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Abstract

Electronic cash systems are one way to implement digital payments; e-cash schemes
can offer user anonymity at the same level as paper-based cash. However, this
anonymity can be misused for illegal purposes; therefore, some means to revoke
the anonymity under specific circumstances seems desirable. Many “escrow-based”
schemes have been proposed; the information needed for this is usually escrowed at
a trusted third party. In this thesis, we’ll take a close look at various escrow-based e-
cash schemes and investigate their security for all participants and the assumptions
it is based on. The notion of “self-escrowing”, i.e. replacing the trusted third party
by the user himself, will be addressed; finally, by combining some of the techniques
presented, we construct an escrow-based e-cash scheme which offers strengthened
security against forgery of coins.

Zusammenfassung

Elektronische Münzsysteme (“e-cash”) sind eine Möglichkeit zur Implementierung
digitaler Zahlungen. Diese Systeme können die Anonymität der Benutzer im gleichen
Umfang wie herkömmliches Papiergeld gewährleisten. Diese Anonymität könnte
jedoch für kriminelle Zwecke missbraucht werden; darum ist eine Möglichkeit zu
ihrer Aufhebung bei gegebenem Anlass wünschenswert. Es sind viele sogenan-
nte “escrow”-basierte (engl. to escrow - hinterlegen) deanonymisierbare Systeme
vorgeschlagen worden; in ihnen wird die Information, die zur Anonymitätsaufhebung
dient, bei einer vertrauten dritten Partei hinterlegt. In dieser Diplomarbeit werden
einige solche Systeme vorgestellt und ihre Sicherheit für alle teilnehmenden Parteien
sowie die zugrundeliegenden Annahmen betrachtet. Weiterhin wird “self-escrowing”,
d.h. die Ersetzung der vertrauten dritten Partei durch den Benutzer selbst, un-
tersucht; schließlich wird unter Kombination einiger der dargestellten Ansätze ein
deanonymisierbares E-cash-System konstruiert, welches erhöhte Sicherheit gegen
Münzfälschung bietet.
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Chapter 1

Introduction

Electronic money, or electronic cash (e-cash), is getting more and more important. It can not only do
away with some drawbacks of conventional money (size and weight, no loss-tolerance, time spent counting
it), but some applications wouldn’t even be possible without e-cash.

When buying goods in the “real world”, instead of conventional cash the user has an “electronic wallet”
(with his e-cash stored in it) used to pay arbitrary amounts in shops, at vending machines, etc. It is in
electronic commerce, i.e. buying goods not at a real-world shop, but at a virtual one (e.g. in the World
Wide Web), that e-cash is indispensable. Physical cash can’t be used there for payment, as it can’t be
“sent” anywhere as digital data. Credit card transactions where only the credit card number and validity
period are transmitted, as currently used by some shops in the WWW, are no option in the long term;
they are insecure and can’t be used when paying small amounts.

E-cash can be extended to offer various benefits that conventional cash simply can’t provide, e.g. loss-
tolerance. These extensions will not be further investigated here.

Ideally, e-cash should be easy to use and secure for all participants. This means that no party wants to
suffer damage, material (i.e. financial) or immaterial (e.g. being falsely accused of a crime). Furthermore,
anonymity for users, i.e. privacy of their payments (at least at the same level as with paper-cash)
is desirable; several “coin-based” implementations providing user anonymity have been presented over
the past years. However, anonymity can be misused for criminal activities. Therefore, a possibility to
deanonymize transactions under specific circumstances is often required. In the systems presented so far,
the information needed for deanonymization is “escrowed”, i.e. deposited somewhere (e.g. at a trusted
third party) from where it can be recovered if certain conditions are met, e.g. with a court order.

This Master’s thesis is mainly concerned with security aspects of escrow-based e-cash systems. Chapter 2
provides the mathematical and cryptographical foundation. Topics covered include: problems from num-
ber theory such as computing discrete logarithms and factoring large integers; public-key cryptography
and digital signatures; zero-knowledge proofs of knowledge (sic!).

In Chapter 3 the road that leads to escrow-based e-cash is presented. Beginning with a simple e-cash
system, more and more features are added until we get to the point where escrowing is needed.

Chapter 4 is dedicated to escrowing with a trusted third party, the trustee. A few systems presented so
far are briefly introduced and their security is discussed.

The aspect of self-escrowing is addressed in Chapter 5; some former results are presented and a general
approach for transforming existing, trustee escrow-based e-cash schemes into self-escrow-based systems
is investigated.

Chapter 6 deals with provable security of e-cash systems against coin forgery. The provability is in the
random oracle model. Based on a secure signature scheme, an escrow-based e-cash system is constructed
which is secure (in the random oracle model) against coin forgery.

In the last chapter we’ll take a look back on the topics discussed in the previous chapters and give an
outlook on open problems and alternative approaches to anonymity control not dealt with in this thesis.
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Chapter 2

Mathematical and Cryptographical
Background

This chapter provides an introduction into some mathematical and cryptographical topics that will be
used in the following chapters. Readers familiar with these issues may skip this chapter.

2.1 Notation and Conventions

The notation and the conventions presented in this section will be used throughout this Master’s thesis.

{0, 1}∗ denotes the set of all binary strings. a||b denotes the concatenation of (binary) strings a and b.
|a|2 is the length of the binary string a or of the binary representation of a value a. x ∈R X means that x
is chosen in random uniform manner from the set X . For any set S, |S| denotes the number of elements
in the set. For a, b ∈ N, gcd(a, b) denotes the greatest common divisor of a and b.

When clear from the context, some conversions (e.g. from a value to a bit-string representing this value)
and similar information might be omitted for reasons of clarity.

When speaking about bank customers who hold bank accounts, the terms customer “identity” and
“account number” are regarded as equivalent, since an account number is always associated with at least
one identity and vice versa. For simplicity, all systems are assumed to permit each user to have at most
one bank account at a single bank (this is common practice and lets us use the equivalence described
above). Moreover, each bank account belongs to exactly one user. Extensions to multiple accounts and
accounts shared among users are straightforward.

2.1.1 Names

E-cash systems involve interacting parties or “players”; in the following, denotations as U for a user or B
for a bank will be used. When talking about interactive protocols in general, the participants are denoted
by P1, P2, etc.

When presenting existing systems, specifically their protocols, the names of parties, variables and func-
tions found in the original articles have been adopted.

2.1.2 Interactive Protocols

The parties involved in e-cash transactions interact by protocols; these protocols are presented as shown
in Figure 2.1: the participants are listed in the top row with initial values held by them written below
their names in brackets. In the column under a participant’s name computations performed by him are
listed, while communication between the participants is indicated by an arrow in the center column. The
information transmitted is described on top of and sometimes also below the arrow. In the bottom row

9



of the protocol, again in brackets, you’ll find the “results” that each participant gains from the execution
of the protocol. The extension to three or more participants is straightforward.

If a protocol includes verifications like

“verify A” or “a
?= b”,

this means that the participant checks the condition and proceeds with the protocol execution only if
the verification is successful. Otherwise, the protocol is stopped and all participants are informed.

When saying that a participant is “honest” or that he executes the protocol “correctly”, we mean that
he acts exactly according to the protocol. The protocol itself is “correct” if it always yields the expected
results when executed by honest participants. We’ll call a protocol “sound” if it can’t be manipulated
by a cheating participant.

Transferring these terms to the “material world” would mean the following: A correct automatic teller
machine allows honest users to withdraw money, i.e. no request from an honest user will be rejected. If
the machine is also sound, it will allow money withdrawal only when all necessary requirements are met.

Player 1
(and his initial values)

Player 2
(and his initial values)

computation

←−
communication
−−−−−−−−−−−−−

...
computation

...

−
communication
−−−−−−−−−−−−−→

computation

(Player 1’s final result) (Player 2’s final result)

Figure 2.1: Example of an interactive protocol.

Definition 2.1 (View). The view of a participant in an interactive protocol is defined as the entire set
of information the participant “sees” during the execution of the protocol.

Formally, the participants can be defined as Turing machines that share a common communication tape;
it is the only tape both machines have access to. Thus, they can’t exchange information by any other
means. In this formal model, the view of a participant consists of the contents of the communication
tape and of his “private” tapes.

In the protocol in Figure 2.1, the view of Player 1 would consist of all the values in the left and center
column; likewise, the center and right column would constitute the view of Player 2.

2.2 Some Algebra

Most e-cash schemes are based on public-key cryptography. As the protocols used rely on specific mathe-
matical properties of the algebraic groups the algorithms are applied in, this section gives a brief overview
of the relevant algebraic foundations.

10



2.2.1 Groups

Definition 2.2 (Group). A group (G, ◦) is a set G together with an associative binary operation ◦
such that

• ◦ is defined on all elements of (G×G) and returns an element of G

• there exists a unique identity element for ◦

• every element a of G has an inverse a−1 under ◦.

If ◦ is commutative, the group is called Abelian or commutative. (G, ◦) is often denoted simply by G.
For convenience, the multiplicative notation is frequently used; i.e. ab = a ◦ b and ax = a ◦ a ◦ . . . ◦ a (x
times). For some a ∈ G, we denote by 〈a〉 the set of numbers obtained when raising a to the power of all
x ∈ Z, i.e. 〈a〉 := {ax|x ∈ Z}. The set 〈a〉 is said to be generated by a.

Definition 2.3 (Cyclic group). A group G is called cyclic if there exists an element g ∈ G such that
every a ∈ G can be written as gx for some x ∈ Z. g is called a generator of G, as 〈g〉 := {gx|x ∈ Z} = G.

Definition 2.4 (Order of a group). The order of a finite group G is defined as the number of its
elements, denoted by |G|.
Definition 2.5 (Order of a group element). The order of an element a of a finite group, denoted
by ord(a), is the smallest positive integer x such that ax = 1 (this implies that |〈a〉| = ord(a)).

Definition 2.6 (Subgroup). For a group G, a nonempty subset H ⊆ G is called a subgroup of G if H
is a group.

Theorem 2.1 (Lagrange’s theorem on group order). For any group G and subgroup H of G the
order of H divides the order of G [Zei96].

The above theorem implies that the order of any element of a finite group divides the order of the group
(since the order of the element is equal to the order of the subgroup generated by it). If g is a generator
of the cyclic group G of order m, then for i ∈ {1, . . . , m}, b = gi has order m/ gcd(m, i). Thus, b is a
generator of G if and only if gcd(m, i) = 1 (as for b to be a generator, ord(b) has to be m). Therefore, if
m is prime, every element different from 1 is a generator of G.

2.2.2 The Groups Zm and Z∗
m

The set Zm := {0, . . . , m − 1} together with addition modulo m constitutes a commutative group of
order m. The set Z∗

m := {a ∈ Zm| gcd(m, a) = 1}, i.e. the set of integers between 1 and m − 1 that are
relatively prime to m, together with multiplication modulo m, forms another group.

Definition 2.7 (Euler φ-function). For a positive integer n, φ(n) is defined as the number of non-
negative integers that are smaller than n and relatively prime to n:

φ(n) := |{a|1 ≤ a < n and gcd(a, n) = 1}|.

The function φ is called the Euler φ-function.

Zm is cyclic for all m (with 1 as a generator), whereas Z∗
m is cyclic if and only if its order |Z∗

m| = φ(m) is
2, 4, or a power of an odd prime [MvOV97]. Groups of prime order, such as subgroups of Z∗

p for p prime,
are often used in cryptography, as they have special properties (e.g. every element is a generator).

2.3 Problems from Number Theory

Most public-key cryptosystems are based on problems from number theory. In this section some of
these problems are described; they will be instrumental in the schemes presented later on. Usually, each
problem comes with a corresponding assumption, which consists in assuming that the problem is hard
to solve; we’ll give a notion of what “hard” means in Section 2.4. Below, the discrete logarithm problem
is presented. The discrete logarithm assumption is that the discrete logarithm problem is hard to solve.
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2.3.1 The Discrete Logarithm Problem

The difficulty of computing discrete logarithms is a problem many cryptosystems rely on. Therefore
algorithms for solving this problem have been object of study [McC90, GM92].

Definition 2.8 (Discrete logarithm). Let G be a finite cyclic group with a generator g. The discrete
logarithm of some element a ∈ G with respect to g, denoted by logg a, is the unique integer x, 0 ≤ x < |G|,
such that a = gx.

Definition 2.9 (Discrete logarithm problem). The discrete logarithm problem is the following:
given a finite cyclic group G, a generator g of it, and a ∈ G, find the discrete logarithm of a with
respect to g.

For a cyclic group G = 〈g〉 of order m and a, b ∈ G the following holds, analogously to ordinary
logarithms:

• logg(ab) ≡ logg(a) + logg(b) (mod m)

• logg(ax) ≡ x logg(a) (mod m)

• for 〈h〉 = G (i.e. h is another generator of G), logg(a) ≡ logh(a)(logh(g))−1 (mod m)

NB. (logh(g))−1 is the multiplicative inverse, even if the group operation ◦ is the addition, i.e.
logh(g)(logh(g))−1 ≡ 1 (mod m) has to hold.

2.3.2 The Representation Problem

Definition 2.10 (Representation). Let G be a finite cyclic group of order m with distinct generators
g1, . . . , gn ∈ G. A representation of some element a ∈ G with respect to (g1, . . . , gn) is an n-tuple
(x1, . . . , xn), 0 ≤ xi < m for all i ∈ {1, . . . , n}, such that

a =
n∏

i=1

gxi

i .

For any a ∈ G there exist exactly mn−1 representations with respect to (g1, . . . , gn). If a = 1, the
representation consisting of (0, . . . , 0) is called the trivial representation of a.

Definition 2.11 (Representation problem). Let G be a finite cyclic group of order m with distinct
generators g1, . . . , gn ∈ G. The representation problem is the following: given some element a ∈ G, find
a representation of a with respect to (g1, . . . , gn).

The discrete logarithm problem is a special case of the representation problem (the number n of generators
is 1). If the generators g1, . . . , gn are chosen randomly (i.e. uniformly and independently), finding two
different representations of an element is as hard as solving the discrete logarithm problem.

2.3.3 The Diffie-Hellman Problem

Definition 2.12 (Diffie-Hellman problem). The Diffie-Hellman problem is the following: given a
finite cyclic group G with a generator g, and values gu, gv ∈ G, find the element guv ∈ G.

The Diffie-Hellman problem is closely related to the discrete logarithm problem: if the latter can be
solved in polynomial time, so can the Diffie-Hellman problem by first computing u = logg(gu) and then
(gv)u.

Definition 2.13 (Decision Diffie-Hellman problem). The Decision Diffie-Hellman problem is the
following: given a finite cyclic group G with a generator g, and values gu, gv, gw ∈ G, decide whether
gw = guv.

Clearly, an algorithm that solves the Diffie-Hellman problem implicitly solves this one. For an extensive
discussion of the Decision Diffie-Hellman problem, see [Bon98].
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2.3.4 Factoring Large Integers

Definition 2.14 (Integer factorization problem). The integer factorization problem is the follow-
ing: given a positive integer n, find its prime factorization, i.e. pairwise distinct primes pi and positive
integers ei such that n =

∏k
i=1 pei

i .

2.3.5 The RSA Problem

Definition 2.15 (RSA problem). The RSA problem is the following: given a group Z∗
n with n = pq

for two large primes p, q, a value e ∈ Z∗
φ(n), and a value a ∈ Z∗

n, find b ∈ Zn such that be = a.

This is the problem the RSA cryptosystem [RSA78] is based on. It can be solved if φ(n) = (p− 1)(q− 1)
is known. Thus, if the integer factorization problem is tractable, so is the RSA problem.

2.4 Public-Key Cryptography

Cryptosystems can be divided into two classes: symmetric systems and asymmetric ones. When consider-
ing an encrypted communication between two parties, the difference between symmetric and asymmetric
encryption is the following:

• In a symmetric system, both parties share the same secret; technically speaking, encryption and
decryption are done with the same secret key. For the communication to remain confidential, it is
therefore crucial that this key doesn’t become known to anyone else.

