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Abstract. It is well known that two random variables X and Y with the same range can be viewed as being equal
(in a well-defined sense) with probability 1− d(X,Y ), where d(X,Y ) is their statistical distance, which in turn is
equal to the best distinguishing advantage for X and Y . In other words, if the best distinguishing advantage for X
and Y is ε, then with probability 1− ε they are completely indistinguishable. This statement, which can be seen as
an information-theoretic version of a hardcore lemma, is for example very useful for proving indistinguishability
amplification results.
In this paper we prove the computational version of such a hardcore lemma, thereby extending the concept of
hardcore sets from the context of computational hardness to the context of computational indistinguishability. This
paradigm promises to have many applications in cryptography and complexity theory. It is proven both in a non-
uniform and a uniform setting.
For example, for a weak pseudorandom generator (PRG) for which the (computational) distinguishing advantage
is known to be bounded by ε (e.g. ε = 1

2
), one can define an event on the seed of the PRG which has probability

at least 1 − ε and such that, conditioned on the event, the output of the PRG is essentially indistinguishable from
a string with almost maximal min-entropy, namely log(1/(1− ε)) less than its length. As an application, we show
an optimally efficient construction for converting a weak PRG for any ε < 1 into a strong PRG by proving that the
intuitive construction of applying an extractor to an appropriate number of independent weak PRG outputs yields a
strong PRG. This improves strongly over the best previous construction for security amplification of PRGs which
does not work for ε ≥ 1

2
and requires the seed of the constructed strong PRG to be very long.

? An extended abstract of this paper appears in the proceedings of TCC 2010. This is the full version.



1 Introduction

1.1 (Weak) Pseudorandomness

Randomness is a central resource in cryptography. In many applications, true randomness must be replaced
by pseudorandomness, for example when it needs to be reproduced at a second location and one can only
afford to transmit a short value to be used as the seed of a so-called pseudorandom generator (PRG). An
example are cryptographic applications where a key agreement protocol yields only a short key. More gen-
erally, PRGs are a central building block in cryptographic protocols and are used in different applications
where a random functionality (e.g. a uniform random function) must be realized from a short secret key.

The concept of a PRG was first proposed by Blum and Micali [BM82], initiating a large body of lit-
erature dealing with various aspects of pseudorandomness: More formally, a random variable X is said to
be pseudorandom if it is computationally indistinguishable from a uniformly distributed random variable U
with the same range, i.e., no computationally bounded (i.e., polynomial time) distinguisher can tellX and U
apart with better than negligible advantage. In particular, a PRG G : {0, 1}k → {0, 1}` (for ` > k) extends
a uniform random string Uk of length k into a pseudorandom string G(Uk) of length `.

Computational infeasibility is at the core of cryptographic security. In contrast to cryptographic prim-
itives (like a one-way function f ) assuring that a certain value (e.g. the input of f ) cannot efficiently be
computed, the notion of computational indistinguishability is substantially more involved. It is hence not
a surprise that all constructions (cf. e.g. [HILL99,HHR06,Hol06]) of a PRG from an arbitrary1 one-way
function f are too inefficient (in terms of the number of calls to f ) to be of any practical use.

Therefore, it appears much more difficult to propose a cryptographic function that can be believed to be
a PRG than one that can be believed to be a one-way function. As a consequence, a prudent approach in
cryptography is to make weaker assumptions about a concrete proposal for a PRG G. One possible way2 to
achieve this is by considering a so-called ε-pseudorandom generator (ε-PRG), where the best distinguishing
advantage of an efficient distinguisher is not necessarily negligible, but instead bounded by some noticeable
quantity ε, such as a constant (e.g. ε = 0.75), or even a function in the security parameter kmildly converging
to 1 (e.g. 1− 1

p(k) for some polynomial p).3

1.2 Security Amplification of PRGs

SECURITY AMPLIFICATION. In order to deploy some ε-PRG within a particular cryptographic application,
we need to find an efficient construction transforming it into a fully secure PRG. This is an instance of the
general problem of security amplification, which was first considered by Yao [Yao82] in the context of one-
way functions, and has subsequently been followed by a prolific line of research considering a wide range
of other cryptographic primitives.
PREVIOUS WORK. The only known security amplification result for PRGs considers the construction SUMG :
{0, 1}mk → ` (for any m > 1) which outputs

SUMG(x) := G(x1)⊕ · · · ⊕G(xm).
1 i.e. without any particular assumption on the combinatorial structure of the function
2 An alternative approach to modeling a weak PRG is to assume its output to be computationally indistinguishable from a random

variable with only moderate min-entropy. However, this approach does not capture certain failure types, such as a function G
that with some substantial probability may output a constant value. In contrast, the notion of an ε-PRG captures this case. One
of the contributions of this paper is to show a tight relation between these two approaches.

3 An ε-PRG G : {0, 1}k → {0, 1}` is only interesting in the case ` > k + log
(

1
1−ε

)
, as otherwise an unconditionally secure

ε-PRG is given by the mapping x 7→ x‖0log(
1

1−ε ).
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for all inputs x = x1‖ . . . ‖xm ∈ {0, 1}km (with x1, . . . , xm ∈ {0, 1}k). As pointed out in [MT09], Yao’s
XOR-lemma [Yao82,GNW95] yields a direct proof of security amplification for the construction SUM,
and an improved bound can be obtained using the tools from [MT09]. (An independent proof with a weaker
bound was also given in [DIJK09].) Namely, one can show that ifG is an ε-PRG, then SUMG is a (2m−1εm+
ν)-PRG, where ν is a negligible function. Also, the result extends to the case where ⊕ is replaced by any
quasi-group operation ?.

However, this construction has two major disadvantages: First, security amplification is inherently lim-
ited to the case ε < 1

2 . For instance, the security of a PRG with a very large stretch and with one constant
output bit is not amplified by the SUM construction, even if all other output bits are pseudorandom. Sec-
ond, the construction is expanding only when ` > k ·m. Note that this issue cannot be overcome by first
extending the output size of the weak PRG, due to the high security loss in the extension which would yield
an ε′-PRG with ε′ close to one.
OUR CONSTRUCTION. In this paper, we provide the first solution which amplifies the security of an ε-PRG
G : {0, 1}k → {0, 1}` for any ε < 1. Our construction, called concatenate and extract (CaE), takes input
x = x1‖ . . . ‖xm‖r, where x1, . . . , xm ∈ {0, 1}k and r ∈ {0, 1}d, and outputs

CaEG(x) := Ext(G(x1) ‖ . . . ‖G(xm), r) ‖ r,

where Ext : {0, 1}m` × {0, 1}d → {0, 1}n is a sufficiently good strong randomness extractor. In particular,
a good instantiation (for instance using two-universal hash functions or even appropriate deterministic ex-
tractors) allows to achieve n ≈ (1− ε)m ·

[
`− log

(
1

1−ε

)]
, and we show the resulting output length n+ d

to be optimal with respect to constructions combining m outputs of an ε-PRG.
We provide security proofs both in the non-uniform and in the uniform models, which follow as an

application of a new characterization of computational indistinguishability that we present in this paper, and
which we outline in the next section.

Finally, we point out that the idea of concatenating strings with weaker pseudorandomness guarantees
and then extracting the resulting computational entropy was previously used (most notably in constructions
of PRGs from one-way functions [HILL99,Hol06,HHR06]): However, all these previous results only con-
sider individual independent bits which are hard to compute (given some other part of the concatenation),
whereas our result is the first to deal with the more general case of weakly pseudorandom strings.

1.3 A Tight Characterization of Computational Indistinguishability

Let X and Y be random variables with the same range U . Assume that we can show that there exist events
A and B defined on the choices of X and Y by some conditional probability distributions PA|X and PB|Y
such that P[A] ≥ 1 − ε, P[B] ≥ 1 − ε, and X and Y are identically distributed when conditioned on A
and B, respectively. Then this implies that the advantage ∆D(X,Y ) := |P[D(X) = 1]− P[D(Y ) = 1]|
is upper bounded by ε for every distinguisher D. However, is the converse also true? Namely, if the best
distinguishing advantage is upper bounded by ε, do such two events always exist?

