
Reasoning About Public-Key Certification:

On Bindings Between Entities and Public Keys?

Reto Kohlas Ueli Maurer

Department of Computer Science
Swiss Federal Institute of Technology (ETH)

CH-8092 Zürich, Switzerland
{kohlas,maurer}@inf.ethz.ch

Abstract. Public-key certification is of crucial importance for advanc-
ing the global information infrastructure, yet it suffers from certain am-
biguities and lack of understanding and precision. This paper suggests a
few steps towards basing public-key certification and public-key infras-
tructures on firmer theoretical grounds. In particular, we investigate the
notion of binding a public to an entity.

We propose a calculus for deriving conclusions from a given entity Alice’s
(for instance a judge’s) view consisting of evidence and inference rules
valid in Alice’s world. The evidence consists of statements made by public
keys (e.g., certificates, authorizations, or recommendations), statements
made physically towards Alice by other entities, and trust assumptions.
Conclusions are about who says a statement, who owns or is committed
to a public key, and who transfers a right or authorization to another
entity, and are derived by applying the inference rules.

1 Introduction

1.1 Motivation

In recent years, cryptography has become a key technology for digitizing business
processes, and this development is going to continue both with increased intensity
and with global impact. While technical aspects of cryptographic mechanisms
(security and efficiency of cryptographic algorithms, standardization of APIs and
platforms, etc.) have received substantial attention in the past years, a precise
understanding of their role in business processes is still in development.

A key aspect that is not precisely understood is the notion of binding a public
key to an entity in order to achieve authenticity and/or non-repudiation. This
paper’s contribution is to propose some initial steps in the direction of a formal
understanding of the role of such bindings and of digital signatures in a global
public-key infrastructure (PKI).

? In IEEE Journal on Selected Areas in Communications, vol. 18, no. 4, Apr, 2000.

1.2 Previous Work

There exists a large body of literature on formal methods related to information
security (e.g. [8, 3, 18, 30, 15, 9, 7, 29]). Much of this research is aimed at analyzing
and designing protocols or security mechanisms, most importantly bilateral au-
thentication protocols. In contrast, the goal of the formal approach taken in this
paper is to illustrate a number of important points in the context of public-key
certification that have previously not been made precise. Our calculus models
desirable conclusions when using digital signatures and public-key certificates
as evidence and hence contributes to a more precise understanding of what one
tries to achieve with a PKI.

Previous Work on PKIs. From a high-level point of view, a possible classifi-
cation of problem areas and research contributions related to PKIs is as follows:

– Certificate format and content. It has been recognized that PGP- and X.509-
certificates are not well-suited for electronic commerce, and several research
efforts have been made to define new certificate formats and semantics [12,
13, 19, 16, 11].

– Revocation. One particular area of interest is to design efficient mechanisms
for withdrawing public keys or certificates that have become invalid for a
certain reason [26, 14, 23, 17, 29, 24, 22].

– Name spaces. It is non-trivial to establish and implement a global, context-
and application-independent naming scheme as in the X.500 recommen-
dation. To avoid this problem, SDSI proposes the linking of local name
spaces [27, 2].

– Trust models and uncertainty management. Most evidence in real life is to
some degree uncertain. It can therefore be desirable to model uncertainty
by assigning confidence values to evidence and conclusions, in particular
regarding the trustworthiness of entities.1 Similarly, the reliability of the
identification underlying certification can depend on the procedure that is
used. The term trust model is often used to refer to models and techniques
for dealing with uncertainty in these contexts [25, 32, 5, 4, 10, 31, 20, 21, 6].

– Information systems aspects. A global PKI will be a complex distributed
information system whose design and implementation are a research area of
independent interest.

Notions of Bindings Between Entities and Public Keys. This paper’s
contributions should be seen as an extension of the work in the first of the above
research areas.

In the literature on public-key certification, “binding” is a term that is often
used to indicate that a public key represents an entity. A digitally signed state-
ment that asserts a binding between an entity and a public key is sometimes
1 In PGP for instance, trustworthiness can be estimated by five different values: (un-

known, no trust, marginally trusted, fully trusted, ultimate trust)

called an “identity-based certificate” [19], but the exact nature of the binding is
often unclear. We summarize different notions of bindings in the literature.

In X.509 [1], a public key is bound to the entity if the entity “possesses” (or
controls or owns in our terminology) the public key. It is expected explicitly that
the key owner keeps the secret key confidential. It is unclear whether a X.509
certificate should be interpreted as an assertion by the certificate issuer that the
entity controls the contained public key or simply claimed that it controls the
key. It is further unclear to what extent the key owner was instructed by the
certification authority to assure that the secret key remains confidential and to
what extent he or she will be liable for messages (or statements according to our
terminology) signed by the secret key.

“A PGP public-key certificate is, in essence, a public key together with a
user ID testifying that the user ID associated with this public key is valid” [28].
It is not specified in the documentation when a public key is valid for an entity,
and the notion of binding is left unspecified. Common practice of PGP users is
to issue a certificate when another user claims ownership of a key.2

SDSI [27, 19] explicitly assumes that every key is controlled by at most one
entity; hence the binding of SDSI certificates is similar to that of X.509 certifi-
cates. SPKI certificates are sometimes called authorization-based certificates [13,
19]. SPKI also explicitly assumes exclusive ownership of the keys. A prominent
example in SPKI is that an issuer (i.e., a public key) delegates an authorization
to another key. The entity controlling the key can obtain the authorization by
digitally signing the requests. SPKI naming is based on SDSI.