• In an asymmetric system, different keys are used for encryption and decryption. The encryption
key is public (hence the term “public-key cryptography”), while the decryption key is known only
to the receiver of the encrypted message.

Asymmetric cryptosystems offer several benefits over symmetric ones. In a symmetric cryptosystem, a
different key is needed for each possible set of parties communicating with each other. Additionally, these
keys have to be distributed confidentially, i.e. in a way that they don’t become known to anyone else.

As the encryption key in an asymmetric system is public and used by anyone who wants to send encrypted
messages to the holder of the corresponding decryption key, it can be distributed easily, e.g. by publishing
it in a newspaper. The distribution is only required to be authentic, not confidential.

Public-key cryptography was first proposed by Diffie and Hellman in [DH76]. They introduced the notion
of trapdoor one-way functions. These are functions that are easy to compute but hard to invert (i.e. one-
way) unless one has some secret extra information (i.e. the “key” to the trapdoor). Given such a function
f , a naive encryption can be implemented by publishing f as a public key, thus allowing anyone to
encrypt messages m by computing f(m). The decryption is done by computing f−1(f(m)) = m, which
is feasible only with the extra information mentioned above. NB. Not every one-way function f would
hide and therefore encrypt the message m: given any one-way function f , define another function g as
g(x) := (f(x), y), where y is the first half of x. Then, g is also a one-way function, but certainly not
suitable for encryption.

It should be well understood that inverting f is hard, but not impossible. The functions used in public-key
cryptography are believed to be “hard enough” to invert; this means that, e.g., one can trust an encrypted
message to remain confidential for a sufficient period of time. Roughly speaking, a given one-way function
f is suitable if inverting f without the extra information takes “much longer” than computing f . As
computers become faster and thus the time for inverting f gets shorter, f has to be replaced. In typical
cryptosystems, f is some function f̃(m, k) that takes not only the message m, but also the encryption
key k as an argument. The time to compute f (and the time to invert it) grow with the size of k. Thus,
it suffices to choose large enough keys (but without exaggerating, as this would result in an excessive
need of time to compute f).

There are no proofs for the existence of one-way functions or a relation to assumptions like P 6= NP.
However, some functions are assumed to be one-way and the opposite hasn’t been proven so far.
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One-way functions are necessary and sufficient for digital signatures [Rom90], which are discussed in
the following section. A digital signature should be a message-related value that can be computed only
by the signer (with the secret key), but verified by anyone (using the public key). This resembles an
“inverted” public-key cryptosystem, as the order in which the keys are used is reversed.

Analogously to the naive encryption described above, a naive signature on a message m could be s =
f−1(m); anyone can check this signature by using the public key constituted by f : the signature is valid
if m = f(s). As for the encryption example, this should only give readers not familiar with these issues
an impression of digital signatures. They are discussed more profoundly in Section 2.5.

2.4.1 Probabilistic Algorithms

The algorithms used in public-key cryptosystems are often probabilistic, i.e. there is a random value
included in some of the computations. This is necessary, e.g., in key generation algorithms; a completely
deterministic key generation algorithm would have to be kept secret to prevent others from using it to
compute one’s secret keys.

Also in the encryption example above, one would include some random value in the encryption of a
message m. Like this, two encryptions of the same message would not be equal and therefore linkable
anymore. The decryption would “throw away” the random values and thus yield m for both encryptions.

2.4.2 Hybrid Encryption

Asymmetric encryption schemes do have disadvantages with respect to symmetric ones: often, the mes-
sage length is limited and the asymmetric systems are slower. Therefore, so-called hybrid encryption
is frequently used: the actual message is encrypted with a symmetric system using a randomly chosen
session key. Only this (relatively short) key is encrypted by public-key encryption.

2.4.3 Diffie-Hellman Key Exchange

In [DH76], a scheme for obtaining a common secret key, e.g. for hybrid encryption, using an authentic
but not confidential channel was proposed. The scheme works as follows: Let G be a finite cyclic group of
prime order q with a generator g such that computing discrete logarithms with respect to it is infeasible.
Let x1, x2 be the secret keys of the two parties P1 and P2 that want to communicate with each other and
y1 = gx1 , y2 = gx2 the corresponding public keys, which are assumed to be distributed in an authentic
manner. To obtain a common secret key k, P1 and P2 exchange their public keys and raise the partner’s
public key to the power of their own secret key, getting

k = yx2
1 = yx1

2 = gx1x2 .

2.4.4 ElGamal Encryption

The following encryption scheme was proposed in [ElG85]: Let G be a finite cyclic group of order q with
a generator g such that computing discrete logarithms is infeasible. To encrypt a message m ∈ G for P2,
P1 chooses a ∈R Zq and computes the encryption of m as (ga, yam), where y = gx is the public key of
P2. P2 can decrypt (ga, yam) using his secret key x:

yam

(ga)x
=

gxam

gxa
= m.

Alternatively, the encryption could be computed as (ya, gam), which could be decrypted in the following
way:

gam

(ya)x−1 =
gam

gxax−1 = m.
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The two schemes are equally secure, and they both rely on the intractability of the Diffie-Hellman
problem (and therefore on that of the discrete logarithm problem); both encryptions are probabilistic,
as a is chosen randomly.

2.5 Digital Signatures

A digital signature is a message-related value that can be efficiently computed only by the signer (i.e.
by use of his secret key), but verified by anyone (using the public key). This means that the signature is
linked to the public key and the message.

Since the purpose of signatures is to affirm something in a way verifiable by and provable to others,
both the signer and the verifier of a signature (i.e. the receiver of the signed message) have interest in
that digital signatures be unforgeable. The signer doesn’t want to be held responsible for messages never
actually signed by him, while the receiver of a signed message wants to be sure that it was signed by the
legitimate holder of the corresponding secret key and that any third party, e.g. a judge, will be convinced
of this fact.

Successful attacks on digital signature systems are divided in three groups, depending on what kind of
forgery they achieve:

total break: The attacker is able to sign arbitrary messages, either by obtaining the secret key of the
signer or by use of some other algorithm.

selective forgery: The attacker is able to compute a signature on a particular given message or a class
of messages.

existential forgery: The attacker is able to forge at least one signature; he might not have any control
over the choice of the message.

The attacker may interact with the signer, e.g. give him arbitrary messages to sign. The attack is
successful if the attacker obtains a signature on a message the signer never signed. Existential forgery
might not seem too dangerous when the attacker has no control over the message that is signed. This is
only true as long as the set of messages “making sense” is much smaller than the set of senseless messages
and as long as signatures on senseless messages don’t cause damage (e.g. by staining one’s reputation as
a business partner).

2.5.1 Hash Functions

In signature schemes, hash functions H are used to reduce messages of arbitrary length to bit-strings
of fixed length; the actual signing algorithm is then applied to these bit-strings. (Like this, the signing
algorithm need not to be defined for inputs of varying length, and the resulting signatures are also of
fixed length.) Hence, a signature on a message m usually is a signature on H(m). For signatures to be
unforgeable, one must at least require that computing the hash function’s inverse H−1 is infeasible, as
otherwise with a signature on m an attacker could find all m′ with H(m′) = H(m); the signature would
also apply to all these messages.

A hash function H is said to be

• weakly collision-resistant if for a given x it is hard to find an x′ 6= x such that H(x′) = H(x),

• strongly collision-resistant if it is hard to find a pair (x, x′) with x′ 6= x such that H(x′) = H(x),
where H is chosen at random from a family of hash functions,

• one-way if for a given c it is hard to find an x such that H(x) = c.

Any hash function may be inverted by simple brute-force search; keeping this in mind, a minimum
number of output bits is reasonable. Additionally, care has to be taken that the hash function doesn’t
allow to find collisions by some other, more efficient means.
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2.5.2 The Random Oracle Model

As stated above, when arguing about the security of a signature scheme, the hash function has to be
taken in consideration. There exist provably secure schemes, but this security is achieved at the cost of
efficiency. In order to obtain security arguments while keeping the scheme efficient, the random oracle
model was introduced in [BR93]; in this model, the hash function H is seen as an oracle, i.e. as a function
which produces a truly random output for each new query. Of course, if the same query is asked twice,
the same value is output. It is argued that proofs in the random oracle model prove security of the overall
scheme provided that the hash function has no weakness.

2.5.3 ElGamal Signatures

The following signature scheme was proposed in [ElG85] (in a simpler version, without hashing), as was
the public-key encryption scheme described in Subsection 2.4.4.

Definition 2.16 (ElGamal signature). Let G be a finite cyclic group of order q with a generator g
such that computing discrete logarithms is infeasible. Let x be the signer’s secret key and y := gx the
corresponding public key, and let H be a collision-resistant one-way hash function that maps {0, 1}∗ to
Zq.

An ElGamal signature with respect to the public key y := gx on a message m ∈ {0, 1}∗ is a pair
(u, s) ∈ (G× Zq) such that the verification equation

gH(m) ?= yuus

holds.

Such a signature can be computed as follows:

1. choose r ∈R Z∗
q ,

2. compute u := gr,

3. compute s := r−1(H(m)− xu) (mod q).

Then, yuus = gxugrs = gxu+rs = gxu+H(m)−xu = gH(m); the signature is correct.

If computing discrete logarithms is feasible, signatures in this scheme can clearly be forged; the equiv-
alence of these problems hasn’t been proven. The random value r has to be different for each signed
message; otherwise an attacker could take two signatures (u, s), (u, s′) for messages m, m′ and compute

s− s′ = r−1(H(m)−H(m′))
⇒ r =

(
H(m)−H(m′)

)
/(s− s′)

and thus x =
H(m)− sr

u
.

Finally, without (as in [ElG85]) a hash function H, signatures could be forged existentially:

1. choose some β with an existing inverse, i.e. such that gcd(β, q) = 1,

2. choose α ∈R G and set u := gαyβ ,

3. compute s := −uβ−1,

4. set m := αs.

The verification equation holds: yuus = yu(gαyβ)−uβ−1
= g−uαβ−1

= gαs = gm.
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2.5.4 Schnorr Signatures

The Schnorr signature scheme from [Sch91] is also based on the discrete logarithm problem. Compared
to the ElGamal system, it provides shorter signatures.

Definition 2.17 (Schnorr signature). Let G be a finite cyclic group of prime order q with a generator
g such that computing discrete logarithms is infeasible. Let x ∈ Zq be the signer’s secret key and y = gx

the corresponding public key, and let H be a collision-resistant one-way hash function that maps {0, 1}∗
to Zq.

A Schnorr signature on a message m ∈ {0, 1}∗ is a pair (c, s) ∈ (Zq × Zq) such that the verification
equation

c
?= H(m||gsyc)

holds.

Such a signature can be computed as follows:

1. choose r ∈R Z∗
q ,

2. compute c := H(m||gr),

3. compute s := r − cx (mod q).

Then, H(m||gsyc) = H(m||gs+xc) = H(m||gr−cx+xc) = H(m||gr) = c; the signature is correct.

2.5.5 Chaum-Pedersen Signatures

The Chaum-Pedersen signature scheme from [CP92] is also based on the discrete logarithm problem.

Definition 2.18 (Chaum-Pedersen signature). Let G be a finite cyclic group of prime order q with
a generator g such that computing discrete logarithms is infeasible. Let x, y = gx be the signer’s secret
and public key.

A Chaum-Pedersen signature on a message m ∈ G is a tuple (z, a, b, c, r) ∈ (G3 × Z2
q) such that the

verification equations

gr ?= ahc

mr ?= bzc

hold.

Such a signature can be created in an interactive protocol between the signer Σ and the verifier V as in
Figure 2.2: Σ computes the “signature commitment” z; the rest of the protocol serves to prove to V that
z is of the form mx.

If both participants are honest, V will obtain a valid signature (z, a, b, c, r) on m, since

gr = gw+cx = gw(gx)c = ahc

and

mr = mw+cx = mw(mx)c = bzc.

The signature can be created noninteractively by letting Σ compute c as c := H(m||z||a||b), where H is
a collision-resistant one-way hash function that maps {0, 1}∗ to Zq.
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V
(m, g, y)

Σ
(g, x)

z := mx

w ∈R Zq

a := gw

b := mw

←−
z, a, b

−−−−−−−−−−−−−
c ∈R Zq

−
c

−−−−−−−−−−−−−→
r := w + cx

←−
r

−−−−−−−−−−−−−
gr ?= ahc

mr ?= bzc

(z, a, b, c, r)

Figure 2.2: Interactive Chaum-Pedersen signature.

2.6 Blind Signatures

Blind signatures were introduced by Chaum in [Cha83]; they allow a verifier to obtain signatures from
a signer without the signer seeing the message to be signed or the signature itself. A blind signature is
often said to correspond to a hand-written signature with closed eyes. This means that the signer does
not see what he is signing; the signature, however, being authentic, will be accepted by any third party.
This analogy is not perfect, as a digital signature is always the result of a computation performed by
the signer. In addition, this computation involves the message to be signed. Obviously, it’s impossible to
perform calculations with numbers one does not know. Therefore the signer inevitably sees the message
he is to sign.

The solution to this dilemma is to not provide the signer with the actual message m, but with a trans-
formed (blinded) version m′ of it. The transformation has to be such that the signer won’t be able to
know m after seeing and signing m′. In addition, there must exist an inverse transformation which on
input the signature s′ on m′ will output a valid signature s on the original message m. Necessarily, the
whole process of signing is no longer a single computation that is performed by the signer alone, but it
takes place in an interactive protocol between the two parties. The verifier usually performs the blinding
with values randomly chosen by him, so-called blinding factors 1.

Obviously, blind signatures are required to be unforgeable; since the computation of the signature is in
part performed by the verifier (and potential attacker), the definition of a successful forgery is different
from the one for nonblind signatures. An attacker succeeds in forging a blind signature, if the number of
blind signatures obtained is larger than the number of protocol executions with the signer.

The additional desired feature called “blindness” is the following: when given a set of views of protocol
executions and the (unordered) set of message-signature pairs related to these protocol runs, it must be
infeasible for the signer to link views to message-signature pairs.

Blindness comes in two strengths: statistical blindness means that the protocol views and message-
signature pairs are completely unlinkable, while computational blindness only requires linking of views
to message-signature pairs to be as hard as some computationally infeasible problem.

1The word “factor” isn’t used in the strict mathematical sense here, but rather means “ingredient”; the operation a
blinding factor is used in is not necessarily multiplication.
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2.6.1 Blind Schnorr Signatures

In the following, a scheme for obtaining blind Schnorr signatures is presented; many e-cash systems use
them as a building block. The scheme was first proposed in [Oka93].

As in Schnorr’s signature scheme, let G be a finite cyclic group of prime order q with a generator g such
that computing discrete logarithms is infeasible. Let x, y = gx be the signer’s secret and public key, and
let H be a collision-resistant one-way hash function that maps {0, 1}∗ to Zq.

If both participants follow the protocol in Figure 2.3, (c, s) is a valid Schnorr signature on m:

H(m||gsyc) = H(m||gs′+αyc′+β) = H(m||gr−c′x+α+c′xyβ) = H(m||t′gαyβ) = H(m||t) = c.

V
(m, g, y)

Σ
(g, x)

r ∈R Z∗
q

t′ := gr

←−
t′

−−−−−−−−−−−−−
α, β ∈R Zq

t := t′gαyβ

c := H(m||t)
c′ := c− β (mod q)

−
c′

−−−−−−−−−−−−−→
s′ := r − c′x (mod q)

←−
s′

−−−−−−−−−−−−−
s := s′ + α (mod q)

c
?= H(m||gsyc)

(c, s)

Figure 2.3: Blind Schnorr signature.

To show that the protocol is (perfectly) blind it suffices to show that for every possible view of the signer
Σ and for every possible signature there exists exactly one suitable pair of blinding factors (α, β). Given
a view consisting of r, t′, c′, s′, and a signature (c, s) on a message m, the only possibility is

α := s− s′ (mod q)
β := c− c′ (mod q)

With these blinding factors, the verifier V would have computed

t := t′gαyβ

c := H(m||t).