An affirmative answer is known to exist if we maximize over all distinguishers: In this case, the best
advantage is the statistical distance

d(X,Y ) :=
1

2

∑
u∈U
|PX(u)− PY (u)| ,

and it is always possible to define two such events A and B by the joint probabilities PAX(u) = PBY (u) =
min{PX(u),PY (u)}. Because d(X,Y ) = 1 −

∑
u∈U min{PX(u),PY (u)}, it is easy to see that P[A] =
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P[B] =
∑

u PAX(u) = 1 − d(X,Y ). This can be interpreted as saying the the random variables X and Y
are equal with probability 1 − ε. A generalization of this property to discrete systems was considered by
Maurer, Pietrzak, and Renner [MPR07].

However, the quantity of interest in the cryptographic setting (as for example in the definition of a PRG)
is the best distinguishing advantage of a computationally bounded (i.e. polynomial-time) distinguisher,
which in general is substantially smaller than the statistical distance d(X,Y ), and hence the above prop-
erty is of no help in the context of computational indistinguishability.

The main technical and conceptual contribution of this paper is a computational version of the above
characterization, which we prove both in the uniform and the non-uniform settings. Roughly speaking,
we show that if the advantage of every computationally bounded distinguisher is bounded by ε (and the
statistical distance may be considerably higher), there exist events A and B occurring each with probability
1− ε such that X and Y are computationally indistinguishable when conditioned on A and B. This can be
seen as a hardcore lemma for the setting of computational indistinguishability, and hence solves, for the case
of random variables, an open question stated by Myers [Mye03].

The security of the aforementioned concatenate-and-extract approach follows then from the simple ob-
servation, due to our characterization, that the output of an ε-PRG can be shown to have high computational
min-entropy with probability 1 − ε, and hence the concatenation of sufficiently many such outputs always
contains enough randomness to be extracted.

1.4 Outline of this Paper

The main part of this paper is Section 3, which is devoted to discussing the characterizations of computa-
tional indistinguishability in terms of events in both the uniform and the non-uniform computational models.
Furthermore, Section 4 is devoted to proving the soundness of the concatenate-and-extract approach for se-
curity amplification of PRGs. All tools employed throughout this paper are introduced in Section 2, where
in particular we discuss the hardcore lemma in the uniform and non-uniform computational models, which
is a central component of our main proofs.

2 Preliminaries

2.1 Notational Preliminaries and Computational Model

NOTATION. Recall that a function is negligible if it vanishes faster than the inverse of any polynomial. We
use both notations poly and negl as placeholders for some polynomial and negligible function, respectively.
In particular, a function γ = 1

poly is called noticeable.
Throughout this paper, we use calligraphic letters X ,Y, . . . to denote sets, upper-case letters X,Y, . . .

to denote random variables, and lower-case letters x, y, . . . denote the values they take on. Moreover, P[A]
stands for the probability of the event A, while we use the shorthands PX(x) := P[X = x], PA|X(x) :=
P[A|X = x], and PX|A(x) := P[X = x|A]. Also, PX , PA|X and PX|A are the corresponding (conditional)

probability distributions, and x $← P is the action of sampling a concrete value x according to the distribution
P. (We use x $← X in the case where P is the uniform distribution on X .) Finally, E[X] is the expected value
of the (real-valued) random variable X . Also, we use ‖ to denote the concatenation of binary strings.

COMPUTATIONAL MODEL. The notation AO(x, x′, . . .) denotes the (oracle) algorithm A which runs on
inputs x, x′, . . . with access to the oracleO. In the asymptotic setting, a uniform algorithm A always obtains
the unary representation 1k of the current security parameter k as its first input and is said to run in time
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t : N → N (or to have time complexity t) if for all k > 0 the worst-case number of steps it takes (counting
oracle queries as single steps) on first input 1k, taken over all randomness values, all compatible additional
inputs and oracles, is at most t(k). In particular, we say that a family of functions F = {fk}k∈N, where
fk : Xk → Yk is efficiently (or polynomial-time) computable if there exists a uniform algorithm which for
every security parameter k computes fk. Finally, we model as usual non-uniform algorithms in terms of
(families of) circuits C : {0, 1}m → {0, 1}n with bounded size.

For ease of notation, we do not make asymptotics explicit in this paper (in particular, we omit the input
1k), despite the formal statements being asymptotic in nature.

2.2 Pseudorandom Generators and Randomness Extractors

DISTANCE MEASURES. The distinguishing advantage of the distinguisherD in distinguishing random vari-
ables X and Y with equal range U is

∆D(X,Y ) := |P[D(X) = 1]− P[D(Y ) = 1]| ,

whereas the statistical distance between X and Y is defined as d(X,Y ) := 1
2

∑
u∈U |PX(u)− PY (u)| =∑

u:PX(u)≤PY (u) PY (u)− PX(u).

PSEUDORANDOM GENERATORS. An efficiently computable function G : {0, 1}k → {0, 1}` is a (t, ε)-
PRG if for all distinguishers D with time complexity t we have ∆D(G(Uk), U`) ≤ ε, where Uk and U` are
uniformly distributed k- and `-bit strings, respectively. (In the non-uniform setting we rather use the notation
(s, ε)-PRG, maximizing over all circuits with size at most s.) Furthermore, we use the shorthands ε-PRG
and PRG for (poly, ε)- and (poly,negl)-PRGs, respectively.
RANDOMNESS EXTRACTORS. A source S is a set of probability distributions, and an ε-extractor for S is
an efficiently computable function Ext : {0, 1}m × {0, 1}d → {0, 1}n such that for a uniformly distributed
d-bit string R, we have d(Ext(X,R), Un) ≤ ε for all m-bit random variables X with PX ∈ S and a
uniformly distributed n-bit string Un. Furthermore, the extractor is called strong if the stronger condition
d ((Ext(X,R), R), (Un, R))) ≤ ε holds.

Also recall that the min-entropy of X is H∞(X) := − log (maxx∈X PX(x)). A two-parameter function
h : {0, 1}m × {0, 1}d → {0, 1}n is called two-universal if P[h(x,K) = h(x′,K)] = 2−n for any two
distinctm-bit x and x′ and a uniform d-bitK. An example with d = m is the function h(x, k) := (x�k)|n,
where � is the multiplication of binary strings interpreted as elements of GF (2m), and |n outputs the first
n bits of a given string. Two-universal hash functions are good extractors:

Lemma 1 (Leftover Hash Lemma [BBR88,ILL89]). For any ε > 0, every two-universal hash function
h : {0, 1}m × {0, 1}d → {0, 1}n is a strong ε-extractor for the source of m-bit random variables with
min-entropy at least n+ 2 log

(
1
ε

)
.

We also note that extractors with smaller seed exist for the source of random variables with guaranteed
min-entropy. We refer the reader to [Sha02] for a survey.
DETERMINISTIC EXTRACTORS. An extractor is deterministic if d = 0, i.e., no additional randomness is
needed. (Note that such extractors are vacuously strong.) A class of sources allowing for deterministic ex-
traction are so-called (m, `, k)-total-entropy independent sources [KRVZ06], consisting of random variables
of the form (X1, . . . , Xm), where X1, . . . , Xm are independent `-bit strings, and the total min-entropy of
(X1, . . . , Xm) is at least k.4 In particular, the following extractor from [KRVZ06] will be useful for our
purposes. (Unconditional constructions requiring a higher entropy rate δ are also given in [KRVZ06].)

4 Note that in this case H∞(X1, . . . , Xm) =
∑m
i=1 H∞(Xi).
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Theorem 1 ([KRVZ06]). Under the assumption that primes with length in [τ, 2τ ] can be found in time
poly(τ), there is a constant η such that for all m, ` ∈ N and all δ > ζ > (m`)−η, there exists a
polynomial-time computable ε-extractor Ext :

(
{0, 1}`

)m → {0, 1}n for (m, `, δ · m`)-total-entropy in-
dependent sources, where n = (δ − ζ)m` and ε = e−(m`)

Ω(1)
.

