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Abstract. In synchronous networks, protocols can achieve security guar-
antees that are not possible in an asynchronous world: they can simul-
taneously achieve input completeness (all honest parties’ inputs are in-
cluded in the computation) and guaranteed termination (honest parties
do not “hang” indefinitely). In practice truly synchronous networks rarely
exist, but synchrony can be emulated if channels have (known) bounded
latency and parties have loosely synchronized clocks.
The widely-used framework of universal composability (UC) is inher-
ently asynchronous, but several approaches for adding synchrony to the
framework have been proposed. However, we show that the existing pro-
posals do not provide the expected guarantees. Given this, we propose a
novel approach to defining synchrony in the UC framework by introduc-
ing functionalities exactly meant to model, respectively, bounded-delay
networks and loosely synchronized clocks. We show that the expected
guarantees of synchronous computation can be achieved given these func-
tionalities, and that previous similar models can all be expressed within
our new framework.

1 Introduction

In synchronous networks, protocols can achieve both input completeness (all
honest parties’ inputs are included in the computation) and guaranteed termi-
nation (honest parties do not “hang” indefinitely). In contrast, these properties
cannot simultaneously be ensured in an asynchronous world [7,17].

The traditional model for synchronous computation assumes that protocols
proceed in rounds: the current round is known to all parties, and messages sent
in some round are delivered by the beginning of the next round. While this is a
strong model that rarely corresponds to real-world networks, the model is still
useful since it can be emulated under the relatively mild assumptions of a known
bound on the network latency and loose synchronization of the (honest) parties’
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clocks. In fact, it is fair to say that these two assumptions are exactly what is
meant when speaking of “synchrony” in real-world networks.

The framework of universal composability (UC) [12] assumes, by default,
completely asynchronous communication, where even eventual message delivery
is not guaranteed. Protocol designers working in the UC setting are thus faced
with two choices: either work in an asynchronous network and give up on in-
put completeness [7] or guaranteed termination [29,15], or else modify the UC
framework so as to incorporate synchronous communication somehow.

Several ideas for adding synchrony to the UC framework have been proposed.
Canetti [10] introduced an ideal functionality Fsyn that was intended exactly to
model synchronous communication in a general-purpose fashion. We prove in
Section 5.1, however, that Fsyn does not provide the guarantees expected of
a synchronous network. Nielsen [34] and Hofheinz and Müller-Quade [25] also
propose ways of modeling synchrony with composition guarantees, but their ap-
proaches modify the foundations of the UC framework and are not sufficiently
general to model, e.g., synchrony in an incomplete network, or the case when
synchrony holds only in part of a network (say, because certain links do not
have bounded delay while others do). It is fair to say that the proposed modifi-
cations to the UC framework are complex, and it is unclear whether they ade-
quately capture the intuitive real-world notion of synchrony. The timing model
considered in [20,23,26] extends the notion of interactive Turing machines by
adding a “clock tape.” It comes closer to capturing intuition, but (as we show
in Section 5.2) this model also does not provide the guarantees expected from
a synchronous network. A similar approach is taken in [4], which modifies the
reactive-simulatability framework of [6] by adding an explicit “time port” to each
automaton. Despite the different underlying framework, this work is most sim-
ilar to the approach we follow here in that it also captures both guaranteed
termination and incomplete networks. Their approach, however, inherently re-
quires changing the underlying model and is based on restricting the class of
adversaries (both of which we avoid). Such modifications result in (at least) a
reformulation of the composition theorem and proof.

Our approach and results. We aim for an intuitively appealing model that faith-
fully embeds the actual real-world synchrony assumptions into the standard
UC framework. The approach we take is to introduce functionalities specifically
intended to (independently) model the two assumptions of bounded network
delay and loose clock synchronization. An additional benefit of separating the
assumptions in this way is that we can also study the case when only one of the
assumptions holds.

We begin by formally defining a functionality corresponding to (authenti-
cated) communication channels with bounded delay. Unfortunately, this alone
is not sufficient for achieving guaranteed termination. (Throughout, we will al-
ways want input completeness to hold.) Intuitively, this is because bounded-delay
channels alone—without any global clock—only provide the same “eventual mes-
sage delivery” guarantee of classical asynchronous networks [7,9]. It thus becomes
clear that what is missing when only bounded-delay channels are available is
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some notion of time. To rectify this, we further introduce a functionality Fclock
that directly corresponds to the presence of loosely synchronized clocks among
the parties. We then show that Fclock together with eventual-delivery channels
is also not sufficient, but that standard protocols can indeed be used to securely
realize any functionality with guaranteed termination in a hybrid world where
both Fclock and bounded-delay (instead of just eventual delivery) channels are
available.

Overall, our results show that the two functionalities we propose—meant to
model, independently, bounded-delay channels and loosely synchronized clocks—
enable us to capture exactly the security guarantees provided by traditional
synchronous networks. Moreover, this approach allows us to make use of the
original UC framework and composition theorem.

Guaranteed termination. We pursue an approach inspired by constructive cryp-
tography [31,32] to model guaranteed termination. We describe the termination
guarantee as a property of functionalities; this bridges the gap between the
theoretical model and the realistic scenario where the synchronized clocks of
the parties ensure that the adversary cannot stall the computation even if he
tries to (time will advance). Intuitively, such a functionality does not wait for
the adversary indefinitely; rather, the environment—which represents (amongst
others) the parties as well as higher level protocols—can provide the functional-
ity with sufficiently many activations to make it proceed and eventually produce
outputs, irrespective of the adversary’s strategy. This design principle is applied
to both the functionality that shall be realized and to the underlying function-
alities formalizing the (bounded-delay) channels and the (loosely synchronized)
clocks.

We then require from a protocol to realize a functionality with this guaranteed
termination property, given as hybrids functionalities that have the same type
of property. In more detail, following the real-world/ideal-world paradigm of the
security definition, for any real-world adversary, there must be an ideal-world
adversary (or simulator) such that whatever the adversary achieves in the real
world can be mimicked by the simulator in the ideal world. As the functionality
guarantees to terminate and produce output for any simulator, no (real-world)
adversary can stall the execution of a secure protocol indefinitely.

The environment in the UC framework can, at any point in time, provide
output and halt the entire protocol execution. Intuitively, however, this corre-
sponds to the environment (which is the distinguisher) ignoring the remainder
of the random experiment, not the adversary stalling the protocol execution. Any
environment Z can be transformed into an environment Z ′ that completes the
execution and achieves (at least) the same advantage as Z.

