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Secret Key Agreement by Public Discussion 
from Common Information 

Ueli M. Maurer, Member, IEEE 

Abstract-The problem of generating a shared secret key S 
by two parties knowing dependent random variables X and I’, 
respectively, but not sharing a secret key initially, is considered. 
An enemy who knows the random variable 2, jointly distributed 
with X and Y according to some probability distribution PXYZ,  
can also receive all messages exchanged by the two parties over a 
public channel. The goal of a protocol is that the enemy obtains at 
most a negligible amount of information about S. Upper bounds 
on H ( S )  as a function of P ~ y z  are presented. Lower bounds on 
the rate H ( S ) / N  (as N + 00) are derived for the case where 
X = [ X I ,  . . .  , X,], Y = [Yl,. . . , I”] and 2 = [Z,,... , Zv] 
result from N independent executions of a random experiment 
generating X , ,  Y ,  and 2, for i = 1,. . . , N .  In particular, it is 
shown that such secret key agreement is possible for a scenario 
where all three parties receive the output of a binary symmetric 
source over independent binary symmetric channels, even when 
the enemy’s channel is superior to the other two channels. The 
results suggest how to build cryptographic systems that are 
provably secure against enemies with unlimited computing power 
under realistic assumptions about the partial independence of the 
noise on the involved communication channels. 

Index Terms- Secret key agreement, public discussion pro- 
tocols, provable security, broadcast channel, secrecy capacity, 
wire-tap channel, privacy amplification. 

I. INTRODUCTION 

NE OF THE FUNDAMENTAL problems in cryptogra- 0 phy is the transmission of a message M from a sender 
(referred to as Alice) to a receiver (Bob) over an insecure 
communication channel such that an enemy (Eve) with access 
to this channel is unable to obtain useful information about M .  

In the classic model of a cryptosystem (or cipher) introduced 
by Shannon [13], Eve has perfect access to the insecure 
channel; thus she is assumed to receive an identical copy of the 
ciphertext C received by the legitimate receiver Bob, where C 
is obtained by Alice as a function of the plaintext message M 
and a secret key K shared by Alice and Bob. Shannon defined 
a cipher system to be perfect if 

I ( M ;  C )  = 0 ,  (1) 

i.e., if the ciphertext gives no information about the plaintext 
or, equivalently, if M and G are statistically independent. 
When a perfect cipher is used to encipher a message M ,  an 
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enemy can do no better than guess M without even looking 
at the ciphertext C. 

Shannon gave as an example of a perfect cipher the so-called 
one-time pad previously proposed by Vernam [14] without 
proof of security; the binary plaintext is concealed by adding 
modulo 2 (EXOR) a random binary secret key of the same 
length. Of course, this system is completely impractical for 
most applications where only a short secret key is available. 
Shannon proved the pessimistic result that perfect secrecy can 
be achieved only when the secret key is at least as long as the 
plaintext message or, more precisely, when 

Almost all presently-used ciphers, including public-key cryp- 
tosystems, are based on the assumption of Shannon’s model 
that an enemy receives precisely the same information (the 
ciphertext) as the legitimate receiver. Since the secret key is 
short for these ciphers, they can theoretically be broken, for 
instance by an exhaustive key search. The goal of designing 
such a practical cipher is hence to guarantee that there exists no 
efficient algorithm for breaking it, for a reasonable definition 
of breaking. However, for no existing cipher can the com- 
putational security be proved (without invoking an unproven 
intractability hypothesis). For instance, the security of the well- 
known RSA public-key cryptosystem [ l l ]  is based on the 
(unproven) difficulty of factoring large integers, and many 
other cryptographic systems and protocols are based on the 
similarly unproven difficulty of computing discrete logarithms 
in certain groups (e.g., see [6]). 

Information-theoretic or unconditional security is more de- 
sirable in cryptography than computational security for two 
reasons. First, for the former no assumption about the enemy’s 
computing power is needed, and second, perfect secrecy is 
unarguable the strongest definition of security and hence the 
justification of a weaker definition of security (for instance 
that an enemy cannot guess any plaintext bit with probability 
of success greater than a specified bound) is avoided. 

Perfect secrecy is often prejudged as being impractical 
because of Shannon’s pessimistic inequality (2). It is one of 
the goals of this paper to relativize the pessimism by pointing 
out thakshannon’s apparently innocent assumption that, except 
for the secret key, the enemy has access to precisely the same 
information as the legitimate receiver, is much more restrictive 
than has generally been realized. 

The key to perfect secrecy without a secret key K satisfying 
(2)  is to modify Shannon’s model such that the enemy can- 
not receive precisely the same information as the legitimate 
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receiver. Several approaches based on this idea are briefly 
discussed in the following. All these approaches are either 
impractical or based on unrealistic assumptions about an 
enemy’s accessible information. 

Quantum cryptography introduced by Wiesner and put for- 
ward by Bennett, Brassard et al. [l], [4], which is for several 
reasons not truly practical (even though a prototype exists) is 
based on the (unproven but plausible) uncertainty principle 
of quantum physics: By measuring one component of the 
polarization of a photon Eve irreversibly loses the ability to 
perform a measurement for the orthogonal component of the 
polarization. 

The randomized cipher introduced by Maurer [SI makes use 
of a public random string that is too long to be read entirely 
in feasible time. This cipher is impractical because a source 
of the required large amount of randomness remains to be 
discovered. 

Both of these systems allow two parties initially sharing 
a short secret to generate a much longer and unconditionally 
secure shared secret key. In quantum cryptography, the secret 
key is required for authentication (like in a realistic imple- 
mentation of our protocols) and in the randomized cipher it is 
used to select a feasible number of the public random bits for 
generating the keystream. 

Wyner [16] and subsequently Csisiar and Korner [5] consid- 
ered a scenario in which the enemy Eve is assumed to receive 
messages transmitted by the sender Alice over a channel 
that is noisier than the legitimate receiver Bob’s channel. 
The assumption that Eve’s channel is worse than the main 
channel is unrealistic in general. It will be shown in the fol- 
lowing section that his unrealistic assumption is unnecessary 
if Alice and Bob can also communicate over a completely 
insecure public channel. This broadcast channel scenario is 
generalized in Section I11 to a scenario where Alice, Bob and 
Eve know random variables X ,  Y ,  and 2, respectively, jointly 
distributed according to some probability distribution P X Y Z ,  
and where Alice and Bob can also communicate over a public 
channel. 