Lampson, Abadi, Burrows, and Wobber [18] model, among other things, the
role of public-key certificates and certification authorities (possibly organized
hierarchically) in the context of access control. Because the focus is on access
control, where the access control mechanism is trusted by default, trust is in
this paper not a resource explicitly expressed. The only type of binding between
public keys and an entities is the “speaks for” relation, meaning that if a state-
ment s is digitally signed with a key speaking for the entity, then the entity says
s. It is not considered that different entities might have different views; in par-
ticular, certification authorities are always universally trusted. Thus, all entities
will draw the same conclusions.

1.3 Contributions of this Paper

We illustrate a number of points that have previously not been made explicit:

– Because sole ownership can inherently not be verified (except in a context
where a physical device internally generates and uniquely controls a secret
key), one should not rely on such a claim or assumption. While in certain
contexts exclusive ownership is not needed and a claim of ownership suffices,
in other contexts the liability of a claimed key owner must be made explicit,

2 In general, the user presents a hash value (the “fingerprint”) of the public key to the
introducer.

making it the owner’s interest to be and remain the sole owner, i.e. to protect
the secret key.

For instance, in the case of encryption and signature keys, an entity (say
Alice) can be trusted by default to be the exclusive owner of a particular
key. Alice has no interest in claiming false ownership, since otherwise an-
other entity could sign in Alice’s name or decrypt messages sent to Alice,
which, if it were desirable for Alice for some reason, Alice could also achieve
by performing herself the operations requiring the secret key on behalf of
another entity.

In contrast, in a legal context a claim by Alice to be the exclusive key owner
of a signature key is not sufficient evidence; the key could have been intended
for other applications (e.g. PGP), and it would be inappropriate to silently
let the entity be legally bound to statements signed by the key. Rather, Alice
must declare explicitly her intention to use the key in a legal context. We
call such a statement to accept the legal consequences of using a signature
key a commitment of an entity to a key. A commitment to a key can be seen
as a special kind of ownership claim.

– The main role of a certification authority is to make statements, through its
own public key, about statements (claim of ownership or commitment) made
by other entities.

– The role of self-certificates. If a right or privilege is transferred to a key owner
of the signature public key, then Alice’s mere claim of ownership of the key
or the commitment of Alice to the key cannot be used to conclude that Alice
is authorized to receive the right. Rather, Alice must prove ownership of the
key, for instance by digitally signing the statement that Alice is a owner
of the key with the same key. This is a self-certificate. On the other hand,
in contrast to the recommendations made in PGP (e.g. see [28] (p. 97)),
self-certificates do not contribute to drawing conclusions when exchanging
signature or encryption keys.

1.4 Outline

In Section 2 we informally introduce the basic concepts of the calculus, and in
Section 3 we state basic definitions. The inference rules are discussed in Section 4.
The purpose of Section 5 is to illustrate the use of the calculus in a few typical
scenarios. Some open problems and directions for future research are mentioned
in Section 6.

2 Concepts

2.1 Principals: Entities and Public Keys

The two types of principals3 in our model are public-key pairs and entities. A
public-key pair consists of two parts. The public part is used to verify signatures
or to encrypt data. The private part allows to generate digital signatures or
to decrypt data; it must therefore be protected from unauthorized access. For
simplicity, we will refer to public-key pairs by “public keys” or “keys”.

Entities are human beings or legal entities. An entity controls (or owns) the
public key if it can use the public key to decrypt or sign data. In practice,
a public key is controlled through knowledge (e.g. of the secret key or a pass
phrase protecting the secret key), or through possession of a physical token (e.g.
a smart card).

2.2 Statements

In any formal system one defines the basic units of concern, often called formulas,
which can take on different truth values, most often the values true and false.
In our calculus, these basic units are called statements, and the truth values are
valid and not valid rather than true and false, for reasons explained in Section
2.3. The term statement refers (1) to what principals “say”, (2) to the pieces of
evidence, and (3) to what is concluded in the calculus.

One kind of statements that one may wish to conclude is that an entity Alice
made a certain statement s (i.e. Alice said s), in particular in a case where s is
signed by a certain signature public key. This process of deriving the statement
that Alice said s is traditionally known as authentication in the case where an
entity draws this conclusion in her own view. It is also known as non-repudiation
in the case where a legal system (e.g. a court) draws this conclusion or, more
precisely, where an entity takes the court’s view and convinces herself that the
statement Alice said s would be derived by the court from the given evidence.

Note that in the case of non-repudiation, the final goal is often not to conclude
that an entity said something, but rather that a certain privilege, value, or right
(e.g. a payment agreement) has been transferred to another entity. We capture
all of them in concept of a right. Transferring a right is a basic statement.

2.3 Views

The basic idea behind our calculus is that an entity (say Bob) draws conclusions
from his evidence, consisting of statements, by applying certain inference rules.

3 The term “principal” is sometimes used differently in the cryptographic literature.
While in SPKI/SDSI public keys are called principals, in the calculus of Lampson
et al. [18] and [3] all “sources for request” (users, machines, cryptographic keys) are
called principals.