It remains to show that t = gsyc:

t = t′gαyβ = gr+α+xβ = gr+s−s′+x(c−c′) = gs+xcgr−s′−xc′ = gsyc. 2

Thus, c = H(m||gsyc) and the blinding factors (α, β) would in fact have resulted in the valid signature
(c, s).

2The last equality holds because s′ := r′ − c′x (mod q).
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2.6.2 Blind Chaum-Pedersen Signatures

The Chaum-Pedersen signature scheme from [CP92] exists also in a blind version.

As in the basic scheme, let G be a finite cyclic group of prime order q with a generator g such that
computing discrete logarithms is infeasible. Let x, y = gx be the signer’s secret and public key, and let
H be a collision-resistant one-way hash function that maps {0, 1}∗ to Zq.

V
(m, g, y)

Σ
(g, x)

z := mx

w ∈R Zq

a := gw

b := mw

←−
z, a, b

−−−−−−−−−−−−−
s, t, u, v ∈R Zq; s 6= 0

m′ := msgt

z′ := zsht

a′ := augv

b′ := bsuatum′v

c′ := H(m′||z′||a′||b′)
c := c′/u

−
c

−−−−−−−−−−−−−→
r := w + cx

←−
r

−−−−−−−−−−−−−
gr ?= ahc

mr ?= bzc

r′ := ur + v

(z′, a′, b′, c′, r′)

Figure 2.4: Blind Chaum-Pedersen signature.

If the verifier V and the signer follow the protocol shown in Figure 2.4, the verifier V will obtain a valid
signature (z′, a′, b′, c′, r′) on m′, since

gr′ = gur+v = guw+ucxgv = gwugvgxc′ = a′hc′

and

m′r′ = m′ur+v = m′uw+ucx
m′v = m′wu

m′vm′xc′ = (msgt)wum′vz′
c′ = mwsugwtum′vz′

c′ = b′z′
c′

.

There is an additional verification equation

c′
?= H(m′||z′||a′||b′)

that obviously holds for signatures resulting from the correct execution of the protocol. The reason
for this further verification is that without it, (z, a, b, c, r) would be a valid signature on m: as can be
seen, the values z, a, b, r and z′, a′, b′, r′ are closely related; indeed, there’s even a value w′ = wu + v

such that a′ = gw′
and b′ = m′w′

, in perfect analogy to the structure of a and b. However, with the
additional verification equation, (z, a, b, c, r) is no valid signature on m, since c := u×H(m′||z′||a′||b′) 6=
H(m||z||a||b).
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As with blind Schnorr signatures, the blindness of the protocol can be proven by showing that for every
possible view of the signer and for every possible signature there exists exactly one suitable quadruple
of blinding factors. The proof can be found in [Pfi99].

NB. The protocol can always be executed with t = 0, and blindness is guaranteed also in that case. We’ll
need this later on.

2.7 Proofs of Knowledge

A proof of knowledge is used to convince someone that one has knowledge of something, usually of a
value. The easiest way would clearly be to share this knowledge, i.e. to show the value, but sometimes it
is crucial that the value remain secret. One might, e.g., want to prove one’s knowledge of the secret key
related to a certain public encryption key; obviously proving this by showing the secret key is no valid
option. Therefore, knowledge is often proven by proving one’s ability to efficiently compute something.
This is where zero-knowledge proofs of knowledge come into action.

2.7.1 Zero-Knowledge Property

Definition 2.19 (Zero knowledge). An interactive protocol is said to be perfectly / statistically /
computationally zero knowledge, if for every probabilistic polynomial-time verifier V there exists a prob-
abilistic expected polynomial-time simulator SV such that the outputs of SV and of the protocol when
executed by (V ,P) (with P the prover) are perfectly / statistically / computationally indistinguishable
[Pfi98].

What this means is that the verifier shouldn’t be able to gain any new knowledge from the execution
of the interactive protocol with the prover. Therefore, he might compute his view of the protocol by
himself, i.e. using the simulator. This is sketched in Figure 2.5. The inability to distinguish such a
self-computed view from a real one is exactly what results from the zero-knowledge property of the
protocol. Computational indistinguishability is often enough in cryptography, as the verifier is assumed
to have limited computational power. In Figure 2.5 this means that the distinguisher is a probabilistic
polynomial-time algorithm and as such can’t distinguish a simulated view from a real one.

Prover

V

Verifier

P SV

Distinguisher

viewV∗viewV

Simulator

SimulationProof protocol

Figure 2.5: Indistinguishability of views.
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2.7.2 Knowledge Extractors

To examine whether a knowledge proof actually proves knowledge, a so-called knowledge extractor E
can be applied. E is defined as a probabilistic polynomial-time algorithm that acts as the verifier in the
knowledge proof protocol and tries to obtain the prover’s secrets. To this end, E has a special ability: it
can “reset” the prover at any time and let him repeat specific steps of the protocol with other inputs.
Thus, E can obtain information that a normal verifier would never see; it’s for this reason that E can
extract knowledge even from zero-knowledge protocols.

2.7.3 Proof of Knowledge of a Discrete Logarithm

A zero-knowledge scheme for proving knowledge of a discrete logarithm was presented in [CEvdG88].
The scheme is almost equal to the Schnorr identification protocol shown in Figure 2.6; the challenge c is
a single bit (which makes the scheme perfect zero-knowledge), and the protocol is executed several times
(which limits the knowledge error, i.e. the probability that the verifier V accepts although the prover P
doesn’t know the secret). For |q|2 repetitions, both the zero-knowledge property and the soundness of
the scheme can be proven [Pfi98].

Schnorr’s identification protocol is much more efficient, as only one iteration is needed, but it is not
believed to be zero-knowledge.

Using an idea from [FS86] (creating signature schemes from three-move identification protocols by re-
placing the random challenge c by c := H(m||a), the Schnorr identification protocol becomes the Schnorr
signature scheme as seen in Subsection 2.5.4.

V
(g, y)

P
(g, y, x)

w ∈R Zq

a := gw

←−
a

−−−−−−−−−−−−−
c ∈R Zq

−
c

−−−−−−−−−−−−−→
r := w + cx

←−
r

−−−−−−−−−−−−−
gr ?= ayc

Figure 2.6: Schnorr identification protocol.

Different variations of proofs of knowledge of a discrete logarithm appear in the literature. In the notation
of [CMS96], a noninteractive proof of knowledge of the discrete logarithm of a group element h with
respect to a generator g consists of a Schnorr signature (c, s) related to a public key (g, h) on the
message m||g||h. This proof is dependent on the message m, which may be the empty string ε. It is
denoted by

PKLOG(m, g, h) = (c, s),

the verification equation is c
?= H(m||g||h||gshc).

When using such proofs, we’ll use clear denotations like ProofKLOG and in case of need remind the reader
of the specific meaning.
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2.7.4 Proof of Equality of Discrete Logarithms

A proof of equality of discrete logarithms is intended to prove equality of logg1
h1 and logg2

h2 for values
g1, h1, g2, h2; in addition, it should prove knowledge of this logarithm. It is denoted as ProofEQLOG.
Like with proofs of knowledge as presented in the previous subsection, there are different proof protocols
with different security and efficiency properties [CEvdG88].

The noninteractive proof from [CMS96] is an extension of a Schnorr signature and consists of a pair (c, s)
satisfying the verification equation

c
?= H(m||g1||g2||h1||h2||gs

1h
c
1||gs

2h
c
2).

The proof is dependent on the message m, which may be the empty string ε. It is denoted by

PLOGEQ(m, g1, h1, g2, h2) = (c, s)

and can be computed as follows:

1. choose r ∈R Zq,

2. compute c := H(m||g1||g2||h1||h2||gr
1 ||gr

2),

3. compute s := r − cx (mod q).
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Chapter 3

Electronic Cash Systems

The purpose of digital payment systems is to transfer money, typically in the context of purchasing
(material or immaterial) goods: the buyer pays for goods delivered by the seller. There exist different types
of payment models [BP89, AJSW97]; electronic cash, where payment is done with “coins”, represents
one of them. Note that the term “electronic cash” is sometimes also used for digital payment systems
that don’t employ coins.

Electronic cash systems can replace conventional paper-based cash, i.e. the buyer pays with an electronic
wallet by letting it interact with some device of the seller. Additionally, they make electronic payments
over long distances (e.g. via the World Wide Web) possible.

In this chapter, the road that leads to escrow-based e-cash is presented. Beginning with a simple digital
payment system, more and more features considered useful are added until we get to the point where
escrowing is required.

3.1 Simple Digital Payments

In a simple form, digital payments involving a user U , a shop S and a bank B can be accomplished as in
Figure 3.1. Merely some means of authentication is needed, i.e. there mustn’t be any doubt about U ’s
identity and the action he wants to take. Digital signatures provide an efficient way to accomplish this.

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

Account
database

“You may debit my
account with $ 50.” U ’s account to mine.”

“Transfer $ 50 from

S
“Thank you.”

update

1. 2.

4.5.

B 3.U
“Transfer completed.”

U ....$ 267,16

S....$ 100,00

U ....$ 217,16

S....$ 150,00

Figure 3.1: Simple digital payment.
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This simple system is exactly the one used when paying with a conventional credit card in a shop. U
proves his identity by presenting the credit card (a cautious S might also require identity papers). S lets
B check that the account has the required credit. To assure B that U agrees on his account being debited
and that the credit card indeed belongs to U , S usually provides B with a paper-based signature by U
or U enters his secret PIN into a terminal which forwards it to B.

Such a simple payment system has two disadvantages:

• need for on-line communication with B at each payment,

• almost total loss of anonymity for U ; B knows when and where U spends his money.

These drawbacks (and the fees charged by B for every transaction) have contributed to conventional
credit cards being used only for payments above a certain amount. In the same way, they make simple
electronic transactions as in Figure 3.1 for small amounts unattractive for all parties.

3.2 Security Requirements

In the previous section, anonymity for U was mentioned; this is not only a “desirable feature”, but
actually a requirement for U ’s security as a participant in the payment system. There are such security
requirements of all participants 1; as in everyday life, the general way to describe them all in one sentence
is: “Nobody wants to suffer any damage.” For being able to build systems that are “safe” for everyone,
more precise definitions are needed. Apart from the abstract nature of universal statements as the one
above, there are problems no digital payment system can solve (e.g. blackmailing of B) or that don’t
even depend on the payment system itself (e.g. honesty of judges). Thus, having defined the security
requirements, one also knows which aspects are intractable and isn’t distracted by them anymore.

Another general requirement of all participants is: when behaving honestly, each of them wants to be
safe from false accusations. This can generally be achieved by making the protocols such that the correct
behavior can be proven by use of the protocol transcripts (which in turn have to be certified, e.g. by
digital signatures).

This and other requirements are presented in the following for each participant in a digital payment
system (presuming that there are no other participants).

Requirements of U

U normally trusts B not trying to steal his money; otherwise, all transactions with B can be digitally
signed by both, thus preventing disputes (at the cost of elevated computational effort and communica-
tion). Apart from this,

• U doesn’t want to lose money; this means that nobody should be able to withdraw coins under his
name or to steal and spend coins withdrawn by U ,

• U wants anonymity for his payments; nor B nor anyone else should be able to know how U spends
his money. This information could be used to create user profiles or, even worse, to blackmail U . We
distinguish untraceability or “simple anonymity” and unlinkability (of payments). Untraceability
means that user identities should be unlinkable to payments (i.e. nobody should be able to tell
whether U performed a certain payment or not), while unlinkability of payments means that it is
infeasible to know whether two payments were made by the same user. If payments are untraceable
but not unlinkable, user profiles can be created and in the end, even U ’s anonymity might be
compromised.

• U doesn’t want to be falsely accused of overspending, i.e. spending a coin more than once,

1There are also systems that offer anonymity for the payment receiver; they aren’t dealt with in this thesis.
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• in case U indeed overspends, the corresponding payment transcripts shouldn’t allow anyone else
(including B) to do further overspending of the same coin. This means that even an overspent coin
should remain spendable only by U , so that U won’t be held liable for further overspending done
by others.

Requirements of B

The security requirement of B mainly taken in consideration in this thesis is that of not losing money
(another might be the one of not losing credibility). Therefore,

• coins mustn’t be forgeable; more precisely, it should be infeasible to obtain more valid coins than
were actually issued by B in correct executions of the withdrawal protocol,

• each coin must be spendable only once; in case this can’t be guaranteed, double-spenders must be
identifiable once the fact has been detected. Double-depositing by S must also be prevented or at
least detected afterwards.

Requirements of S

The security for S relies mainly on the amount of legal responsibility S assumes in the whole system;
typically, B bears much of the risks. If, e.g., S deposits a forged but valid coin, B would still have to
accept it (because it can only be recognized as forged because it doesn’t appear in B’s list of withdrawn
coins - but this list is no legal evidence, as B might have modified it). Apart from this,

• S doesn’t want to be falsely accused of double-depositing a coin,

• theft or extortion of coins paid to S should be prevented by making such coins depositable only
by S, typically by including the identity of S in the payment transcript that is presented to B for
deposit.

3.3 Coin-based E-Cash

In Figure 3.2, the main structure of coin-based digital payments or e-cash is presented. It involves
(apart from system setup procedures such as, e.g., key generation and account opening) three distinct
transactions:

• During withdrawal B issues an “electronic coin” c, typically consisting of a (random) number n
and a signature sig(skB, n) on this number, where skB denotes B’s secret key.

• At payment U hands the coin to S who accepts it if B’s signature on it is valid.

• S’ account is credited only at deposit time: S sends the coin to B who verifies the validity of the
signature and checks that the coin hasn’t already been deposited. If both verifications succeed, S’
account is credited with the value of the coin.

Each coin is agreed to have a certain value. Different coin denominations can be implemented by using
different signing keys for different coin denominations.

If payment and deposit are executed simultaneously, we have a so-called on-line system (i.e. B is on-line
at payment time) with no obvious benefits over the simple system presented in Section 3.1; actually the
amount of communication between the parties is even higher.

If payment and deposit are executed separately, we obtain an off-line system. The advantage of off-line
e-cash is that B hasn’t to be contacted at each payment: S and B can interact for deposit at regular
intervals, depositing a major number of coins in a single communication.
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U ....$ 217,16 U ....$ 216,16

U

S

U

B

S

B

update

update

1. verify sig
2. c already used?
3. credit the account of S

“Thank you.”

c

c

verify sig

“One $ 1 coin, please.”

c = n; sig(skB; n)

“Transfer completed.”

Figure 3.2: Off-line e-cash.

The elevated computational effort of e-cash with respect to the simple payment system is not exces-
sively high, it might even not exist (depending on the complexity of the authentication). However, poor
anonymity for U still remains a problem. Moreover, in such a simple off-line e-cash system anyone (thus,
also S) can (re)spend a coin, as coins are not yet spendable only by the withdrawer. In the following
sections, ways to achieve anonymity and to prevent overspending are investigated.

3.4 Achieving User Anonymity

To achieve anonymity for U , we should focus on how it is actually disrupted. The problem is that B sees
the electronic coin at withdrawal, when U has to prove his identity IU to B. Therefore B can link the
coin to U by simply adding (coin, IU ) to an appropriate database. At deposit time, the coin is handed
to B who may look up its withdrawer in the database.

The concept of blind signatures presented in Subsection 2.6 helps in solving this problem: if B issues
the coin by use of a blind signature, he won’t see the coin that U actually hands to S at payment time.
When receiving the coin for deposit, linking it to the withdrawal is infeasible; thus, the anonymity of U
should be retained.

3.5 Double-Spending

So far, we have achieved anonymous off-line e-cash using blind signatures. The anonymity of U , however,
immediately gives birth to a new problem inherent to electronic cash systems: Electronic coins are digital
data and can therefore be easily duplicated. If U ’s transactions are anonymous, U might spend a coin more
than once without any risk of being prosecuted. A solution to this problem would be to make payments
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on-line again while retaining anonymity. This way, B and S could immediately deny acceptance of a coin
that has already been spent. U would still be anonymous, but not able to double-spend.