Note that the need for a public channel entails no significant 
loss of practicality in a cryptographic context because the 
channel need not provide secrecy. It is assumed, however, 
that all messages sent over the public channel can be received 
by Eve without error, but that she cannot modify messages 
or introduce fraudulent messages without being detected. If 
this last assumption cannot realistically be made, authenticity 
and data integrity can be ensured by using an unconditionally 
secure authentication scheme, for instance that of [ 151 based 
on universal hashing, which requires that Alice and Bob share 
a short secret key initially. As for the protocols discussed 
in Bennett’s and Brassard’s work on quantum cryptography 
[l], the purpose of our protocols is in this case to stretch 
(rather than to generate) a secret key unconditionally securely. 
Part of the generated key can be used for authentication in a 
subsequent instance of the protocol. 

The use of a public channel by two parties for extracting 
a secret key from an initially shared partially secret string 
was previously considered by Leung-Yan-Cheong [7] and 
independently by Bennett, Brassard, and Robert [ 2 ] .  

This paper is concerned with key distribution as well as 
encryption: a shared secret key generated. by one of our 
protocols can be used as the key sequence in the above 
mentioned one-time pad, thus achieving (virtually) perfect 
secrecy of the transmitted messages. 

The outline of the paper is as follows. Known results on 
the secrecy capacity of broadcast channels are reviewed in 
Section 11, and secrecy capacity with public discussion is 
introduced informally. In Section 111, the general problem of 
key agreement from common information by public discussion 
is introduced, and upper bounds on the achievable amount 
of shared secret key are stated. The case of X , Y ,  and Z 
being generated by a sequence of independent executions 
of a random experiment is considered as a special case in 
Section IV, and lower and upper bounds on the achievable 
rate at which Alice and Bob can agree on a secret key 
are derived. Furthermore, the secrecy capacity with public 
discussion of broadcast channels is discussed. In Section V, 
it is demonstrated that the secret key rate is positive even for 
cases where intuition suggests that it vanishes, demonstrating 
the possibility for practical perfect secrecy under realistic 
assumptions. One such case is a satellite broadcasting random 
bits such that Alice, Bob, and Eve can receive these bits over 
independent binary symmetric channels with error probabili- 
ties EA,EB and EE, respectively, where both EE < EA and 
E E  < E B .  The condition that the channels be independent is 
shown to be unnecessary. 

11. SECRET COMMUNICATION USING 
BROADCAST CHANNELS 

Shannon’s assumption that an enemy receives precisely 
the same message as the legitimate receiver is motivated 
by considering error-free communication channels, However, 
most real communication channels are noisy, and it is only 
for applications that such noisy channels are converted into 
virtually error-free channels (with reduced information rate) 
by the use of error-correcting codes. This apparently trivial ob- 
servation suggests that Shannon’s assumption is unnecessarily 
restrictive if the underlying noisy channels are accessible for 
a cryptographic application. 

Motivated by such considerations, Wyner [ 161 considered a 
communications scenario in which Alice can send information 
to Bob over a discrete memoryless channel such that a wire- 
tapper Eve can receive Bob’s channel output only through an 
additional cascaded independent channel reducing the capacity 
of Eve’s channel. Wyner proved that in such a (generally 
unrealistic) setting Alice can send information to Bob in 
virtually perfect secrecy without sharing a secret key with 
Bob initially. 

Wyner’s model and results were generalized by Csiszir and 
Korner [5] who considered a discrete memoryless broadcast 
channel for which the wire-tapper Eve’s received message is 
not necessarily a degraded version of the legitimate receiver’s 
message. The common input to the main channel and Eve’s 
channel is the random variable X chosen by Alice according 
to some probability distribution Px, and the random variables 
received by the legitimate receiver Bob and by the enemy 
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Eve are Y and 2, respectively. X , Y ,  and Z take on values 
in some finite or countably finite alphabets X,y ,  and Z 
respectively. The channel behavior is completely specified by 
the conditional probability distribution Pyzlx. Note that in 
Wyner's original setting [16], X , Y ,  and Z form a Markov 
chain, i.e., Pzlxy = Pzly, which implies I ( X ;  Z I Y )  = 0.  

The secrecy capacity C,(Pyzlx) of the described broadcast 
channel with transition probability distribution Pyzlx was 
defined in [5] as the maximum rate at which Alice can reliably 
send information to Bob such that the rate at which Eve obtains 
this information if arbitrarily small. In other words, the secrecy 
capacity is the maximal number of bits per use of the channel 
that Alice can send to Bob in secrecy. A formal definition is 
now given. 

Definition 1: The secrecy capacity of a broadcast channel 
specified by PyZlx is the maximal rate R for which for every 
y > 0, for all sufficiently large N ,  there exists a (possibly 
probabilistic) encoding function e : (0, l}" + XN, where 
K = LRN], together with a corresponding decoding function 
d : yrV + (0, l}" such that for V uniformly distributed over 
(0, l}" the following two conditions are satisfied: 

a) P[d(Y)  # VI < y,  where X = e ( V )  and Pylx is the 

b) H(VIZN)/K > 1-7 .  
It would be equivalent to require the two conditions to hold 

for all probability distributions Pv, Note that a deterministic 
encoding function corresponds to a binary code of length N 
with 2" codewords. 

marginal distribution of Pyzlx. 

Csiszir and Korner [5] proved that 

2 m a x [ I ( X ;  Y )  - I ( X ;  Z)] 

= max[H(X  I 2)  - H ( X  I Y ) ]  , 
px 

px 
(3) 

where the first maximization is over probability distributions 
PUX with U taking on values in an arbitrary set U and where 
PUXYZ = PUX . Pyzlx. The inequality follows from the fact 
that U = X is a legitimate choice. One condition for equality 
in (3) is that I ( X ; Y )  2 I ( X ; Z )  for all choices of P x ,  
but equality actually holds for most probability distributions 
Pyzlx that are of interest. In this case, the secrecy capacity 
is zero unless I ( X ;  Y )  > I ( X ;  2) for some Px.  