A “polling”-based notion of time. The formalization of time we use in this work
is different from previous approaches [20,23,26,33]; the necessity for the different
approach stems from the inherently asynchronous scheduling scheme of the orig-
inal UC model. In fact, the order in which protocols are activated in this model
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is determined by the communication; a party will only be activated during the
execution whenever this party receives either an input or a message.

Given this model, we formalize a clock as an ideal functionality that is avail-
able to the parties running a protocol and provides a means of synchronization:
the clock “waits” until all honest parties signal that they are finished with their
tasks. This structure is justified by the following observation: the guarantees that
are given to parties in synchronous models are that each party will be activated
in every time interval, and will be able to perform its local actions fast enough to
finish before the deadline (and then it might “sleep” until the next time interval
begins). A party’s confirmation that it is ready captures exactly this guarantee.
As this model differentiates between honest and dishonest parties, we have to
carefully design functionalities and protocols such that they do not allow exces-
sive capabilities of detecting dishonest behavior. Still, the synchrony guarantee
inherently does provide some form of such detections (e.g., usually by a time-out
while waiting for messages, the synchrony of the clocks and the bounded delay
of the channels guarantee that “honest” ones always arrive on time).

Our notion of time allows modeling both composition of protocols that run
mutually asynchronously, by assuming that each protocol has its own indepen-
dent clock, as well as mutually synchronous, e.g. lock-step, composition by as-
suming that all protocols use the same clock.

Organization of the paper. In Section 2, we include a brief description of the
UC model [12] and introduce the necessary notation and terminology. In Sec-
tion 3, we review the model of completely asynchronous networks, describe its
limitations, and introduce a functionality modeling bounded-delay channels. In
Section 4, we introduce a functionality Fclock meant to model loose clock syn-
chronization and explore the guarantees it provides. Further, we define compu-
tation with guaranteed termination within the UC framework, and show how
to achieve it using Fclock and bounded-delay channels. In Section 5, we revisit
previous models for synchronous computation. Many details and, in particular,
proofs have been omitted from this version but they can be found in the full
version of this paper [27].

2 Preliminaries

Simulation-based security. Most general security frameworks are based on the
real-world/ideal-world paradigm: In the real world, the parties execute the pro-
tocol using channels as defined by the model. In the ideal world, the parties
securely access an ideal functionality F that obtains inputs from the parties,
runs the program that specifies the task to be achieved by the protocol, and
returns the resulting outputs to the parties. Intuitively, a protocol securely real-
izes the functionality F if, for any real-world adversary A attacking the protocol
execution, there is an ideal-world adversary S, also called the simulator, that
emulates A’s attack. The simulation is good if no distinguisher Z—often called
the environment—which interacts, in a well defined manner, with the parties
and the adversary/simulator, can distinguish between the two worlds.

4



The advantage of such security definitions is that they satisfy strong com-
posability properties. Let π1 be a protocol that securely realizes a functionality
F1. If a protocol π2, using the functionality F1 as a subroutine, securely realizes
a functionality F2, then the protocol ππ1/F1

2 , where the calls to F1 are replaced
by invocations of π1, securely realizes F2 (without calls to F1). Therefore, it suf-
fices to analyze the security of the simpler protocol π2 in the F1-hybrid model,
where the parties run π2 with access to the ideal functionality F1. A detailed
treatment of protocol composition appears in, e.g., [6,11,12,18,32].

Model of computation. All security models discussed in this work are based on
or inspired by the UC framework [12]. The definitions are based on the simula-
tion paradigm, and the entities taking part in the execution (protocol machines,
functionalities, adversary, and environment) are described as interactive Turing
machines (ITMs). The execution is an interaction of ITM instances (ITIs) and
is initiated by the environment that provides input to and obtains output from
the protocol machines, and also communicates with the adversary. The adver-
sary has access to the ideal functionalities in the hybrid models and also serves
as a network among the protocol machines. During the execution, the ITIs are
activated one-by-one, where the exact order of the activations depends on the
considered model.

Notation, conventions, and specifics of UC ’05. We consider protocols that are
executed among a certain set of players P, often referred to as the player set,
where every pi ∈ P formally denotes a unique party ID. A protocol execution
involves the following types of ITMs: the environment Z, the adversary A, the
protocol machine π, and (possibly) ideal functionalities F1, . . . ,Fm. We say that
a protocol π securely realizes F in the F ′-hybrid model if for each adversary A
there exists a simulator S such that for all environments Z, the contents of Z’s
output tape after an execution of π (using F ′) with A is indistinguishable from
the contents of the tape after an execution of F with S. For the details of the
execution, we follow the description in [10].

As in [10], the statement “the functionality sends a (private) delayed output y
to party i” describes the following process: the functionality requests the adver-
sary’s permission to output y to party i (without leaking the value y); as soon as
the adversary agrees, the output y is delivered. The statement “the functionality
sends a public delayed output y to party i” corresponds to the same process,
where the permission request also includes the full message y.

All our functionalities F use standard (adaptive) corruption as defined in [10].
At any point in the execution, we denote by H the set of “honest” parties that
have not (yet) been corrupted. Finally, all of our functionalities use a player set
P that is fixed when the functionality is instantiated, and each functionality has
a session ID which is of the form sid = (P, sid′) with sid′ ∈ {0, 1}∗. We will
usually omit the session ID from the description of our functionalities; different
instances behave independently.

The functionalities in our model and their interpretation are specific to the
model of [10] in that they exploit some of the mechanics introduced there, which
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we recall here. First, the order of activations is strictly defined by the model:
whenever an ITI sends a message to some other ITI, the receiving ITI will im-
mediately be activated and the sending ITI will halt. If some ITI halts without
sending a message, the “master scheduler,” the environment Z, will become ac-
tive. This scheme allows to model guaranteed termination since the adversary
cannot prevent the invocation of protocol machines. Second, efficiency is defined
as a “reactive” type of polynomial time: the number of steps that an ITI per-
forms is bounded by a polynomial in the security parameter and (essentially)
the length of the inputs obtained by this ITI. Consequently, the environment
can continuously provide “run-time” to protocol machines to make them poll,
e.g., at a bounded-delay or eventual-delivery channel. Our modeling of eventual
delivery fundamentally relies on this fact.