2.3 Measures and the Hardcore Lemma

GUESSING ADVANTAGES. Let (X,B) be a pair of correlated random variables with joint probability distri-
bution PXB , whereB is binary, and letA be an adversary taking an input in the rangeX ofX and outputting
a bit (i.e., A has the same form as a distinguisher): The guessing advantage of A in guessing B given X is

GuessA(B |X) := 2 · P[A(X) = B]− 1.

In particular, GuessA(B |X) = 1 means that A is always correct in guessing B given X , whereas it always
errs if GuessA(B |X) = −1.5

MEASURES. A measureM on a set X is a mappingM : X → [0, 1]. Intuitively, it captures the notion of
a “fuzzy” characteristic function of a subset of X . Consequently, its size |M| is defined as

∑
x∈XM(x),

and its density is µ(M) := |M|/|X |. Also one associates with each measureM the probability distribution
PM such that PM(x) :=M(x)/|M|, and we say that a random variable M is sampled according toM if

M
$← PM. The following lemma shows that such random variables have high min-entropy, as long asM

is sufficiently dense.

Lemma 2. LetM : X → [0, 1] be a measure with density µ(M) ≥ δ, and let M be sampled according to
M. Then, H∞(M) ≥ log |X | − log

(
1
δ

)
.

Proof. We have PM (x) = M(x)
|M| ≤

M(x)
δ·|X | ≤

1
δ ·

1
|X | due to M(x) ≤ 1, which implies H∞(M) =

− logmaxx∈X PM(x) ≥ log |X | − log(1/δ). ut

THE HARDCORE LEMMA. For a set W , let g : W → Y be a function, and let P : W → {0, 1} be a
predicate. The so-called hardcore lemma shows that, roughly speaking, if GuessA(P (W ) | g(W )) ≤ δ (for
W uniform inW) for all efficient A, then for all γ > 0 there exists a measureM onW with µ(M) ≥ 1− δ
such that GuessA

′
(P (W ′) | g(W ′)) ≤ γ for all efficient adversaries A′ and for W ′ sampled according to

M. This result was first introduced and proven by Impagliazzo [Imp95]. However, his original proof only
ensures µ(M) ≥ 1−δ

2 . The following theorem, due to Holenstein [Hol05], gives a tight version of the lemma
for the non-uniform setting.

Theorem 2 (Non-Uniform Hardcore Lemma). Let g : W → X and P : W → {0, 1} be functions, and
let δ, γ ∈ (0, 1) and s > 0 be given. If for all circuits C with size s we have

GuessC(P (W ) | g(W )) ≤ δ

for W $←W , then there exists a measureM onW (called the hardcore measure) such that µ(M) ≥ 1− δ
and such that all circuits C ′ with size s′ = s·γ2

32 log |W| satisfy GuessC
′
(P (W ′) | g(W ′)) ≤ γ, where W ′ $←

PM.

5 In particular, flipping the output bit of such an A yields an adversary that is always correct.
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A slightly weaker statement holds in the uniform setting, where we can only show that for every polynomial-
time adversary A′ there exists a measureM for which GuessA

′
(P (W ′) | g(W ′)) ≤ γ even if A′ is allowed

to query the measureM as an oracle6 before obtaining g(W ′). This is captured by the following theorem
also due to Holenstein [Hol05].

Theorem 3 (Uniform Hardcore Lemma). Let g : W → X , P : W → {0, 1}, δ : N → [0, 1], and
γ : N→ [0, 1] be functions computable in time poly(k), where δ and γ are both noticeable. Assume that for
all polynomial-time adversaries A we have

GuessA(P (W ) | g(W )) ≤ δ

for W $←W , then for all polynomial-time adversaries A′(·), whose oracle queries are independent of their
input7, there exists a measure M on W with µ(M) ≥ 1 − δ such that GuessA

′M
(P (W ′) | g(W ′)) ≤ γ,

where W ′ $← PM.

The independence requirement on oracle queries is due to the hardcore lemma of [Hol05] considering
a model with uniform adversaries A′ which are given oracle access toM (with no input) and subsequently
output a circuit for guessing P (W ′) out of g(W ′) (which in particular does not make queries toM). The
simpler statement of Theorem 3 follows by standard techniques.

Note that in contrast to [Imp95,Hol05], and the traditional literature on the hardcore lemma, we swap the
roles of δ and 1− δ in order to align our statements with the (natural) information-theoretic intuition. Also,
note that both theorems have equivalent versions in terms of hardcore sets (i.e., whereM(x) ∈ {0, 1}), yet
we limit ourselves to considering the measure versions in this paper.

EFFICIENT SAMPLING FROM MEASURES. Sometimes, we need to sample a random element according to
a measureM on X with µ(M) ≥ δ (for a noticeable δ) given only oracle access to this measure. A solution
to this is to sample a random element x $← X and then output x with probabilityM(x), and otherwise go
to the next iteration (and abort if a maximal number of iterations k is achieved.) It is easy to see that if an
output is produced, it has the right distribution, whereas the probability that no output is produced is at most
(1− δ)k < e−δk, and can hence be made smaller than any α > 0 by choosing k = 1

δ ln
(
1
α

)
.

In the following, we assume that the sampling can be done perfectly, neglecting the inherent small error
probability in the analysis.

3 Characterizing Computational Indistinguishability via Hardcore Theorems

3.1 Non-Uniform Case

This section considers a setting with two efficiently computable functions E : U → X and F : V → X , and
we define the random variables X := E(U) and Y := F (V ), where U and V are uniformly8 distributed
on U and V , respectively. Note that this is the usual way to capture that X and Y are efficiently samplable,
where typically U and V both consist of bit strings of some length.

Let us now assume that ∆D(X,Y ) ≤ ε for every efficient distinguisher D. In full analogy with the
information-theoretic setting [MPR07], we aim at extending the random experiments whereE(U) and F (V )

6 That is, the oracleM answers a query x withM(x) ∈ [0, 1].
7 In particular, they only depend on the randomness of the distinguisher and previous oracle queries.
8 In fact, our results can naturally be generalized to the case where U and V have arbitrary distributions by considering a slightly

more general version of Theorem 2 with arbitrary distributions for W .

6



are sampled by adjoining, for all γ > 0, corresponding events A and B defined by conditional probability
distributions PA|U and PB|V , such that both events occur with probability roughly 1 − ε, and, conditioned
on A and B, respectively, the random variables E(U) and F (V ) can be distinguished with advantage at
most γ by an efficient distinguisher. Note that for notational convenience (and in order to interpret the result
as a hardcore lemma), we describe the conditional probability distributions PA|U and PB|V in terms of
measures M : U → [0, 1] and N : V → [0, 1]. In particular, the values M(u) and N (v) take the roles
of PA|U (u) and PB|V (v), and note that µ(M) = 1

|U|
∑

u∈UM(u) =
∑

u∈U PU (u) · PA|U (u) = P[A] and

hence PM (u) = M(u)
|M| =

PA|U (u)PU (u)

P[A] = PU |A(u).
This is summarized by the following theorem. We refer the reader to Section 3.2 for its proof.

Theorem 4 (Non-Uniform Indistinguishability Hardcore Lemma). Let E : U → X and F : V → X be
functions, and let ε, γ ∈ (0, 1) and s > 0 be given. If for all distinguishers D with size s we have

∆D(E(U), F (V )) ≤ ε

for U $← U and V
$← V , then there exist measures M on U and N on V with µ(M) ≥ 1 − ε and

µ(N ) ≥ 1− ε such that
∆D′(E(U ′), F (V ′)) ≤ γ,

for all distinguishers D′ with size s′ := s·γ2
128(log |U|+log |V|+1) , where U ′ $← PM and V ′ $← PN .

We stress that the measuresM and N given by the theorem generally depend on γ and s.
PRGS AND COMPUTATIONAL ENTROPY. As an example application of Theorem 4, we instantiate the
function E by an (s, ε)-PRG G : {0, 1}k → {0, 1}` (in particular U := {0, 1}k and X := {0, 1}`), whereas
F is the identity function and V = X = {0, 1}`. For any γ > 0, Theorem 4 implies that we can define
an event A on the choice of the seed of the PRG (with PA|U (u) := M(u)) occurring with probability
P[A] = µ(M) ≥ 1 − ε such that conditioned on A, no distinguisher with size s′ can achieve advantage
higher than γ in distinguishing the `-bit PRG output from an `-bit string U ′` sampled according toN , which,

by Lemma 2, has min-entropy at least `− log
(

1
1−ε

)
.