In order to demonstrate that feedback from Bob to Alice 
over an insecure public channel can increase the secrecy ca- 
pacity of a broadcast channel, we consider a broadcast channel 
for which the main channel and Eve's channel are independent 
binary symmetric channels with bit error probabilities E and 
S, respectively, i.e., X ,  Y,  and Z are binary random variables 
and Pyzlx = Pylx . PzlX where Pylx(yIz) = 1 - E if 
17: = y, Pyix(yIx) = E if 17: # y, PZlx(z1.) = 1 - S if 
z = z ,  and Pzlx(zlz) = S if 2 # z .  Without loss of 
generality, we may assume that t 5 1/2 and S 5 l / 2 .  For 
ease of notation, we will refer to the described probability 
distribution Pyzlx as D ( E ,  6). Let h denote the binary entropy 
function defined by h ( p )  = -plog, p - (1 - p )  log,(l - p . )  

Lemma 1: The secrecy. capacity of the described binary 
broadcast channel is given by 

h(S) - h ( ~ ) ,  if S > E 

otherwise. 

Proof: Let Px(0 = p . )  We have H ( X I Y )  = H ( X )  - 
H ( Y )  + H ( Y  I X ) ,  H ( X )  = h(p) ,  H ( Y  I X )  = h ( ~ )  be- 
cause H ( Y  IX = .) = h ( ~ )  independent of 2, and H ( Y )  = 
h ( p  + E - 2 p ~ )  since P ( Y  = 0) = p(1 - E )  + (1 - p ) ~  = 

and similarly one obtains that H ( X I 2 )  = h ( p )  + h(S) - 
h(p + 6 - 2pS). It is easy to verify that the stated condition for 
equality in (3) is satisfied. For every p < 1/2, p + J - 2pJ and 
hence h ( p  + J - 2pJ) are monotonically increasing functions 
for 0 5 J 5 1/2. Thus, H ( X  12) - H ( X  I Y )  = h(6) - h ( ~ )  + 
h(p + E - 2 p ~ )  - h(p + S - 2pS) is maximized for p = l / 2 ,  
in which case the last two terms vanish. This completed the 

It should be pointed out that the proofs for (3) given in 
[5] and [16] are nonconstructive existence proofs based on 
a random-coding argument. The problem of finding actual 
efficiently encodable and decodable codes that perform well 
in a particular situation will be the subject of a forthcoming 
paper. 

According to Lemma 1, the secrecy capacity vanishes when 
15 5 E .  We now show that by allowing feedback from Bob 
and Alice over an insecure public channel (which is assumed 
without loss of generality to be error-free), messages can be 
exchanged in perfect secrecy between Alice and Bob, even 
when S 5 E ,  provided they know an upper bound on S. 

In analogy to the secrecy capacity of a broadcast channel 
specified by PYZ~X one can define the secrecy capacity with 
public discussion, denoted as CS(Pyzlx) ,  as the maximal 
rate (in bits per use of the X + Y Z  channel) at which 
Alice and Bob can agree on a secret key be exchanging 
arbitrary messages over an insecure public channel, such that 
the rate at which Eve obtains information about the secret 
key by observing the public messages and the 2-outputs of 
the channel is arbitrarily small. We refer to Section IV for a 
formal definition. 

Proposition 1: The secrecy capacity with public discussion 
of the described binary broadcast channel is given by 

p + E - 2 p ~ .  Thus, H ( X  I Y )  = h(p)  + h ( ~ )  - h ( p  + E - 2 ~ 6 )  

proof of the lemma. 0 

C,(D(E, 6)) = h(E + S - 2 4  - h(E) . 

Moreover, ~ , ( D ( E ,  6)) is strictly positive unless E = 0.5, 6 = 
0 or S = 1, i.e., unless X and Y are statistically independent 
or Z uniquely determines X .  

Proof: In order to prove that the stated secrecy capacity 
can be achieved we demonstrate that Bob can create a concep- 
tual broadcast channel from Bob to Alice and Eve such that 
the conceptual main channel (to Alice) is equivalent to the 
real main channel from Alice and Bob but Eve's conceptual 
channel is equivalent to a cascade of the real main channel 
and Eve's real channel. 

Alice sends a random bit X over the (real) broadcast 
channel, i.e., Px(0)  = Px(1)  = 0.5. Let E and D denote 
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the (independent) error bits of the main and of Eve’s channel, 
respectively, i.e., let Y = X + E and Z = X + D where 
P ( E  = 1) = E and P ( D  = 1) = S. In order to send a 
bit V over the described conceptual broadcast channel, Bob 
sends W = Y + V over the public channel. Alice computes 
W + X = V + E and thus “receives” V with error probability 
E .  Eve on the other hand knows Z = X + D and W = X + 
E + V and can compute 2 + W = V + E + D, which is 
equivalent to receiving V over a cascade of the actual main 
channel and Eve’s actual channel. 

In order to prove that without loss of optimality Eve can 
compute Z + W and discard Z and W ,  we show that this step 
entails no loss of information about V for Eve: 

H ( V ( Z W )  = H ( V I Z + W , W )  
= H ( V W  I 2 + W )  - H (  W I z + W )  
= H ( V  I z + W )  + H(W I v, 2 + W )  

- H ( W 1 Z f W ) .  

The first step follows from the fact that the pair (2, W )  
uniquely determines the pair (2 + W, W )  and vice versa. 
The result now follows upon noting that H ( W  I V, Z + W )  = 
H ( X + V + D J V , V + E + D )  = 1 and thus also H ( W I  
Z + W )  = 1 since X is completely random and statistically 
independent of V , E ,  and D. 

The bit error probabilities of the conceptual main channel 
and Eve’s conceptual channel are E and E + S - 266, respec- 
tively. Because one way for Alice and Bob to generate a shared 
secret key is to let Bob use the described conceptual channel 
to transmit a secret key to Alice, Cs(D(e,  E + S - 266)) = 
h ( ~  + S - 2.35) - h ( ~ )  is a lower bound on e S ( D ( c , S ) ) .  In 
order to prove that the lower bound cannot be exceeded 
we make use of Theorem 4 stated in Section IV. We have 

H ( Y  I X ) ,  where H ( Y  1x2) = H ( Y  I X )  follows from 
the independence of the channels. It is straightforward to 
verify that H ( Y  12) - H ( Y  1 X )  is maximized for the choice 
P x ( 0 )  = P x ( 1 )  = 1 / 2  for which it takes on the value 

To prove the last claim, note that h(z)  is a monotonically in- 
creasing function for 0 < z < l / 2 ,  and that h ( ~  + 6 - 2 t S )  > 
h ( ~ )  with equality if and only if either 6 = 0,s = 1, or E = 

I ( X ; Y I Z )  = H(YI2) - H ( Y I X 2 )  = H ( Y I Z )  - 

h(E + s - 2ES)  - h(E). 