There are other approaches to the problem of double-spending, which permit the system to be kept
off-line:

• Double-spender identification after the fact can be provided by mechanisms which protect the
anonymity of honest users, but result in “automatic” deanonymization of double-spenders.

One-show blind signatures use a cut-and-choose-like [CFN88] approach: At withdrawal, U blinds
k values each of which embeds his identity; B randomly chooses k/2 of the values, and U has to
unblind them to prove their correct construction. Like this, the probability that U has embedded
his identity correctly in the remaining k/2 values can be made arbitrarily large by choosing k
appropriately. For a reasonable security, the amount of computation needed is quite considerable.
At payment, U gives to S some data that for itself doesn’t compromise U ’s anonymity; double-
spending will result in two pieces of such data, which will reveal IU .

Given two different payment transcripts, restrictive blind signatures also provide deanonymization.
They are more efficient than one-show blind signatures and will be presented in Section 3.6.

• tamper-resistant wallets offer prior restraint of double-spending by keeping track of which coins have
already been spent and forbidding their further use (actually, one wouldn’t need “coins” anymore; it
would suffice to update a balance variable in the wallet). Tamper-resistance isn’t easy to implement
(especially in small devices, and wallets should be small), thus double-spender identification after
the fact by means as above should always be added.

3.6 Restrictive Blind Signatures

The term “restrictive blind signature” was first introduced in [Bra93] together with an e-cash system
providing double-spender identification without the use of cut-and-choose techniques. Another scheme
of this type was presented in [Fer93]. The key concept is to restrict the blinding process, i.e. ensure that
the blinded message still contains the original information. Like this, the signer regains some control
over what he signs. In other words, the restrictiveness property means that the signer is assured that the
verifier performs the blinding in the prescribed manner.

The application to electronic payment systems is as follows: At withdrawal, U includes his identity IU
in the information that, together with the blindly issued signature by B, will form the coin. B is unable
to see the final coin and thus can’t verify that IU is contained in it; the restrictive signature scheme
guarantees this.

Additionally, during payment, U has to respond to a random challenge c sent by S. The response
provides additional information about the internal structure of the coin. However, one such piece of
information doesn’t compromise U ’s anonymity. Should U ever double-spend a coin, with high probability
the challenges used during payment and thus also the responses will be different. Two different responses
for the same coin then allow the identity of U to be extracted from the coin.

With restrictive blind signatures, double-spending is traceable, but only after it has occurred.

3.6.1 The System from [Bra93]

In the following, Brands’ anonymous off-line system from [Bra93] is presented. It is quite efficient and
has been object of thorough investigation; it hasn’t been broken, but its security is not provable. More
precisely, coins are unforgeable in the random oracle model, but the restrictiveness, i.e. the infeasibility
of obtaining untraceable coins, can’t be proven. Some of the systems presented in the following chapter
are based on Brands’ scheme.
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System Setup

B chooses a group Gq of prime order q such that computing discrete logarithms in Gq is infeasible. In
[Bra93], Brands chose for explicitness the unique subgroup Gq of prime order q of the multiplicative
group Z∗

p, where p is a prime such that q|(p− 1).

B generates at random generators g, g1, g2 of Gq, collision-resistant one-way hash functions H,H0, and a
secret key x ∈R Z∗

q . The corresponding public key is h := gx and is published together with g, g1, g2 and
H,H0. It is assumed that computing discrete logarithms of the generators with respect to each other is
infeasible for all parties.

Account Opening

At account opening, U chooses a secret value u1 ∈ Zq with gu1
1 g2 6= 1 2; U computes his public identity

or “account number” as I := gu1
1 and transmits it to B; additionally, U proves knowledge of u1.

All coins withdrawn by U will consist of a blind Chaum-Pedersen signature on the message (Ig2), and thus
contain U ’s identity. The restrictiveness added to the signature scheme guarantees that I will “survive”
the blinding process. This is achieved by requiring U to know (at payment time) a representation

m′ = gy1
1 gy2

2

of the blinded message m′ = (Ig2)sgt = gu1s
1 gs

2g
t. Hence, U has to choose t := 0 (recall that the blind

Chaum-Pedersen signature scheme works also for this choice). For details see [Pfi99].

B computes the (repeatedly used) signature commitment z := (Ig2)x and sends it to U . Alternatively, U
computes it by himself as z := hu1

1 h2, where h1 := gx
1 , h2 := gx

2 are additional public keys of B.

Withdrawal

In the withdrawal protocol in Figure 3.3, B generates w ∈R Zq and sends the values a, b. U chooses a
random blinding factor s which he keeps secret and computes A := (Ig2)s; this is the blinded message
that embeds U ’s identity. U also chooses random values x1, x2 which are used to compute B. These
values are an addition to the Chaum-Pedersen scheme; (x1, x2) can be seen as a secret coin key that is
needed for payment, B is the corresponding public value. B is included in the hash value c′ as part of
the “extended” blinded message A||B.

If both participants follow the withdrawal protocol, U will end up with a valid signature sig(A, B) =
(z′, a′, b′, r′); the verification equations

gr′ ?= hH(A||B||z′||a′||b′)a′ and Ar′ ?= z′
H(A||B||z′||a′||b′)

b′

hold:

gr′ = gru+v

= gcxu+wu+v

= gc′xaugv

= hH(A||B||z′||a′||b′)a′

Ar′ = Aru+v

= Acxu+wu+v

= Ac′xbsuAv

= z′
H(A||B||z′||a′||b′)

b′.

2Otherwise, U would know two representations of gu1
1 g2 ((u1; 1) and (0; 0)) and could double-spend without being

identified.
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U
(z := (Ig2)x)

B
(z := (Ig2)x)

w ∈R Zq

a := gw, b := (Ig2)w

←−
a, b

−−−−−−−−−−−−−
s ∈R Z∗

q

A := (Ig2)s

z′ = zs

x1, x2, u, v ∈R Zq

B := gx1
1 gx2

2

a′ := augv

b′ := bsuAv

c′ := H(A||B||z′||a′||b′)
c := c′/u

−
c

−−−−−−−−−−−−−→
r := cx + w

←−
r

−−−−−−−−−−−−−
gr ?= hca, (Ig2)r ?= (z)cb

r′ := ru + v

(sig(A, B) = (z′, a′, b′, r′))

Figure 3.3: Withdrawal in the system from [Bra93].

Payment

In the payment protocol in Figure 3.4, U provides S with A, B, sig(A, B). S verifies A
?

6= 1 3 and
computes a challenge d based on the coin and on information specific to this payment (his identity IS ,
date/time). U responds with r1, r2, and S verifies sig(A, B) and the correctness of U ’s response.

Double-spender Identification

If a coin is deposited more than once, B obtains at least two payment transcripts for the same coin. If IS ,
the date/time, and the response of U are equal in both transcripts, S is trying to deposit a coin twice.
In the case that the coin was actually double-spent by U , the challenges from payment will be different
(otherwise U would have found a collision for the hash function H), and therefore with high probability
also the responses (r1, r2) and (r′1, r

′
2). B can then compute

r1 − r′1
r2 − r′2

= u1,

thus obtaining the account number I = gu1
1 of the double-spender and u1, which serves as a proof of

double-spending.

3Otherwise, U might have chosen s = 0 during withdrawal, thus being able to prevent double-spender identification by
responding r1 := 0 + x1, r2 := 0 + x2 in the payment protocol.
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U S

−
A, B, sig(A, B)
−−−−−−−−−−−−−→

A
?

6= 1
d := H1(A||B||IS ||date/time)

←−
d

−−−−−−−−−−−−−
r1 := d(u1s) + x1

r2 := ds + x2

−
r1, r2

−−−−−−−−−−−−−→
verify sig(A, B)
gr1
1 gr2

2
?= AdB

Figure 3.4: Payment in the system from [Bra93].

3.7 Misuse of Anonymity

In the following, the possibilities to misuse the anonymity of e-cash systems are listed, sorted by the
misusing party. Ways to prevent the misuse are marked by ?. As we’ll see, implementing anonymity
revocation is sometimes the only solution, which leads us to the next chapter.

Fraudulent U

• Overspending: U spends coins for an amount exceeding their value.

? Implement adequate methods, e.g. as described in Section 3.5.

Fraudulent S

• Money laundering: S obtains coins from an illegal activity and issues a fictitious bill to conceal
their origin.

? Implement anonymity revocation.

Fraudulent Outsider

A criminal C not being any of the above parties, but possibly having a bank account, might try the
following attacks:

• Theft of coins from U .

? Make coins spendable only by U ; this does not necessarily contradict anonymity, since U may
prove coin ownership at payment via a blind proof.

• Bank blackmailing: see “perfect blackmailing” below.

• User blackmailing: C forces U to withdraw coins and to hand them to him in a way that he will
be able to spend them. The crucial point is that the handing over of the digital coins might not
require any physical contact; then it can be accomplished by, e.g., a newspaper. Thus, the part of
a blackmailing operation that poses the major threat of being caught to C is rendered totally safe
for him. In addition he can spend the coins without any fear as long as he doesn’t double-spend; if
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B had any means of tracing the coins, he could do so also with regular coins and thus trace honest
users.

? Implement anonymity revocation.

3.7.1 Perfect Blackmailing

Perfect blackmailing as introduced in [vSN92] actually means extorting coins from B. However, one could
also imagine that the blackmailed entity is U , and B cooperates at U ’s request (and at U ’s promise to
reimburse B). The blackmailing attack presented in [vSN92] is shortly shown here:

Regular Withdrawal of a Coin

Let f be a one-way function and let n be an RSA modulus, i.e. n = pq for two primes p, q where n is
public and p, q are known only to B. B issues coins as follows:

1. U randomly chooses a value x and a blinding factor r, computes f(x), blinds it to B := r3f(x)
(mod n), and sends B to B.

2. B computes D := B1/3 (mod n), debits U ’s account, and sends D to U .

3. U unblinds D to C := D/r (mod n) =
(
f(x)

)1/3 (mod n).

The pair (x, C) now represents a digital coin. B hasn’t seen x or C and therefore can’t link the coin to
the withdrawal. The validity of the coin is verified by computing

f(x) ?= C3.

NB. Computing D requires the ability to solve the RSA problem (Subsection 2.3.5), which is feasible if
φ(n) = (p− 1)(q − 1) is known, i.e. if one knows the factorization of n.

The Attack

The criminal C proceeds as follows to obtain p coins:

1. Randomly choose {x1, . . . , xp}, {r1, . . . , rp}.

2. Compute {Bj |Bj = r3
j f(xj) (mod n), j ∈ {1, . . . , p}} and send this set to B.

3. Force B to compute {Dj|Dj = B
1/3
j (mod n), j ∈ {1, . . . , p}} and to publish this set in a newspaper.

4. Buy the newspaper and compute {Cj |Cj = Dj/rj (mod n), j ∈ {1, . . . , p}}.

Now (xj , Cj) is a valid digital coin for j ∈ {1, . . . , p}.
Blackmailing of B was presented in a strongly simplified anonymous system without anonymity revoca-
tion. Nevertheless, when looking, in the following chapters, at ways to augment the security of e-cash
systems, it should be clear that no matter how sophisticated the system, an attacker who succeeds in
forcing B to do as he wishes will always achieve his goal. As with conventional cash, B must resist all
threats.
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Chapter 4

Escrow-based E-Cash Systems

In the previous chapter, anonymous off-line e-cash was presented. User anonymity is a desirable feature;
however, in certain situations it can be equally desirable to be able to revoke this anonymity. Such
circumstances are

• user blackmailing

• money laundering

• otherwise suspect withdrawals or payments, e.g. by users suspected of criminal activities.

Two different kinds of anonymity revocation are useful, namely

• coin (or withdrawal-based) tracing: the ability to recognize coins that resulted from a suspect
withdrawal (prevents misuse of anonymity for blackmailing)

• owner (or payment-based) tracing: the ability to identify users that carried out suspect payments
(prevents misuse of anonymity for money laundering).

So-called fair blind signatures, introduced in [CPS95], make both types of anonymity revocation possible.
They allow the signer (B) to link unblind message-signature pairs (coins) to the corresponding blind ones
(owner tracing) or to extract the unblind message-signature pair from the blind one (coin tracing). For
this the signer needs some information, typically given to him by a trusted third party T , called trustee.

E-cash systems that use fair blind signatures are (not surprisingly) called fair e-cash systems. Another
common (and more descriptive) name is escrow-based e-cash 1; the word “escrow” suggests that the
information needed for tracing is deposited somewhere and accessed when necessary.

The trustee T should have no other role but the one of helping in tracing; like this, a clash of interests is
prevented. Different escrow-based systems with trustee ([CMS96, FTY96, FTY98, dST98]) are presented
and their security is investigated in this chapter.

Instead of having to trust a single entity, one can distribute the revocation capability among several
trustees, allowing only the collusion of a certain number of them to deanonymize. In addition to limiting
trust, this can also augment the availability (not all trustees are required for deanonymization). Dividing
trust among many parties is not further investigated here; interested readers see [Pfi98, Cam98].

If having to trust any third entity is unwanted, self-escrowing [PS00] offers a solution. It provides coin
tracing, thus protecting against user blackmailing; it doesn’t require a trusted third party: the user
himself has the secret information needed for tracing his coins. Self-escrowing is addressed in Chapter 5.

1The shorter term “escrowed e-cash” is misleading, as the coins themselves aren’t escrowed anywhere.
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4.1 Security Requirements for Escrow-based E-Cash

With the addition of anonymity revocation to an e-cash system, some new security requirements arise
and old requirements gain new aspects. In the following, the major changes are presented.

Requirements of T

T ’s only duty and therefore only interest is that of revoking anonymity. Hence, T wants to be always
able to do so. Therefore,

• it should be infeasible for anyone to obtain untraceable coins,

• in systems where T actively participates in the withdrawal of coins, so-called blindfolding of T
should be infeasible. This term means forcing someone to participate in a modified protocol, here
in one that results in untraceable coins.

Requirements of U

An honest U doesn’t want to lose his anonymity; presuming U doesn’t double-spend, this is possible only
if T revokes it. There are two possible scenarios for this:

• B falsely convinces T that U ’s anonymity must be revoked. This can be prevented by employing
methods that provide automatic double-spender identification. Then, B isn’t allowed to ask T for
anonymity revocation.

• Some authority who is allowed to demand anonymity revocation falsely asks T to revoke U ’s
anonymity. The authority can only be trusted by U not to do this; therefore only trusted public
authorities (e.g. judges) should have the power to demand anonymity revocation.

• T falsely identifies an honest U . Although the probability for this event should be small (as T is
called “trustee” and should be trusted also by U), it can be prevented by making the anonymity
revocation protocol such that the correctness of its result can be proven to any third party (e.g. a
judge).

Requirements of B

• B doesn’t want to have to trust T for anything else but tracing; specifically, T shouldn’t be able
to issue coins.

• Blindfolding B to obtain untraceable and thus double-spendable coins should be infeasible.

4.2 On-line vs. Off-line Trustee

The trustee T will revoke U ’s anonymity under special circumstances. To be able to do so, T has to be
able to link coins to withdrawals.

At coin withdrawal, T may be

• on-line: T performs the blinding and can therefore trivially trace, as he has seen the coin in its
unblinded form,

• off-line: U encrypts the tracing information with T ’s public key, gives the encrypted information
to B and proves that T will be able to trace (i.e. that the public key is indeed T ’s and that the
information encrypted is correct and somehow linked to the coin, e.g. embedded in the coin).
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coin base blinded coin base

Withdrawal

unblinded coin blinded coin

U T B
blinded coin

Anonymity revocation

unblinded coin

B T

Figure 4.1: Trustee on-line at withdrawal.

