transfer) from a collection
of m such primitives, some t of which may fail. Our work is
more general in several ways, in particular because we work
in the UC framework, and do not require that each of our
m setup functionalities realizes the same primitive. Rather,
our impossibility results apply to arbitrary, even different se-
tups. Additionally, we specify different ways in which setups
might fail and provide characterizations for each of them in-
dividually as well as their combinations. In fact, a corollary
of our impossibility result for passive corruption of setups
(Lemma 6) gives a simpler proof of impossibility for third-
party black-box OT combiners when half (or more) of the
OT candidates are faulty [16, 23]. On the other hand, at
the technical level, our main positive results are obtained
by reduction to OT-combiners.

2. THE MODEL
We lay down the specifics of our model and fix some nota-

tion and conventions. We assume the reader has some famil-
iarity with the Universal Composition (UC) framework [2].
We use the following notation: for m ∈ Z we denote by
[m] the set [m] = {1, . . . ,m}. We consider both the two-
party and the multi-party case, where the parties can com-
municate over a complete network of bilateral authenticated
channels. We denote by P = {p1, . . . , pn} the player set
(P = {p1, p2} for the two-party case). The adversary, de-
noted by A, corrupts parties adaptively, i.e., might corrupt
parties during the execution of the protocol. We consider
standard (i.e., active) party corruption as defined in [2].

As usually in the UC literature we model setups as UC
functionalities. The setup-functionalities F considered in
this work have the following properties: (1) Whenever some
input is received from some honest party, the functionality
F notifies the adversary (input notification), and (2) all out-
puts of the functionality are issued in a delayed manner as
specified in [2], i.e., whenever F has an output to be sent
to some party pi, it notifies the adversary about this fact
(the notification includes the PID of pi) and delivers the
input only when the adversary permits it (delayed output).
Furthermore, we only deal with setup-functionalities that
are efficiently computable, where we assume that the inputs
and outputs of the setup-functionalities are strings of a fixed
length. Whenever the term “setup-functionality” is used in
this work it refers to a functionality that satisfies the above
properties.3

Consistently with the UC framework, assuming a (setup)
functionality F implies assuming that every F-hybrid proto-
col can instantiate its own (independent) instance(s) of F.4

Hence, assuming that the setup F fails (in our terminology,
becomes corrupted) implies that its instances fail across all
protocols using F as a hybrid. As pointed out in [2, 9], a side
effect of this modeling choice is that in order to prove secu-
rity of multiple protocols using the same (stateful) setup,
e.g., the same public key infrastructure (PKI), one needs to

3At times we might refer to setup-functionalities as setups.
4For example, when one speaks of UC completeness of
Oblivious Transfer (OT) functionality, it is implicitly as-
sumed that multiple independent instances of the OT func-
tionality can be invoked with different sender and receivers.

use the joint state composition theorem (JUC) [9]. An al-
ternative approach would be to model setups directly in the
UC with global setups (GUC) model of Canetti et al [4]. Our
modeling of corrupted functionalities can be easily extended
to capture corrupted (global) setups in GUC. However, our
proofs do not go through in that model; it is an interesting
open question to prove bounds for corrupted setups in the
GUC model.

2.1 Modeling Corruption of Functionalities
To capture the fact that a setup might be, at least par-

tially, controlled by the adversary we introduce the notion
of corruptible functionalities. Corruptible functionalities are
modeled as being enclosed into a corruption wrapper which
behaves as follows: any message sent to/from the function-
ality is forwarded by the wrapper to its recipient (the wrap-
per also records all these messages and can access the ran-
dom tape of the wrapped functionality). In addition to the
standard communication with the functionality, the wrap-
per might accept from the adversary A messages of the form
(fcorrupt, type)—where type specifies the way in which A
wishes to corrupt the underlying functionality—and modify
its behavior accordingly. Consistently with the multi-party
computation (MPC) literature, in this work we focus on the
following three corruption types

Active: Upon receiving a message (fcorrupt, active) from
A, the corruption wrapper sends A all the messages it
has seen so far as well as the internal randomness of
the wrapped functionality; from then on, the wrapper
behaves as the “dummy” functionality which forwards
every message it receives from any party to the adver-
sary A, and when instructed by the adversary to send
(as output) some message y to some party, it does so.

Passive: Upon receiving a message (fcorrupt, passive) from
A, the wrapper sends A all the messages it has seen so
far as well as the internal randomness of the wrapped
functionality.5

Fail: Upon receiving a message (fcorrupt, fail) from A,
the wrapper enters a crashed stated, i.e., answers all
messages sent to it from that point on with a special
(crashed) message; we say then that the adversary has
forced F to to crash.

A wrapped functionality which accepts active or passive
corruption requests will be called actively corruptible or pas-
sively corruptible, respectively. A setup-functionality which
does not accept any corruption requests (i.e., behaves as un-
wrapped) is called incorruptible. In order to model mixed-
type corruption of functionalities, we also consider wrapped
functionalities that accept corruption messages of more than
one type. Unless explicitly stated otherwise, we assume that
the adversary might corrupt the setup-functionalities in an
adaptive manner, i.e, might corrupt (additional) setups dur-
ing the execution of a protocol.

Consistent with the terminology used in the literature for
party corruption we refer to a setup-functionality F which
has been actively corrupted, i.e., the adversary has sent
F (fcorrupt, active), as malicious. Similarly, a passively
corrupted functionality is called semi-honest. F is called

5Note that the adversary might send the
(fcorrupt, passive) message several times in a proto-
col execution.

honest or uncorrupted if the adversary has not sent F any
(fcorrupt, type) message.