1/2. 0 

111. SECRET KEY AGREEMENT BY PUBLIC DISCUSSION: 
UPPER BOUNDS 

Consider the following general key agreement problem. 
Assume that Alice, Bob, and Eve know random variables X ,  Y,  
and 2, respectively, with joint probability distribution P X Y Z ,  
and that Eve has no information about X and Y other than 
through her knowledge of 2. More precisely, I ( X Y ;  T 12) = 
0 where T summarizes Eve’s complete information about 
the universe. In this paper, X , Y ,  and Z take on values in 
some finite alphabets X, J’, and 2, respectively. Alice and 
Bob share no secret key initially (other than possibly a short 
key required for guaranteeing authenticity and integrity of 
messages sent over the public channel), but are assumed 
to know P X Y Z  or at least an upper bound on the quality 

of Eve’s channel. In particular, the protocol and the codes 
used by Alice and Bob are known to Eve. Every message 
communicated between Alice and Bob can be intercepted 
by Eve, but it is assumed that Eve cannot insert fraudulent 
messages nor modify messages on this public channel without 
being detected. 

As previously mentioned, attacks by Eve other than passive 
wire-tapping can be detected when an unconditionally secure 
authentication scheme with a short initially shared secret key is 
used. If only a computationally secure authentication scheme 
were used, the unconditional security would only be retained 
against passive, but not against active wire-tapping. 

A broadcast channel as described in the previous section is 
one of the several possible realizations for the distribution of 
random variables X , Y ,  and 2. An alternative for Alice and 
Bob to acquire random variables X and Y is to receive the 
signal of a satellite broadcasting random bits at a very low 
signal power (so that even if Eve uses a much better receiving 
antenna she cannot avoid at least a small bit error probability), 
or of a deep space radio source. 

Alice and Bob use a protocol in which at each step either 
Alice sends a message to Bob depending on X and all 
the messages previously received from Bob, or vice versa 
(with X replaced by Y) .  Without loss of generality, we 
consider only protocols in which Alice sends messages at 
odd steps ( C l ,  C,, . .,) and Bob sends messages at even 
steps (C2, Cq, . . .). Moreover, we can restrict the analysis 
to deterministic protocols since a possible randomizer which 
Alice’s and/or Bob’s strategy and messages might depend 
on can be considered as part of X and Y ,  respectively. In 
other words, Alice and Bob can without loss of generality 
extend their known random variables X and Y ,  respectively, 
by random bits that are statistically independent of X ,  Y,  and 
2. At the end of the t-step protocol, Alice computes a key S 
as a function of X and Ct 4 [C,, . . . , Ct] and Bob computes 
a key SI as a function of Y and Ct. Their goal is to maximize 
H ( S )  under the conditions that S and S’ agree with very 
high probability and that Eve has very little information about 
either S or SI. More formally, 

H ( C z  I C“’X) = 0,  for odd i , (4) 
H ( C, 1 c”’Y) = 0, 

H ( S I C t X )  = 0 (6) 

H(S’1CtY)  = 0 ,  (7) 

for even i , ( 5 )  

and 

and it is required that 

for some specified (small) S and E .  (These two parameters 
should not be confused with the bit error probabilities of the 
previous section.) 
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By Fano’s Lemma (cf. [3, p. 156]), condition (8) implies 
that 

H ( S  I S’) 5 h(E) + log,(lSI - 1) (10) 

where IS1 denotes the number of distinct values that S takes on 
with nonzero probability. Note that H ( S  I S’) -+ 0 as E + 0. 

If one requires that P[S # S’] = 0 and I ( S ;  C t )  = 0 (i.e., 
that E = 0 in (8) and S = 0 in (9)) it appear intuitive but 
not obvious that I ( X ; Y )  is an upper bound on H ( S ) .  It 
appears to be similarly intuitive that H ( S )  5 I ( X ;  Y 12) = 
I ( X Z ;  Y Z )  - H ( Z )  because even under the assumption that 
Alice and Bob could learn 2, the remaining information shared 
by Alice and Bob is an upper bound on the information they 
can share in secrecy. The following theorem, whose proof is 
not completely obvious, summarizes these results. 

Theorem 1: For every key agreement protocol satisfying 
(4)-(7), 

H ( S )  5 I ( X ;  Y 12) + H ( S  I S’) + I ( S ;  CtZ)  * 

H ( S )  5 I ( X ;  Y )  + H ( S  I SI) + I ( S ;  ct) . 
In particular, 

Proof: Note first of all that the second part is a special 
case of the first where Z is a constant random variable. It 
remains to prove the first part. We have 

H ( S )  = I ( S ; C t Z )  + H ( S I C t Z ) ,  

H ( S  I C t Z )  = H ( S X  I CtZ)  - H ( X  I C t S Z )  
= H ( X  I CtZ)  + H ( S  I C t X Z )  

- H ( X I C t S 2 )  
5 H ( X  I C t Z )  - H ( X  I CtSYZ)  
= H ( X  I C t Z )  - H ( X S  I CtYZ) 

+ H(S1CtYZ)  
= H ( X  I C t Z )  - H ( X  I CtYZ) 

+ H(S1CtYZ)  
5 I ( X ;  Y I Ct 2) + H ( S  I S’) . 

(11) 

where H ( S  I C t Z )  can be bounded above as follows: 

(12) 

In the first inequality and in the last equality we have made use 
of (6) and the fact that conditioning on further random vari- 
ables cannot increase entropy. The second inequality follows 
from (7) which implies 

H ( S I C t Y 2 )  = H ( S I C t S ’ Y 2 )  I: H(S1S’) .  

We continue the proof by showing that public discussion 
cannot increase the mutual information shared by Alice and 
Bob when given Eve’s total information consisting of Ct 
and 2. Without loss of generality, assume that t is odd, i.e., 
that the last public message Ct is sent by Alice and thus 
H ( C t  ICt - lX)  = 0. The proof for even t is analogous. 