We call the collected evidence and the inference rules of a given entity his view.4

The view reflects Bob’s initial belief from which further believed statements can
be derived. The fact that a statement s is in Bob’s view does not imply that it is
true in an absolute sense, only that in Bob’s context it is reasonable to make this
assumption. Similarly, the fact that s is not in Bob’s view does not mean that s
is false; it could be that Bob simply does not pay attention to s. Statements in
an entity’s view or derived from it according to the inference rules are therefore
called valid rather than true. All statements that cannot be derived could be
called “not valid” to define the second truth value, but this term will not be
used.

The views (beliefs) of different entities are generally different. Trust relations
in particular can be subject to an entity’s experience, context, or policy. For in-
stance, one can think of the legal system as consisting of a certain agreed-upon
and published set of rules and statements (when neglecting many aspects related
to the fact that not everything can be formalized and that human beings (e.g.
judges) play an important role.) In a dispute, these statements and rules can
be taken into a judge’s view. Such statements could for instance be about the
trustworthiness of certain legally or otherwise appointed certification authori-
ties. An entity must therefore adopt a different view depending on whether the
conclusions should be convincing only for herself or for a legal entity, say a judge.

3 Definitions

We clearly distinguish between the syntactic definitions of our calculus (which
can be glanced through in a first reading) and the meaning of the statements.

3.1 Syntactic Definitions

Let Ke and Ks denote the (not necessarily distinct) sets of encryption public
keys and signature public keys, respectively, and let K denote denote the set of
all keys: K = Ke ∪Ks. Let E be the set of entities. The set of principals consists
of the public keys and entities and is denoted by P : P = E ∪K. By R we denote
the set of rights. Elements of a set are written in small letters and variables in
capital letters. Key variables and values carrying as subscript the name of an
entity stand for the key allegedly belonging to the entity.

For describing the syntax of the statements and the rules, we use the Ex-
tended Backus-Naur Formalism (EBNF).5 Each statement consists of a prede-
fined name , together with a list of arguments in parenthesis. Each argument is
4 The concept of a view was introduced in [20], and four different statements have been

defined. In contrast, we recursively define a set of statements. Moreover, because
different entities might interpret the evidence in different ways, also inference rules
are part of a view.

5 AB stands for the concatenation of the expressions A and B, A|B for the the alter-
native between A and B, and {A} for the repeated concatenation of A (including
the empty word). Let element(T) stand for an element of a set T and variable(T)
for a variable of type T (a type is a set).

a term of a certain type. All statements are in prefix notation, with exception
of the statement says.
Definition 1.

term(T) = element(T) | variable(T)
statement = own(term(E), term(K)) |

transfer(term(E), term(E ∪ Ks), term(R)) |
term(E ∪ Ks) says statement |
commit(term(E), term(Ks), statement) |
trust(term(E), statement)

inference-rule = “〈”statement{“,”statement}“`”statement“〉”

For convenience, we allow an equivalent notation for rules:

inference-rule =
statement{“,”statement}

statement
Extending the above definition (this can be seen as syntactic sugar), we

interpret a statement in which a set of values of the corresponding type (rather
than a single term) is used as an argument, to be the set of statements resulting
from plugging in, one by one, every element of the set.

Definition 2. The view of an entity a, denoted by Viewa, is a set consisting of
statements and inference rules. ◦
The following definitions describe the mechanism of deriving a statement from
a view.

Definition 3. Let V be a variable of type T occurring in the statement s and
let v be an element in T . Let W be a variable of the same type as V . Then
s[V = v] denotes the statement that is obtained by replacing all occurrences of
V in s by v (instantiation of V). Similarly, if s is a statement in which W does
not occur, then s[V = W] is the statement where V is renamed to W (variable
substitution). ◦

Definition 4. Let s1, . . ., si be statements. A variable assignment I for an
inference rule 〈s1, s2, . . . , si−1 ` si〉 maps each variable occurring in the
inference rule to an element of the corresponding type. sIj is the statement that
is obtained by replacing all occurrences of the variables in sj by the values
specified in I. ◦

Definition 5. A statement is valid in Viewa if it is either contained in Viewa or
if it can be derived from Viewa by repeated application of the inference rules in
Viewa. More precisely,

– All statements in Viewa are valid.
– Let V be a variable of type T occurring in s, let W be a variable of the same

type not occurring in s, and let v be any element of T . If s is valid, then the
statements s[V = v] and s[V = W] are also valid.6

6 Hence if an argument is a variable, all the occurrences of the variable are universally
quantified (∀).

– Let s1, . . ., si be statements. If for a rule of the form 〈s1, . . . , si−1 ` si〉 in
Viewa there is a variable assignment I such that sIj is valid for j = 1, . . . , i−1,
then sIi is also valid. ◦

Example. We illustrate the mechanisms of variable instantiation and variable
substitution in a simple example. Note that in the examples of Section 5, these
formal steps are not shown explicitly. Consider the following view:

ViewA = { 〈X says S, trust(X, S) ` S〉,
trust(b, trust(Y, X says own(X, K))),
b says trust(c, Y says own(Y, K)) }

One can derive trust(c, X says own(X, K)) by the following sequence of applica-
tion of Definition 5.

– trust(b, trust(Y, X says own(X, K))) is valid, because it is in the view.

– trust(b, trust(Y, X says own(X, K)))[Y =c] = trust(b, trust(c, X says own(X, K)))
is valid.

– trust(b, trust(c, X says own(X, K)))[X=Y] = trust(b, trust(c, Y says own(Y, K)))
is valid.