On- and off-line trustee schemes are sketched in Figures 4.1 and 4.2. (Recall that the “coin base” is, e.g.,
a random number; U then ends up with the coin, consisting of this number and a signature by B on it.)
The anonymity revocation presented there is coin tracing, i.e. B wants to know what the unblinded coin
looks like. The other type of anonymity revocation, owner tracing, would be performed in the on-line case
by B handing to T the unblinded coin used in a payment and receiving the corresponding blinded coin
from the withdrawal; with T off-line, B would give T some part of the payment transcript obtained from
S. By use of this information and of his secret key, T could then establish the link to the withdrawal.

tracing information

blinded coin

Withdrawal

T

encrypted for T

public key

U B B T
unblinded coin

tracing information

Anonymity revocation

Figure 4.2: Trustee off-line at withdrawal.

Clearly, with T being off-line, the amount of computation needed during withdrawal rises. Not only has
the encryption to be computed, but also its correct construction has to be proven in a separate protocol.
However, systems with an off-line trustee have been more intensely studied as it is desirable that T needs
to participate in transactions only for anonymity revocation. The greater size of the communication
infrastructure for schemes with on-line trustees can easily be imagined.

Another variant of escrow-based e-cash is that of T certifying (i.e. digitally signing) pseudonyms to
be used by U . This approach is sketched in Figure 4.3: B receives only the pseudonym at withdrawal;
if tracing is required, T is able to link the pseudonym to the real identity of U . In such a system,
payments made with coins that were withdrawn under the same pseudonym are linkable, which might be
undesirable. On the other hand, the radical approach of choosing a different pseudonym for each coin to
achieve unlinkability needs as much involvement of T as on-line escrowing. The difference is that several
pseudonyms may be certified at once and saved by U for later use, cutting down the number of times U
and T have to interact.
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Pseudonym certification

pseudonym(s) P

signature on P

U T
unblinded coin

signature on P

BP

Withdrawal

Figure 4.3: Trustee certifying pseudonyms.

4.3 Systems with Passive Trustee

Apart from the “on-line/off-line at withdrawal” classification above, T may be needed in the following
phases:

• at account opening or at regular intervals (e.g. to certify pseudonyms),

• at payment time; this is imaginable only in very specific systems, as T has to be highly available,

• only for anonymity-revocation; in this case T is called a passive trustee.

In the following, different systems with passive trustee will be analyzed:

• The system of Camenisch, Maurer, and Stadler presented in [CMS96]

• The system of Frankel, Tsiounis, and Yung presented in [FTY96].

• The system of Frankel, Tsiounis, and Yung presented in [FTY98].

• The system of de Solages and Traoré presented in [dST98].

In [CMS96], both an on-line and an off-line system were presented, whereas [FTY96], [FTY98], and
[dST98] deal only with off-line systems (on-/off-line here referring to the role of B during payment).

No Unconditional Unlinkability

In [FTY96] it was proven that unconditional unlinkability is impossible when the trustee is passive. The
key idea is that unconditional unlinkability would imply that the encryption of the tracing information
is unconditional, e.g. a one-time pad. As is known from information theory, T and U would then have to
share information proportional to the size of all the plaintexts, i.e. the coins. This contradicts the idea
that U needs only T ’s public key (which is of fixed length and ideally the same for all users). Thus, the
unlinkability in passive trustee systems can only be computational.

4.3.1 The On-line System from [CMS96]

The system is similar to the one from [Bra93]; the main components of a coin are values (hp, zp) such
that hp = zx

p (where x is B’s secret key), a proof W of this fact, and a proof V (on the structure of
the coin) which guarantees that anonymity revocation is possible. The proof W is issued by B during
withdrawal, while V is computed by U and verified by S at payment time.

The trustee isn’t trusted for anything else but tracing; double-spending is no issue in an on-line system.
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System Setup

B chooses a finite group G of prime order q such that computing discrete logarithms in G is infeasible.
As q is prime, any a ∈ G is a generator of G; generators g, g1, g2 are chosen in a publicly verifiable
pseudorandom manner to ensure that the discrete logarithms of them with respect to each other are
unknown. B also chooses a secret key x ∈R Z∗

q and computes the corresponding public key as y := gx.
G, g, g1, g2, and y are published.

T chooses a secret key τ ∈R Z∗
q ; the corresponding public key is yT = gτ

2 , which is published.

Withdrawal

The withdrawal protocol is shown in Figure 4.4; U chooses a random coin number c# and a random
exponent α ∈R Z∗

q . This value serves various purposes:

1. U uses it to compute the “coin base” hw := g
1/α
1 g2.

2. The unblinded version hp of hw will be hp := hα
w. (The indices w, p stand for withdrawal and

payment; thus, hw is the blind value shown to B during withdrawal, and hp is the unblind value
used for payment.)

3. The tracing information is computed as d := yα
T , which can be seen as a Diffie-Hellman-type

encryption of hp for T .

After having computed hw and d, U creates a proof of equality of logarithms

U := ProofEQLOG(g1, (hw/g2), d, yT ) = PLOGEQ(ε, g1, (hw/g2), d, yT ) = (cU , sU )

as described in Subsection 2.7.4. It serves to prove

logg1
(hw/g2) = logd yT ,

and thus the correct construction of hw and d to B. B verifies U by checking

cU
?= H(ε||g1||d||(hw/g2)||yT ||gsU

1 (hw/g2)cU ||dsU ycU

T ),

and engages in an interactive blind signature protocol with U , referred to in [CMS96] as “protocol P” 2,
which results in the pair (hp, zp) = (hα

w, zα
w) and a proof

W := ProofEQLOG(g, y, hp, zp) = PLOGEQ(c#, g, y, hp, zp) = (c, s)

which on the one hand is a blind Schnorr signature on the message c# (the coin number), and on the
other hand proves that

logg y = loghp
zp,

and thus that zp = hx
p. W is verified by checking

c
?= H(c#||g||hp||y||zp||gsyc||hs

pz
c
p).

B stores d in his withdrawal database.

The actual coin consists of the coin number c#, the values hp, zp, W , and a proof of knowledge of a
discrete logarithm

V := ProofKLOG(g2, hp/g1) = PKLOG(ε, g2, hp/g1) = (cV , sV )

that U computes by himself before payment. V proves that hp is of the form hp = g1g
ξ
2 for some ξ

known to U , and thus prevents the attack of choosing hp := hα
wgβ and zp := zα

wyβ for some β 6= 0 during
2The verifications performed by U at the end of the protocol were omitted in [CMS96].
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withdrawal. Such an attack would yield a valid untraceable coin 3. We’ll see why furthermore ξ = α
holds in the subsection “Security for T ” below.

The verification equation for V is

cV
?= H(ε||g2||hp/g1||gsV

2 (hp/g1)cV ).

U B

random coin number c#
α ∈R Z∗

q

hw := g
1/α
1 g2

d := yα
T

U := ProofEQLOG(g1, (hw/g2), d, yT )

−
hw, d, U

−−−−−−−−−−−−−→
verify U

protocol P
zw := hx

w

r̃ ∈R Zq

t̃g := gr̃

t̃h := hr̃
w

←−
zw, t̃g, t̃h

−−−−−−−−−−−−−
γ, δ ∈R Zq

hp := hα
w

zp := zα
w

tg := t̃gg
γyδ

th := t̃αhhγ
pzδ

p

c := H(c#||g||hp||y||zp||tg||th)
c̃ := c− δ

−
c̃

−−−−−−−−−−−−−→
s̃ := r̃ − c̃x

←−
s̃

−−−−−−−−−−−−−
gs̃ ?= t̃g/yc̃ and hs̃

w
?= t̃h/zc̃

w

s := s̃ + γ
W := (c, s)

(c#, hp, zp, α, W ) (d)

Figure 4.4: Withdrawal in the on-line system from [CMS96].

Payment

The payment protocol is shown in Figure 4.5; U sends the coin to S, who verifies V and W by checking

cV
?= H

(
ε||g2||(hp/g1)||gsV

2 (hp/g1)cV
)

3To check validity, execute the protocol with those values; all verification equations hold. To check untraceability, perform
the computations for anonymity revocation described below: owner tracing would yield (hp=g1)τ = (gα

2 gβ)τ 6= d := gα
2 ;

coin tracing would result in g1d1/τ = g1gα
2 6= hp := g1gα

2 gβ .
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c
?= H

(
c#||g||y||hp||zp||gsyc||hs

pz
c
p

)
,

and passes the coin on to B. In addition to verifying V and W , B also checks in his deposit database if
the coin has already been spent.

U
(c#, hp, zp, α, W )

S B

V := ProofKLOG(g2, hp/g1)
coin := (c#, hp, zp, W, V )

−
coin

−−−−−−−−→
verify V and W

−
coin

−−−−−−−−→
verify V and W
verify that coin
hasn’t already

been spent

Figure 4.5: Payment in the on-line system from [CMS96].

Anonymity Revocation

The anonymity can be revoked by T by use of his secret key τ ; the two different kinds of anonymity
revocation are performed as follows:

• Payment-based (owner tracing): T is given an hp observed in a payment; T computes (hp/g1)τ =
(gα

2 )τ = d, and B searches his withdrawal database for d.

• Withdrawal-based (coin tracing): T is given a d observed in a withdrawal; T computes g1d
1/τ =

g1g
α
2 = hp, and hp can be put on a blacklist for recognizing the coin when it is spent.

The equalities used above hold because for every triple (hw, hp, d) originating from a correct withdrawal
it is true that

α = (logg1
(hw/g2))−1 = logyT d = logg2

(hp/g1).

Security for U

For payments to be unlinkable and anonymous, the protocol P has to be blind; this can be proven by
showing that for every possible view of B and for every possible message-signature tuple there exists
exactly one suitable tuple (α, γ, δ) of blinding factors. Given a view consisting of hw, zw, t̃g, t̃h, c̃, s̃ and a
message-signature tuple (c#, hp, zp, c, s), the only possibility is

α := loghw
hp = logzw

zp

γ := s− s̃

δ := c− c̃
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With these blinding factors, U would have computed

hp := hα
w

zp := zα
w

tg := t̃gg
γyδ

th := t̃αhhγ
pzδ

p

c := H(c#||g||hp||y||zp||tg||th)

It remains to show that tg = gsyc and th = hs
pz

c
p:

tg = t̃gg
γyδ = gr̃+γ+xδ = gr̃+s−s̃+x(c−c̃) = gs+xcgr̃−xc̃−s̃ = gsyc 4

th = t̃αhhγ
pzδ

p = hr̃+γ+xδ
p = hr̃+s−s̃+x(c−c̃)

p = hs+xc
p hr̃−xc̃−s̃

p = hs
pz

c
p.

Thus, c = H(c#||g||hp||y||zp||gsyc||hs
pz

c
p) and the blinding factors (α, γ, δ) would in fact have resulted in

the valid message-signature tuple (c#, hp, zp, c, s).

Although the blindness of protocol P is unconditional, U ’s anonymity is only computational, because the
enrypted tracing information d could be used by B to link withdrawal and payment by testing

logyT d
?= logg2

(hp/g1).

This would be feasible if one could efficiently compute discrete logarithms. Being able to solve the Decision
Diffie-Hellman problem would also be sufficient, the instance to solve would be

given (hp/g1) = gα
2 and yT = gτ

2 , decide d
?= gτα

2 .

In [Cam98] it was stated that linking like this is even equivalent to the Decision Diffie-Hellman problem,
but we can’t see this.

The proof V from payment can’t be linked to the corresponding withdrawal. Furthermore, in [CMS96] it
was stated that B’s view from protocol P and the value d obtained during withdrawal both for themselves
don’t compromise user anonymity, at least against a computationally limited B. What happens if we allow
simultaneous evaluation of both pieces of information and possibly also of the proof U? The value d is
defined as the public key of the trustee taken to the power of U ’s secret value α. As long as we assume
that solving the discrete logarithm or the Decision Diffie-Hellman problem is infeasible, d shouldn’t
compromise U ’s anonymity. The same holds for the proof U , which is assumed not to leak information
about α under the mentioned assumptions.

As double-spending is impossible in an on-line system, false accuses of overspending and further over-
spending by other parties are no issue.

Security for B

In the random oracle model, forging coins without any interaction with B is as hard as computing discrete
logarithms 5. However, it can’t be proven that after ` withdrawals, an attacker can’t obtain more than
` valid coins. It can only be stated that this seems infeasible.

Double-spending is no issue in an on-line system.

Security for S

As the system is on-line, coins paid to S should be hard to steal or extort (deposit takes place immediately
after or even during payment). There is no way to prevent false accusations of double-depositing. However,
this is not a serious problem (B wouldn’t usually make such false accusations, as there is no money to
be gained) and can be solved easily (by including a signature by S in every deposit request).

4The last equality holds because s̃ := r̃ − c̃x.
5Security proofs in the random oracle model are addressed in detail in Chapter 6.
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Security for T

It should be infeasible to obtain untraceable coins. A coin becomes untraceable if U uses, instead of α,
another blinding factor α′ for the computation of hp and zp. The resulting coin would then be one with
hp = g1g

α′

2 such that α′ 6= α; thus, anonymity revocation with the value d := yα
T wouldn’t yield hp. In

the withdrawal protocol, U obtains the values t̃g, t̃h; to circumvent revocation, he would have to compute
th as

th := hr̃
ph

γ
pzδ

p,

thus replacing t̃αh = hr̃α
w by hr̃

p.

In Subsection 6.4.6 of [Cam98], it was claimed that an algorithm that computes hr̃
p would solve the Diffie-

Hellman problem. At first sight we didn’t agree, since [Cam98] required that the algorithm outputs gr̃
1

instead of hr̃
p, and this seemed a stronger assumption. But assuming that the algorithm indeed outputs

hr̃
p = (g1g

α′

2 )r̃ for any α′ 6= α that U chooses, the value gr̃
1 can be obtained by letting the algorithm run

with α′ = 0, and the further argumentation from [Cam98] holds. Thus, it is as hard as the Diffie-Hellman
problem to obtain untraceable coins.

4.3.2 The Off-line System from [CMS96]

In the off-line version of the system from [CMS96], the withdrawal and payment protocols are slightly
modified, allowing B to identify double-spenders without the help of T . The anonymity of honest users
is maintained.

The proof V is redefined; to understand how the identification of double-spenders works, one has to keep
in mind that in the on-line system, V is a Schnorr signature as presented in Subsection 2.5.4. During
its generation, the signer U chooses a random value r to compute c as c := H(m||gr). If two different
messages are signed using the same value r, the secret key can be computed from the two signatures.
Therefore it suffices to force U to compute V using the same r for a given coin. Double-spending will
then result in B being able to compute the secret key used to create V , which is α; then B can look up
d = yα

T in the withdrawal database, and thus identify U .

In the off-line system, U has to choose rp (which plays the role of r) and include tp := g
rp

2 instead of the
coin number c# in the proof W during withdrawal. Since this is the only modification to the withdrawal
protocol, the whole new protocol is not shown here.

U
(hp, zp, W, tp, rp, α)

S

−
hp, zp, W, tp
−−−−−−−−−−−−−→

verify W
cp := H(IDS ||cnt||W )

←−
cp

−−−−−−−−−−−−−
sp := rp − cpα

−
sp

−−−−−−−−−−−−−→
g

sp

2 (hp/g1)cp
?= tp

V := (cp, sp)

(hp, zp, W, tp, V, cnt)

Figure 4.6: Payment in the off-line system from [CMS96].

The new payment protocol, however, is presented in Figure 4.6; U sends (hp, zp, W, tp) to S. After verifying
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W , S provides U with the challenge cp := H(IDS ||cnt||W ) and obtains the response sp. The verification
subsequently performed by S succeeds if sp was computed correctly, because then

g
sp

2 (hp/g1)cp = g
rp−cpα
2 (hα

w/g1)cp = g
rp−cpα
2 g

cpα
2 = g

rp

2 = tp.

The equalities hp = hα
w = g1g

α
2 hold because W proves that the withdrawal protocol was executed

correctly.