Functionality Sets and Corruption Patterns.
Let M = {F1, . . . ,Fm} be a set of (possibly different)

setup functionalities. In slight abuse of terminology we of-
ten refer toM as a setup-functionality, where calls toM are
addressed to the appropriate functionality. An M-hybrid
protocol π is a protocol that can make hybrid calls to all
the functionalities in M. We say that the adversary is t-
restricted if he might corrupt up to a certain threshold t of
the functionalities. We also consider the more general set-
ting, where the adversary might corrupt any set of func-
tionalities from a specific corruption structure K; we re-
fer to the latter as a K-restricted adversary.6 More pre-
cisely, K is a monotone set of subsets of the functionality-
set M, i.e., K = {A1, . . . , An}, where each Ai ⊆ M. A
K-restricted adversary might corrupt all the functionalities
in some class A? ∈ K.

Corruption Ignoring Strengthening.
Throughout this extended abstract we assume function-

alities that allow for active and passive corruption. How-
ever, at times we need to refer to the corresponding hon-
est functionality. Therefore we introduce the following no-
tation: For a given setup-functionality F, we define the
corruption-ignoring strengthening of F, denoted as F 6C, to be
the “unwrapped” functionality that ignores all (fcorrupt, ·)
requests. At times, we need to refer to the strengthening of a
functionality that ignores only a specific type of corruption-
requests; we refer to the strengthening of F that ignores
only (fcorrupt, passive) (resp. (fcorrupt, active)) com-
mands as the passively ignoring (resp. actively ignoring)
strengthening of F, and denote it as F 6P (resp. F 6A). Note
that (depending on F), the corruption ignoring strengthen-
ing F 6C might not necessarily be a useful setup, e.g., one
could consider a functionality F which, upon receiving from
the adversary the message (becomeDummy), acts as Fdum.

Assumptions, Completeness, and Sufficiency.
For a pair of functionalities F and F′ and a computa-

tional assumptions α, we say that a functionality F is (UC)
α-sufficient for F′ if, assuming α, there exists an F-hybrid
protocol which UC-realizes F′ (using authenticated com-
munication). Furthermore, we say that a functionality F
is (UC) α-complete if, assuming α, for every well-formed7

functionality F′ there exists an F-hybrid protocol which UC-
realizes F′. Note that for the definition of UC completeness
we make no restriction on the adversary’s party-corruption
capabilities, i.e., the adversary might corrupt arbitrary many
parties. Some specific examples of assumptions α` used in
this work are the existence of one-way permutation (OWP),
denoted as αOWP, and the existence of an oblivious-transfer
(OT) protocol secure for semi-honest adversaries, denoted
as αshOT.

The definition of completeness naturally extends to func-
tionality sets and/or assumption sets. In particular, for

6This corruption pattern corresponds to the so called general
adversary [17] from the MPC literature.
7Roughly speaking, a functionality is well-formed if its code
does not depend on the ID’s of the corrupted parties; for a
detailed description we refer to [7].

assumptions α1, . . . , αq we denote by {α1, . . . , αq} the as-
sumption which holds if for every ` ∈ [q] : α` holds. We say
that a functionality-set M = {F1, . . . ,Fm} is {α1, . . . , αq}-
complete if, assuming {α1, . . . , αq} holds, for every well-
formed functionality F′ there exists an M-hybrid protocol
which UC-realizes F′.

3. IMPOSSIBILITY FOR MALICIOUS
MAJORITY

We start our analysis with our main impossibility result
for the case of actively corruptible functionalities. Infor-
mally, we prove the following:

Any collection of setups becomes trivial (i.e., im-
plementable via secure channels— denoted by
Fsec) if the adversary is allowed to actively cor-
rupt more than half of them.

We state the result in Theorem 1 in its most general
form, i.e., for an adversary characterized by a functionality-
corruption structure K. We use the following notation bor-
rowed from [17]: we say that a structure K is a Q2 structure
if condition Q2(M,K) holds, where

Q2(M,K)⇐⇒ ∀Ai, Aj ∈ K : Ai ∪Aj 6=M

Theorem 1 (static party-corruption). For a 2-party
setup-functionality setM = {F1, . . . ,Fm}, and a functionality-
corruption structure K, if Q2(M,K) does not hold then there
exists an Fsec-hybrid 2-party protocol which securely real-
izes (all the functionalities in) M, in the presence of a
K-restricted adversary who might statically corrupt any (or
even both) parties.

Proof. Let A1, A2 ∈ K be functionality sets such that
A1 ∪ A2 = M (such sets are guaranteed to exist by the
assumption that K is not Q2). Without loss of generality
assume that A1∩A2 = ∅ (if this is not the case take A2 \A1

instead of A2).8 The protocol Π for securely realizingM in
the Fsec-hybrid world is as follows: The idea of the protocol
is to have each pi (for i = 1, 2) answer all queries that are for
the functionalities in Ai. More precisely, each pi internally
simulates the code of every F` ∈ Ai and stores the internal
states of all (simulated) F`’s; whenever in the protocol some
party sends a message to the other party, this is done by use
of the secure channel Fsec. The detailed code of pi is given
in the following.

We show that protocol Π UC securely realizes the func-
tionality M. The simulator for an adversary A works as
follows: We consider the following four cases: (I) Both p1
and p2 are corrupted, (II) only p1 is corrupted, (III) only p2
is corrupted, and (IV) both p1 and p2 are honest.