– The inference rule 〈X says S, trust(X, S) ` S〉 can now be applied. Let X = b
and S = Y says own(Y, K) be a variable assignment of the rule. The state-
ments trust(b, trust(c, Y says own(Y, K))) and b says trust(c, Y says own(Y, K))
are valid and therefore trust(c, X says own(X, K)) is also valid.

3.2 Meaning of Statements

We now discuss the meaning of the statements. We only describe the case where
all arguments are elements of a set (x ∈ E , k ∈ K, ks ∈ Ks, e ∈ E ∪ Ks,
r ∈ R), rather than variables. The symbol s stands for a specific statement.
If a statement contains variables as arguments, the meaning is implied by the
meaning for specific values through the above definition of validity. Variable
substitutions do not change the meaning of a statement.

trust(x, s) Entity x is trustworthy with respect to the statement s. The statement
trust(x) means that x is trustworthy with respect to all statements.

ks says s The statement s is digitally signed with the signature key ks. We
assume that every entity has a trusted computing base for checking
digital signatures, i.e., every entity can verify whether ks says s is
valid.

x says s An entity x can say s by a variety of mechanisms. Saying s can mean to
pronounce s, to write s on a piece of paper, to type s into a computer,
to initiate a process that generates a string corresponding to s, or
to create any other unique representation of s. Note that the act of
signing s is not an act of saying s but rather of creating evidence for
other entities to conclude that x says s.
Note that for instance in authentication protocols (e.g., for access con-
trol), it is important to know that a statement is fresh. In contrast to
the BAN logic, it is not the goal of this paper to model authentica-
tion protocols, and hence freshness is not modeled. However, it is a
possible extension of this work to include time aspects like freshness.

own(x, k) Entity x is an exclusive owner of the public key k or, equivalently, x
solely controls the public key k in the sense that he can perform any
operation requiring access to the secret key.

commit(x, ks, s) Entity x is committed to the signature public key ks with respect
to statement s. A commitment of x to ks with respect to s
means that x agrees to be liable in a legal sense to have said
s, provided s is digitally signed with ks. commit(x, ks) stands
for the statement that x is committed to ks with respect to all
statements.

transfer(x, e, r) Entity x delegates a right r to e (or owes a right to e). If e is
a signature public key ks, then transfer(x, ks, r) means that the
right is delegated to an entity owning the public key ks.7

4 Inference rules

Throughout the paper, K ∈ Ke ∪ Ks, Ks ∈ Ks and Ke ∈ Ke are variables
standing for any public key, for a signature public key and for an encryption
public key, respectively. Similarly, X, Y ∈ E , E ∈ E ∪ Ks, and R ∈ R are
variables for an entity, for an entity or a signature public key, and for a right,
respectively. Furthermore, S is a variable of type S, where S is the set of all
syntactically correct statements.
We introduce inference rules that illustrate the conclusions that a can draw
from the statements contained in her view Viewa. We discuss rules for using
7 In fact, a right could also be delegated to an encryption key: an entity can prove

ownership by challenge-response protocol.

trust and rules applicable in the two settings of bilateral communications and
legally binding statements. We do not claim in any sense that the rules proposed
here are the only reasonable way for an entity to interpret the evidence. The rules
might for instance differ from one legal environment to another; as explained in
the previous section, we therefore allow the rules to be part of an entity’s view.

4.1 Trust

Trust can be seen as a basic mechanism which allows one entity to believe a
statement made by another. If one trusts X on S, and if X says S, then one has
reason to believe S. Note that the statement X says S makes no sense because
it means that every entity says every statement. However, it makes sense to use
it within a rule because S will always be instantiated to a concrete statement or
a set of statements.
Rule 1a.

trust(X, S), X says S

S

One can have a more detailed understanding of trust. In the BAN logic for
instance, a server cannot only be trusted to provide the correct keys, but also
to generate good keys.
Trust is a fundamental and rare resource. Many of the trust relations used in
real life are not based on personal experience but rather on explicit or implicit
recommendations, a concept first formalized in [4]. A recommendation is a state-
ment of an entity about the trustworthiness of another entity. a could for in-
stance recommend b for making statements about the ownership of keys: a says
trust(b, own(Z, Ks)). An entity must explicitly be trusted to issue recommenda-
tions, otherwise the recommendation cannot be used as evidence to draw further
conclusions.

4.2 Bilateral Communication

Assume that one wants to encrypt a message for X or verify whether a digitally
signed message has been sent by X. In both cases, one needs to establish that
X eexclusively owns a certain key. We argue that ownership need not be proven
(in fact sole ownership cannot be proven), but what is needed is a statement by
X that he solely owns the key. By making a false claim of ownership (either for
a key not controlled or not exclusively controlled), X cannot achieve more than
what he could achieve by other means. Namely, instead of violating secrecy by
making a false claim of ownership for an encryption public key, X could achieve
the same goal by revealing the contents of an encrypted (for X) message to
another entity. Similarly, X could sign a message provided by another entity,
thus violating authenticity. Hence, if X says that he solely controls K, one can
derive that K is exclusively owned by X.
Rule 2a.

X says own(X, K)
own(X, K)

Note that this rule could be replaced by the statement trust(X, own(X, K)). If
one believes that X solely owns the signature key Ks, and if there is a statement
S digitally signed with Ks, then one has reason to believe that X says S:
Rule 2b.

own(X, Ks), Ks says S

X says S

Similarly, if one believes that X solely owns the encryption key Ke, then one can
use Ke to encrypt a message for X . However, secrecy is not captured as a concept
in this first version of our calculus, and hence there is no rule corresponding to
Rule 2b.