The “new” proof V obtained by S is V := (cp, sp); S’ final result (hp, zp, W, tp, V, cnt) can be passed
to B for deposit who will be able to verify both W and V . The counter value cnt serves to protect U
against S framing him as a double-spender; if cnt wasn’t included, S could double-deposit the coin and
say U paid twice with it. With cnt, B will only believe this if the values cnt, cnt’ in the two payment
transcripts differ, i.e. if U actually responded to two different challenges.

It should be noticed that in the off-line payment protocol, V is no longer a Schnorr signature. It may
easily be transformed in one, however, by simply computing cp as cp := H(IDS ||cnt||W ||tp). The authors
of [CMS96] may have preferred their version for efficiency reasons. As pointed out by them, including W
already links V to a specific withdrawal and therefore to this specific coin.

Double-spender Identification

If U spends a coin twice, B will end up with two different challenge-response pairs (cp, sp), (c′p, s
′
p) related

to the coin. B then computes

sp − s′p = rp − cpα− rp + c′pα = α(c′p − cp)

⇒ α =
sp − s′p
c′p − cp

and d = yα
T ,

and looks d up in the withdrawal database, thus identifying U .

Changes in Security with Respect to the On-line Scheme

Avoiding double-spender identification requires the ability to forge the signature V ; this is believed to
be infeasible.

U could be falsely accused of overspending by B if B was able to present two different signatures V for
one coin although U spent the coin only once. This would mean being able to forge V , which is believed
to be infeasible. Should U indeed overspend, then B could compute α and collude with some S to further
overspend the coin.

Theft or extortion of coins paid to S is prevented by including IdS in the payment transcript and thus
making the coin depositable only by S.

For all other aspects, the off-line scheme is as secure as the on-line system.

4.3.3 The Off-line System from [FTY96]

The key concept presented in [FTY96] is that of indirect discourse proofs. These allow one to prove that
a third party will have some future capability, and this without active participation of the third party
in question. For escrow-based off-line e-cash systems with trustee this means that U proves to B or S or
both that T will be able to trace.

The indirect discourse proofs are based on homomorphic properties of exponentiation, as will be shown
below. Obviously they shouldn’t leak information to B or S or both that by itself (without T ’s cooper-
ation) would allow tracing.

The scheme is based on a modification of [Bra93]. In [FTY96], it was presented step by step, first
introducing the basic system which doesn’t provide any kind of tracing, then making the necessary
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additions to this system. Here, the “final result” with owner and coin tracing is presented; for owner
tracing, the payment receivers are assumed to be trusted 6, as in Section 5.1 of [FTY96].

To make understanding the protocols easier, they are shown divided in different parts as in the original
article. In difference to the article, the payment receiver is denoted by S instead of R. For some reason,
the authors of [FTY96] decided to use the prime symbol in a manner complementary to [Bra93]; e.g.,
the variable a becomes a′ and vice versa. This should be kept in mind when comparing the scheme here
to the one described in Subsection 3.6.1.

System Setup

B chooses primes p, q with p = γq+1 for a specified small integer γ and the unique subgroup Gq of order
q of Zp with generators g, g1, g2 such that computing discrete logarithms in Gq is infeasible.

B also chooses secret keys XB, X ′
B ∈R Zq; there are corresponding public keys

h := gXB , h1 := gXB
1 , h2 := gXB

2 and h′ := gX′
B , h′1 := g

X′
B

1 , h′2 := g
X′
B

2 .

Additionally, collision-resistant one-way hash functions H,H0, . . . are defined.

T chooses a secret key XT ∈R Zq; there are corresponding public keys f1 := gXT
1 , f2 := gXT

2 .

Account Opening

At account opening, U chooses a secret u1 ∈ Zq with gu1
1 g2 6= 1 7; U computes his public identity as

I := gu1
1 and proves to B that he knows the discrete logarithm of I with respect to g1. U also computes

z′ := hu1
1 h2 = (Ig2)XB for future use during withdrawals: each coin will consist of a signature on the

message Ig2, and z′ = (Ig2)XB is the signature commitment; the coins will differ in the blinding of Ig2

and z′. As in Brands’ system, B could also compute this value for U as z′ := (Ig2)XB .

Withdrawal

In the first part of the withdrawal protocol, shown in Figure 4.7, U chooses a random number s which he
keeps secret; s will be the blinding factor that is used to blind z′. U computes A := (Ig2)s = A1A2 with
A1 := Is = gu1s

1 , A2 = gs
2; thus, U ’s identity is embedded in A 8. U chooses two random values x1, x2

and computes B1, B2, and B = [B1, B2]. Notice that the “splitting up” of A and B is the only change
to the withdrawal protocol from [Bra93], where U computed B = gx1

1 gx2
2 . We believe that B is split up

to make its representation (x1, x2) unique, and thus make manipulation even less probable 9.

B issues a restrictive blind signature on (A, B). As in Brand’s scheme, it is a modified Chaum-Pedersen
signature of the form sig(A, B) = (z, a, b, r); the verification equations are

gr ?= ahH(A||B||z||a||b) and Ar ?= bzH(A||B||z||a||b).

The second and third part of the withdrawal protocol contain the additions needed for coin tracing
(owner tracing will be implemented by additions merely to the payment protocol). Before presenting
those parts in detail, we sketch the principle:

• The value A2 from the first part of the withdrawal protocol is encrypted to encCT
10 with the

public key of T . A2 is handed to S at payment time, and thus the coin can be identified later, if T
decrypts encCT with his secret key XT ,

6This means that they are trusted not to collude with some other user U ′ to frame U ; this is no great risk, since U
can prove his innocence and the payment receivers will be held liable for the attack. However, U ’s payments lose their
anonymity and U ′ escapes identification; all this can be prevented by further measures described in Section 5.2 of [FTY96].

7Otherwise, U would know two representations of gu1
1 g2 ((u1; 1) and (0; 0)) and could double-spend without being

identified.
8We’ll soon see what the values A1, A2 are used for.
9In Brands’ system, an attacker capable of finding two representations of B could double-spend without being detected;

he would do so by using different representations to compute his response to S’s challenge at payment time.
10CT stands for coin tracing; we’ll also have a separate encryption encOT for owner tracing.
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U
(I = gu1

1 , z′ = hu1
1 h2)

B
(I = gu1

1 , z′ = (Ig2)XB )

w ∈R Zq

a′ := gw, b′ := (Ig2)w

←−
a′, b′

−−−−−−−−−−−−−
s ∈R Zq

A := (Ig2)s = A1A2

z = (z′)s

x1, x2, u, v ∈R Zq

B1 := gx1
1 , B2 := gx2

2

B := [B1, B2]
a := (a′)ugv

b := (b′)suAv

c := H(A||B||z||a||b)
c′ := c/u

−
c′

−−−−−−−−−−−−−→
r′ := c′XB + w

←−
r′

−−−−−−−−−−−−−
r := r′u + v

gr′ ?= hc′a′, (Ig2)r′ ?= (z′)c′b′

(sig(A, B) = (z, a, b, r))

Figure 4.7: Withdrawal in the system from [FTY96], part 1.

• to prove the correct construction of encCT , an additional encryption A′ of A2 is provided,

• B verifies that both encCT and A′ encrypt the same value and blindly signs A′; encCT is stored by
B together with the withdrawal transcript,

• by unblinding A′ and B’s signature on it, U obtains a signature on Ā (the unblinded A′),

• at payment, U opens Ā and S verifies that Ā encrypts A2.

By looking at the values that B and S respectively see, it is clear that B or S or both can’t link
withdrawals to payments. On the other hand, B verifies that encCT and A′ encrypt the same value, S
verifies that Ā encrypts A2, and the restrictiveness of the blind signature scheme guarantees that Ā and
A′ encrypt the same value. Thus, encCT indeed encrypts A2 and the coin can be traced with the help of
T .

Now, let’s look at the second part of the withdrawal protocol, shown in Figure 4.8. In the course of it,
U will supply B with the ElGamal encryption

encCT := (D′
1, D

′
2) := (A2f

m′

1 , gm′

1 )

of A2. Before computing encCT , U prepares additional values that will be used to convince B that encCT

is indeed computed as above, of course without revealing its content. U chooses blinding factors n1, n2

and blinds A2 to A′
1 := An1

2 . With A′
2 := gn1

1 , the product A′ := A′
1A

′
2 is the second encryption of A2

that U will open for S at payment time. U proves (using the Schnorr identification protocol as described
in Subsection 2.7.3) that he knows how to represent A′

1 with respect to g2 and A′
2 with respect to g1;

this ensures the correct construction of A′.

Next, U computes the encryption encCT = (D′
1, D

′
2) and engages in an indirect discourse proof with B

to prove that
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U B

n1, n2 ∈R Zq, N := n1n2

A′
1 := An1

2 = gsn1
2 , A′

2 := gn1
1

A′ := A′
1A

′
2

U proves knowledge of representations of A′
1 and A′

2

m′ ∈R Zq

D′
1 := A2f

m′

1 , D′
2 := gm′

1

encCT := (D′
1, D

′
2)

−
A′, A′

1, A
′
2, encCT

−−−−−−−−−−−−−−→
A′ ?= A′

1A
′
2, D

′
2

?

6= 1
s′0, s

′
1, s

′
2 ∈R Zq

D̄ := D′
1
s′0g

s′1
1 D′

2
s′2

f ′1 := f
s′0
1 g

s′2
1

←−
D̄, f ′1−−−−−−−−−−−−−

V̄ := H4

(
(D̄)n1/(f ′1)

n1m′)
−

V̄
−−−−−−−−−−−−−→

V̄
?= H4

(
(A′

1)
s′0(A′

2)
s′1
)

(A′
1, A

′
2, encCT )

Figure 4.8: Withdrawal in the system from [FTY96], part 2.

45



U
(s, n1, n2, N = n1n2, A

′)
B

(A′ = A′
1A

′
2)

ω ∈R Zq

α′ := gω, β′ := A′ω

←−
α′, β′

−−−−−−−−−−−−−
υ, ν ∈R Zq

Ā := A′n2

ζ′ := h′
sn1
2 h′

n1
1 = A′X′

B

ζ := ζ′
n2 = A′X′

Bn2 = ĀX′
B

α := α′
υ
gν

β := β′
n2υ

Āν

ς := H(Ā||N ||ζ||α||β)
ς ′ := ς/υ

−
ς ′

−−−−−−−−−−−−−→
ρ′ := ς ′X ′

B + ω

←−
ρ′

−−−−−−−−−−−−−
ρ := ρ′υ + ν

gρ′ ?= h′
ς′

α′, A′ρ′ ?= (ζ′)ς′β′

(sig(Ā, N) = (ζ, α, β, ρ))

Figure 4.9: Withdrawal in the system from [FTY96], part 3.

• the encryption is based on T ’s public key,

• encCT and A′
1 both encrypt the same string (B doesn’t see this string here and U could choose it

arbitrarily for the moment; but at payment time, S will check that the string actually is A2).

In the third and last part of the protocol, shown in Figure 4.9, B issues a restrictive blind signature
on the values (Ā, N), where Ā := A′n2 , i.e. n2 is used to blind A′ to Ā. This blinding’s purpose is to
guarantee unlinkability of withdrawal and payment; at payment and deposit, S and B will only see Ā,
which can’t be linked to A′.

To make the signature on (Ā, N) differ from the one on (A, B), it is created with B’s other secret key,
X ′
B.

Payment

In the first part of the payment protocol, shown in Figure 4.10, U provides S with A1, A2, A, B, (z, a, b, r).
S verifies some properties of A, namely

A
?= A1A2,

A
?

6= 1 11,

and B’s signature sig(A, B) = (z, a, b, r) by checking

gr ?= ahH(A||B||z||a||b) and Ar ?= bzH(A||B||z||a||b).

Then, a challenge d is computed based on the coin and on information specific to this payment (IS ,
date/time). U responds with (r1, r2), and S verifies the correctness of this response.

11Otherwise, U might have chosen s = 0 during withdrawal, thus being able to prevent double-spender identification by
responding r1 := 0 + x1, r2 := 0 + x2 in the payment protocol.
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U S

−
A1, A2, A, B
−−−−−−−−−−−−−→

(z, a, b, r)

A
?= A1A2, A

?

6= 1
verify sig(A, B) = (z, a, b, r)

d := H1(A1||B1||A2||B2||IS ||date/time)

←−
d

−−−−−−−−−−−−−
r1 := d(u1s) + x1

r2 := ds + x2

−
r1, r2

−−−−−−−−−−−−−→
gr1
1

?= Ad
1B1

gr2
2

?= Ad
2B2

(A1, A2, B, sig(A, B), d, r1, r2)

Figure 4.10: Payment in the system from [FTY96], part 1.

In the second part of the protocol, shown in Figure 4.11, U gives S the pair (Ā, N) and B′s signature
(ζ, α, β, ρ) on it 12; S verifies it by checking

gρ ?= αh′
H(Ā||N ||ζ||α||β) and Āρ ?= βζH(Ā||N ||ζ||α||β).

Additionally, S verifies that A2 is embedded in Ā by checking

Ā
?= AN

2 gN
1 .

U computes the ElGamal encryption encOT := (D1, D2) := (IgXT m
2 , gm

2 ) of his identity I and engages in
an indirect discourse proof with S to prove its correct construction. The encryption encOT makes owner
tracing possible.

Double-spender Identification

If a coin is deposited more than once, B obtains at least two payment transcripts for the same coin. If
IS , the date/time, and the response (r1, r2) of U are equal in both transcripts, S is trying to deposit a
coin twice. In the case that the coin was actually double-spent by U , the challenges from payment will
be different (otherwise U would have found a collision for the hash function H1), and therefore with high
probability also the responses (r1, r2) and (r′1, r

′
2). B can then compute

r1 − r′1
r2 − r′2

= u1,

thus obtaining the account number I = gu1
1 of the double-spender and u1, which serves as a proof of

double-spending.

Anonymity Revocation

The anonymity can be revoked by T by use of his secret key XT ; the two different kinds of anonymity
revocation are performed as follows:

12Actually, the signature is not on the pair (Ā; N), but on the concatenation (Ā||N).
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U S
(A2)

−
(Ā, N)

−−−−−−−−−−−−−→
(ζ, α, β, ρ)

verify sig(Ā, N) = (ζ, α, β, ρ)
Ā

?= AN
2 gN

1
m ∈R Zq

D1 := IgXT m
2 , D2 := gm

2

encOT := (D1, D2)

−
encOT−−−−−−−−−−−−−→

D2

?

6= 1
s0, s1, s2 ∈R Zq

D′ := Ds0
1 gs1

2 Ds2
2

f ′2 := fs0
2 gs2

2

←−
D′, f ′2−−−−−−−−−−−−−

V := H1(D′s/f ′2
ms)

−
V

−−−−−−−−−−−−−→
V

?= H1(As0
1 As1

2 )

(Ā, n1, n2, sig(Ā, N), encOT )

Figure 4.11: Payment in the system from [FTY96], part 2.
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• Payment-based (owner tracing): T is given a pair (D1, D2) = (IgXT m
2 , gm

2 ) observed in a payment;
T computes D1/DXT

2 = I, and B searches his account database for I. NB. In the system from
[CMS96] the larger withdrawal database has to be searched.

• Withdrawal-based (coin tracing): T is given a pair (D′
1, D

′
2) = (A2g

XT m′

1 , gm′

1 ) observed in a
withdrawal; T computes D′

1/(D′
2)XT = A2, and A2 can be put on a blacklist for recognizing the

coin when it is spent or deposited. NB. In the system from [CMS96] no additional encryption like
(D′

1, D
′
2) (and thus no signature on this encryption) is needed.