In Case I: The simulator acts as a forwarder between the
adversary and Z (and never invokes the functionality M).

In Case II: The simulator corrupts all F` ∈ A1. Any message
which is received from the environment is forwarded to the
adversary; any message which the adversary generates for
the environment is outputted to Z.

Whenever S receives from A a message z to be sent to
p2, S simulates the view of Z in the secure channel, i.e.,
sends |z| to Z, and if z is of the form (input, `, x) for some
F` ∈ A2, S inputs z to F`.

8Recall that by definition K is monotone, thus A2 \A1 ∈ K.

Protocol Π({p1, p2},M, A1, A2)

Code for pi:

• Upon receiving an input x for functionality F`,
i.e., the command (input, `, x), from the envi-
ronment Z:

– if F` ∈ Ai then pi simulates the behavior
of F`; if the simulated F` would generate a
message y for pi then output (output, `, y)
to the environment, otherwise, if it would
generate a message y for p3−i then send
(output, `, y) to p3−i.

– else, i.e., if F` ∈ A3−i, then pi sends the
message (input, `, x) to p3−i.

• Upon receiving a message (input, `, x) from
p3−i, if F` 6∈ Ai then ignore the message. Else,
simulate the behavior of F` on input x from p3−i;
if the simulated F` would generate a message y
for pi then output (output, `, y) to the environ-
ment Z, otherwise, if it would generate a mes-
sage y for p3−i then send (output, `, y) to p3−i.

• Upon receiving a message (output, `, y) from
p3−i, if F` ∈ Ai then ignore the message, else
output (output, `, y) to the environment Z.

Whenever p2 sends input (input, `, x) to some F` ∈
A1, S (who, recall, has actively corrupted F`) receives
this input, he simulates the view of Z corresponding to
(input, `, x) being sent through the secure channel, i.e.,
sends |(input, `, x)| to Z and hands (input, `, x) to the
adversary A.

For every pending output (output, `, y) (recall that the
setup-functionalities F` issue their output in a public de-
layed manner) for F` ∈ A2, as long as S has finished
simulating the protocol messages and the output should
be delivered in the (simulated) protocol, S instructs F` to
deliver the message to the corresponding party.

In Case III: This case can be handled as in Case II, sym-
metrically.

In Case IV: If the adversaryA (in the Fsec-hybrid world) cor-
rupts no party, then the simulator simply needs to simulate
the view of A from the secure channel Fsec. Note that the
simulator can trivially do this as (1) all messages exchanged
between the parties are of fixed length which allows the sim-
ulator to know the output of Fsec whenever a message would
be exchanged in the protocol, and (2) the functionality noti-
fies the simulator for every input it receives and always asks
for permission before delivering the outputs, which allows S
to order the messages sent to the environment according to
the order they would appear in the protocol.

It is straight-forward to verify that the above is a good sim-
ulator for Protocol Π.

We stress that Theorem 1 only claims static corruption of
parties. In fact, counter to the standard intuition, we cannot
obtain the same statement for adaptive party corruption as
a corollary; we refer to Section 3.1 for a justification and
for a complete handling of adaptive party-corruption. As a
corollary of Theorem 1 we obtain the following impossibility
result for t-restricted adversaries.

Corollary 2. For a 2-party setup-functionality setM =
{F1, . . . ,Fm}, there exists an Fsec-hybrid 2-party protocol
which securely realizes (all the functionalities in) M, in the
presence of a m/2-restricted adversary who can (simultane-
ously) statically corrupt any (or even both) parties.

Proof. Let Kt denote the structure including all subsets
of M of cardinality at most t. When t ≥ m/2, the the
condition Q2(M,Kt) is violated. Thus the statement follows
trivially from Theorem 1.

Observe that the only impossibility result in the multi-
setup UC model is due to Groth and Ostrovsky [15], who
showed that if a language L has a non-interactive zero-
knowledge (NIZK) proof system in the multi-string model,
then either L ∈ P/poly or at most half of the common ref-
erence strings might be adversarially chosen. Their proof
uses a completely different approach than the one used here.
Furthermore, our impossibility result is more general than
the result from [15] in several aspects: In particular, for
the case of a static adversary it extends to arbitrary se-
tups. Moreover, as we show in Section 3.1, for the spe-
cial case of the CRS (in fact for any adaptively well-formed
setup [7]) our impossibility extends adaptive corruption of
parties, thereby strictly generalizing [15]. Finally, our result
proves that when a majority of setups is corrupted, then the
multi-setup functionality in not just insufficient for NIZKs,
but it is trivial, in the sense that it can be realized from
secure channels.

Remark (A weaker corruption type [15] also cov-
ered by Theorem 1). In [15] the adversary is assumed
to have less power on the CRS than our active corruption,
i.e., A is merely allowed to change the value of the com-
mon string, but he cannot make the functionality distribute
inconsistent (i.e., different) strings (see the discussion in Sec-
tion 1.2). It is straight-forward to verify that our proof
works, almost verbatim, even if we restrict the power of the
simulator along these lines. The only difference is that in
the protocol used in the proof, as soon as a value is output
by some party the party does not output any different value
in the future.

3.1 Adaptive Party Corruption
Although one is tempted to assume that Theorem 1 im-

plies impossibility also for adaptive corruption of parties,
this is not the case, as allowing the adversary to adaptively
corrupt the parties makes simulation in theM-hybrid world
harder. In particular, the proof of Theorem 1 breaks down
for an adversary who first corrupts one of the parties, say p1,
and later corrupts the other one p2. Intuitively, the reason is
that while emulating this adversary, the simulator needs, at
the point when p2 gets corrupted, to come up with internal
states for the setups emulated by p2 that are consistent with
the outputs they generated so far. However, by that time
the simulator has exhausted all his corruption resources in
order to emulate the corruption of p1 and is therefore stuck.