3 Synchronous Protocols in an Asynchronous Network

Protocols in asynchronous networks cannot achieve input completeness and guar-
anteed termination simultaneously [7,17]. Intuitively, the reason is that honest
parties cannot distinguish whether a message has been delayed—and to satisfy
input completeness they should wait for this message—or whether the sender is
corrupted and did not send the message—and for guaranteed termination they
should proceed. In fact, there are two main network models for asynchronous
protocols: on the one hand, there are fully asynchronous channels that do not
at all guarantee delivery [10,15]; on the other hand, there are channels where
delivery is guaranteed and the delay might be bounded by a publicly known
constant or unknown [7]. In the following, we formalize the channels assumed
in each of the two settings as functionalities in the UC framework and discuss
how they can be used by round-based, i.e., synchronous, protocols. The results
presented here formally confirm—in the UC framework—facts about synchrony
assumptions that are known or folklore in the distributed computing literature.

3.1 Fully Asynchronous Network

The communication in a fully asynchronous network where messages are not
guaranteed to be delivered is modeled by the functionality Fsmt from [10], which
involves a sender, a receiver, and the adversary. Messages input by the sender
ps are immediately given to the adversary, and delivered to the receiver pr only
after the adversary’s approval. Different privacy guarantees are formulated by
a so-called leakage function `(·) that determines the information leaked during
the transmission if both ps and pr are honest. In particular, the authenticated
channel Fauth is modeled by Fsmt parametrized by the identity function `(m) =
m, and the ideally secure channel Fsec is modeled by Fsmt with the constant
function `(m) =⊥. (For realistic channels obtained by encryption one typically
resorts to the length function `(m) = |m|, see [14].) An important property
of Fsmt is adaptive message replacement: the adversary can, depending on the
leaked information, corrupt the sender and replace the sent message.
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Canetti et al. [15] showed that, in this model and assuming a common refer-
ence string, any (well-formed) functionality can be realized, without guaranteed
termination. Moreover, a combination of the results of Kushilevitz, Lindell, and
Rabin [29] and Asharov and Lindell [1] show that appropriate modifications of
the protocols from the seminal works of Ben-Or, Goldwasser, and Widgerson [8]
and Chaum, Crépeau, and Damgård [16] (for unconditional security) or the work
by Goldreich, Micali, and Widgerson [22] (for computational security)—all of
which are designed for the synchronous setting—are sufficient to achieve general
secure computation without termination in this asynchronous setting, under the
same conditions on corruption-thresholds as stated in [8,16,22].

The following lemma formalizes the intuition that a fully asynchronous net-
work is insufficient for terminating computation, i.e., computation which cannot
be stalled by the adversary. For a functionality F, denote by [F]NT the non-
terminating relaxation of F defined as follows: [F]NT behaves as F, but whenever
F outputs a value to some honest party, [F]NT provides this output in a delayed
manner (see Section 2). More formally, we show that there are functionalities
F that are not realizable in the Fsmt-hybrid model, but their delayed relax-
ations [F]NT are. This statement holds even for stand-alone security, i.e., for
environments that do not interact with the adversary during the protocol exe-
cution. Additionally, the impossibility applies to all non-trivial, i.e., not locally
computable, functionalities (see [28]) with guaranteed termination as defined in
Section 4. While the lemma is implied by the more general Lemma 5, we describe
the proof idea for this simpler case below.

Lemma 1. There are functionalities F such that [F]NT can be realized in the
Fsmt-hybrid model, but F cannot be realized.

Proof (idea). Consider the functionality F which behaves as Fsmt, but with the
following add-on: upon receiving a special “fetch” message from the receiver pr,
outputs y to pr, where y = m if the sender has input the message m, and y =⊥
(i.e., a default value), otherwise. [F]NT is realized from Fsmt channels by the
dummy protocol, whereas realizing F is impossible. ut

3.2 Eventual-Delivery Channels

A stronger variant of asynchronous communication provides the guarantee that
messages will be delivered eventually, independent of the adversary’s strategy [7].
The functionality Fed-smt captures this guarantee, following the principle de-
scribed in Section 1: The receiver can enforce delivery of the message using
“fetch” requests to the channel. The potential delay of the channel is modeled
by ignoring a certain number D of such requests before delivering the actual
message to pr; to model the fact that the delay might be arbitrary, we allow the
adversary to repeatedly increase the value of D during the computation. Yet,
the delay that A can impose is bounded by A’s running time.1 The fact that
this models eventual delivery utilizes the “reactive” definition of efficiency in [10]:
1 This is enforced by accepting the delay-number only when given in unary notation.
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after the adversary determined the delay D for a certain message, the environ-
ment can still provide the protocol machines of the honest parties with suffi-
ciently many activations to retrieve the message from the channel. The eventual
delivery channel Fed-smt is, like Fsmt, parametrized by a leakage function `(·).

Functionality Fed-smt(ps, pr, `(·))
Initialize M := ⊥ and D := 0.
– Upon receiving a message m from ps, set D := 1 and M := m and send
`(M) to the adversary.

– Upon receiving a message (fetch) from pr:
1. Set D := D − 1.
2. If D = 0 then send M to pr (otherwise no message is sent and, as

defined in [10], Z is activated).
– Upon receiving a message (delay, T ) from the adversary, if T encodes a

natural number in unary notation, then set D := D + T ; otherwise ignore
the message.

– (adaptive message replacement): Upon receiving (corrupt, ps,m′, T ′) from
A: if D > 0 and T ′ is a valid delay, then set D := T ′ and set M := m′.

Channels with eventual delivery are strictly stronger than fully asynchronous
communication in the sense of Section 3.1. Indeed, the proof of Lemma 1 extends
to the case where F is the eventual-delivery channel Fed-smt: the simulator can
delay the delivery of the message only by a polynomial number of steps, and the
environment can issue sufficiently many queries at the receiver’s interface.

As with fully asynchronous channels, one can use channels with eventual de-
livery to achieve secure computation without termination. Additionally, however,
eventual-delivery channels allow for protocols which are guaranteed to (eventu-
ally) terminate, at the cost of violating input completeness. For instance, the
protocol of Ben-Or, Canetti, and Goldreich [7] securely realizes any functionality
where the inputs of up to n

4 parties might be ignored. Yet, the eventual-delivery
channels, by themselves, do not allow to compute functionalities with strong
termination guarantees. In fact, the result of Lemma 1 holds even if we replace
Fsmt by Fed-smt. This is stated in the following lemma, which again translates
to both stand-alone security and to arbitrary functionalities that are not locally
computable, and is again implied by Lemma 5.