In other words, the output of every ε-PRG G : {0, 1}k → {0, 1}` exhibits (with probability 1− ε) high
computational min-entropy. Note that the achieved form of computational entropy is somewhat weaker than
the traditional notion of HILL min-entropy [HILL99], where the random variable U ′` is the same for all
polynomially bounded s and all noticeable γ > 0. Still, it is strong enough to allow for the use of G’s output
in place of some string which has high min-entropy with probability 1− ε.

3.2 Proof of Theorem 4

We start by defining a function g : U ×V × {0, 1} → X and a predicate P : U ×V × {0, 1} → {0, 1} such
that

g(u, v, b) :=

{
E(u) if b = 0,
F (v) if b = 1.

and P (u, v, b) := b for all u ∈ U and v ∈ V . It is well known that for any two random variables Ũ and Ṽ ,
and a distinguisher D, the distinguishing advantage ∆D(E(Ũ), F (Ṽ )) can equivalently be characterized in
terms of the probability thatD guesses the uniform random bitB in a game where it is givenE(Ũ) ifB = 0
and F (Ṽ ) otherwise: In particular, we have

∆D(E(Ũ), F (Ṽ )) =
∣∣∣GuessD(B | g(Ũ , Ṽ , B))

∣∣∣
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for a uniform random bit B, where Ũ , Ṽ , and B are sampled independently.
We now assume towards a contradiction that for all pairs of measuresM and N , both with density at

least 1 − ε, there exists a distinguisher D′ of size at most s′ with ∆D′(E(U ′), F (V ′)) ≥ γ, for U ′ $← PM

and V ′ $← PN .
We prove that, under this assumption, for all measuresM on U × V × {0, 1} with µ(M) ≥ 1− ε there

exists a circuit C ′ with size s′ such that GuessC
′
(B′ | g(U ′, V ′, B′)) ≥ γ

2 , for (U ′, V ′, B′) $← PM. As this
contradicts the statement of the non-uniform hardcore lemma (Theorem 2) for γ2 (instead of γ), this implies
that there must be a circuit C with size s such that

∆C(E(U), F (V )) ≥ GuessC(B | g(U, V,B)) > ε.

In turn, this contradicts the assumed indistinguishability of E(U) and F (V ), concluding the proof.

REDUCTION TO THE HARDCORE LEMMA. In the remainder of this proof, let us assume that we are given
a measureM on U × V × {0, 1} with µ(M) ≥ 1− ε. We first define the measuresM0 andM1 on U and
V , respectively, such that

M0(u) :=
1

|V|
∑
v∈V
M(u, v, 0) and M1(v) :=

1

|U|
∑
u∈U
M(u, v, 1)

Furthermore, let mb :=
∑

u,vM(u, v, b) for b ∈ {0, 1}, and let m := |M| = m0 + m1. Note that in
particular µ(Mb) =

mb
|U|·|V| and µ(M) = m

2·|U|·|V| .
We consider two cases in the following, both leading to a circuit C ′.

Case
∣∣m0
m −

1
2

∣∣ > γ
4 . Assume that m0

m −
1
2 >

γ
4 . (The other case is symmetric.) Then, for the circuit C ′

always outputting the bit 0,

GuessC
′
(B′ | g(U ′, V ′, B′)) = 2 · P[B′ = 0]− 1 = 2 · m0

m − 1 >
γ

2
.

Case
∣∣m0
m −

1
2

∣∣ ≤ γ
4 . We assume that 1

2 ≥
m0
m ≥ 1

2(1 −
γ
2 ) and hence also 1

2(1 + γ
2 ) ≥

m1
m ≥ 1

2 (once
again the other case is symmetric). This yields in particular that (1 − γ/2)µ(M) ≤ µ(M0) ≤ µ(M) and
µ(M) ≤ µ(M1) ≤ (1 + γ/2)µ(M).

The goal is to define two measures M̃0 on U and M̃1 on V , both with density at least 1− ε, such that a
distinguisher D′ achieving advantage larger than γ in distinguishing E(Ũ ′) and F (Ṽ ′) for Ũ ′ $← PM̃0

and

Ṽ ′
$← PM̃1

also achieves advantage higher than γ/2 in guessing B′ given g(U ′, V ′, B′). Ideally, we would

set M̃b :=Mb, but note that µ(M0) < 1− ε possibly holds. We slightly modifyM0 in order to satisfy this
property, i.e., we define for all u ∈ U and v ∈ V

M̃0(u) :=
1− µ(M)

1− µ(M0)
· M0(u) +

µ(M)− µ(M0)

1− µ(M0)
and M̃1(v) :=M1(v).

(We tacitly assume µ(M0) < 1, otherwise we can simply set M̃0 :=M0.) It is easy to verify thatM0(u) ≤
M̃0(u) ≤ 1. Moreover,

µ(M̃0) =
1− µ(M)

1− µ(M0)
· µ(M0) +

µ(M)− µ(M0)

1− µ(M0)
= µ(M) ≥ 1− ε.
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This implies, by our assumption, that for Ũ ′ and Ṽ ′ sampled according to M̃0 and M̃1 there exists D′ such
that

P[D′(F (Ṽ ′)) = 1]− P[D′(E(Ũ ′)) = 1] > γ. (1)

We now show that the advantage of D′ in guessing B′ given g(U ′, V ′, B′) is larger than γ
2 . To this aim, we

introduce the following two probability distributions P1 and P2, both with range (U ×{0})∪(V×{1}). The
former distribution is the distribution of (g(Ũ ′, Ṽ ′, B), B) for Ũ ′ $← PM̃0

, Ṽ ′ $← PM̃1
, and B $← {0, 1},

that is

P1(u, 0) :=
M̃0(u)

2|M̃0|
and P1(v, 1) :=

M̃1(v)

2|M̃1|
for all u ∈ U and v ∈ V .

The latter is the distribution of (g(U ′, V ′, B′), B′) for (U ′, V ′, B′) $← PM, i.e.,

P2(u, 0) :=
|V| ·M0(u)

|M|
and P2(v, 1) :=

|U| ·M1(v)

|M|
for all u ∈ U and v ∈ V .

We prove the following two lemmas for (X1, B1)
$← P1 and (X2, B2)

$← P2.

Lemma 3. GuessD
′
(B′ | g(U ′, V ′, B′)) > γ − 2 · d((X1, B1), (X2, B2)).

Proof. Consider the distinguisher D which given a pair (x, b) ∈ (U × {0}) ∪ (V × {1}) outputs 1 if b = 0
and D′(E(x)) = 0, or if b = 1 and D′(F (x)) = 1. Then, note that by (1)

P[D(X1, B1) = 1] = 1
2

(
P[D′(E(Ũ ′)) = 0] + P[D′(F (Ṽ ′)) = 1]

)
= 1

2

(
1 + P[D′(F (Ṽ ′)) = 1]− P[D′(E(Ũ ′)) = 1]

)
> 1

2 + γ
2 .

Furthermore, P(D(X2, B2) = 1] ≤ 1
2 + GuessD

′
(B′ | g(U ′,V ′,B′))

2 by the definition of g. The fact that

P[D(X1, B1) = 1]− P[D(X2, B2) = 1] ≤ ∆D((X1, B1), (X2, B2))

≤ d((X1, B1), (X2, B2))

implies the lemma. ut

Lemma 4. d((X1, B1), (X2, B2)) ≤ γ
4 .