In this section we show that this limitation can be over-
come if we assume that the setups are adaptively well-formed [7].
Roughly speaking, an adaptively well-formed setup hands
the adversary its internal randomness as soon as every party
gets corrupted (for a formal description we refer to [7]). We
remark, that adaptive well-formedness is a natural assump-
tion for setups and all natural (in particular all known) se-
tups satisfy it or they can be trivially modified to satisfy

it by adding an extra instruction to send their adversary
their full internal randomness as soon as every party be-
comes corrupted). In particular, for the class of adaptively
well-formed setups, the result of Theorem 1 holds even for an
adversary who can corrupt parties in an adaptive manner.
Note that, because the CRS is adaptively well-formed, The-
orem 1 holds for the CRS even assuming adaptive corruption
of parties. The following theorem extends Theorem 1 to an
adversary who corrupts parties adaptively.

Theorem 3. For a set M = {F1, . . . ,Fm} of adaptively
well-formed 2-party setup-functionalities,9 and a corruption
structure K, if Q2(M,K) does not hold then there exists
an Fsec-hybrid 2-party protocol which securely realizes (all
the functionalities in) M, in the presence of a K-restricted
adversary who might adaptively corrupt any (or even both)
parties.

Proof (Idea). We can use the same protocol as in Theo-
rem 1. Intuitively, the reason why this is simulatable is the
following: as long as at most one party is corrupted, the sim-
ulator does not have a problem as he can choose which func-
tionalities to corrupt depending on the adversary’s choice of
party corruption (recall that we assume that the corruption
of functionalities is by default adaptive and the corruption
wrapper keeps a record of past inputs and outputs). Hence
a problem might occur only when the adversary corrupts
both parties during the protocol execution. In that case,
the adaptive well-formedness of the setups ensures that the
simulator learns the randomness used by all (even the uncor-
rupted) setups and, as by corrupting both parties he learns
all inputs/outputs, he can go on with the simulation. We
refer to the full version for a formal proof.

Similarly to Corollary 2, a threshold impossibility result
(for t ≥ m/2 corrupted setups) can be obtained also for the
adaptive case as a corollary of Theorem 3.

4. ACTIVE CORRUPTION OF SETUPS
Having established our main impossibility result, we pro-

ceed to proving its tightness. Informally, the statement we
prove is the following:

For a set M of (possibly different) actively cor-
ruptible UC-complete setups, there exists a pro-
tocol which securely realizes any well-formed func-
tionality while tolerating an adversary corrupt-
ing arbitrary many parties if and only if the ad-
versary might (simultaneously) corrupt less than
half of the setups.

The above statement is formalized in Theorem 4. Note
that, throughout this section, the assumed functionalities
only accept active corruption requests, i.e., they ignore any
message of the form (fcorrupt, type) for type 6= active.

For proving the following theorem we use a well-known re-
sult on robust combiners for Oblivious Transfer (OT). In [23]
is was shown that from m copies of the OT functionality
at most half of which might be faulty (in our terminology
faulty corresponds to actively corrupted) we can implement
the incorruptible OT functionality FOT

6C. We use this fact

9Note that if F is adaptively well-formed, then so is its
corruption-ignoring strengthening F`

6C.

to prove our result; the idea of our proof is the following: We
use each of the setups to implement an independent copy of
FOT and then we use the OT-combiner to construct a single
copy of FOT that behaves honestly (i.e., as being incorrupt-
ible). Note that because the combiner from [23] works even
when the adversary corrupts the parties adaptively, our pos-
itive results also works for adaptive party-corruption. (The
same holds also for tightness as long as the F`’s are adap-
tively well-formed.)

We remark that although the combiner from [23] does not
explicitly claim adaptive corruption of the assumed OTs,
or universal composability, we can use the combiner pro-
posed by Wullschleger [26] which is explicitly claimed to be
universally composable and to tolerate adaptive corruption
of the assumed functionality.10 Importantly, the combiner
from [W09] uses only the input/output of the OLFE proto-
col (and not the OLFE-protocol instructions). We remark
that, although the relevant theorem statement [26, Theorem
2] does not explicitly mention UC, it provides a simulation-
based proof of the combiner, where the simulator is black-
box, straight-line, and does not depend on the actual OLFE
implementation but only on the inputs/outputs. Hence, we
can use the same simulator-structure with the only differ-
ence that when both parties are honest (but some of the
OT’s are corrupted) one needs to additionally observe that
the simulator can simulate the inputs of the (honest) par-
ties to the t corrupted OLFEs; this follows trivially from the
fact that (by construction of the combiner) these inputs are
shares lying on random polynomials of degree more than t.
In the full version we provide the details of how the proof of
[26, Theorem 2] can be adapted to work in our setting.

Theorem 4. Let M = {F1, . . . ,Fm} be a set of setup-
functionalities and α1, . . . , αm be assumptions such that for
each F` ∈ M the corruption-ignoring strengthening F`

6C is
(UC) α`-sufficient for OT. Assuming that the adversary is
t-restricted, M is (UC) {α1, . . . , αm}-complete if and only
if t < m/2.