Lemma 2. There are functionalities F such that [F]NT can be realized in the
Fed-smt-hybrid model, but F cannot be realized.

3.3 Bounded-Delay Channels with a Known Upper Bound

Bounded-delay channels are described by a functionality Fbd-smt that is similar
to Fed-smt but parametrized by a (strictly) positive constant δ bounding the
delay that the adversary can impose. In more detail, the functionality Fbd-smt
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works as Fed-smt, but queries of the adversary that lead to an accumulated
delay of T > δ are ignored. Furthermore, the sender/receiver can query the
functionality to learn the value δ. A formal specification of Fbd-smt is given in
the following:

Functionality Fδbd-smt(ps, pr, `(·))
Initialize M := ⊥ and D := 1, and Dt := 1.
– Upon receiving a message m from ps, set D := 1 and M := m and send
`(M) to the adversary.

– Upon receiving a message (LearnBound) from ps, pr, or A, reply with δ.
– Upon receiving a message (fetch) from pr:

1. Set D := D − 1.
2. If D = 0, then send M to pr.

– Upon receiving (delay, T ) from the adversary, if Dt + T ≤ δ, then set
D := D + T and Dt := Dt + T ; otherwise ignore the message.

– Upon receiving (corrupt, ps,m′, T ′) from A: if D > 0 and T ′ is a valid
delay, then set D := T ′ and M := m′.

In reality, a channel with latency δ′ is at least as useful as one with latency
δ > δ′. Our formulation of bounded-delay channels is consistent with this in-
tuition: for any 0 < δ′ < δ, Fδbd-smt can be UC-realized in the Fδ

′

bd-smt-hybrid
model. Indeed, the simple Fδ

′

bd-smt-hybrid protocol that drops δ − δ′ (fetch)-
queries realizes Fδbd-smt; the simulator also increases the delay appropriately.
The converse is not true in general: channels with smaller upper bound on the
delay are strictly stronger when termination is required. This is formalized in
the following lemma, which again extends to both stand-alone security and to
non-trivial functionalities with guaranteed termination as in Section 4.

Lemma 3. For any 0 < δ′ < δ, the functionality [Fδ
′

bd-smt]
NT can be realized in

the Fδbd-smt-hybrid model, but Fδ
′

bd-smt cannot be realized.

The proof of Lemma 3 follows the same idea as Lemma 2 and can be found
in the full version of the paper. (The proof of Lemma 2 does not use the fact
that no upper bound on the network latency is known.) The technique used
in the proof already suggests that bounded-delay channels, without additional
assumptions such as synchronized clocks, are not sufficient for terminating com-
putation. While Lemma 3 only handles the case where the assumed channel has
a strictly positive upper-bound on the delay, the (more general) impossibility in
Lemma 5 holds even for instant-delivery channels, i.e., bounded-delay channels
which become ready to deliver as soon as they get input from the sender.

In the remainder of this paper we use instant-delivery channels, i.e., Fδbd-smt
with δ = 1; however, our results easily extend to arbitrary values of δ. To simplify
notation, we completely omit the delay parameter, i.e., we write Fbd-smt instead
of F1

bd-smt. Furthermore, we use Fbd-sec and Fbd-auth to denote the correspond-
ing authenticated and secure bounded-delay channel with δ = 1, respectively.
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4 Computation with Guaranteed Termination

Assuming bounded-delay channels is not, by itself, sufficient for achieving both
input completeness and termination. In this section, we introduce the function-
ality Fclock that, together with the bounded-delay channels Fδbd-smt, allows syn-
chronous protocols to satisfy both properties simultaneously. In particular, we
define what it means for a protocol to UC-realize a given multi-party function
with guaranteed termination, and show how {Fclock,Fδbd-smt}-protocols can sat-
isfy this definition.

4.1 The Synchronization Functionality

To motivate the functionality Fclock, we examine how synchronous protocols
in reality use the assumptions of bounded-delay (with a known upper bound)
channels and synchronized clocks to satisfy the input-completeness and the ter-
mination properties simultaneously: they assign to each round a time-slot that
is long enough to incorporate the time for computing and sending all next-round
messages, plus the network delay. The fact that their clocks are (loosely) syn-
chronized allows the parties to decide (without explicit communication) whether
or not all honest parties have finished all their operations for some round. Note
that it is sufficient, at the cost of having longer rounds, to assume that the clocks
are not advancing in a fully synchronized manner but there is an known upper
bound on the maximum clock-drift [23,26,33].

The purpose of Fclock is to provide the described functionality to UC proto-
cols. But as Fclock is an ordinary UC functionality, it has no means of knowing
whether or not a party has finished its intended operations for a certain round.
This problem is resolved by having the parties signal their round status (i.e,
whether or not they are “done” with the current round) to Fclock. In particular,
Fclock keeps track of the parties’ status in a vector (d1, . . . , dn) of indicator
bits, where di = 1 if pi has signaled that it has finished all its actions for the
current round and di = 0, otherwise. As soon as di = 1 for all pi ∈ H, Fclock
resets di = 0 for all pi ∈ P.2 In addition to the notifications, any party pi can
send a synchronization request to Fclock, which is answered with di. A party
pi that observes that di has switched can conclude that all honest parties have
completed their respective duties.3 As Fclock does not wait for signals from cor-
rupted parties, Fclock cannot be realized based on well-formed functionalities.
Nevertheless, as discussed above, in reality time does offer this functionality to
synchronous protocols.

2 Whenever some party is corrupted, Fclock is notified and updates H accordingly.
This is consistent with models such as [10,34] (and, formally, requires a small change
to the UC control function).

3 For arbitrary protocols, the functionality offers too strong guarantees. Hence, we
restrict ourselves to considering protocols that are either of the type described here
or do not use the clock at all.
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Functionality Fclock(P)
Initialize for each pi ∈ P a bit di := 0.
– Upon receiving message (RoundOK) from party pi set di := 1. If for all
pj ∈ H : dj = 1, then reset dj := 0 for all pj ∈ P. In any case, send
(switch, i) to A.a

– Upon receiving (RequestRound) from pi, send di to pi.

a The adversary is notified in each such call to allow attacks at any point in time.