4.3 Commitments and Non-Repudiation

As has been recognized by the legislative bodies issuing digital signature legis-
lation, one has to be very cautious when taking digital signatures as evidence in
a legal sense. For one thing, there are various technical risks (key compromise
or system misuse due to flaws and bugs), cryptographic risks (e.g. the discovery
of a fast factoring algorithm), and risks due to incompetence and negligence by
the users.
On the other hand, there is also the problem that ownership statements are
strongly context-dependent, and that this is not reflected in previous technical
proposals for public-key certification. For instance, the statement by X that
he controls a certain PGP public key Ks cannot be used as evidence that X
agrees in a legal sense to be liable for statements signed by Ks. Rather, X must
declare explicitly his intention to use the key in a legal context and, furthermore,
for which kinds of statements (e.g. for any statements implying liability up to
$1000). We call such a statement to accept liability for statements made by a
signature key a commitment of an entity to the key. A commitment by X to a
signature key Ks with respect to the statement S can be seen as a special kind
of ownership claim.8

Rule 3a.
X says commit(X, Ks, S)

commit(X, Ks, S)

Rule 3b.
commit(X, Ks, S), Ks says S

X says S

Note that in a legal context there will be a restriction of what constitutes “say-
ing” in our sense. In particular, the statement of being committed must be made
in a specific way (e.g. by an ordinary signature on a paper contract).

8 Note that by replacing commit(X, Ks, S) with own(X, Ks), Rules 3a and 3b exactly
correspond to Rules 2b and 2a.

4.4 Transfer of Rights

In many legal scenarios, the statement of interest is not whether an entity X
said something, but whether X delegated a right to another entity Y . A right is
transferred from X to E if X says so.
Rule 4a.

X says transfer(X, E, R)
transfer(X, E, R)

Privacy and anonymity are increasingly important issues in electronic com-
merce. It will become more and more common to transfer privileges to a key
or pseudonym, without knowing the identity of the person controlling the key
except in case of a dispute (for an example, see Section 5). Therefore one needs
a mechanism for a key owner to claim the right transferred to a public key. Note
that if a right is reproducible (e.g., access to a database), then several entities
could control the public key. For rights that must inherently be restricted to one
receiving entity (e.g., a payment), it must be assured in the first place by the
receiving entity that the rights are transferred to a key it solely owns.
Rule 4b.

transfer(X, Ks, R), own(Y , Ks)
transfer(X, Y , R)

One possibility to prove ownership for redeeming a right is a self-certificate, i.e.,
a statement that is digitally signed with Ks and asserts who the key owner of
Ks is. Only a key owner of Ks can issue a self-certificate. One can postulate the
rule that a self-certificate proves ownership of a key, i.e. the rule
Rule 4c.

Ks says own(Y , Ks)
own(Y , Ks)

However, this rule makes sense only in the context of redeeming a right trans-
ferred to Ks, but of course not in the context of bilateral communication. An
attacker could attach, by a self-certificate, an arbitrary identity to a public key
it generated, and hence this statement should not be applicable in that context.
In the sequel, we denote by

IRP = {1a, 1b, 2b, 2a}

the set of inference rules applicable in a private or bilateral scenario and by

IRL = {1a, 1b, 3a, 3b, 4a, 4b, 4c}

the rules that can be applied in a legal context.

5 Scenarios

We illustrate our rules on some concrete scenarios. The first example shows var-
ious ways in which an entity can derive that a certain public key is owned by a

certain entity. The purpose of the second example is to give a simplistic and ide-
alized framework for concluding digital contracts (e.g., for electronic commerce).
In the third scenario an entity delegates a right to a key owner, without knowing
the identity of the key owner.
In order to keep the examples readable, we will not explicitly show the variable
instantiations and substitutions made in the derivations. Instead, we only show,
for every application of an inference rule, the instantiated preconditions and the
consequence of the rule, separated by the symbol ⇒ to indicate that the latter
follows from the former.

5.1 Exchange of Public Keys for Authenticating and Encrypting
Mail

Alice (denoted by a) wants to check whether a digitally signed e-mail message
(which contains the message s) has been sent by Bob (denoted by b). Since the
mails are for private use only, a will not require b to commit to the key ks

b . In
order to apply Rule 2a, a must somehow derive the statement b says own(b, ks

b).
This can happen in various ways.

Exchange of Public Keys by Non-Digital Means. a could directly obtain
b’s public key ks

b from b. a could meet b in person, or b could provide his key
during a telephone call; in this case a can verify that b says own(b, ks

b) is valid.
Assume that a later gets the digitally signed message s. Thus, her view contains
the following two statements.

Viewa = { ks
b says s, b says own(b, ks

b) } ∪ IRP

a can apply the following two rules to derive b says s.

b says own(b, ks
b) ⇒ own(b, ks

b) (2a)
own(b, ks

b), ks
b says s ⇒ b says s (2b)

a could also rely on the statements of entities she trusts in order to derive b says
own(b, ks

b). In the following, let

s1 = X says own(X, Ks)

If her friend Carol (c) says that b says own(b, ks
b), and if a trusts c to provide the

keys of other entities (i.e., c is trusted on s1), a can authenticate b’s key.