Proof (sketch). The necessity of the t < m/2 bound
follows immediately from Corollary 2 (the case of adaptive
party-corruption and adaptively well-formed setups follows
from Theorem 3). We next argue its sufficiency: Because
each F` ∈ M is α`-complete, we can use each of them to
UC implement an independent copy of the OT functional-
ity FOT. If F` is corrupted, then there is no guarantee on
the corresponding emulated copy of FOT. However, if F` is
uncorrupted, then the resulting construction is a good UC-
emulation of the OT functionality. Moreover, as more than
half of the F`’s are uncorrupted, there are more than m/2
emulations of (honest) OT functionalities. But the results
of [23, 26] state that from m copies of the OT functionality a
majority of which is good (honest) we can implement an in-
corruptible copy of the OT functionality (in our terminology
this corresponds to implementing the corruption-ignoring
strengthening FOT

6C of FOT). The UC composition theo-
rem ensures that plugging the F`-to-OT reductions into the
OT-combiner (along with an appropriate addressing mech-
anism) yields a secure protocol for FOT

6C, i.e., anM-hybrid

10We point out that the combiner from [26] constructs a
Rabin-OT from m copies of the so called oblivious linear
function evaluation (OLFE) functionality less than half of
which might be corrupted. However, one can uncondition-
ally implement OLFE from OT (e.g., by using [19]).

protocol πOT for securely emulating an incorruptible copy
of the OT functionality assuming t < m/2. The UC com-
pleteness of M follows then from the (unconditional) UC
completeness of OT [21, 10, 19] by applying the UC com-
position theorem: For any given functionality F′, let ΠFOT

denote the OT-hybrid protocol for F′ which is guaranteed
to exist from [21, 10, 19]. The UC composition theorem en-
sures that replacing in ΠFOT every instance of FOT by a call
to πOT yields a secure protocol for F′.11

As an immediate corollary of Theorem 4 and the UC αshOT-
completeness of the CRS functionality [7], we get sufficiency
of the t < m/2 bound for the m-multi-Fcrs functionality,
which consists of m independent CRSs.

Corollary 5. Let M = {F1, . . . ,Fm}, where for each
` ∈ [m]: F` is the CRS functionality. Assuming that the
adversary is t-restricted, M is (UC) αshOT-complete if and
only if t < m/2.

A similar possibility result as in the above corollary—
i.e., sufficiency of having a majority of “good” CRS’s—was
proved in [15] for a slightly restricted adversary, who cannot
make the CRS send inconsistent values to different parties
(i.e., the adversary can only choose the value of the refer-
ence string). In fact, this restriction is crucial in the security
proof of [15] , as one can verify that otherwise their sug-
gested protocol is insecure. Intuitively, the reason is that
the CRS’s are parsed as keys for the constructed commit-
ment scheme, hence dropping this assumption means that
the parties use inconsistent keys which leads to violation
of correctness (an honest party might not be able to open
its commitment towards another honest party). Note that
the näıve approach for resolving inconsistencies in the dis-
tributed reference strings, i.e., have the parties exchange the
values they received from the CRS, would not work for the
multi-party setting, as it would require that all parties can
achieve consensus on a common string, which is not possible
when a majority of the parties is corrupted.

5. PASSIVE (AND MIXED) CORRUPTION
OF SETUPS

In this section we investigate the setting where the adver-
sary can passively corrupt setups. We show that the m/2
bound which was established in the previous section for ac-
tive corruption of setups is in fact tight even in this setting.
More precisely, we show that there are UC complete setups
for which passive corruption is as severe as active corrup-
tion. Finally, combining the results from the current and
the previous section we obtain a tight feasibility bound for
mixed corruption of setups, i.e., for an adversary who might
both actively and passively corrupt setups.

In the following we show that a collection of m (indepen-
dent) copies of the OT functionality half of which might be

11We implicitly assume that each instance of FOT within
ΠFOT is replaced by an M-hybrid protocol πOT using an
independent instance of (each functionality in) M (see Sec-
tion 2). If the adversary corrupts some F` ∈ M, then he is
allowed to corrupt it across all protocols using it as a hybrid
“for free” (i.e., this does not count as additional corruptions
towards his threshold t). Alternatively, we could have all
invocations of πOT use the same hybrid M and apply the
joint state composition theorem (JUC) [9].

only passively corrupted is no stronger than just secure com-
munication. Because FOT is deterministic, therefore adap-
tively well-formed in a trivial sense, the lemma holds even
for adaptive party-corruption. The proof of the lemma fol-
lows the structure of the proof of Theorems 1 and 3.

Lemma 6. Let M = {F1, . . . ,Fm}, where for each ` ∈
[m]: F` is the OT functionality FOT. For a functionality-
corruption structure K, if Q2(M,K) does not hold then there
exists an Fsec-hybrid 2-party protocol which securely realizes
M, in the presence of an adversary who might corrupt any
(or even both) parties.

As a corollary of the above result (along the lines of Corol-
lary 2) we obtain a simple proof of impossibility of OT-
combiners when at least half of the candidates are passively
corrupted which holds even for adaptive corruption of the
assumed OT functionalities.

Mixed (active and passive) setup-corruption..
We next obtain a feasibility statement for the case of an

adversary who might corrupt setups both actively and pas-
sively. Consistently with the terminology introduced in Sec-
tion 2, we say that an adversary is (ta, tp)-restricted if he
corrupts up to ta functionalities actively and (at the same
time) up to tp functionalities passively. The proof of the
theorem follows from Theorem 4 and the fact that passive
corruption is weaker than active. The simplicity of the proof
demonstrates the power of having corruption types that can
be ordered with respect to their strength which is one of the
advantages of our model with respect to [12].