Proof. For all v ∈ V we have P1(v, 1) ≤ P2(v, 1), since |M| ≤ 2 · |U| · |M1|. Furthermore, for all u ∈ U
we have

P1(u, 0) =
M̃0(u)

2|M̃0|
=
M̃0(u)

2|U|µ(M)
≥ M0(u)

2|U|µ(M)
=
|V| ·M0(u)

|M|
= P2(u, 0)

using the fact that |M| = 2 · µ(M) · |U| · |V|. This yields

d((X1, B1), (X2, B2)) =
∑
v∈V

P2(v, 1)− P1(v, 1)

=
1

2|V|
∑
v∈V
M1(v) ·

(
1

µ(M)
− 1

µ(M1)

)
=

1

2

(
µ(M1)

µ(M)
− 1

)
≤ γ

4
,

since µ(M1) ≤ (1 + γ
2 ) · µ(M). ut

Therefore, we conclude the proof of Theorem 4 by combining both lemmas, which show that the advantage
of C ′ := D′ is larger than γ/2, as desired.
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3.3 The Uniform Case

In this section, we prove a uniform version of Theorem 4 in the same spirit as the uniform hardcore lemma
(Theorem 3): If E(U) and F (V ) can only be distinguished with advantage ε by a polynomial-time dis-
tinguisher, then for all noticeable γ > 0 and for all polynomial-time oracle distinguishers D′(·,·) (making
input-independent oracle queries), there exist two measuresM andN on U and V , each with density 1− ε,
such thatD′M,N cannot achieve advantage better than γ in tellingE(U ′) and F (V ′) apart, where U ′ $← PM
and V ′ $← PN . The proof of the theorem is given in the next section.

Theorem 5 (Uniform Indistinguishability Hardcore Lemma). Let E : U → X and F : V → X ,
ε : N → [0, 1], and γ : N → [0, 1] be functions computable in time poly(k), where ε and γ are both
noticeable. Assume that for all polynomial-time distinguishers D we have

∆D(E(U), F (V )) ≤ ε

for U $← U and for V $← V , then for all polynomial time distinguishers D′(·,·) whose oracle queries are
independent of their input, there exist measuresM on U andN on V with µ(M) ≥ 1−ε and µ(N ) ≥ 1−ε
such that

∆D′M,N
(E(U ′), F (V ′)) ≤ γ,

where U ′ $← PM and V ′ $← PN .

3.4 Proof of Theorem 5

APPROACH. Throughout this proof, we use g and P as defined in the proof of Theorem 4. Towards a contra-
diction, we start by assuming the existence of a distinguisher D′ such that ∆D′M0,M1 (E(U ′), F (V ′)) > γ

for all measuresM andN on U and V , both with density at least 1− ε, and with U ′ $← PM and V ′ $← PN .
Then, we construct an (oracle) algorithm A′(·) which accesses a measureM on U × V × {0, 1} and uses
the distinguisher D′(·,·) to guess B′ from g(U ′, V ′, B′) with advantage larger than γ/17 − negl, where

(U ′, V ′, B′)
$← PM, whenever µ(M) ≥ 1 − ε. This contradicts the hardcore lemma for bits (Theorem 3),

and we hence obtain a polynomial time distinguisher D := A such that

∆D(E(U), F (V )) = GuessA(B | g(U, V,B)) > ε,

where B $← {0, 1}, U $← U , and V $← V , contradicting the assumed indistinguishability of E(U) and
F (V ).

THE REDUCTION. The rest of this proof is devoted to the description and the analysis of the algorithm A′:
In particular, a detailed pseudocode specification is provided in Figure 1. In essence, the algorithm follows
the same lines as the non-uniform reduction of Theorem 4 when given oracle access to a measure M: It
either detects sufficient unbalance in the measureM (in which case outputting either 0 or 1 and ignoring
the input leads to a sufficiently good guess), or it runs D′M̃0,M̃1 with access to two measures M̃0 and M̃1

(simulated fromM and both with density 1 − ε) to produce a good guess of B′ out of g(U ′, V ′, B′) with
advantage larger than γ/17 − negl. (The guess itself is either the output of D′, or its negation, depending
on which one yields a positive guessing advantage.) The measures are obtained by first sampling λ0 + λ1
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Adversary A′M(1k, g(u′, v,′ b′)) // on inputs 1k and g(u′, v′, b′), and oracle access toM : U × V × {0, 1} → [0, 1]

r :=
(

34
γ

)2
ln (2) (k + 3)

(u1, v1, b1), . . . , (ur, vr, br)
$← PM

ϕ0 := |{i | bi=0}|
r

if |ϕ0 − 1
2
| > γ/17 then

return b =
{
0 if ϕ0 >

1
2

1 if ϕ0 ≤ 1
2

.
else
λ0 :=

(
34

γ(1−ε)

)2
[ln(2)(k + 3) + ln(|U|)] and λ1 :=

(
34

γ(1−ε)

)2
[ln(2)(k + 3) + ln(|V|)]

û1, . . . , ûλ1

$← U , v̂1, . . . , v̂λ0

$← V
b← D′M̃0,M̃1(1k, g(u′, v′, b′)) where queries to M̃0 and M̃1 are answered as

M̃0(u) :=
1
λ0

∑λ0
i=1M(u, v̂i, 0) +

(1−ε) 7γ
34

ε+(1−ε) 7γ
34

·
(
1− 1

λ0

∑λ0
i=1M(u, v̂i, 0)

)
M̃1(v) :=

1
λ1

∑λ1
i=1M(ûi, v, 1) +

(1−ε) 7γ
34

ε+(1−ε) 7γ
34

·
(
1− 1

λ1

∑λ1
i=1M(ûi, v, 1)

)
// decide whether to negate b

ζ :=
(

2
γ

)2
· ln(2) · (k + 4)

ũ1, . . . , ũζ
$← PM̃0

, ṽ1, . . . , ṽζ
$← PM̃1

π0 := 1
ζ

∑ζ
i=1D

′M̃0,M̃1(1k, ũi), π1 := 1
ζ

∑ζ
i=1D

′M̃0,M̃1(1k, ṽi)

δ :=

{
0 if π0 > π1

1 if π0 ≤ π1.
return b⊕ δ

Fig. 1. Algorithm A in the reduction of Theorem 5.

random values v̂1, . . . , v̂λ0
$← V and û1, . . . , ûλ1

$← U (for some appropriate positive integers λ0 and λ1),
and setting

M̃0(u) :=
1

λ0

λ0∑
i=1

M(u, v̂i, 0) +
(1− ε)7γ34

ε+ (1− ε)7γ34
·

[
1− 1

λ0

λ0∑
i=1

M(u, v̂i, 0)

]
,

M̃1(v) :=
1

λ1

λ1∑
i=1

M(ûi, v, 1) +
(1− ε)7γ34

ε+ (1− ε)7γ34
·

[
1− 1

λ1

λ1∑
i=1

M(ûi, v, 1)

]
.

Below, we show that (except with exponentially small probability) both measures M̃0 and M̃1 have density
at least 1− ε.9

Finally, it is not hard to see that all oracle queries made by A′ do not depend on the distribution of the
input g(u′, v′, b′), due to the input-independence of the queries made by D′.

ANALYSIS. We fix the measureM with µ(M) ≥ 1− ε throughout this analysis, and with respect to toM
we defineM0,M1 as well as m0,m1,m as in the proof of Theorem 4.

9 Note that, in contrast to the non-uniform proof, in the uniform reduction we cannot exploit the fact that one ofM0 andM1 has
density at least 1− ε already, as we cannot simulate these measures perfectly, and moreover, the reductions needs to know which
one of both measures has this property.
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We remark that E[ϕ0] =
m0
m and E[1−ϕ0] =

m1
m . We additionally define the event E that the estimation

error is larger than γ/34, i.e., |ϕ0 − m0
m | > γ/34: Hoeffding’s inequality (Lemma 6) yields

P[E ] ≤ 2 · e−(
γ
34)

2·r = 2−k−2.

In the remainder of the analysis we assume that E does not occur, i.e., that |ϕ0− m0
m | ≤ γ/34. Furthermore,

we consider two cases depending on the outcome of the if-statement.