Viewa = { ks
b says s, c says b says own(b, ks

b), trust(c, s1) } ∪ IRP

The statement trust(c, s1) means that c is trusted on the statements that some
entity X has claimed exclusive ownership of some key Ks. Thus c is trusted on
b says own(b, ks

b) (variable instantiation), and because c says b says own(b, ks
b) is

valid in a’s view, a can apply Rule 1a to derive the statement b says own(b, ks
b).

From this, a can apply the same two rules as above to conclude that b says s.

Certificates and Certificate Chains. Instead of making the statement c says
b says own(b, ks

b) directly towards a, this is achieved, in a typical scenario, with
a certificate containing this statement. Of course, we also need the statement c
says own(c, ks

c).

Viewa = { ks
b says s, ks

c says b says own(b, ks
b), c says own(c, ks

c),
trust(c, s1) } ∪ IRP

Since c is trusted to provide her own signature key, a concludes own(c, ks
c) by

Rule 2a. Thus, by Rule 2b, a can derive c says b says own(b, ks
b). Finally, a can

again apply the same rules as in the previous view to derive b says s.
Perhaps another friend of Alice, Dave (d), knows that c says own(c, ks

c). If a
trusts him to provide the keys of other entities, and if a has d’s signature key (d
says own(d, ks

d)), a can obtain c’s key.

Viewa = { ks
b says s, ks

c says b says own(b, ks
b), d says own(d, ks

d),
ks

d says c says own(c, ks
c), trust(c, s1), trust(d, s1) } ∪ IRP

Here d issues a certificate for c (digitally signed with ks
d) and c for b (with ks

c).
Since a trusts both c and d to provide the keys of other entities, a can retrieve
the signature key of b. The following sequence of rules is applied:

d says own(d, ks
d) ⇒ own(d, ks

d) (2a)
own(d, ks

d), ks
d says c says own(c, ks

c) ⇒ d says c says own(c, ks
c) (2b)

d says c says own(c, ks
c), trust(d, s1) ⇒ c says own(c, ks

c) (1a)
c says own(c, ks

c) ⇒ own(c, ks
c) (2a)

own(c, ks
c), ks

c says b says own(b, ks
b) ⇒ c says b says own(b, ks

b) (2b)
c says b says own(b, ks

b), trust(c, s1) ⇒ b says own(b, ks
b) (1a)

b says own(b, ks
b) ⇒ own(b, ks

b) (2a)
own(b, ks

b), ks
b says s ⇒ b says s (2b)

Such a scheme where one entity certifies the key of another entity is often referred
to as a certificate chain.
Trust in c could also be established by a recommendation of d for c. d could
for instance recommend c for certifying ownership of keys. In this case, a must
explicitly trust d for recommending other entities.

Viewa = { ks
b says s, ks

c says b says own(b, ks
b), trust(d, s1), trust(d, s2)

ks
d says c says own(c, ks

c), d says trust(c, s1), d says own(d, ks
d) } ∪ IRP

where
s2 = trust(X, Y says own(Y, Ks))

The statement trust(d, s2) stands for a’s trust in d to issue recommendations for
other entities.

Exchanging an Encryption Key. While in some systems (for instance PGP),
the same key is used for signing and encrypting messages, it makes sense to
separate these two functions. The authentication of an encryption key is identical
to the authentication of a signature key, i.e., the statement b says own(b, ke

b) must
be derived.

Self-Certificates. The main purpose of PGP is to encrypt and authenticate
mail messages. There seems to be a misconception about the role of self-certificates.
For instance, [28] suggests to append self-certificates to a public key. However,
as illustrated by the rules, self-certificates do not occur as a precondition of a
rule and are not needed for exchanging encryption and signature keys on a bi-
lateral basis. Hence they can at most mislead an entity a to believe that a key is
b’s, if a draws incorrect conclusions. More precisely, neither the statement b says
own(b, ks

b) nor the statement own(b, ks
b) can be derived from the following view

Viewa = { ks
b says own(b, ks

b) } ∪ IRP

because an impostor e could of course generate a public key ks
e and sign with it

the self-certificate: ks
e says own(b, ks

e).

5.2 A Simple Legal Framework

In the following example we describe an infrastructure allowing two entities to
conclude a contract with digital signatures. A contract can be seen as a transfer
of a right r1 from a to b (transfer(a, b, r1)), and possibly also a right r2 from b to
a (transfer(b, a, r2)). In order to achieve non-repudiation, each entity’s goal is to
be able to derive in the legal system’s view that the other party has transferred
the corresponding right.
Unlike in the scenarios described in Section 5.1, it does not matter for a whether
she believes that a certification authority is trustworthy, but rather whether the
legal system does. It can be assumed that the legal system’s policy and trust
relations, i.e. its view, is clearly specified and publicly known, and that also the
public keys root CAs are publicly known in an authenticated manner.
In the sequel, we adopt the legal system’s (e.g., a judge’s) view who wants to
verify (i.e. derive) the statement transfer(a, b, r1).
It is conceivable that the legislator defining the legal system appoints a set of
distinguished authorities that are trusted by default (i.e. in the legal system’s
view): certification authorities, naming authorities registration authorities, key
revocation authorities (if not part of the CA), etc., subsumed below under the
term CA. In the sequel, let

s1 = transfer(Y, Z, {R|R stands for a cash value up to $1000})
s2 = Y says commit(Y, Ks, s1)

s3 = trust(X, s2).