Theorem 7. Let M = {F1, . . . ,Fm} be a set of setup-
functionalities and α1, . . . , αm be assumptions so that the
corruption-ignoring strengthening F`

6C of each F` ∈ M is
(UC) α`-complete. Assuming the adversary is (ta, tp)-restricted,
M is (UC) {α1, . . . , αm}-complete if ta + tp < m/2.

Proof. Because passively corrupting a setup gives the
adversary strictly less power than actively corrupting it, a
protocol which tolerates ta + tp actively corrupted setups is
also secure for ta actively and tp passively corrupted setups.
Because ta + tp < m/2, the existence of such a protocol is
guaranteed by Theorem 4.

5.1 Passive Immunity
The above feasibility result is tight for certain complete

setups, e.g., for the OT. Indeed, tightness of the bound in
Theorem 7 when F` = FOT for all ` ∈ [m] follows easily from
Lemma 6: Assume, towards contradiction that a generic
MPC protocol exists tolerating ta actively and tp passively
corrupted (arbitrary) setups, where ta+tp > m/2. Then this
protocol can be use to implement a non-trivial functionality
(e.g., OT) from m copies of the OT out of which ta + tp
could be passively corrupted, contradicting Lemma 6.

Interestingly, as it turns out for many of the setups used
in the literature giving the power of passive corruption to
the adversary “does not buy her much”. These include, for
example, the CRS or the version and the Key Registration
functionality, denoted as Fkr(P, f), where the keys are sam-
pled according to a given distribution generated by a func-
tion f (still, corrupted parties get to choose their coins). To
model this fact, we introduce the notion of passively immune
setups which, informally, satisfy the property that their in-
corruptible version reduces to the version that might be at
most passively (but not actively) corrupted.

Definition 1. For some assumption α, a (wrapped) func-
tionality F is said to be α-passively immune if for the ac-
tively ignoring strengthening F 6A of F (which, recall, ac-
cepts only passive-corruption requests) there exists an F 6A-
hybrid protocol which securely realizes (assuming α) the
corruption-ignoring strengthening F 6C of F.

Note that the uniformly random reference string function-
ality Furs is trivially passively immune as the adversary does
not learn anything by passively corrupting it. Furthermore,
for the case of the (imperfect) CRS functionality, Fcrs(P, f)
which samples the reference string using a sampling algo-
rithm f , the results by Canetti, Pass, and shelat [8, 22,
25] imply that Fcrs(P, f) is passively immune under the
following assumption: f is polynomially computable and
µ(λ) − d(λ) > λε for some ε > 0, where d(λ) is the size
of the description of f and µ(λ) is the min-entropy of the
corresponding distribution (λ denotes the length of the ref-
erence string).

In what follows, we show that under standard complexity
assumptions, i.e., semi-honest OT (αshOT) and one-way per-
mutations (αOWP), two additional important setups used in
the UC literature are passively immune. To prove passively
immunity of these setups F we use UC puzzles [22]. On a
high level, a UC puzzle is a two party protocol with the fol-
lowing property: no adversary can successfully complete the
puzzle while simultaneously obtaining a trapdoor associated
with the puzzle; however, there does exist a simulator S who
can generate statistically close puzzle transcripts and the
associated trapdoors. We refer to the appendix for a more
formal description and a “tweak” of the definition from [22]
which is used in our proofs.

As proved in [22], UC puzzles are αshOT-complete. Thus,
to prove our result, we show that there exists an F 6A-hybrid
UC puzzle, where F 6A denotes the actively ignoring strength-
ening of F. For readers familiar with the use of UC puzzles,
the high-level idea is to have the UC puzzle simulator “hide”
the corresponding trapdoor in the pre-image of a one-way
permutation. We point out that the lemma is stated and
proved for the case of static party-corruption; however us-
ing ideas from [11] (and the stronger assumptions used there)
one can extend the proof to the adaptive setting. A proof
can be found in the full version.

Lemma 8. Let f be a second-preimage collision resistant
function.12 The functionalities for the Common Reference
String Fcrs(P, f) and the Key Registration Fkr(P, f) are
{αOWP, αshOT}-passively immune assuming the adversary stat-
ically chooses the set of corrupted parties.

The following theorem establishes a tight feasibility bound
for passively immune setups with a mixed (active/passive)
adversary.

Theorem 9. For a setup setM = {F1, . . . ,Fm} let α1, . . . , αm

be assumptions such that for each F` ∈ M the following
properties hold: F` is α`-passively immune and the corruption-
ignoring strengthening F`

6C is α`-complete. Assuming that
the adversary is (ta, tp)-restricted and corrupts parties non-
adaptively, M is (UC) {α1, . . . , αm}-complete if and only if
ta < m/2 (and thus for arbitrary tp ≤ m).

12Note that existence of such f is implied by αOWP, and in
particular f can be any injective function.

Proof (sketch). The necessity of the bound follows triv-
ially from Corollary 2. We next argue the sufficiency: Be-
cause for each F` ∈M: F` is α`-passively immune and F`

6C

is α`-complete we can use each of them to generate an in-
dependent copy of the OT functionalities. The statement
follows then from Theorem 4.

6. EXTENSIONS
In the full version of this paper we demonstrate the flexi-

bility of our model by using it to prove the following results.
We provide a “best-of-both worlds” result for the setting
where there is either a corrupt majority of setups, or a cor-
rupt majority of parties.