Synchronous protocols as {Fclock,Fbd-smt }-hybrid protocols. The code of every
party is a sequence of “send,” “receive,” and “compute” operations, where each
operation is annotated by the index of the round in which it is to be executed.
In each round r, each party first receives its messages from round r − 1, then
computes and sends its messages for round r. The functionalities Fclock and
Fbd-smt are used in the straightforward manner: At the onset of the protocol
execution, each pi sets its local round index to 1; whenever pi receives a message
from some entity other than Fclock (i.e., from Z, A, or some other functional-
ity), if a (RoundOK) messages has not yet been sent for the current round (i.e.,
the computation for the current round is not finished) the party proceeds with
the computation of the current round (the last action of each round is sending
(RoundOK) to Fclock); otherwise (i.e., if (RoundOK) has been sent for the current
round), the party sends a (RequestRound) message to Fclock, which replies with
the indicator bit di. The party pi uses this bit di to detect whether or not every
party is done with the current round and proceeds to the next round or waits
for further activations accordingly.

In an immediate application of the above described protocol template, the
resulting protocol would not necessarily be secure. Indeed, some party might
start sending its round r + 1 messages before some other party has even re-
ceived its round r messages, potentially sacrificing security. (Some models in the
literature, e.g. [34], allow such an ordering, while others, e.g. [25], don’t.) The
slackness can be overcome by introducing a “re-synchronization” round between
every two rounds, where all parties send empty messages.

Perfect vs. imperfect clock synchronization. Fclock models that once a single
party observes that a round is completed, every party will immediately (upon
activation) agree with this view. As a “real world” assumption, this means that
all parties perform the round switch at exactly the same time, which means that
the parties’ clocks must be in perfect synchronization. A “relaxed” functionality
that models more realistic synchrony assumptions, i.e., imperfectly synchronized
clocks, can be obtained by incorporating “delays” as for the bounded-delay chan-
nel Fbd-smt. The high-level idea for this “relaxed” clock F−clock is the following:
for each party pi, F−clock maintains a value ti that corresponds to the number of
queries needed by pi before learning that the round has switched. The adversary
is allowed to choose (at the beginning of each round), for each party pi a delay ti
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up to some upper bound δ > 0. A detailed description of the functionality F−clock
can be found in the full version [27].

4.2 Defining Guaranteed Termination

In formalizing what it means to UC-securely compute some specification with
guaranteed termination, we follow the principle described in Section 1. For sim-
plicity, we restrict ourselves to non-reactive functionalities (secure function eval-
uation, or SFE), but our treatment can be easily extended to reactive multi-party
computation. We refer to the full version [27] for details on this extension.

Let f : ({0, 1}∗)n × R −→ ({0, 1}∗)n denote an n-party (randomized) func-
tion, where the i-th component of f ’s input (or output) corresponds to the input
(or output) of pi, and the (n+1)-th input r ∈ R corresponds to the randomness
used by f . In simulation-based frameworks like [10], the secure evaluation of
such a function f is generally captured by an ideal functionality parametrized
by f . For instance, the functionality Ffsfe described in [10] works as follows: Any
honest party can either submit input to Ffsfe or request output. Upon input xi
from some party pi, Ffsfe records xi and notifies A. When some party requests its
output, Ffsfe checks if all honest parties have submitted inputs; if so, Ffsfe eval-
uates f on the received inputs (missing inputs of corrupted parties are replaced
by default values), stops accepting further inputs, and outputs to pi its output
of the evaluation. We refer to [10,27] for a more detailed description of Ffsfe.

As described in Section 1, an ideal functionality for evaluating a function f
captures guaranteed termination if the honest parties (or higher level protocols,
which are all encompassed by the environment in the UC framework) are able
to make the functionality proceed and (eventually) produce outputs, irrespec-
tive of the adversary’s strategy. (Technically, we allow the respective parties to
“poll” for their outputs.) The functionality Ffsfe from [10] has this “terminating”
property; yet, for most choices of the function f , there exists no synchronous
protocol realizing Ffsfe from any “reasonable” network functionality. More pre-
cisely, we say that a network-functionality Fnet provides separable rounds if for
any synchronous Fnet-hybrid protocol which communicates exclusively through
Fnet, Fnet activates the adversary at least once in every round.4 The follow-
ing lemma then shows that for any function f which requires more than one
synchronous round to be evaluated, Ffsfe cannot be securely realized by any
synchronous protocol in the Fnet-hybrid model. Note that this includes many
interesting functionalities such as broadcast, coin-tossing, etc.

Lemma 4. For any function f and any network functionality Fnet with sepa-
rable rounds, every Fnet-hybrid protocol π that securely realizes Ffsfe computes
its output in a single round.

4 In [10], this is not necessarily the case. A priori, if some ITI sends a message to some
other ITI, the receiving ITI will be activated next. Only if an ITI halts without
sending a message, the “master scheduler”—the environment—will be activated.
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Proof (sketch). Assume, towards a contradiction, that π is a two-round protocol
securely computing Ffsfe. Consider the environment Z that provides input to all
parties and immediately requests the output from some honest party. As Fnet
provides separable rounds, after all inputs have been submitted, the adversary
will be activated at least twice before the protocols first generate outputs. This is
not the case for the simulator in the ideal evaluation of Ffsfe. Hence, the dummy
adversary cannot be simulated, which contradicts the security of π. ut

To obtain an SFE functionality that matches the intuition of guaranteed ter-
mination, we need to circumvent the above impossibility by making the function-
ality activate the simulator during the computation. We parametrize Fsfe with
a function Rnd(k) of the security parameter which corresponds to the number
of rounds required for evaluating f ; one can easily verify that for any (polyno-
mial) round-function Rnd(·) the functionality Ff,Rndsfe will terminate (if there are
sufficiently many queries at the honest parties’ interfaces) independently of the
simulator’s strategy. In each round, the functionality gives the simulator |P|+1
activations which will allow him to simulate the activations that the parties need
for exchanging their protocol messages and notifying the clock Fclock.