Case 1:
∣∣ϕ0 − 1

2

∣∣ > γ/17. Since
∣∣ϕ0 − m0

m

∣∣ ≤ γ/34 (due to E not occurring), we have
∣∣mb
m −

1
2

∣∣ >
γ
17 −

γ
34 = γ

34 , and hence outputting the corresponding bit achieves advantage

GuessCb(B′ | g(U ′, V ′, B′)) = 2 · P[B = b]− 1 = 2 · mbm − 1 > 2 ·
(
1
2 + γ

34

)
− 1 = γ

17

for (U ′, V ′, B′) sampled according toM.

Case 2:
∣∣ϕ0 − 1

2

∣∣ ≤ γ/17. In this case we have
∣∣mb
m −

1
2

∣∣ ≤ γ
17 + γ

34 = 3γ
34 for b ∈ {0, 1}, which in

particular yields m0
m , m1

m ≥
1
2 −

3γ
34 = 1

2

(
1− 3γ

17

)
. This can be used to derive

µ(M0) =
1

|U|
·
∑
u∈U
M0(u) =

m0

|U| · |V|
≥
(
1− 3γ

17

)
· m

2 · |U| · |V|︸ ︷︷ ︸
=µ(M)

≥
(
1− 3γ

17

)
· (1− ε)

as well as similarly µ(M1) ≥
(
1− 3γ

17

)
· (1− ε).

Also note that over the random choice of the values v̂1, . . . , v̂λ0 and û1, . . . , ûλ1 , the expectations satisfy
E
[

1
λ0

∑λ0
i=1M(u, v̂i, 0)

]
= M0(u), and E

[
1
λ1

∑λ1
i=1M(ûi, v, 1)

]
= M1(v). In particular, we call the

chosen values v̂1, . . . , v̂λ0 and û1, . . . , ûλ1 good if∣∣∣∣∣ 1
λ0

λ0∑
i=1

M(u, v̂i, 0)−M0(u)

∣∣∣∣∣ ≤ γ
34(1− ε) and

∣∣∣∣∣ 1
λ1

λ1∑
i=1

M(ûi, v, 1)−M1(v)

∣∣∣∣∣ ≤ γ
34(1− ε)

are satisfied for all u ∈ U and for all v ∈ V . The probability that they are not good (we call this event B) is
upper bounded by (using Hoeffding’s inequality and the union bound) by

P[B] ≤ 2|U| · e−
(
γ(1−ε)

34

)2
λ0 + 2|V| · e−

(
γ(1−ε)

34

)2
λ1 = 2−k−1.

From now on, we assume that B does not occur, and fix some good values v̂1, . . . , v̂λ0 and û1, . . . , ûλ1 . In
this case, both distributions M̃0 and M̃1 have density at least 1− ε, as shown by the following claim.

Claim. µ(M̃0) ≥ 1− ε and µ(M̃1) ≥ 1− ε

Proof. The fact that B does not occur and rearranging terms in the definition of M̃0(u) yield

1

|U|
∑
u∈U
M̃0(u) ≥

ε

ε+ 7γ
34 (1− ε)

( 1

|U|
∑
u∈U
M0(u)︸ ︷︷ ︸

=µ(M0)≥(1− 3γ
17 )(1−ε)

− γ

34
(1− ε)

)
+

7γ
34 (1− ε)

ε+ 7γ
34 (1− ε)

≥ ε

ε+ 7γ
34 (1− ε)

(
1− ε− 7γ

34 (1− ε)
)
+

7γ
34 (1− ε)

ε+ 7γ
34 (1− ε)

= 1− ε,

and the statement can be shown in an analogous way for M̃1. ut

12



By our assumption on D′, the claim implies that D′M̃0,M̃1 distinguishes Ũ ′ $← PM̃0
and Ṽ ′ $← PM̃1

with
advantage larger than γ. Also, let B′ be the event that π0 and π1 are more than γ/2 off from the actual
probabilities that the distinguisher outputs 1, then

P[B′] ≤ 4 · e−(
γ
2 )

2
ζ = 2−k−2.

Given B′ does not occur, we have

P[D′(F (Ṽ ′))⊕ δ = 1]− P[D′(E(Ũ ′))⊕ δ = 1] ≥ γ.

The remainder of this proof also shows that D′ ⊕ δ performs sufficiently well in guessing the bit B′ given
g(U ′, V ′, B′) for a triple (U ′, V ′, B′) sampled according toM. To this aim, we consider the two probability
distribution P1 and P2, both with range (U × {0}) ∪ (V × {1}), defined as in the proof of Theorem 4, but
we respect to the newly defined M̃0 and M̃1. In particular, we can still use Lemma 3 using the upper bound
on the statistical distance d((X1, B1), (X2, B2)) for (Xi, Bi)

$← Pi (for i ∈ {1, 2}) given by the following
lemma.

Lemma 5. d((X1, B1), (X2, B2)) ≤ 16
34γ.

Proof. Define U+ := {u |P1(u, 0) ≥ P2(u, 0)} and let V+ := {v |P1(v, 1) ≥ P2(v, 1)}. By definition of
the statistical distance,

d((X1, B1), (X2, B2)) =
∑
u∈U+

M̃0(u)

2|M̃0|
− |V| ·M0(u)

|M|
+
∑
v∈V+

M̃1(v)

2|M̃1|
− |U| ·M1(v)

|M|
. (2)

We bound the first sum, as, by symmetry, the same bound can be shown on the second sum. We first note
that, by the fact that B does not occur,

|M̃0| ≥
∑
u∈U
M̃0(u) ≥ |M0| −

γ

34
(1− ε) · |U| ≥

(
1− 7γ

34

1− 3γ
17

)
|M0| ≥

|M0|
1 + γ

17

, (3)

where we have used the fact that
(
1− 3γ

17

)
(1 − ε)|U| ≤ |M0| and that 1−a

1−b ≥
1

1+2(a−b) for all 0 < x < 1

and 0 ≤ a− b ≤ 1
2 (which is satisfied since we can tacitly assume that γ < 1). Moreover

|M| = m ≤ m0

1
2 −

3γ
34

= 2
|U| · |M0|
1− 3γ

17

. (4)

We can substitute (3) and (4) into the first sum of (2) to obtain

∑
u∈U+

[
M̃0(u)

2|M̃0|
− |V| ·M0(u)

|M|

]
≤ 1

2

∑
u∈U+

M0(u)

|M0|
· 4γ
17

+
1

2

∑
u∈U+

(1− ε) γ34
|M̃0|

+
(1− ε)7γ34

ε+ (1− ε)7γ34

∑
u∈U+

1−M0(u) + (1− ε) γ34
2|M̃0|

≤ 1

2

4γ

17
+

1

2

γ

34
+

1

2

7γ
34

ε+ (1− ε)7γ34

[
1− µ(M0) + (1− ε) γ

34

]
≤ 1

2

4γ

17
+

1

2

γ

34
+

1

2

7γ
34

ε+ (1− ε)7γ34

[
ε+ (1− ε)7γ

34

]
=

1

2

16γ

34
,

13



where we have used the facts that 1− µ(M0) ≤ 1− (1− 3γ
17 )(1− ε) = ε+ (1− ε)3γ17 . The same bound on

the right sum can be derived similarly. ut

Therefore, the advantage of D′ ⊕ δ given that none of E ,B, or B′ occurs, is larger than γ − 32
34γ = γ

17 .

CONCLUSION. Combining both cases, we see that A′ always achieves advantage γ
17 when none of the bad

events occurs. Since P[E ]+P[B]+P[B′] ≤ 2−k, the final guessing advantage ofA′ is at least γ/17−2 ·2−k.

4 Security Amplification of PRGs

4.1 The Concatenate-And-Extract Construction

This section presents, as an application of Theorems 4 and 5, the first construction achieving security am-
plification of arbitrarily weak PRGs.

CONSTRUCTION. Let G : {0, 1}k → {0, 1}` and Ext : {0, 1}m` × {0, 1}d → {0, 1}n be efficiently com-
putable functions. We consider the Concatenate-and-Extract (CaE) construction CaEG,Ext : {0, 1}mk+d →
{0, 1}n+d such that

CaEG,Ext(x1 ‖ · · · ‖xm ‖ r) := Ext(G(x1) ‖ · · · ‖G(xm), r) ‖ r.

for all x1, . . . , xm ∈ {0, 1}k and r ∈ {0, 1}d.