I ( X ;  Y I CtZ)  = H ( Y  ICtZ) - H ( Y  I C t X Z )  
= H ( Y  I C t Z )  - H ( Y  I ct-1x.Z) 
I: H ( Y  I ct-12) - H ( Y  I ct-lxz) 
= I ( X ;  Y I ct-12) . (13) 

The second step follows from (4). By repeating this argument t 
times, but for even t with X and Y interchanged, we arrive at 

I ( X ;  Y I C t Z )  5 I ( X ;  Y 12) 

that together with (12) and (11) completes the proof of the 
theorem. 0 

Corollary 1: For every key agreement protocol satisfying 
(4)-(9), 

H ( S )  5 min[I(X; Y ) ,  I ( X ;  Y I Z)] 
+ S + h(E) + Elog,(lsI - 1). 

Proof: Immediate consequence of Theorem 1, inequality 
U 

It should be pointed out that I ( X ; Y )  < I ( X ; Y  12) is 
possible. Consider as an example the case where X and Y 
are independent, binary and symmetrically distributed (i.e., 
P [ X  = 01 = P[Y = 01 = l / 2 )  and where Z is the modulo 2 
sun of X and Y .  Then, I ( X ;  Y )  = 0 whereas I ( X ;  Y 12) = 
H ( X )  = 1. Furthermore, I ( X ; Y )  > I ( X ; Y I Z )  is also 
possible, for instance, when I ( X ;  Y )  > 0 and when Z = X .  

(lo), and the fact that I ( S ;  C t )  5 I ( S ;  CtZ) .  

Iv .  THE SECRET KEY RATE: UPPER AND LOWER BOUNDS 

In order to be able to prove lower bounds on the achievable 
size of a key shared by Alice and Bob in secrecy, we need 
to make more specific assumptions about the distribution 
PXYZ.  One natural assumption is that the random experi- 
ment generating X Y  Z is repeated many times independently: 
Alice, Bob and Eve receive XN = [ X ~ , . . . , X N ] ,  Y N  = 
[Yl, . . . , Y N ]  and Z N  = [&, . . . , Z N ] ,  respectively, where 

N 

a=1 

and where Px,Y,z, = PXYZ for 1 5 i 5 N .  
For such a scenario of independent repetitions of a random 

experiment, which is well motivated by models such as dis- 
crete memoryless sources and channels previously considered 
in information theory, the quantity that appears to be of most 
interest is defined as follows. 

Definition 2: The secret key rate of X and Y with respect 
to 2, denoted S ( X ;  Y l lZ) ,  is the maximum rate at which Alice 
and Bob can agree on a secret key S while keeping the rate at 
which Eve obtains information arbitrarily small, i.e., it is the 
maximal R such that for every E > 0 there exists a protocol for 
sufficiently large N satisfying (4)-(8) with X and Y replaced 
by X N  and Y N ,  respectively, satisfying 

1 
- N I ( S ;  C tZN)  5 E ,  

and achieving 

1 
- H ( S )  N 2 R - E .  

In all the protocols discussed next, S will be uniformly 
distributed. However, if for some other protocol the secret key 
generated by Alice and Bob were not uniformly distributed, 
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an almost uniformly distributed key could be generated by 
applying the protocol a sufficient number of times and using 
an ideal data compression scheme. Hence, the condition 

could be included in Definition 2, without loss of generality. 
Before turning to the derivation of lower bounds on S ( X ;  

Y IlZ), we state the following theorem, which is an immediate 
consequence of Corollary 1. 

to Z is upper bounded by 
Theorem 2: The secret key rate of X and Y with respect 

S ( X ;  Y l l Z )  5 m i n [ I ( X ;  Y ) ,  I ( X ;  Y I Z ) ]  . 

The following theorem sates a nontrivial lower bound on 
the secret key rate. If either Eve has less information about 
Y than Alice or, by symmetry, less information about X than 
Bob, then such a difference of information can be exploited. 

Theorem 3: The secret key rate of X and Y with respect 
to Z is lower bounded by 

S ( X ;  Y l l Z )  2 m a x [ I ( Y ;  X )  - I ( Z ;  X ) ,  
I ( X ;  Y )  - I ( 2 ;  Y ) ]  . 

Proof: We only prove that I ( Y ; X )  - I ( Z ; X )  is an 
achievable secret key rate; the proof for I ( X ;  Y )  - I ( Z ;  Y )  
follows by symmetry. Without loss of generality, we assume 
that X = (0, . . + , L - l} for some L and define addition on X 
to be modulo L. Alice can create a conceptual noisy broadcast 
channel for sending a random variable V E X to Bob and Eve 
by sending V + X over the public channel. Bob and Eve hence 
“receive” the pairs [Y, V + X ]  and [Z ,  V + X I ,  respectively. 
Note that the first and second components of these pairs are 
the random variables received from the random experiment 
and from the public channel, respectively. 

According to (3) the secrecy capacity of this conceptual 
broadcast channel is lower bounded by 

cs (P[Y,V+XI ,[Z,V+Xl IV) 

2 max[H(V 12, V + X )  - H ( V  I Y,  V + X ) ]  . (14) 

Since Bob can use this conceptual channel for transmitting a 
message to Alice in secrecy at a rate arbitrarily close to the 
secrecy capacity, we have 

pv 

S ( X ;  Y l l Z )  2 ~ s ( P [ Y , V + X ] , [ Z , V + X ] I V ) .  

H ( V I Y ,  v + X )  = H(V,  v + X ( Y )  - H ( V  + x IY) 

When PV is the uniform distribution, 

= H ( V 1 Y )  + H ( V  + X l V Y )  

= H ( V + X I V Y )  
= H ( X I Y ) .  

- H ( V + X I Y )  

The third step follows from the fact that V is statistically inde- 

pendent of X and Y and hence H ( V  I Y )  = H ( V  + X I Y )  = 
H ( V )  = log, L. Similarly, one obtains H ( V  12, V + X )  = 
H ( X  12). Thus the term to be maximized in (14) is equal to 
H ( X I Z )  - H ( X I Y )  = I ( Y ; X )  - I ( Z ; X ) .  0 

It will be shown by an example in Section V that the lower 
bound of Theorem 3 is not tight in general, i.e., there exist 
scenarios for which interaction between Alice and Bob (i.e., 
two-way communication) is necessary for achieving nonzero 
secrecy capacity. Theorem 3 demonstrated that the upper 
bound in Thereom 2 is tight if either Pyzlx = Pylx . Pzlx 

The broadcast channel discussed in Section I1 can be con- 
sidered as a generalization of the key agreement scenario 
described in this section. Alice can choose the channel in- 
put probability distribution PX and hence choose the joint 
distribution Pxyz  subject to the constraint that Pyzlx equals 
the given conditional channel distribution. Note that the two 
conditions previously stated for the upper bound to be tight 
in Theorem 2 correspond to the case of independent broadcast 
channels (cf. Section 11) and to Wyner’s degraded wire-tap 
channel [16], respectively. 