Note that from a syntactical point of view, s1 is not a statement but stands
for a set of statements. In our scenario, b tries to collect evidence that a owes

him $500. The judge trusts one root certification authority ca1 to license other
certification authorities (this corresponds to the statement trust(ca1, s3) in the
view shown below). Furthermore, he trusts ca1 to correctly certify the keys of
other entities (trust(ca1, s2)). Additionally, the judge believes that ca1 uses ks

1

as its signature key.
Assuming that ca1 has licensed ca2 (ca1 says trust(ca2, s2)), b can retrieve a
digitally signed statement of ca2 asserting that a is committed to ks

a with respect
to s1 (ca2 says a says commit(a, ks

a, s1) The statement ks
a says transfer(a, b, r1)

is in the judge’s view because a signed the contract and b produced the fact as
evidence in the dispute. Thus, the judge’s view is:

Viewjudge = { ca1 says commit(ca1, k
s
1), ks

1 says trust(ca2, s2),
ks
1 says ca2 says commit(ca2, k

s
2), ks

2 says a says commit(a, ks
a, s1),

ks
a says transfer(a, b, r1), trust(ca1, s2), trust(ca1, s3) } ∪ IRL

The following table summarizes the complete sequence of applications of infer-
ence rules for deriving transfer(a, b, r1) in the judge’s view. Note again that it
is irrelevant in this context whether an actual dispute is being resolved by the
judge or whether b convinces himself that in case of a dispute, he would be able
to produce a convincing collection of evidence for transfer(a, b, r1).

ca1 says commit(ca1, k
s
1) ⇒ commit(ca1, k

s
1)

commit(ca1, k
s
1), ks

1 says trust(ca2, s2) ⇒ ca1 says trust(ca2, s2)
ca1 says trust(ca2, s2), trust(ca1, s3) ⇒ trust(ca2, s2)

commit(ca1, k
s
1), ks

1 says ca2 says commit(ca2, k
s
2) ⇒ ca1 says ca2 says commit(ca2, k

s
2)

ca1 says ca2 says commit(ca2, k
s
2), trust(ca1, s2) ⇒ ca2 says commit(ca2, k

s
2)

ca2 says commit(ca2, k
s
2) ⇒ commit(ca2, k

s
2)

commit(ca2, k
s
2), ks

2 says a says commit(a, ks
a, s1) ⇒ ca2 says a says commit(a, ks

a, s1)
ca2 says a says commit(a, ks

a, s1), trust(ca2, s2) ⇒ a says commit(a, ks
a, s1)

a says commit(a, ks
a, s1) ⇒ commit(a, ks

a, s1)
commit(a, ks

a), ks
a says transfer(a, b, r1) ⇒ a says transfer(a, b, r1)
a says transfer(a, b, r1) ⇒ transfer(a, b, r1)

5.3 Transferring a Right to a Key Owner

We sketch a scenario where a delegates a right to a key owner, without knowing
who the key owner is.9 It is likely that a marketplace on the Internet for certain
services involving digital information (e.g. designing clip art, programming a
shell script, etc.) will emerge in the near future. In this context, it may be quite
possible that some of the service providers are known only by a pseudonym which
could typically be the public key itself. The following example illustrates how a
right (e.g. a payment obligation) can be transferred to a public key.
Assume that b, known by the public key ks

b has done a job for a and that a has
written a digital cheque (called r) payable to ks

b . Adopting the judge’s view as

9 This example was first given by C.Ellison in similar form.

in the previous example, b collects the following evidence:

Viewjudge = { ca says commit(ca, ks
1), trust(ca), ks

1 says a says commit(a, ks
a),

ks
a says a transfer(a, ks

b , r) ks
b says own(b, ks

b) } ∪ IRL

The following sequence of derivations convinces b that the evidence is sufficient.

ca says commit(ca, ks
1) ⇒ commit(ca, ks

1) (3a)
commit(ca, ks

1), ks
1 says a says commit(a, ks

a) ⇒ ca says a says commit(a, ks
a) (3b)

ca says a says commit(a, ks
a), trust(ca) ⇒ a says commit(a, ks

a) (1a)
a says commit(a, ks

a) ⇒ commit(a, ks
a) (3a)

commit(a, ks
a), ks

a says a transfer(a, ks
b , r) ⇒ a says transfer(a, ks

b , r) (3b)
a says transfer(a, ks

b , r) ⇒ transfer(a, ks
b , r) (4a)

ks
b says own(b, ks

b) ⇒ own(b, ks
b) (4b)

transfer(a, ks
b , r), own(b, ks

b) ⇒ transfer(a, b, r) (4c)

6 Concluding Remarks and Open Problems

The proposed calculus captures a number of important aspects of public-key
certification, but it is by no means a formalism that could directly be used in a
concrete legal system. However, we hope that it is a possible starting point for
research into formalizing and reasoning about processes in the digital economy.
Many issues remain open including time aspects (e.g. the concept of freshness,
time stamping, etc.), modeling certificate and public-key revocation (more gen-
erally the revocation of any statement), and extending the model to capture
degrees of belief and contradicting evidence.

Acknowledgments

We wish to thank Christian Cachin and Thomas Kühne for interesting discus-
sions and comments, and the anonymous referees for helpful suggestions.

References

1. I. I. S. 9594-8. Information technology, open systems interconnection, the directory,
part 8: Authentication framework, 1990.

2. M. Abadi. On SDSI’s linked local name spaces. In Proceedings of the 10th IEEE
Computer Security Foundations Workshop, pages 98–108. IEEE Computer Society,
1997.

3. M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access control in
distributed systems. ACM Transactions on Programming Languages and Systems,
15(4):706–734, September 1993.