Theorem 10. (informal) For a set of m UC-complete
setup-functionalities and any given thresholds s < n/2 and
t such that s + t < n, there exists a protocol which se-
curely realizes any well-formed n-party functionality toler-
ating static party-corruption if some of the following holds:
(1) at most s parties are corrupted and arbitrary many of
the setup-functionalities are corrupted, or (2) up to t > s
parties are corrupted but at most t′ < m/2 functionalities
are actively-corrupted.

Additionally, we extend our positive result for actively-
corruptible functionalities by additionally considering fail-
corruption.

Theorem 11. (informal) For a set of m UC complete
setup-functionalities, if the adversary adaptively corrupts up
to ta of them actively and fail corrupts up to tf of them (and
corrupts arbitrarily many parties actively), then there exists
a protocol which securely realizes any well-formed function-
ality if and only if 2ta + tf < m.

Finally, we we generalize our positive result to the setting
of an arbitrary functionality-corruption structure K (instead
of a threshold structure). Recall that K is an enumeration
of all possible corruptible sets of functionalities.

Theorem 12. (informal) For a setM of (possibly differ-
ent) actively corruptible UC-complete setups and a functionality
corruption structure K, there exists a protocol which securely
realizes any well-formed functionality while tolerating a K-
restricted adversary corrupting arbitrary many parties if and
only if Q2(M,K) holds.

7. ACKNOWLEDGMENTS
We thank Yuval Ishai for his comments during the early

stages of our work.

8. REFERENCES
[1] B. Barak, R. Canetti, J. B. Nielsen, and R. Pass.

Universally composable protocols with relaxed set-up
assumptions. In E. Upfal, editor, FOCS 2004, pages
186–195. IEEE Computer Society Press, Oct. 2004.

[2] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. Cryptology
ePrint Archive, Report 2000/067, 2005. An extended
abstract appeared in FOCS 2001.

[3] R. Canetti. Obtaining universally compoable security:
Towards the bare bones of trust (invited talk). In
K. Kurosawa, editor, ASIACRYPT 2007, volume 4833
of LNCS, pages 88–112. Springer, Dec. 2007.

[4] R. Canetti, Y. Dodis, R. Pass, and S. Walfish.
Universally composable security with global setup. In
S. P. Vadhan, editor, TCC 2007, volume 4392 of
LNCS, pages 61–85. Springer, Feb. 2007.

[5] R. Canetti and M. Fischlin. Universally composable
commitments. In J. Kilian, editor, CRYPTO 2001,
volume 2139 of LNCS, pages 19–40. Springer, Aug.
2001.

[6] R. Canetti, E. Kushilevitz, and Y. Lindell. On the
limitations of universally composable two-party
computation without set-up assumptions. Journal of
Cryptology, 19(2):135–167, Apr. 2006.

[7] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai.
Universally composable two-party and multi-party
secure computation. In J. H. Reif, editor, STOC 2002,
pages 494–503. ACM Press, May 2002.

[8] R. Canetti, R. Pass, and A. Shelat. Cryptography
from sunspots: How to use an imperfect reference
string. In A. Sinclair, editor, FOCS 2007, pages
249–259. IEEE Computer Society Press, Oct. 2007.

[9] R. Canetti and T. Rabin. Universal composition with
joint state. In D. Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 265–281. Springer, Aug.
2003.

[10] C. Crépeau, J. van de Graaf, and A. Tapp.
Committed oblivious transfer and private multi-party
computation. In D. Coppersmith, editor,
CRYPTO’95, volume 963 of LNCS, pages 110–123.
Springer, Aug. 1995.

[11] D. Dachman-Soled, T. Malkin, M. Raykova, and
M. Venkitasubramaniam. Adaptive and concurrent
secure computation from new adaptive, non-malleable
commitments. In ASIACRYPT 2013, pages 316–336.
Springer, Dec. 2013.

[12] S. Garg, V. Goyal, A. Jain, and A. Sahai. Bringing
people of different beliefs together to do UC. In
Y. Ishai, editor, TCC 2011, volume 6597 of LNCS,
pages 311–328. Springer, Mar. 2011.

[13] S. Goldwasser and Y. Lindell. Secure multi-party
computation without agreement. Journal of
Cryptology, 18(3):247–287, July 2005. Preliminary
version appeared at DISC 2002.

[14] V. Goyal and J. Katz. Universally composable
multi-party computation with an unreliable common
reference string. In R. Canetti, editor, TCC 2008,
volume 4948 of LNCS, pages 142–154. Springer, Mar.
2008.

[15] J. Groth and R. Ostrovsky. Cryptography in the
multi-string model. In A. Menezes, editor,
CRYPTO 2007, volume 4622 of LNCS, pages 323–341.
Springer, Aug. 2007.

[16] D. Harnik, J. Kilian, M. Naor, O. Reingold, and
A. Rosen. On robust combiners for oblivious transfer
and other primitives. In R. Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages
96–113. Springer, May 2005.

[17] M. Hirt and U. M. Maurer. Complete characterization
of adversaries tolerable in secure multi-party
computation (extended abstract). In 16th ACM
PODC, pages 25–34. ACM Press, Aug. 1997.

[18] D. Hofheinz and J. Müller-Quade. Universally
composable commitments using random oracles. In

M. Naor, editor, TCC 2004, volume 2951 of LNCS,
pages 58–76. Springer, Feb. 2004.

[19] Y. Ishai, M. Prabhakaran, and A. Sahai. Founding
cryptography on oblivious transfer - efficiently. In
D. Wagner, editor, CRYPTO 2008, volume 5157 of
LNCS, pages 572–591. Springer, Aug. 2008.