The secrecy capacity with public discussion, denoted 
CS(Pyzlx) ,  can be defined similarly to the secrecy rate of 
X and Y with respect to Z with the obvious modification 
that Alice is allowed to send the digits X I , . . . ,  X N  at 
arbitrary steps of the protocol and to choose their probability 
distributions PX , . e . , Px, adaptively, depending on the 
information available to her at the corresponding steps of 
protocol. In slight deviation from the notation of Section I11 
we will denote by C, = [C,l, . . . , C,,,] the total sequence of t ,  
messages exchanged by Alice and Bob over the public channel 
after X ,  has been sent by Alice over the broadcast channel. 
C N  (as opposed to Ct in Section 111) hence denotes the total 
conversation over the public channel. 

One particular strategy is for Alice to choose Px, = . . . = 
PxN = Px, where PX maximizes S ( X ;  Y l lZ ) .  Therefore, 

or PXZlY  = PXlY * PZIY. 

- I ( Z ; X ) ] ,  

m a x [ I ( X ;  Y )  - I ( Z ;  U ) ]  
px 

It is an open problem whether equality holds in (15) in general. 
However, an upper bound similar to that of Theorem 2 for 
S ( X ;  Y l l Z )  can be proved for Cs(Pyzlx) and is summarized 
together with (15) in the following theorem stating that by 
adaptively choosing PX , ’ . ’ , Px, , Alice cannot increase the 
secrecy capacity. The proof of Theorem 4 is given in the 
Appendix. This result is in analogy to the well-known fact that 
feedback cannot increase the capacity of a discrete memoryless 
channel. Note, however, that as for the ordinary capacity, 
feedback may allow to increase the rate achievable in a 
practical implementation. 

Theorem 4: The secrecy capacity with public discussion 
of a broadcast channel specified by Pyzlx is bounded from 
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below and from above by 

v. INTERACTION IS MORE POWERFUL THAN 
ONE-WAY TRANSMISSIONS 

It is demonstrated in this section that for certain probability 
distributions Pxyz  it is crucial for Alice and Bob to be able 
to use the public channel in both directions, possibly during 
several rounds. 

Before presenting protocols for binary symmetric channels 
we first denionstrate by a simple example that it is theoretically 
possible for Alice and Bob to use public discussion for 
generating a secret key even if Eve’s channel is less noisy. 
For simplicity, assume that the three channels are additive 
white Gaussian noise channels with statistically independent 
noise. Assume further that binary antipodal signaling is used 
by the satellite to transmit a sequence of independent and 
completely random bits. In order to turn the enemy’s advantage 
into a disadvantage, Alice and Bob publicly agree to pick 
only those bits out of the data stream that they receive very 
reliably, but disregard bits that are not received reliably by 
both of them. Note that since the receiver output is analog 
rather than two-level quantized, the reliability of a decision 
about the bit sent by A can be determined as a function of 
the absolute value of the receiver’s output. Although Alice’s 
and Bob’s bit-error probabilities are on the average much 
worse that the Eve’s bit-error probability, they are much better 
when the average is taken only over the selected bits. Note 
that, by the independence of the two channels, knowledge 
of the positions of the bits received reliably by Alice and 
Bob gives no information to Eve about the values of these 
bits. By Adding modulo 2 several of the selected bits, Eve’s 
information about the sum of these bits can be reduced to 
an arbitrarily small amount while keeping the probability that 
Alice’s and Bob’s generated bits disagree within specified 
bounds. Alternatively, the protocol described in [2] could be 
used to reduce the enemy’s information. Clearly, the protocol 
just described is completely impractical when Eve’s channel 
is substantially better since the probability that Alice and Bob 
both can accept a bit is very small. 

Only symmetrically distributed binary random variables are 
considered in the following. One way of generating such a set 
X, Y,  Z is by generating a random bit R according to 

PR(0) p R ( 1 )  = 1/2 (16) 

and “sending” R over three independent binary symmet- 
ric chan+nels CA, Cp,, and CE with error probabilities 
E A ,  EB,  and E E ,  respectively, i.e., Pxyz  is defined by 

PXYZlR = PXlR ’ PYlR ’ PZlR (17) 

where PXIR(z,r) = 1 - E A  if z = r and E A  otherwise, 

Py~R(y,r)  = 1 - ~ p ,  if y = r and ~ p ,  otherwise, and 
P ~ I R ( z , T )  = 1 - E E  if z = r and E E  otherwise. 

Consider now an arbitrary probability distribution Pxyz  
over (0, 1}3 satisfying the symmetry condition 

PXYZ(2,Y,Z) = PxYz(TB,z )  (18) 

for z,y,z E (0, 1}, where C denotes the complement 
of a binary variable c. Note that condition (18) implies 
that X , Y ,  and Z are symmetrically distributed. One can 
prove by straightforward verification that every such set 
X , Y ,  and Z specified by parameters P b C  = Pxyz(0,  b,c) 
for b, c E (0, l}, and for which not exactly for one of the 
pairs [X, Y ] ,  [X, Z ]  and [Y, Z ]  the two random variables 
are statistically independent, can. be generated according to 
(16) and (17) by independent binary symmetric channels 
CE) CA, and CB with bit-error probabilities 

2pOl + 2Pll - E E  

1 - 2633 
EA = 

and 
2POl + 2PlO - EE 

E B  = 
1 - 2EE > 

respectively. If 1 - 4Plo - 4Pll = 0 and/or EE = 1/2, 
and therefore one of the above denominators is 0, then 
E A ,  E B ,  and EE can still be computed using formulas that 
are obtained from those above by exploiting the symmetry. 