PARAMETERS AND MAIN SECURITY STATEMENT. The intuition justifying the security of the CaE con-
struction relies on the simple observation that, provided thatG is an ε-PRG, each individual and independent
PRG output in the concatenation G(X1)‖ · · · ‖G(Xm) (for uniform X1, . . . , Xm) has computational min-
entropy at least `− log

(
1

1−ε

)
with probability at least 1−ε, and thus we can expect the whole concatenation

to have computational min-entropy≈ m · (1− ε) ·
[
`− log

(
1

1−ε

)]
with very high probability, which can be

extracted if Ext is an appropriate extractor. Note that the resulting construction is expanding if n/mk > 1,
and for an optimal extractor this ratio is roughly (1− ε)

[
`− log

(
1

1−ε

)]
/k (we ignore the entropy loss of

the extractor for simplicity), or, turned around, our construction expands if the underlying ε-PRG satisfies
`/k > 1

1−ε + log
(

1
1−ε

)
/k holds. In particular, this value is independent of m. In Section 4.3, we show that

for a large class of natural constructions this is essentially optimal. For example, for ε = 1
2 , the output length

` of the given generator G needs to be slightly larger than 2k in order to achieve expansion. For comparison,
the SUM construction is expanding if `/k > m, where m = ω(k/ log(1/ε)) in order for the construction to
be secure.

Also, the fact that all `-bit blocks are independent allows for using deterministic extractors in the CaE
construction, such as the one given by Theorem 1, as long as (1 − ε)

(
1− 1

` log
(

1
1−ε

))
is bounded from

below by (m`)−η.
The following theorem proves the soundness of the above intuition.

Theorem 6 (Strong Security Amplification for PRGs). Let ρ, δ, ε : N → [0, 1] be functions, and let
G : {0, 1}k → {0, 1}` (for k < `) be an ε-PRG. Furthermore, let Ext : {0, 1}m` × {0, 1}d → {0, 1}n be a
strong δ-extractor for

(
m, `, (1− ε− ρ) ·m ·

[
`− log

(
1

1−ε

)])
-total-entropy independent sources.

Then the function CaEG,Ext : {0, 1}mk+d → {0, 1}n+d is a (e−ρ
2m+δ+ν)-PRG, where ν is a negligible

function.
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Distinguisher D′M,N
(z) // On input z ∈ {0, 1}`

x1, . . . , xm
$← {0, 1}k, r $← {0, 1}d

for all i = 1, . . . ,m do
G := G ∪ {i} with probabilityM(xi)

i∗
$← {1, . . . ,m}

for all i = 1, . . .m do
if i ∈ G and i < i∗ then yi

$← PN else yi := G(xi)
if i∗ ∈ G then

return D′M,N (·) := D(Ext(y1 ‖ . . . ‖ yi∗−1 ‖ z ‖ yi∗+1 ‖ . . . ‖ ym, r) ‖ r)
else

return D′M,N (·) := D(Ext(y1 ‖ . . . ‖ ym, r)‖ r) // D′M,N ignores its input

Fig. 2. The distinguisher D′(·,·) in the proof of Theorem 6.

The theorem is proven by means of a uniform reduction using Theorem 5, and hence holds both in the
uniform and in the non-uniform settings. However, the next paragraph gives an ad-hoc proof for the non-
uniform case which follows the above simple intuition and which is also tighter than the more involved
uniform reduction, which we defer to Section 4.2.

NON-UNIFORM PROOF. In the following, let us fix s, γ > 0, and assume G is an (s, ε)-PRG. Also consider
the m`-bit string G(X1)‖ . . . ‖G(Xm), where X1, . . . , Xm are independent uniform k-bit strings.

By Theorem 4, there exist independent events A1, . . . ,Am such that Ai can be adjoined to Xi and
P[Ai] ≥ 1− ε, and, conditioned on theses events, no size s′ distinguisher can distinguish G(Xi) from some
variable U ′i with min-entropy H∞(U ′i) ≥ `− log

(
1

1−ε

)
with advantage larger than γ. In particular, by Ho-

effding’s inequality (Lemma 6), the events Ai occur for a subset I ⊆ {1, . . . ,m} of indices such that |I| ≥
(1−ε−ρ)·m, except with probability e−ρ

2m. In this case, for a uniform random d-bit stringR, a standard hy-
brid argument yields that every distinguisher of size s′′ (where s′′ is only slightly smaller than s′) can achieve
advantage at most mγ in distinguishing CeEG,Ext(X1‖ . . . ‖Xm‖R) = Ext(G(X1)‖ . . . ‖G(Xm), R)‖R
from the string Ext(U ′, R)‖R, where U ′ is obtained by replacing each G(Xi) with i ∈ I with the corre-
sponding U ′i . In particular, since U ′ has min-entropy at least (1− ε− ρ) ·m ·

[
`− log

(
1

1−ε

)]
, the variable

Ext(U ′, R)‖R has distance at most δ from a uniform random (n+ d)-bit string Un+d.
Thus, using the triangle inequality and adding the three advantages, we obtain that CaEG,Ext is a

(s′′,mγ + δ + e−ρ
2m)-PRG. The asymptotic bound follows by applying the same argument to any polyno-

mially bounded s and to all noticeable γ.

4.2 Proof of Theorem 6

Assume, towards a contradiction, that there exists a polynomial-time distinguisher D and a noticeable func-
tion η such that for infinitely many values of the security parameter k (which we omit) we have

∆D(CaEG,Ext(X1 ‖ · · · ‖Xm ‖R), Un+d) > e−ρ
2m + δ + η,

whereX1, . . . , Xm are uniformly distributed k-bit string,R is a uniformly distributed d-bit string, and Un+d
is a uniformly distributed (n+ d)-bit string.

THE DISTINGUISHER D′(·,·). We give a distinguisher D′(·,·) (which is fully specified in Figure 2), which
on input z ∈ {0, 1}` and given oracle access to any two measures M : U → [0, 1] and N : V →
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[0, 1] operates as follows: First, it chooses m k-bit strings x1, . . . , xm independently and uniformly at
random, and for each i ∈ {1, . . . ,m} an independent coin is flipped (taking value 1 with probability
M(xi), and 0 otherwise), and if the coin flip returns 1, the position i is marked as “being in the mea-
sure”. Let G be the set of marked positions. Subsequently, an index i∗ is chosen uniformly random from
{1, . . . ,m}. Then, a string y1 ‖ . . . ‖ ym ∈ {0, 1}m` (where y1, . . . , ym ∈ {0, 1}`) is built as follows:
Each yi is set to an independent element sampled according to PN if i ∈ G and i < i∗, and in any other
case it is set to G(xi). Finally, the distinguisher chooses the seed r for the extractor uniformly at ran-
dom, and outputs the bit D(Ext(y1 ‖ . . . ‖ yi∗−1 ‖ z ‖ yi∗+1 ‖ . . . ‖ ym, r) ‖ r) if i∗ ∈ G holds, or it outputs
D(Ext(y1 ‖ . . . ‖ ym, r) ‖ r) else (in particular, the input z is ignored in this latter case).
ANALYSIS. In the following, letM andN both have density 1− ε, let X ′ be sampled according to PM, and
let U ′ be sampled according to PN . We compute the average advantage∆D′(G(X ′), U ′) of the distinguisher
D′ = D′M,N .