Functionality Ff,Rndsfe (P)
Ff,Rndsfe proceeds as follows, given a function f : ({0, 1}∗ ∪ {⊥})n × R →
({0, 1}∗)n, a round function Rnd, and a player set P. For each pi ∈ P, initialize
variables xi and yi to a default value ⊥ and a current delay ti := |P| + 1.
Moreover, initialize a global round counter ` := 1.
– Upon receiving input (input, v) from some party pi ∈ P, set xi := v and

send a message (input, i) to the adversary.
– Upon receiving input (output) from some party pi ∈ P, if pi ∈ H and xi

has not yet been set then ignore pi’s message, else do:
• If ti > 1, then set ti := ti − 1. If (now) tj = 1 for all pj ∈ H, then set
` := `+ 1 and tj := |P|+ 1 for all pj ∈ P. Send (activated, i) to the
adversary.

• Else, if ti = 1 but ` < Rnd, then send (early) to pi.
• Else,
∗ if xj has been set for all pj ∈ H, and y1, . . . , yn have not yet been

set, then choose r R← R and set (y1, . . . , yn) := f(x1, . . . , xn, r).
∗ Output yi to pi.

Definition 1 (Guaranteed Termination). A protocol π UC-securely evalu-
ates a function f with guaranteed termination if it UC-realizes a functionality
Ff,Rndsfe for some round function Rnd(·).

Remark 1 (Lower Bounds). The above formulation offers a language for making
UC-statements about (lower bounds on) the round complexity of certain prob-
lems in the synchronous setting. In particular, the question whether Ff,Rndsfe can
be realized by a synchronous protocol corresponds to the question: “Does there
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exist a synchronous protocol π which securely evaluates f in Rnd(k) rounds?”,
where k is the security parameter. As an example, the statement: “A function f
needs at least r rounds to be evaluated.” is (informally) translated to “There ex-
ists no synchronous protocol which UC securely realizes the functionality Ff,r

′

sfe ,
where r′ < r.”

The following theorem allows us to translate known results on feasibility of
secure computation, e.g., [8,16,22,35], into our setting of UC with termination.
(This follows from the theorem and the fact that these protocols are secure
with respect to an efficient straight-line black-box simulator.) The only modifi-
cation is that the protocols start with a void synchronization round where no
honest party sends or receives any message. For a synchronous protocol ρ, we
denote by ρ̂ the protocol which is obtained by extending ρ with such a start-
synchronization round. The proof is based on ideas from [29] and is included in
the full version [27].

Theorem 1. Let f be a function and let ρ be a protocol that, according to the
notion of [11], realizes f with computational (or statistical or perfect) security in
the stand-alone model, with an efficient straight-line black-box simulator. Then ρ̂
UC-realizes f with computational (or statistical or perfect) security and guaran-
teed termination in the {Fclock,Fbd-sec}-hybrid model with a static adversary.

4.3 The Need for Both Synchronization and Bounded-Delay

In this section, we formalize the intuition that each one of the two “standard”
synchrony assumptions, i.e., bounded-delay channels and synchronized clocks,
is alone not sufficient for computation with guaranteed termination. We first
show in Lemma 5 that bounded-delay channels (even with instant delivery) are,
by themselves, not sufficient; subsequently, we show in Lemma 6 that (even
perfectly) synchronized clocks are also not sufficient, even in combination with
eventual-delivery channels (with no known bound on the delay).

Lemma 5. There are functions f such that for any (efficient) round-function
Rnd and any δ > 0: [Ff,Rndsfe ]NT can be realized in the Fδbd-smt-hybrid model, but
Ff,Rndsfe cannot.

Proof (idea). Consider the two-party function f which, on input a bit x1 ∈ {0, 1}
from party p1 (and nothing from p2), outputs x1 to p2 (and nothing to p1). The
functionality Ff,Rndsfe guarantees that an honest p1 will be able to provide input,
independently of the adversary’s behavior. On the other hand, a corrupted p1 will
not keep p2 from advancing (potentially with a default input for p1).5 However,
in the real world, the behavior of the bounded-delay channel in the above two
cases is identical.
5 This capability of distinguishing “honest” from “dishonest” behavior is key in syn-
chronous models: as honest parties are guaranteed that they can send their messages
on time, dishonest parties will blow their cover by not adhering to the deadline.
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On the other hand, the functionality [Ff,Rndsfe ]NT can be realized from Fbd-smt:
p1 simply has to send the input to p2 via the Fbd-smt-channel. The simulator
makes sure that the output in the ideal model is delivered to the p2 only after
Z acknowledges the delivery. A detailed proof can be found in [27]. ut

In reality, synchronous clocks alone are not sufficient for synchronous com-
putation if there is no known upper bound on the delay of the channels (even
with guaranteed eventual delivery); this statement is formalized using the clock
functionality Fclock and the channels Fed-smt in the following lemma. The proof
is similar to the proof of Lemma 1 and can be found in [27].

Lemma 6. There are functions f such that for any (efficient) round-function
Rnd: [Ff,Rndsfe ]NT can be realized in the {Fed-smt,Fclock}-hybrid model, but Ff,Rndsfe
cannot.

4.4 Atomicity of Send/Receive Operations and Rushing

Hirt and Zikas [24] pointed out that the standard formulation of a “rushing” ad-
versary [11] in the synchronous setting puts a restriction on the order of the
send/receive operations within a synchronous round. The modularity of our
framework allows to pinpoint this restriction by showing that the rushing as-
sumption corresponds to a “simultaneous multi-send” functionality which cannot
even be realized using Fclock and Fbd-smt.

Intuitively, a rushing adversary [11] cannot preempt a party while this party
is sending its messages of some round. This is explicitly stated in [11], where the
notion of “synchronous computation with rushing” is defined (cf. [11, Page 30]).
In reality, it is arguable whether we can obtain the above guarantee by just as-
suming bilateral bounded-delay channels and synchronized clocks. Indeed, send-
ing multiple messages is typically not an atomic operation, as the messages are
buffered on the network interface of the computer and sent one-by-one. Hence,
to achieve the simultaneity, one has to assume that the total time it takes for
the sender to put all the messages on the network minus the minimum latency
of the network is not sufficient for a party to become corrupted.