As one realistic scenario where X , Y ,  and Z with prob- 
ability distribution Pxyz  satisfying (18) are available for 
two parties and an enemy, consider a satellite broadcasting 
random bits at a very low signal-to-noise ratio such that an 
enemy Eve cannot receive the bits without error, even with a 
receiving antenqa that is much larger and more sophisticated 
than Alice’s and Bob’s antennae. As previously demonstrated, 
such a scenario is equivalent to X, Y, and Z being generated 
by three independent channels according to (16) and (17) for 
some choice of E A ,  EB,  and E E .  

Let X ,  Y ,  and Z be binary variables gener- Theorem 5: 
ated according to (16) and (17). Then, 

S ( X ;  Y 112) 2 max[h(EA + EE - ~ E A E E ) ,  

h(fB + € E  - 2EBEE)] 
- h(EA + 6B - 2EAEB). 

Proof: We have X = Y,  if and only if either X = 
R and Y = R or X # R and Y # R. Hence, P[X = Y ]  = 
E A E B + ( I  -  EA)(^ - EB) = 1-EA-Ep,+2EAfB. Similarly, one 
obtains P[X = Z ]  = 1 - E A  - E E  + 2EAEB and P[Y = Z] = 
1 - ~ p ,  - EE + 2Ep,fp,. The theorem thus follows immediately 
from Theorem 6 where the term I ( X ; Y )  has been moved 
outside the maximization. 0 

The lower bound of Theorem 5 vanishes unless either E A  < 
E B  or EB < E E ,  i.e., unless either Alice’s or Bob’s channel is 
superior to Eve’s channel. It is somewhat surprising that even 
when Eve’s channel is much more reliable that both Alice’s 
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and Bob’s channel, secret key agreement is possible, as will 
be demonstrated next. 

Alice randomly selects a codeword V N  from the set of 
codewords of an appropriate error-correcting code C with 
codewords of length N and sends it to Bob (and also to Eve) 
over a conceptual broadcast channel by sending X N  + V N  
over the public channel. Bob and Eve receive the bits of V N  
with bit-error probabilities E A  + E B  - 2EAEB and E A  + E E  - 
2EAEE, respectively, where the latter is smaller than the former 
unless E E  >_ E B .  The key to achieving a positive secret key 
rate even if both E A  2 E E  and E B  2 E E  is for Bob to accept a 
received word only if he can make a very reliable decision 
about the codeword sent by Alice, i.e., if it is very close 
to some codeword of the code C or, more formally, if the 
Hamming distance to a codeword is much smaller than the 
number of errors correctable by an optimal decoder for the 
code, hence generally smaller than half the code’s minimum 
distance. For each received block, Bob announces over the 
public channel whether he accepts or rejects it. 

The key observation in the above protocol is that although 
Eve receives codewords V N  more reliably than Bob on the 
average, her conceptual channel may nevertheless be worse 
(for appropriate choices of a code C and for an appropriate 
reliability decision) than Bob’s channel, if one averages only 
over those instances accepted by Bob. Because consecutive 
uses of the channel are independent, the words discarded by 
Bob are also useless for Eve. 

Consider now the special case of a length N repeat code 
having only the two codewords [0, 0, + . + , 01 and [l, 1, . . . , 11. 
For j = 1,2 ,  . . . , Alice randomly generates an information 
bit R, and sends yN = [R, , R3, . . . , RJ] over the conceptual 
channel to Bob. Bob accepts a received word, if and only if it 
is exactly equal to one of the codewords, i.e., if and only if it 
isequalto[O,O,...,O]or[1,1,..., 1 ] . L e t 6 ~ = 1 - ~ ~ , 6 ~  = 
1 - E B  and 6~ = 1 - E E .  The probability that a codeword is 
received by Bob without error is given by 

pcorrect = ( s A ~ B  + E A E B ) ~  

and similarly the probability that a codeword is received as 
its complement equals 

N 
Perror (1 - S A ~ B  - E A ~ B )  

The probability that Bob accepts a codeword is 

Paccept = Pcorrect + Perror 

and the channel from Alice to Bob thus corresponds to a binary 
symmetric channel with bit-error probability 

P = Perror/Paccept * 

Let ors for r ,  s E {0,1} be the probability that a single bit 0 
sent by Alice is received by Bob as r and by Eve as s, i.e., let 
M O O  = 6 ~ 6 ~ 6 ~  + E A E B E E ,  QOI = ~ A ~ B E E  + E A E B ~ E ,  QIO = 
S A E B ~ E  + E A ~ B E E ,  and all = S A E B E E  + E A ~ B ~ E .  Let 
further pw for 0 5 w 5 N be the probability that the 
codeword [ O , O , . . . ,  01 sent by Alice is accepted by Bob 

(whether correctly or not) and is received by Eve as a particular 
given word of Hamming weight w. We have 

Eve’s average-error probability when she guesses the bit sent 
by Alice is hence 

w= rN/21 Paccept 

The block length N can always be chosen such that y > P, 
i.e., such that Bob’s decision about the bit sent by Alice 
(provided that Bob accepts the corresponding received word) is 
more reliable than Eve’s decision. However, the more relevant 
quantities here are the mutual informations IB and IE obtained 
by Bob and Eve, respectively, about the bit sent by Alice. 
Clearly, 

IB  = 1 - h(P) 

and IE can be computed as the average over the weights 
w = 0, .  . , N of the information about the bit Rj (sent by 
Alice) obtained by Eve when she receives a word of weight 
w. We have 

PR,]ZN (0 I Z N )  Pw/ (Pw f P N - w )  

and 

for all received words z N  of weight W. Hence, 

Example: Let E A  = E B  = 0.2, E E  = 0.15 and N = 5. 
Then pcorrect = 0.14539, perror = 0.003355, paccept = 
0.14875, QOO = 0.55, = 0.13, = = 0.16, 

= 0.05043, p i  = 0.01200, p2 = 0.002917, p 3  = 
0.0007695, p4 = 0.0002619 and p5 = 0.00014198. Hence, 
0 = 2.25% compared to y = 6.15% and thus Bob receives the 
selected bits much more reliably than Eve. One further obtains 
IB = 0.845 and IE = 0.745, i.e., Eve’s information about the 
bit sent by Alice (and accepted by Bob) is 12% smaller than 
Bob’s information. 