It is convenient to use the shorthands P[D′(·) | g] := P[D′(X) = 1 | |G| = g] to denote the condi-
tional probability of D′ outputting 1 on input X given that |G| = g ∈ {0, 1, . . . ,m}. Similarly, we denote
P[D′(X) | g, i] := P[D′(X) = 1 | |G| = g ∧ i∗ = i] when additionally conditioned on i∗ = i. Then,

∆D′(G(X ′), U ′) =
∣∣P[D′(G(X ′)) = 1]− P[D′(U ′) = 1]

∣∣
=

∣∣∣∣∣∣
m∑
g=0

P|G|(g)
(
P[D′(G(X ′)) | g]− P[D′(U ′) | g]

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
m∑
g=0

P|G|(g) ·
1

m

m∑
i∗=1

(
P[D′(G(X ′)) | g, i∗]− P[D′(U ′) | g, i∗]

)∣∣∣∣∣∣
By construction P[D′(G(X ′)) | g, i∗] = P[D′(U ′) | g, i∗ − 1] for g ∈ {1, . . . ,m} and i∗ = {2, . . . ,m}, and
we hence obtain

∆D′(G(X ′), U ′) =
1

m

∣∣∣∣∣∣
m∑
g=0

P|G|(g) ·
(
P[D′(G(X ′)) | g, 1]− P[D′(U ′) | g,m]

)∣∣∣∣∣∣
On the one hand, we now remark that

m∑
g=0

P|G|(g) · P[D′(G(X ′)) | g, 1] = P[D(CaEG,Ext(X1‖ . . . ‖Xm‖R)) = 1].

On the other hand, because µ(N ) ≥ 1 − ε, whenever g ≥ (1 − ε − ρ)m and i∗ = m, the distribution of
y1‖ . . . ‖ym belongs to an

(
m, `, (1− ε− ρ)

(
`− log

(
1

1−ε

)))
-total-entropy independent source, and as

Ext is a δ-extractor for this source, we obtain |P[D′(U ′) | g,m]− P[D(Un+d) = 1]| ≤ δ, whereas P[|G| <
(1 − ε − ρ)m] < e−ρ

2m by Hoeffding’s inequality (Lemma 6) and that fact that µ(M) ≥ 1 − ε. We can
finally infer

∆D′(G(X ′), U ′) ≥ ∆D(CaEG,Ext(X1‖ . . . ‖Xm‖R), Un+d)− δ − e−ρ
2m

m
>

η

m

by our assumption on D.
As the queries of D′ do not depend on the inputs, and the above lower bound on its advantage holds for

all measuresM and N with density at least 1− ε, the distinguisher D′ contradicts Theorem 5 for γ := η
m ,

which is noticeable, and implies that G is not an ε-PRG, which is a contradiction.
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4.3 Optimality of the Output Length

This final section discusses the optimality of the output length of the concatenate-and-extract construction
with respect to the class of constructions which operate by combining a number of independent outputs from
weak PRGs, and such that the corresponding security reduction is black-box. In particular, the reduction
only exploits the capability of efficiently sampling a given distribution.10 This is formally summarized by
the following definition.

Definition 1. A black-box (`, ε)-indistinguishability amplifier consists of a pair of polynomial-time algo-
rithms (C,S) with the following two properties:

(i) For some functionsm, d, and h, the algorithm C implements a function family
(
{0, 1}`

)m×{0, 1}d →
{0, 1}h, where the second input parameter models explicitly the d-bit randomness used by the algo-
rithm C.

(ii) Let PX be an arbitrary distribution on the `-bit strings which is sampled by an algorithm X, let
X1, . . . , Xm be independent samples of PX , and let R and Uh be uniformly distributed d- and h-bit
strings, respectively. Then, for every distinguisher D such that

∆D(C(X1, . . . , Xm, R), Uh) > γ

for infinitely many values of the security parameter and a noticeable function γ, we have∆SD,X(X,U`) >

ε for infinitely many values of the security parameter, where X $← PX and U` is a uniform `-bit string.

The following theorem shows that the output length achieved by concatenate-and-extract is essentially
optimal.11

Theorem 7. For all ` ∈ N and for all ε ∈ [0, 1 − 2−`], there exists no black-box (`, ε)-indistinguishability
amplifier if h ≥ (1− ε) ·m ·

[
`− log

(
1

1−ε

)]
+ d+ 1.

Proof. In the following, assume for simplicity that ` − log
(

1
1−ε

)
is an integer. Consider the probability

distribution PX on the `-bit strings such that with probability ε the string 0` is selected, whereas otherwise
with probability 1−ε an `-bit string z‖0log(

1
1−ε) is chosen, where z is a uniformly distributed (`−log(1/(1−

ε)))-bit string. More precisely,

PX(x) :=


ε+ 2−` if x = 0`

2−` if x = z‖0log(
1

1−ε) for z ∈ {0, 1}`−log(
1

1−ε) \ {0`},
0 else.

This distribution can be sampled by a function X : {0, 1}` → {0, 1}` which outputs its input x if the
last log

(
1

1−ε

)
bits are all 0, whereas it outputs all-zero string in any other case. It is easy to verify that

d(X,U`) = ε for a uniform `-bit string U`. Furthermore, recall that the Shannon entropy of X is

H(X) := −
∑
x∈X

PX(x) logPX(x),

10 In particular, note that the proof itself uses black-box access to some function sampling the PRG output which is not required to
be expanding. All known proofs have this form.

11 Note that this is a stronger statement than the one given in the proceedings version of this paper.
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and in particular

H(X) = ε · 0 + (1− ε) ·
[
`− log

(
1

1− ε

)]
.

Given m independent random variables X1, . . . , Xm distributed according to X , we have

H(Uh)− H(C(X1, . . . , Xm, R)) ≥ h− H(X1 . . . XmR) ≥ h−m(1− ε)
[
`− log

(
1

1− ε

)]
− d ≥ 1.

It is known (cf. [CK82], Lemma 2.7) that for two random variables S and T with range {0, 1}h we have
d(S, T ) ≥ 1

4 or
|H(S)− H(T )| ≤ 2 · d(S, T ) · [h− log(2 · d(S, T ))] .

With S = Ud and T = C(X1, . . . , Xm, R), this yields

d(C(X1, . . . , Xm, R), Uh) ≥
1

4h
,

which is noticeable, due to h being polynomial in the security parameter.
To conclude the proof note that if a corresponding S existed so that (C,S) is an (`, ε)-computational

indistinguishability amplifier, then it would transform the optimal information-theoretic distinguisher D
(achieving advantage at least 1

4h ) into a distinguisher SD,X distinguishing X from random with advantage
better than ε, which contradicts the fact that d(X,U`) = ε. ut
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[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator from any one-way
function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical
Association, 58(301):13–30, 1963.

[Hol05] Thomas Holenstein. Key agreement from weak bit agreement. In STOC ’05: Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, pages 664–673, 2005.

[Hol06] Thomas Holenstein. Pseudorandom generators from one-way functions: A simple construction for any hardness. In
Theory of Cryptography — TCC 2006, volume 3876 of Lecture Notes in Computer Science, pages 443–461, 2006.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from one-way functions (extended
abstracts). In STOC ’89: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pages 12–24, 1989.

18



[Imp95] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In FOCS ’95: Proceedings of the 36th IEEE
Annual Symposium on Foundations of Computer Science, pages 538–545, 1995.

[KRVZ06] Jesse Kamp, Anup Rao, Salil Vadhan, and David Zuckerman. Deterministic extractors for small-space sources. In
STOC ’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pages 691–700, 2006.

[MPR07] Ueli Maurer, Krzysztof Pietrzak, and Renato Renner. Indistinguishability amplification. In Advances in Cryptology —
CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages 130–149, August 2007.

[MT09] Ueli Maurer and Stefano Tessaro. Computational indistinguishability amplification: Tight product theorems for system
composition. In Advances in Cryptology — CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages
350–368, August 2009.

[Mye03] Steven Myers. Efficient amplification of the security of weak pseudo-random function generators. Journal of Cryptology,
16:1–24, 2003.

[Sha02] Ronen Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of the EATCS, 77:67–95, 2002.
[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions. In FOCS ’82: Proceedings of the 23rd IEEE

Annual Symposium on Foundations of Computer Science, pages 80–91, 1982.

A Tail Estimates

The following well-known result from probability theory [Hoe63] is repeatedly used throughout this paper.

Lemma 6 (Hoeffding’s Inequalities). LetX1, . . . , Xm be independent random variables with range [0, 1],
and let X := 1

m

∑m
i=1Xi. Then, for all ρ > 0 we have

P[X ≥ E[X] + ρ] ≤ e−mρ2 and P[X ≤ E[X]− ρ] ≤ e−mρ2 .

In particular,
P
[∣∣X − E[X]

∣∣ ≥ ρ] ≤ 2 · e−mρ2 .
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