The “simultaneous multi-send” guarantee is captured in the following UC-
functionality, which is referred to as the simultaneous multi-send channel, and
denoted by Fms. On a high level, Fms can be described as a channel allowing a
sender pi to send a vector of messages (x1, . . . , xn) to the respective receivers
p1, . . . , pn as an atomic operation. The formal description of Fms is similar to
Fbd-smt with the following modifications: First, instead of a single receiver, there
is a set P of receivers, and instead of a single message, the sender inputs a
vector of |P| messages, one for each party in P. As soon as some party receives
its message, the adversary cannot replace any of the remaining messages that
correspond to honest receivers, not even by corrupting the sender. As in the case
of bounded-delay channels, we denote by Fms-auth the multi-send channel which
leaks the transmitted vector to the adversary. The following lemma states that
the delayed relaxation of Fms-auth cannot be realized from Fbd-sec and Fclock
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when arbitrary many parties can be corrupted. This implies that Fms-auth can
also not be realized from Fbd-sec and Fclock.

Functionality Fms(`, i,P)

– Upon receiving a vector of messages m = (m1, . . . ,mn) from pi, record
m and send a message (sent, `(m)) to the adversary.

– Upon receiving (fetch) from pj ∈ P, output mj to pj (mj = ⊥ if m has
not been recorded).

– (restricted response to replace) Upon receiving a (replace,m′) request
from the adversary for replacing pi’s input (after issuing a request for
corrupting pi), if no (honest or corrupted) pj received mj before pi got
corrupted, then replace m by m′.

Lemma 7. Let P be a player set with |P| > 3. Then there exists no proto-
col which UC-realizes [Fms-auth]

NT in the {Fclock,Fbd-auth}-hybrid model and
tolerates a corrupted majority.

Proof (sketch). Garay et al. [21] showed that if atomic multi-send (along with a
setup for digital signatures) is assumed, then the broadcast protocol from Dolev
and Strong [19] UC-realizes broadcast (without guaranteed termination) in the
presence of an adaptive adversary who corrupts any number of parties. Hence,
if there exist a protocol for realizing [Fms-auth]

NT in the synchronous model, i.e.,
in the {Fclock,Fbd-auth}-hybrid world, with corrupted majority and adaptive
adversary, then one could also realize broadcast in this model, contradicting the
impossibility result from [24]. ut

The above lemma implies that the traditional notion of “synchronous compu-
tation with rushing” cannot be, in general, achieved in the UC model unless some
non-trivial property is assumed on the communication channel. Yet, [Fms-auth]

NT

can be UC-realized from {[Fbd-auth]
NT, [Fcom]

NT}, where Fcom denotes the stan-
dard UC-commitment functionality [13]. The idea is the following: In order to
simultaneously multi-send a vector (x1, . . . , xn) to the parties p1, . . . , pn, the
sender sends an independent commitment on xi to every recipient pi, who ac-
knowledges the receipt (using the channel [Fbd-sec]

NT). After receiving all such
acknowledgments, the sender, in a second round, opens all commitments. The
functionality Fcom ensures that the adversary (unless the sender is corrupted
in the first round) learns the committed messages xi only after every party has
received the respective commitment; but, from that point on, A can no longer
change the committed message. For completeness we state the above in the fol-
lowing lemma.

Lemma 8. There is a synchronous {[Fbd-auth]
NT, [Fcom]

NT}-hybrid protocol that
UC-realizes [Fms-auth]

NT.

Using Lemmas 7 and 8, and the fact that the delayed relaxation of any
F can be realized in the F-hybrid model, we can extend the result of [13] on
impossibility of UC commitments to our synchronous setting.
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Corollary 1. There exists no protocol which UC-realizes the commitment func-
tionality Fcom in the {Fbd-auth,Fclock}-hybrid model.

5 Existing Synchronous Models as Special Cases

In this section, we revisit existing models for synchronous computation. We show
that the Fsyn-hybrid model as specified in [10] and the Timing Model from [26]
are sufficient only for non-terminating computation (which can be achieved even
in a fully asynchronous environment). We also show that the models of [34]
and [25] can be expressed as special cases in our model. Many details are omitted;
we refer to the full version of this paper [27] for a complete treatment.

5.1 The Fsyn-Hybrid Model

In [10], a model for synchronous computation is specified by a synchronous net-
work functionality Fsyn. On a high-level, Fsyn corresponds to an authenticated
network with storage, which proceeds in a round-based fashion; in each round r,
every party associated to Fsyn inputs a vector of messages, where it is guaran-
teed that (1) the adversary cannot change the message sent by an honest party
without corrupting this party, and (2) the round index is only increased after
every honest party as well as the adversary have submitted their messages for
that round. Furthermore, Fsyn allows the parties to query the current value of
r along with the messages of that round r.
Fsyn requires the adversary to explicitly initiate the round switch; this allows

the adversary to stall the protocol execution (by not switching rounds). Hence,
Fsyn cannot be used for evaluating a non-trivial6 function f with guaranteed
termination: because we require termination, for every protocol which securely
realizes Fsfe and for every adversary, the environment Z which gives inputs to
all honest parties and issues sufficiently many fetch requests has to be able to
make π generate its output from the evaluation. This must, in particular, hold
when the adversary never commands Fsyn to switch rounds, which leads to a
contradiction.

Lemma 9. For every non-trivial n-party function f and for every round func-
tion Rnd there exists no Fsyn-hybrid protocol which securely realizes Ff,Rndsfe with
guaranteed termination.

The only advantage that Fsyn offers on top of what can be achieved from
(asynchronous) bounded-delay channels is that Fsyn defines a point in the com-
putation (chosen by A) in which the round index advances for all parties simulta-
neously. More precisely, denote by F−syn the functionality that behaves as Fsyn,
except for a small modification upon receiving the (Advance-Round)-message:
F−syn advances the round, but, for each party, allows the adversary to further
delay the output (initially, the (receive)-requests of pi are still answered with
6 Recall that a non-trivial function is one that cannot be computed locally (cf. [28]).
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the previous round messages). This is only a mild relaxation of the functional-
ity: the adversary can delay the delivery of the new messages, but the important
property that the messages are “committed” by the time of the round switch is
preserved.7

The functionality F−syn can be realized by a protocol using asynchronous
channels with eventual delivery. This protocol follows the ideas of [2,26]: In each
round r, each party pi sends a message to all other parties. After receiving
messages from all pj , pi sends an acknowledgment to all pj . Once all such ac-
knowledgments have been received, pi prepares the messages received in that
round for local output (upon request) and starts the next round (as soon as
messages have been provided as local input). This proves the following lemma.

Lemma 10. There exist a protocol that UC-realizes the functionality F−syn in
the Fbd-smt-hybrid model.