For sufficiently large N ,  we have I ,  < IB and P 
arbitrarily small. By adding an appropriate number of such 
bits modulo 2, Eve’s information about the resulting bit can 
be made arbitrarily small while at the same time keeping 
the probability that Alice’s and Bob’s bits disagree arbitrarily 
small. The following theorem is hence proved. 

Theorem 6: Let X ,  Y, and 2 be binary random variables 
generated to (16) and (17) for some E E  > 0. Then S ( X ;  Yl lZ)  
is strictly positive. 

The previous example can be generalized in several ways. 
In particular, it is not necessary that after one round of this 
protocol, Bob knows the bits sent by Alice more reliably 
than Eve. The same protocol can be used in several rounds 
to continuously reduce the enemy’s information and increase 
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Alice's and Bob's reliability for the shared string. Some 

amount of secret key even when Eve's channel is a few orders 
of magnitude more reliable than Alice's and Bob's channels 
are discussed in [lo]. 

pmtncc?!s that a!!aw Alice and Rnb ta sh2re a sllbstantia! 

VI. CONCLUSION 
In Shannon's classical view of cryptology [13], a necessary 

condition for two parties Alice and Bob to be able to commu- 
nicate in secrecy is that they have a common advantage over 
potential enemies, be it a physically protected communication 
channel connecting them or a shared secret key. This view was 
dramatically revised by the publication of the seminal paper 
of Diffie and Hellman [6]. Public-key cryptology demonstrates 
that (computationally) secure communications can be achieved 
even if only the receiver of a message, but not necessarily the 
sender, has an advantage over all potential enemy receivers. 
The results of this paper can be interpreted as a further step 
in the same direction, namely as demonstrating that only a 
difference in the received signals, but not necessarily with an 
advantage for either of the legitimate communicants, suffices 
for achieving perfect cryptographic security, regardless of the 
enemy's computing power. 

The paper suggests the following conclusion for the im- 
plementation of cryptographic systems on given noisy com- 
munication channels. Such channels should not be converted 
into error-free channels by means of error-correcting codes, 
followed by a cryptographic protocol based on error-free chan- 
nels because this design strategy would imply that Shannon's 
pessimistic inequality (2) applies and therefore perfect secrecy 
cannot be achieved unless an impractically large amount of 
shared secret key is available. Instead, cryptographic coding 
and error-control coding should be combined, resulting in a 
system achieving virtually perfect secrecy, with a (short) secret 
key being required only for authentication. 

The author hopes that this paper and a subsequent paper on 
practical implementations will help to move perfect secrecy 
closer to being practical. 

APPENDIX 
Proof of Theorem 4: The lower bound is trivial. In prov- 

ing the upper bound, our goal is to show in analogy to 
Theorem 3 that 

1 
N 

+ - I ( S ; C N Z N )  

1 
- H (  S 1 5'') 
N 

According to (9), (10) and the definition of secrecy capacity 
the last two terms must vanish as N -+ ca. That H ( S ) / N  5 
maxp, I ( X ;  Y )  follows from H ( S ) / N  5 maxp, I ( X ;  Y (2) 
by choosing 2 as a constant random variable. 

In order to prove (19), note that 

H ( S )  5 I(XN; Y N  ( C N Z N )  + H ( S (  S') + I(S; CNZN) 

can be derived in exact analogy to the derivation of (11) and 

(12). It remains to prove that 

I ( X " ;  Y N  I C N Z N )  5 N .  m a x I ( X ;  Y 12). (20) 

In the following derivations, the index i is understood to range 
from 1 to N .  Alice's choice of Px, depends only on Ci-' and 
xi-1 , but not further on Yi-l and Zi-', i.e., 

px 

H ( X i  I ci-1xi-lyi-1zi-l) = H ( X i  I ci-1x2-1) . (21) 

> > , and Zip' only through its dependence on 

H(Y&zi I c"-1xiYz-12i-l) = H(Y,Z;  I X i )  . (22) 

Similarly, the ith broadcast channel output [Y,, Zi] depends on 

X i ,  which can be written as 

ci-l xi-1 yi-1 

One similarly has 

H ( 2 i  ICi - lXiYi - lZ i - l )  = H ( Z ;  \ X i )  (23) 

when only the 2-output of the channel is considered. Note 
that these conditions can be interpreted as corresponding to the 
first equality in [3, p. 331, proof of Theorem 9.1.11 stating that 
feedback cannot increase the capacity of a discrete memoryless 
channel. 

We now derive two equalities that will be used later. First, 
using (22) and (23) one obtains 

H(Y; I ci-1xiyi-lzi) = H(Y ,Z ,  I ci-1xiyi-1zi-l) 

- qZi I ci-lxiyi-lzi-l) 
= H(Y,Z; I Zi) - H(Zi  I X i )  

= H ( Y ,  1 Xi&)  . (24) 

Second, expanding the following conditional entropy in two 
different ways, 

rr, TI ~ ~ i - 1  CP I n i - 1  ~ 7 i - l  ";-I\ n t n i r -  L ~ I L -  A -  L-  

- - H ( X i Z i  I ci-lxi-lzi-1) 

+ q y i - l  (ci-lxizi) 
- - H ( X i Z i  1 ci-lxi-lyi-1zi-1) 

+ q y i - l  1 ci-lxi-lzi-l)  , 

and using 
H ( X i Z i  I ~i- lx i - ly i -1~i- l )  

= H ( X i  (ci-1xi-lyi-1zi-1) 

+ H ( Z i  Ici-1xZzi-l) 

= H ( X i Z i  I ci-1xi-lzi-l) , 

+ H ( z i  I c i - l X i y i - 1 z i - l )  

- - H ( X i  (Ci-1Xi-1zi- l )  

where the second step follows from applications of (21) and 
(23), leads to 

~(yi-l(c"'-Ixizi) = ~ ( y i - 1  (ci-1xi-lzi-1) . 
(25) 

Repeating the argument leading to (13) for every pub- 
lic message of step i ,  i.e., for Cil, + s . , (?it%, where in the 
derivation of (13), X , Y ,  and 2 are replaced by X i , Y i ,  
and Z i ,  respectively, Ct is replaced by [Ci-', Cil, . . . , Cij] 
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in the (ti - j ) th  application, and the term I(Xi, Yi I Ci-lCil 
. e . C@) is expressed as a difference of conditional entropies 
of Ya and xi according to whether Alice or Bob is the sender 
of message Cij, respectively, one arrives at 
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