4. T. Beth, M. Borcherding, and B. Klein. Valuation of trust in open systems. In
D. Gollmann, editor, Computer Security - Esorics ’94, volume 875 of Lecture Notes
in Computer Science, pages 3–18. Springer Verlag, Berlin, 1994.

5. M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In Proceed-
ings of the Symposium on Security and Privacy, pages 164–173. IEEE Computer
Society Press, 1996.

6. M. Blaze, J. Feigenbaum, and M. Strauss. Compliance checking in the policymaker
trust management system. In R. Hirschfeld, editor, Financial Cryptography, volume
1465 of Lecture Notes in Computer Science, pages 254–274. Springer Verlag, Berlin,
1998.

7. C. Boyd. Security architectures using formal methods. IEEE Journal on Selected
Areas in Communications, 11(5):694–701, 1993.

8. M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Trans-
actions on Computer Systems, 8(1):18–36, 1990.

9. E. Campbell, R. Safavi-Naini, and P. Pleasants. Partial belief and probabilistic
reasoning in the analysis of secure protocols. In The computer Security Foundations
Workshop V, pages 84–91, 1992.

10. D. Chadwick and A. Young. Merging and extending the PGP and PEM trust
models. IEEE Network Magazine, May 1997.

11. S. Consortium. Basic services, architecture and design,
available at http://www.semper.org/info/index.html. Technical report, SEMPER,
1996.

12. C. Ellison. Establishing identity without certification authorities. In USENIX
Association, editor, 6th USENIX Security Symposium, July 22–25, 1996. San Jose,
CA, pages 67–76. USENIX, July 1996.

13. C. E. et al. SPKI http://www.clark.net/pub/cme/html/spki.html. Internet Draft,
1998. Expires: 16 September 1998.

14. B. Fox and B. LaMaccia. Certificate revocation: Mechanisms and meaning. In
R. Hirschfeld, editor, Financial Cryptography, volume 1465 of Lecture Notes in
Computer Science, pages 158–164. Springer Verlag, Berlin, 1998.

15. J. Glasgow, G. MacEwen, and P. Panagaden. A logic for reasoning about security.
ACM transactions on Computer Systems, 10(3):226–264, 1992.

16. T. M. C. Group. MCG - internet open group on certification and security,
http://mcg.org.br/, 1998.

17. P. Kocher. On certificate revocation and validation. In R. Hirschfeld, editor,
Financial Cryptography, volume 1465 of Lecture Notes in Computer Science, pages
172–177. Springer Verlag, Berlin, 1998.

18. B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in dis-
tributed systems: Theory and practice. ACM Transactions on Computer Systems,
10(4):265–310, November 1992.

19. I. Lehti and P. Nikander. Certifying trust. In H. Imai and Y. Theng, editors,
Proceedings of the first international workshop on Practice and Theory in Public
Key Cryptography, PKC’98, pages 83–98, 1998.

20. U. Maurer. Modelling a public-key infrastructure. In E. Bertino, H. Kurth,
G. Martella, and E. Montolivo, editors, Proceedings 1996 European Symposium
on Research in Computer Security (ESORICS’ 96), Lecture Notes in Computer
Science, Springer, LNCS, pages 325–350, 1996.

21. U. Maurer and P. Schmid. A calculus for secure channel establishment in open
networks. In D. Gollmann, editor, Proc. 1994 European Symposium on Research
in Computer Security (ESORICS‘ 94), volume 875, pages 175–192. Lecture Notes
in Computer Science, 1994.

22. S. Micali. Efficient certificate revocation. Technical report, Technical Memo
MIT/LCS/TM-542b, 1996.

23. M. Myers. Revocation: Options and challenges. In R. Hirschfeld, editor, Financial
Cryptography, volume 1465 of Lecture Notes in Computer Science, pages 165–172.
Springer Verlag, Berlin, 1998.

24. M. Naor and K. Nissim. Certificate revocation and certificate update. Proceedings
of Usenix ’98, pages 217–228, January 1998.

25. M. Reiter and S. Stubblebine. Path independence for authentication in large-scale
systems. Proceedings of the 4th ACM Conference on Computer and Communica-
tions Security, pages 57–66, 1997.

26. R. Rivest. Can we eliminate certificate revocation lists? In R. Hirschfeld, editor,
Proceedings of Financial Cryptography 1998, pages 178–183, 1998.

27. R. Rivest and B. Lampson. SDSI – A simple distributed security infrastructure,
http://theory.lcs.mit.edu/˜cis/sdsi.html. Presented at CRYPTO’96 Rumpsession,
April 1996.

28. W. Stallings. Protect your privacy. Prentice Hall, 1996.
29. S. Stubblebine and R. Wright. An authentication logic supporting synchronization,

revocation, and recency. In SIGSAC: 3rd ACM Conference on Computer and
Communications Security. ACM SIGSAC, 1996.

30. P. Syverson and C. Meadows. A logical language for specifying cryptographic
protocols requirements. In IEEE Conferences on Research in Security and Privacy,
pages 165–180, 1993.

31. R. Yaholem, B. Klein, and T. Beth. Trust relationships in secure systems - a
distributed authentication perspective. In Proceedings of the IEEE Conference on
Research in Security and Privacy, pages 150–164, 1993.

32. P. R. Zimmermann. The Official PGP User’s Guide. MIT Press, Cambridge, MA,
USA, 1995.