[20] J. Katz. Universally composable multi-party
computation using tamper-proof hardware. In
M. Naor, editor, EUROCRYPT 2007, volume 4515 of
LNCS, pages 115–128. Springer, May 2007.

[21] J. Kilian. Founding crytpography on oblivious
transfer. In STOC ’88, pages 20–31, New York, NY,
USA, 1988. ACM.

[22] H. Lin, R. Pass, and M. Venkitasubramaniam. A
unified framework for concurrent security: universal
composability from stand-alone non-malleability. In
M. Mitzenmacher, editor, STOC 2009, pages 179–188.
ACM Press, May / June 2009.

[23] R. Meier, B. Przydatek, and J. Wullschleger. Robuster
combiners for oblivious transfer. In S. P. Vadhan,
editor, TCC 2007, volume 4392 of LNCS, pages
404–418. Springer, Feb. 2007.

[24] M. Rabin. How to exchange secrets by oblivious
transfer. Technical Report TR-81,Harvard Aiken
Computation Laboratory, 1981.

[25] M. Venkitasubramaniam. A universal framework for
concurrent security. PhD thesis, Cornell University,
2010.

[26] J. Wullschleger. Efficiently from semi-honest to
malicious ot via OLFE. Cryptology ePrint Archive,
Report 2009/428, 2009.

APPENDIX
A. UC PUZZLES

We sketch the (general) definition of UC puzzles from [22]
to the standard setting, i.e., with a non-uniform ppt envi-
ronment Z, a uniform ppt adversary A and a uniform ppt
simulator S. We let 〈S,R〉 represent a protocol between
two parties, the sender S and the receiver R. We consider
a concurrent puzzle execution in which A participates as a
sender concurrently in m = poly(k) puzzles (where k is a
security parameter) with honest receivers R1, . . . , Rm. We
now describe the real and the ideal executions.

Real execution. In the real execution, the adversary A on
input 1k, interacts with a puzzle-environment Z and par-
ticipates as a sender in m interactions using 〈S,R〉. After
every puzzle-interaction, A sends trans to Z, where trans is
the puzzle-transcript. We denote the probability ensemble
corresponding to the output of Z at the end of the execution
by {realA,Z(k)}k∈N.

Ideal execution. In the ideal execution, there is a simu-
lator S that on input 1k interacts with puzzle-environment
Z. Note that S has a special output tape which is not
accessible to Z. We denote the probability ensemble corre-
sponding to the output of Z at the end of the execution by
{idealS,Z(k)}k∈N.

Definition (UC puzzle [22]). A pair (〈S,R〉,R), where
R is a polynomial time computable binary relation, is a UC-
puzzle if the following conditions hold:

Soundness: For every malicious ppt receiver R∗, there ex-
ists a negligible function negl(·) such that the proba-
bility that R∗, after an execution with S on common
input 1k, outputs τ such that R(trans, τ) = 1 (where
trans is the transcript of the messages exchanged in the
interaction) is at most negl(k).

Statistical Simulatability: For every adversary A par-
ticipating in a concurrent puzzle execution there is a sim-
ulator S such that for all puzzle environments Z, the
ensembles {realA,Z(k)}k∈N and {idealS,Z(k)}k∈N are
statistically close over k ∈ N; moreover, whenever S
outputs a message of the form trans to Z, it also outputs
τ in a special output tape (which cannot be accessed by
Z) such that R(trans, τ) = 1.

Lin et al. [22, 25] proved the following theorem stating that
UC puzzles are αshOT-complete.

Theorem 13 ([22, 25]). Assume the existence of a t1(·)-
round UC-secure puzzle Σ using some set-up F , the exis-
tence of a t2(·)-round standalone secure semi-honest oblivi-
ous transfer protocol. Then for every m-ary functionality G,
there exists an O(t1(·) + t2(·))-round protocol Π—using the
same set-up F—that UC-realizes G.

UC puzzles with Strong Statistical Simulatability.
In order to be able to tolerate adaptive corruption of the

assumed setups, our protocols need puzzles that satisfy a
somewhat strengthened version of the statistical simulata-
bility property, namely we want to ensure that the simulator
(playing as the receiver) is able to simulate even if the ad-
versarial sender corrupts the hybrid (i.e., the setup) used by
the puzzle protocol during its execution (however, if such a
corruption request occurs we no longer require the simula-
tor to output a trapdoor for the puzzle). We refer to this
property as strong statistical simulatability.

Note that for an adversary who (non-adaptively) corrupts
the hybrid functionality before the beginning of any puzzle,
the strong statistical simulatability property is implied by
the definition of the UC puzzle: Indeed, if Z requests to
corrupt the hybrid F at the beginning then the simulator
simply sends Z the code and randomness and forwards all
calls of the (simulated) puzzle protocol to Z from that point
on; otherwise, strong simulatability follows trivially from the
statistical simulatability property of the UC puzzle. How-
ever, for an adversary who might (adaptively) corrupt the
hybrid functionality at any point in the protocol execution,
the strong statistical simulatability property is not necessar-
ily implied from the definition of UC puzzles. Nevertheless,
one can verify that for most, if not all, setups for which a UC
puzzle is described in the literature [25, 12] this property is
indeed satisfied, as the simulator considered in these puzzles
explicitly emulates the execution of the hybrid. Further-
more, most of these puzzles exist under the semi-honest OT
assumption αshOT which, as shown in [25, 12] is also sufficient
for the completeness of standard UC puzzles.