5.2 The Timing Model

The “Timing model” [23,26] integrates a notion of time into the protocol exe-
cution by extending the model of computation. Each party, in addition to its
communication and computation tapes, has a clock tape that is writable for
the adversary in a monotone and “bounded-drift”-preserving manner: The ad-
versary can only increase the value of the clocks, and, for any two parties, the
distance ε of their clocks’ speed (drift) at any point in time is bounded by a
known constant. The value of a party’s clock-tape defines the local time of this
party. Depending on this time, protocols delay sending messages or time-out if
a message has not arrived as expected. We formalize this modeling of time in
UC in the following straightforward manner: We introduce a functionality Ftime
that maintains a clock value for each party and allows the adversary to advance
this clock in the same monotone and “bounded-drift”-preserving way. Instead of
reading the local clock tape, Ftime-hybrid protocols obtain their local time value
by querying Ftime.

Lemma 11 shows that Ftime can be realized from fully asynchronous authen-
ticated communication. The idea of the proof is the following: The protocol τ
that realizes the functionality Ftime from pairwise authenticated channels main-
tains, for each party pi, a local integer variable ti that corresponds to pi’s local
time. Using the authenticated network, the parties ensure that the local time
values increase with bounded drift. Together, Lemmas 11 and 12 demonstrate
that “timed” protocols cannot UC-realize more functionalities than non-“timed”
protocols, which is consistent with [26, Theorem 2] and implies that the Timing
Model does not allow for computation with guaranteed termination.

Lemma 11. Let P be a player set and ε ≥ 1. The functionality Ftime(P, ε) can
be UC-realized from pairwise authenticated channels Fauth.
7 The delay can only be detected if the parties have access to a channel which deliv-
ers faster than the specified delay. The parties overcome this slackness by issuing
(receive)-queries until they obtain the desired output.
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In contrast to Fsyn, which “lives” in the UC framework, security statements
in the Timing Model cannot be automatically transferred to the UC setting.
Indeed, there is a “type-mismatch” between functionalities/protocols in the two
frameworks, which we resolve by the following idea inspired by [3,30,32]: A func-
tionality F in the timing model is compiled to a functionality in UC which
behaves exactly as F but ensures that the interfaces are compatible with the UC
model of computation. On a high-level, the functionality compiler TT (·) works
as follows: TT (F) behaves as F, but on any input from an honest party it notifies
the adversary (without leaking the contents). Whenever F outputs a value y to
some party, TT (F) issues a (private) delayed output y instead.

Lemma 12 then shows that any security statement about a functionality F
in the Timing Model can be translated into a statement about TT (F) in the
{Ftime,Fauth}-hybrid model (in UC). The translation is both constructive and
uniform, i.e., we describe a protocol compiler CT (·) that translates a protocol in
the Timing Model into a corresponding one in the {Ftime,Fauth}-hybrid model.

Lemma 12. For an arbitrary functionality F and a protocol π in the Timing
Model, π securely realizes F (in the Timing Model) if and only if the compiled
protocol CT (π) UC-realizes TT (F) in the {Ftime,Fauth}-hybrid model in the pres-
ence of a static adversary.

5.3 Models with Explicit Round-Structure

Nielsen’s framework [34]. The framework described in [34] is an adaptation
of the asynchronous framework of [12] to authenticated synchronous networks.
While the general structure of the security definition is adopted, the definition
of protocols and their executions differs considerably. For instance, the “subrou-
tine” composition of two protocols is defined in a “lock-step” way: the round
switches occur at the same time. Similarly to our bounded-delay channels, mes-
sages in transfer can be replaced if the sender becomes corrupted. Lemma 13
allows to translate, along the lines of Section 5.2, any security statement in
the model of [34] into a security statement about a synchronous protocol in
the {Fclock,Fbd-auth}-hybrid model. As in the previous section, the transla-
tion is done by a functionality compiler TN (·) that resolves the type-mismatch
between the functionalities in UC and in [34], and a corresponding protocol com-
piler CN (·). We emphasize that the converse statement of Lemma 13 does not
hold, i.e., there are UC statements about synchronous protocols that cannot be
modeled in the [34] framework. For instance, our synchronous UC model allows
protocols to use further functionalities that run mutually asynchronously with
the synchronous network, which cannot be modeled in [34].

Lemma 13. For an arbitrary functionality F and a protocol π in [34], π securely
realizes F (in [34]) if and only if the compiled protocol CN (π) UC-realizes TN (F)
in the {Fclock,Fbd-auth}-hybrid model.
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Hofheinz and Müller-Quade’s framework [25]. The framework of [25] also models
authenticated synchronous networks based on the framework of [12], but the
rules of the protocol execution differ considerably: The computation proceeds in
rounds, and each round is split into three phases. In each phase, only a subset
of the involved ITIs are activated, and the order of the activations follows a
specific scheme. The adversary has a relaxed rushing property: while being the
last to specify the messages for a round, he cannot corrupt parties within a
round. This corresponds to a network with guarantees that are stronger than
simultaneous multi-send: once the first message of an honest party is provided
to the adversary, all messages of honest parties are guaranteed to be delivered
correctly.8 We model this relaxed rushing property in UC by the functionality
Fms+ (cf. [27]), which is a modified version of Fms and exactly captures this
guarantee. As before, we translate the security statements of [25] to our model
(where Fms+ is used instead of Fauth) through a pair of compilers (TH(·), CH(·)).

Lemma 14. For an arbitrary functionality F and a protocol π in [25], π securely
realizes F (in [25]) if and only if the compiled protocol CH(π) UC-realizes TH(F)
in the {Fclock,Fms+}-hybrid model.

6 Conclusion

We described a modular security model for synchronous computation within
the (otherwise inherently asynchronous) UC framework by specifying the real-
world synchrony assumptions of bounded-delay channels and loosely synchro-
nized clocks as functionalities. The design principle that underlies these func-
tionalities allows us to treat guaranteed termination; previous approaches for
synchronous computation within UC either required fundamental modifications
of the framework (which also required re-proving fundamental statements) or
did not allow to make such statements altogether. Given this model, we revis-
ited basic results from the literature on synchronous protocols, formalizing and
proving them within the UC framework. Finally, we showed that previous spe-
cialized frameworks can be cast as special cases of our model by introducing
network functionalities that provide the guarantees formalized in those models.
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