Security for U

In the system from [Bra93], U ’s anonymity was unconditional. We know that in systems with passive
trustee it can only be computational. We’ll now examine the additions to the system from [Bra93] and
see to what extent they compromise U ’s anonymity:

• The splitting of A = gu1s
1 gs

2 into A1 = gu1s
1 , A2 = gs

2 during payment already reduces the anonymity
from unconditional to computational: computing logg2

A2 will yield s, and then u1 = loggs
1
A1. To

be able to trace, B doesn’t actually need as much as the capability to compute discrete logarithms;
it suffices if B can solve a problem that was called “matching Diffie-Hellman” problem in [FTY96].
It consists of the following: given (ga0 , ga0b0), (ga1 , ga1b1), and gbr , gb1−r , find r ∈ {0, 1} with
probability significantly better than 1/2 13. [FTY96] contains a reduction of the matching Diffie-
Hellman problem to the problem of linking withdrawal and payment transcripts.

• U gives the additional values A′
1, A

′
2, A

′, Ā to B or S or both; they are linked to his identity, but
are all blinded by raising them to the power of randomly chosen blinding factors. If the values
A′

1, A
′
2 were omitted, A′ and Ā would be unconditionally unlinkable (we would then have the basic

restrictive blind signature from [Bra93]), but the splitting of A′ into A′
1, A

′
2 makes the unlinkability

computational, in perfect analogy to the splitting of A into A1, A2 described above.

• U proves that he knows how to represent A′
1, A

′
2; this is done by the Schnorr identification protocol,

which is believed to be safe, although not perfect zero-knowledge.

• U computes the encryptions encOT , encCT ; these are ElGamal encryptions and as such believed to
be computationally secure, i.e. given only two plaintexts and their encryptions, it is infeasible to
tell which plaintext belongs to which encryption with probability significantly better than 1/2.

• In the third part of the withdrawal protocol, U and B engage in a further blind signature protocol;
its blindness guarantees that U ’s anonymity isn’t compromised by it.

• U conducts two indirect discourse proofs, one with B, one with S. The proofs are zero-knowledge;
we’ll now show this for the proof executed with S:

S can simulate the indirect discourse proof protocol if he is allowed to choose (D1, D2): this en-
cryption then encodes the identity of some U ′ for a coin consisting of A′

1, A
′
2. The security of the

ElGamal encryption guarantees that encryptions of different plaintexts are indistinguishable. The
values s0, s1, s2 are chosen randomly, and V is computed as H1

(
(A′

1)
s0(A′

2)
s1
)
. H1 being seen as

a random oracle, the distribution of the simulated values is indistinguishable from the one of the
real protocol.

U can’t be falsely accused of overspending, as this would require forging a payment transcript; two
different payment transcripts would reveal the representation of A1 and A2, thus solving an instance of
the representation problem.

If U indeed overspends, the representation of A1, A2 becomes known to B at deposit and even to S
during payment, if U spends a coin twice at the same S. Anyone knowing this representation could then
do further overspending.

13Better than 1=2 + 1=kc for any constant c for large enough k, where k is a security parameter.
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Security for B and S

The information given to B and S in this scheme is a superset of that shown in the scheme from [Bra93];
B and S do not transmit additional information, and the verifications check everything that was checked
in [Bra93]. The additional information obtained by S doesn’t allow him to forge coins or overspend a
coin received in payment. Thus, the scheme is as secure for B and S as the one from [Bra93]. As we
stated before, this scheme hasn’t been broken, but its security can’t be proven.

Security for T

For T being able to trace, the encryptions encCT , encOT have to be computed correctly. This fact should
be proven by the indirect discourse proofs. T has to trust B and S that they perform the proof protocols
with U correctly, i.e. that they don’t cooperate with a cheating U or cheat themselves. We’ll take a look
at the soundness of the proof between U and S about encOT . Our considerations obviously also apply to
the proof between U and B.

We’ll first present the argumentation from [FTY96] and then proceed with our own thoughts.

Soundness of the indirect discourse proof as shown in Section 5.1 of [FTY96]

U wants to convince S of the correct construction of encOT := (D1, D2). For simplicity, U is assumed to
be able to compute discrete logarithms.

In the indirect discourse proof, let a cheating user U try to find a V that S will accept. After receiving
D′, f ′2 from S, U might try to find the random values s0, s1, s2, as this would allow him to compute
As0

1 As1
2 . For any (guessed) s′0 ∈ Zq there exist unique s′1, s

′
2 ∈ Zq such that

f ′2 = f
s′0
2 g

s′2
2 and D′ = D

s′0
1 g

s′1
2 D

s′2
2 .

Therefore all guessed s′0 ∈ Zq have equal probability and even a computationally unlimited U can’t guess
the correct s0 with probability greater than 1/q.

In [FTY96], U is assumed to cheat by choosing D1 := g
u′1
1 gmXT

2 with u′1 6= u1, i.e. by encrypting not his
own, but some other identity. NB.: U could also cheat in other ways, e.g. by encrypting his real identity,
but not with T ’s public key. This will be discussed below (“further investigation”).

Now let’s assume that during an execution of the protocol (with (D1, D2) incorrectly constructed), U
could compute a V that S accepts, i.e. for which the verification equation V = H1(As0

1 As1
2 ) holds. Then,

without loss of generality, he could find all values Ã satisfying V = H1(Ã). With Z defined as

Z := (D′)s/(f ′2)
ms = (gu′1s

1 )s0As1
2 ,

U would then perform the following computation for each of these Ã:

Z ′ := Ã/Z = g
(u′−u′1)ss0
1 (for some u′)

s′0 := logY Z ′ with Y := g
(u1−u′1)s
1 .

Notice that for one of the Ã, u′ = u1 holds, and the s′0 computed for this Ã is indeed s0. Since with
extremely small probability |{Ã ∈ Zq|V = H1(Ã)}| = q, i.e. since there are almost certainly less than q

values Ã and therefore less than q corresponding values s′0, U could randomly choose from these q values
and get s0 with probability strictly greater than 1/q. This is a contradiction to the maximum probability
of success for guessing s0 stated above. Thus, we conclude that it’s infeasible for U to find a correct V
if he chooses

D1 := g
u′1
1 gmXT

2 with u′1 6= u1.
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Further Investigation on the Security of the Indirect Discourse Proofs

In the proof of security of the indirect discourse proof in Section 5.1 of [FTY96], it is only shown that
U can’t cheat by encrypting a false identity in (D1, D2). However, it remains unclear why S should
be convinced of more than that, i.e. how can S be sure that U isn’t cheating in some other way? For
complete security, S must have certainty over the correct construction of (D1, D2). To examine why the
presented protocol might satisfy this requirement, we’ll take a closer look at the indirect discourse proof
that should prove the correctness of (D1, D2).

U
A1 := gu1s

1 , A2 := gs
2

S

m ∈R Zq

D1 := IgXT m
2 = gu1

1 gXT m
2

D2 := gm
2

−
D1, D2

−−−−−−−−−−−−−→
D2

?

6= 1
s0, s1, s2 ∈R Zq

D′ := Ds0
1 gs1

2 Ds2
2

f ′2 := fs0
2 gs2

2 = gXT s0
2 gs2

2

←−
D′, f ′2−−−−−−−−−−−−−

V := H1

(
(D′)s/(f ′2)

ms)
)

= H1

(
Ds0s

1 gs1s
2 Ds2s

2

fs0ms
2 gs2ms

2

)
= H1

(
gu1s0s
1 gXT ms0s

2 gs1s
2 gms2s

2

gXT s0ms
2 gs2ms

2

)
= H1

(
(gu1s

1 )s0 (gs
2)

s1
)

= H1(As0
1 As1

2 )

−
V

−−−−−−−−−−−−−→
V

?= H1(As0
1 As1

2 )

Figure 4.12: Analysis of the indirect discourse proof during payment.

In Figure 4.12, the expressionH1

(
(D′)s/(f ′2)

ms)
)

is expanded to show how its basic components actually
“sum up” to H1(As0

1 As1
2 ). Of course, this happens under the assumption that both participants are

honest. However, what possibilities does U have for cheating? As shown in the previous subsection,
guessing s0, s1, s2 is infeasible. We assume that U can compute discrete logarithms and thus obtain α

with g2 = gα
1 . Computing the discrete logarithms of D′, f ′2, and D′s/f ′

ms
2 = (gu′1s

1 )s0As1
2 would yield

logg1
D′ = (u1 + αXT m)s0 + αs1 + αms2

logg1
f ′2 = αXT s0 + αs2

logg1
(gu′1s

1 )s0As1
2 = u′1ss0 + αss1.

As can be seen, there is no way of getting to know s0, s1, s2 like this, either. As these random factors
remain unknown, U has no possibility to manipulate the values D′, f ′2 obtained from S in way that will
lead to validity of the verification equation.

Substituting some s′ 6= s for s in the calculation of V would allow U to “hide” a false u′1 used for
constructing D1 (e.g. by choosing s′ := u1/u′1), but would at the same time cause As1

2 6= gs′s1
2 . Similarly,
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substituting m′ 6= m for m at some point (when computing (D1, D2) or V or both) won’t yield a valid
V for an incorrectly constructed (D1, D2).

Roughly speaking, the obstacle for a cheating U is that for successfully manipulating the values used in
the calculation of V , U needs at least one of the randomly chosen values s0, s1, s2. As long as S doesn’t
reveal any of them, U can only guess one of them with probability 1/q. Thus, the argumentation from
[FTY96] presented in the previous subsection seems reasonable even if we allow U not only to encrypt a
false u′1, but to compute (D1, D2) in any way he likes. This is clear if one thinks that any pair (D1, D2)
can be seen as an encryption of some false identity with T ’s public key, i.e. for all (D1, D2) ∈ (Zq ×Zq)
there exist u′1, m such that

D1 = g
u′1
1 fm

2 , D2 = gm
2 .

4.3.4 The Off-line Systems from [FTY98]

In [FTY98], an extended proof of equality of logarithms was used to construct indirect discourse proofs.
These indirect discourse proofs are, in contrast to those from [FTY96], noninteractive. It was first shown
how to use them to add anonymity revocation to an existing anonymous system ([Bra93]); afterwards,
a proprietary, more efficient system employing extended proofs of equality of logarithms and without
indirect discourse proofs was presented.

U ’s anonymity was claimed to be provable under the Decision Diffie-Hellman assumption for both ap-
proaches, while security under all other aspects should be the same as in the underlying system from
[Bra93].

If consulting [FTY98], the following should be noticed:

• the variables Q and P should be replaced by q and p,

• in the protocol in Figure 2 on page 6, s3 isn’t needed,

• throughout Section 4.1, u actually means u1,

• in the protocol in Figure 3 on Page 8, r3 must be computed as r3 := s3 − cxu1 for the protocol to
work,

• the definition of V2 at the bottom of Page 8 should read

V2 = IndPrf[(Ā, g2g
t
4), g1, (Ā, g1, D1|f2), g2g

t
4],

• on Page 11, all occurrences of t−1 should be replaced by −t.

The extended proof of equality of logarithms is shown in Figure 4.13; soundness and zero-knowledge of
it were discussed in [FTY98] (where the authors called “correctness” what we refer to as soundness); it
was shown that the prover can’t successfully cheat unless he is able to compute discrete logarithms.

For generators a, b, G1, G2 and values A, B, it proves that P knows values x, v, w such that A = axGv
1 ,

B = bxGw
2 . Thus, it is actually a proof of knowledge of representation of A, B and of equality of one

exponent. We’ll refer to it as ProofREP+EQLOG((A, a), G1, (B, b), G2). We’re thus almost completely
retaining the notation from [FTY98], which is not very intuitive; we chose to do so to ease using [FTY98]
as a reference. However, the meaning of each proof is explained in clear words.

The indirect discourse proof is shown in Figure 4.14; for generators a, b, G1, G2, G3 and values A, B, C it
proves that P knows values x, v, w, u such that A = axGv

1 , B = CxGz
2G

t
3 = bexGw

2 , C = beGu
3 for some

values z, t, e.

As discussion of soundness and zero knowledge of the proof were omitted in [FTY98], they are dealt with
here. When trying to show that the indirect discourse proof is correct and sound (i.e. that it actually
proves what it should prove), some problems were encountered: as will be shown below, a knowledge
extractor (see Subsection 2.7.2) can’t obtain the prover’s secret values. Nevertheless, successfully cheating
in the proof protocol would result in the ability to compute discrete logarithms. As this is regarded as
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P
(x, v, w)

V

y, s1, s2 ∈R Zq

A′ := ayGs1
1

B′ := byGs2
2

−
A′, B′

−−−−−−−−−−−−−→
c ∈R Zq

or
c := H(A||A′||a||G1||B||B′||b||G2||info)

←−
c

−−−−−−−−−−−−−
r := cx + y

r1 := cv + s1

r2 := cw + s2

−
r, r1, r2

−−−−−−−−−−−−−→
arGr1

1
?= AcA′

brGr2
2

?= BcB′

Figure 4.13: Proof of equality of logarithms from [FTY98].

infeasible, it seems plausible that although the indirect discourse proof of [FTY98] isn’t a knowledge
proof in the strict sense, it is secure if computing discrete logarithms is infeasible.

The zero-knowledge property of the indirect discourse proof is shown by demonstrating how the verifier
could simulate the proof.

Soundness of the Indirect Discourse Proof

If a proof of knowledge actually proves knowledge of secrets, a knowledge extractor E should be able to
extract these secrets by execution of the proof protocol: In the concrete case of the indirect discourse
proofs as presented in Figure 4.14, E begins the protocol with the prover and obtains upon his challenge
c the response (r, r1, r2, r3). At this point, E resets the prover to the step of the protocol where the
values A′, B′ have just been sent. A different challenge c′ is passed to P , and E obtains the corresponding
response (r′, r′1, r

′
2, r

′
3). If the prover is honest, E has only to perform the following computations:

r − r′ = cx− c′x = (c− c′)x ⇒ x =
r − r′

c− c′

r1 − r′1 = cv − c′v = (c− c′)v ⇒ v =
r1 − r′1
c− c′

r2 − r′2 = cw − c′w = (c− c′)w ⇒ w =
r2 − r′2
c− c′

r3 − r′3 = −cxu + c′xu = (c′ − c)xu = (r − r′)u ⇒ u =
r3 − r′3
r − r′

.

As can be seen, the right-hand sides of the equations for x, v, w, u contain only values known to E and
thus E obtains the prover’s secrets.

However, this result shows only the correctness of the protocol, i.e. if executed by an honest prover, the
protocol will reveal the (correct) secret values to a knowledge extractor E . When allowing the prover to
cheat, E can’t pretend that the responses were actually computed according to the protocol. The only
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P
(x, v, w, u)

V

y, s1, s2, s3 ∈R Zq

A′ := ayGs1
1

B′ := CyGs2
2 Gs3

3

−
A′, B′

−−−−−−−−−−−−−→
c ∈R Zq

←−
c

−−−−−−−−−−−−−
r := cx + y

r1 := cv + s1

r2 := cw + s2

r3 := s3 − cxu

−
r, r1, r2, r3

−−−−−−−−−−−−−→
arGr1

1
?= AcA′

CrGr2
2 Gr3

3
?= BcB′

Figure 4.14: Indirect discourse proof from [FTY98].

thing he knows is that the verification equations hold:

arGr1
1 = AcA′

CrGr2
2 Gr3

3 = BcB′.

For simplicity, let’s assume that the knowledge extractor E is able to compute discrete logarithms.
Therefore in the following, for reasons of legibility, we’ll transform all values to powers of a generator
g, i.e. instead of writing a we’ll be writing gba etc. (where â := logg a). Thus, the verification equations
become

gbarg
cG1r1 = g

bAcg
cA′ ⇒ âr + Ĝ1r1 = Âc + Â′ (4.1)

g
bCrg

cG2r2g
cG3r3 = g

bBcg
cB′ ⇒ Ĉr + Ĝ2r2 + Ĝ3r3 = B̂c + B̂′. (4.2)

Now, if the indirect discourse proof indeed proves that A = axGv
1 and B = CxGz

2G
t
3 = bexGw

2 , E should
be able to compute the secret values by applying the equations

Â = âx + Ĝ1v (4.3)

B̂ = b̂ex + Ĝ2w (4.4)

Ĉ = b̂e + Ĝ3u. (4.5)

Subtracting the equation

âr′ + Ĝ1r
′
1 = Âc′ + Â′ (4.6)

(derived from the second challenge/response-pair) from Equation 4.1 and solving the result gives us

Â =
â(r − r′) + Ĝ1(r1 − r′1)

c− c′
(4.7)
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Applying Equation 4.3 to this yields

âx + Ĝ1v =
â(r − r′) + Ĝ1(r1 − r′1)

c− c′

⇒ x =
â(r − r′) + Ĝ1(r1 − r′1)

â(c− c′)
− Ĝ1v

â
(4.8)

Hence, for each v there exists a unique x that fulfills Equation 4.8. By examining Equation 4.2 and the
other equations provided, one can see that for each of the pairs (v, x), suitable values w, e, u, z, t can be
found. Suitable means that with these values, both the verification equations and the condition to be
proven by the indirect discourse proof hold. Thus, E can’t obtain the prover’s actual secret values but
by guessing at least one of them.

One might hope that more information could be gained by sending more than just two challenges.
However, this leads only to more equations of the form of Equation 4.7, with only the number of primes
(′) varying. The left-hand side would remain the same, leading to something not different enough from
Equation 4.8.

The way the authors of [FTY98] argued that their indirect discourse proofs nevertheless are sound was
by requiring the prover not to know the relative discrete logarithms of the generators a, G1, b, G2. Now,
if the prover is able to respond to two challenges, then he can also compute the correct representations
of A, B, C. As the challenges are chosen at random, the probability of the prover being able to respond
correctly even to a single challenge without knowing the representations is negligible.

However, this actually only proves that such representations exist, but it is not said that they are the
ones used by the prover. This can be derived only from the fact that the prover is said not to know the
relative discrete logarithms of a, G1, b, G2. If the prover knew other representations of A, B, C, he could
compute these logarithms:

Let’s say that a cheating prover gives a response that an honest prover would have computed from the
representation A = axGv

1 , but the cheating prover knows some other representation A = ax′Gv′

1 . Now
the following equations hold:

axGv
1 = ax′Gv′

1

⇒ Gv−v′

1 = ax′−x

⇒ loga Gv−v′

1 = loga ax′−x

⇒ (v − v′)logaG1 = x′ − x

⇒ logaG1 =
x′ − x

v − v′
.

Analogous equations exist for B, C. Thus, if the cheating prover knows more than one representation
of A, B, C, he can compute the relative discrete logarithms of a, G1, b, G2. Then he would be able to
compute any discrete logarithm by replacing a, G1, b, G2. As this is believed to be infeasible, we can
assume that for being able to respond correctly, the prover has to know a representation fulfilling the
condition to be proven.

Zero Knowledge

It is sufficient to show that the proof could be simulated in a way indistinguishable to V . To this end, a
simulator S would first randomly choose the challenge c and the response (r, r1, r2, r3). The values A′, B′

would then be computed as

A′ := arGr1
1 A−c

B′ := CrGr2
2 Gr3

3 B−c.

With these values, the verification equations clearly hold. Moreover, the distribution of the values con-
stituting V ’s view is the same as of those resulting from an execution of the protocol. Thus, simulated
views are indistinguishable from real ones.
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If the proof is made noninteractive by letting P compute c as

c := H(A||B||C||A′||B′||a||b||G1||G2||G3||date/time||info),

then during a simulation of the proof, the hash function H (which is seen as a random oracle) has to be
modified to output c on input A||B||C||A′||B′||a||b||G1||G2||G3||date/time||info. The resulting modifiedH
can’t be distinguished from a real random oracle, since c is a random value and since we can assume that
the probability that A||B||C||A′||B′||a||b||G1||G2||G3||date/time||info has already been asked before 14

is negligible.

4.3.5 Modular Addition of Owner Tracing from [FTY98]

In the following, the modular addition from [FTY98] of owner tracing to Brands’ system [Bra93] is
presented. It consists of an extension to the payment phase: U provides S with an ElGamal encryption
of his identity. The encryption has to be linked to the coin; otherwise, S would have to be trusted to
store coin-encryption pairs correctly.

We’d like to stress that the following is an addition to the payment protocol from [Bra93]; in [FTY98]
this addition was called “the new payment protocol”. It seems that the authors forgot that the signature
of B on the coin still has to be checked by S during payment. However, the sending of A, B, sig(A, B)
to S and the verification of the signature is all that’s missing, i.e. the challenge and response from the
payment protocol from [Bra93] as shown in Figure 3.4 on Page 31 can be omitted. This is due to the
fact that equivalent responses are given already in the proofs V1, V2 presented below.

Payment

During payment, U computes an ElGamal encryption (D1, D2) of I and engages in two proofs V1, V2.
The first of them, presented in Figure 4.15, is an extended proof of equality of logarithms which shows
that D1 = gx

1fm
2 , D2 = gm

2 for some x, m. Notice that computing powers of 1 is only done to maintain
conformity with the general protocol for proving equality of logarithms. The verification equations for a
correctly computed V1 hold:

f r
2 gr1

1 = f cm+y
2 gcx+s1

1

= f cm
2 gcx

1 fy
2 gs1

1

= (gXT m
2 gx

1 )cfy
2 gs1

1

= Dc
1A

′

gr
21

r2 = gcm+y
2

= (gm
2 )cgy

2

= Dc
2B

′.

Strangely, for the indirect discourse proof V2 the coin was without further explanation defined to be
Ā := gu1s

1 (g2g
t
4)

s, thus being different from A := gu1s
1 gs

2 from [Bra93]. This modification means that the
generator g2 is replaced by a new generator g2g

t
4. Obviously, this has to be done for the whole withdrawal

protocol from [Bra93].

Now, let’s examine the indirect discourse proof V2 shown in Figure 4.16; in addition to redefining the
coin, the random values y, s1 are replaced by x2, x1 and thus, A′ is replaced by B = gx1

1 (g2g
t
4)

x2 ; these
values are the same that were chosen randomly during withdrawal. This is done to let double-spending
result in an identification of U by B without the help of the trustee.

The indirect discourse proof V2 shows that for the value x from V1, the equivalence xs ≡ u1s (mod q)
holds; this implies x ≡ u1 (mod q) and therefore proves D1 = IgXT

2 . The relation xs ≡ u1s (mod q) is
derived from the following relations proven by V2 for some values x̃, ẽ, ũ, ṽ, w̃, z̃, t̃ (replacing the corre-
sponding values x, e, u, v, w, z, t from Figure 4.14 to avoid ambiguities):

14The response of H to this previous query would probably not have been c, and thus V would notice that H has been
modified.
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Prove that D1 = gx
1 gXT m

2 , D2 = gm
2 for some x, m:

U
(D1, D2, f2 = gXT

2 )
S

(D1, D2, f2 = gXT
2 )

y, s1, s2 ∈R Zq

A′ := fy
2 gs1

1

B′ := gy
21s2

−
A′, B′

−−−−−−−−−−−−−→
c ∈R Zq

←−
c

−−−−−−−−−−−−−
r := cm + y
r1 := cx + s1

r2 := c + s2

−
r, r1, r2

−−−−−−−−−−−−−→
f r
2 gr1

1
?= Dc

1A
′

gr
21

r2 ?= Dc
2B

′

(c, r, r1, r2)

Figure 4.15: Payment in modular owner tracing from [FTY98], V1.

Prove that Ā = (g2g
t
4)

sgv
1 , Ā = Ds

1(g2g
t
4)

zfp
2 = gu1s

1 (g2g
t
4)

s :

U
(Ā, D1, D2, f2 = gXT

2 )
S

(Ā, D1, D2, f2 = gXT
2 )

s2, s3 ∈R Zq

B = gx1
1 (g2g

t
4)

x2

B′ := Dx2
1 (g2g

t
4)s2fs3

2

−
B, B′

−−−−−−−−−−−−−→
c ∈R Zq

←−
c

−−−−−−−−−−−−−
r := cs + x2

r1 := cu1s + x1

r2 := cs + s2

r3 := s3 − csm

−
r, r1, r2, r3

−−−−−−−−−−−−−→
(g2g

t
4)rgr1

1
?= ĀcB

Dr
1(g2g

t
4)r2f r3

2
?= ĀcB′

(c, r, r1, r2, r3)

Figure 4.16: Payment in modular owner tracing from [FTY98], V2.
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• Ā = (g2g
t
4)

x̃gṽ
1 ,

• Ā = gẽx̃
1 (g2g

t
4)

w̃ = Dx̃
1 (g2g

t
4)

z̃f t̃
2,

• D1 = gẽ
1f

ũ
2 .

We now replace ẽ by x and ũ by m from V1, and x̃ by s and ṽ by u1s due to the definition of Ā and to
the restrictiveness of the blind signature protocol, and obtain

• Ā = (g2g
t
4)sgu1s

1 ,

• Ā = gxs
1 (g2g

t
4)

w̃ = Ds
1(g2g

t
4)

z̃f t̃
2,

• D1 = gx
1fm

2 .

Assuming that U knows only one representation of Ā with respect to (g1, g2g
t
4), we then have xs ≡ u1s

(mod q) and in consequence D1 = gu1
1 fm

2 .

Now it should be clear why an extended proof of equality of logarithms wouldn’t be sufficient to show
the correct structure of (D1, D2); the indirect discourse proof V2 proves the more complex relation to Ā.

For a correctly computed proof V2 the verification equations hold:

(g2g
t
4)

rgr1
1 = (g2g

t
4)

cs+x2gcu1s+x1
1

= (g2g
t
4)

csgcu1s
1 (g2g

t
4)

x2gx1
1

=
(
(g2g

t
4)

sgu1s
1

)c(g2g
t
4)

x2gx1
1

= ĀcB

Dr
1(g2g

t
4)

r2f r3
2 = Dcs+x2

1 (g2g
t
4)

cs+s2fs3−csm
2

= Dcs
1 (g2g

t
4)

csf−csm
2 Dx2

1 (g2g
t
4)

s2fs3
2

=
(
Ds

1(g2g
t
4)

sf−sm
2

)c
Dx2

1 (g2g
t
4)

s2fs3
2

=
(
(gu1

1 )s(fm
2 )s(g2g

t
4)

sf−sm
2

)c
Dx2

1 (g2g
t
4)

s2fs3
2

=
(
(gu1s

1 (g2g
t
4)

s
)c

Dx2
1 (g2g

t
4)

s2fs3
2

= ĀcB′.

Double-spender Identification

If U spends the same coin more than once, B will end up with two payment transcripts containing tuples
(c, r, r1, r2, r3), (c′, r′, r′1, r′2, r′3) resulting from two proofs V2.

Since the challenges in V2 are chosen randomly, with high probability c 6= c′ (otherwise S is trying to
double-deposit a coin). Since the same values x1, x2 are used in both proofs V2, B can compute

r1 − r′1
r − r′

= u1.

Anonymity Revocation

Owner tracing is accomplished as follows: T is given the pair (D1, D2) observed in a payment; T computes
D1/DXT

2 = I and thus obtains the account number of U .

Security for U

In [FTY98], a proof for the following fact was sketched: if anonymity is compromised, then the Decision
Diffie-Hellman problem can be solved. As proven in [FTY96], U ’s anonymity can only be computational.
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U can’t be falsely accused of overspending, as this would require forging a payment transcript; doing so
without knowing how to represent the coin is as hard as computing discrete logarithms.

If U indeed overspends, the values u1, s that serve to represent the coin Ā become known to B at deposit
and even to S during payment, if U spends a coin twice at the same S. Anyone knowing these values
could then do further overspending.

Security for B and S

The blind signature protocol used during withdrawal is unchanged from [Bra93] with the exception that
the generator g2 was replaced by g2g

t
4, but this doesn’t change security. Hence, the security for B and S

is as in [Bra93].

Security for T

For T being able to trace, the encryption (D1, D2) has to be computed correctly. This fact should be
proven by the proofs V1, V2. T has to trust S that he performs the proof protocols with U correctly,
i.e. that he doesn’t cooperate with a cheating U or cheat himself. It was shown that U could cheat by
himself during the proofs only if he is able to compute discrete logarithms; hence, under the assumption
that this is infeasible, T will be able to trace.

4.3.6 Modular Addition of Coin Tracing from [FTY98]

In the following, the modular addition from [FTY98] of coin tracing to Brands’ system [Bra93] is pre-
sented. It consists of extensions to both the withdrawal and the payment phase.

Withdrawal

During withdrawal, a value I ′ := Ig
1/s
3 gt

4 is created; an ElGamal encryption E1 := (Ig2g
t
4)

sfm
1 , E2 := gm

1

is computed, where f1 := gXT
1 is another public key related to T ’s secret key XT . According to [FTY98],

the “relationship” of I ′ to (E1, E2) is proven using equality of logarithm proofs. Regrettably, the authors
of [FTY98] didn’t specify how this is precisely done. We suppose they meant that it is proven that U ’s
identity I and the blinding factor s are embedded in both I ′ and E1. Moreover, one proof might be used
to show that (E1, E2) is an ElGamal encryption based on the public key f1. We’ll call this latter proof
V1 and define it as

V1 := ProofREP+EQLOG

(
(E1, f1), Ig2g

t
4, (E2, g1), 1

)
.

It proves that for values a, b, c ∈ Zq known to U ,

E1 = fa
1 (Ig2g

t
4)

b and E2 = ga
11c.

The “relationship” between I ′ and E1 is proven by another proof V2 which we define as

V2 := ProofREP+EQLOG

(
(g3, I

′), (I, gt
4), (E1, Ig2g

t
4), f1

)
.

It proves that for values d, e, f, g ∈ Zq known to U ,

g3 = I ′
d
Ie(gt

4)
f and E1 = (Ig2g

t
4)

dfg
1 .

Assuming that U knows only one representation of E1 with respect to (f1, Ig2g
t
4)

15, we can assume that
d = b and g = a with the values b, a from the proof V1. Moreover, we can define d := s and g := m, thus
obtaining

g3 = I ′
s
Ie(gt

4)
f and E1 = (Ig2g

t
4)

sfm
1 .

Now, we have a blinded coin I ′g2 = Ig2g
s−1

3 gt
4 which B can also compute (B knows I ′ and g2). During the

blind signature protocol, U chooses a blinding factor s′ and obtains the unblinded coin A := (I ′g2)s′ =
Is′gs′

2 gs−1s′

3 gts′

4 and a signature on it.
15Otherwise, U could compute logf1

Ig2gt
4.
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Payment

In addition to the basic payment protocol, U sends Ā := A/g3 and S verifies A
?= Āg3. Thus, during

withdrawal U is forced to choose s′ := s.

Anonymity Revocation

Coin tracing is accomplished by T by decrypting (E1, E2) to (Ig2g
t
4)

s, which is the value Ā that is sent
to S at payment. Ā can then be blacklisted.

Security for U

In [FTY98], a proof was sketched that if anonymity is compromised, then the Decision Diffie-Hellman
problem can be solved. As proven in [FTY96], U ’s anonymity can only be computational.

U can’t be falsely accused of overspending, as this would require forging a payment transcript; as for
[Bra93], this is assumed to be infeasible unless one knows how to represent the coin.

If U indeed overspends, the values u1, s that serve to represent the coin A become known to B at deposit
and even to S during payment, if U spends a coin twice at the same S. Anyone knowing these values
could then do further overspending.

Security for B and S

The blind signature protocol used during withdrawal still contains all elements from [Bra93], hence its
security and therefore the security for B and S are unchanged.

Security for T

For T being able to trace, the encryption (E1, E2) has to be computed correctly. This fact should be
proven by the proofs V1, V2. T has to trust B that he performs the proof protocols with U correctly;
additionally, S has to be trusted to accept only coins A for which U presents a corresponding value Ā
such that A = Āg3. This is no problem, since otherwise B may refuse the coin at deposit. It was shown
that U could cheat by himself during the proofs only if he is able to compute discrete logarithms; hence,
under the assumption that this is infeasible, T will be able to trace.

4.3.7 “Simplified FOLC” from [FTY98]

“FOLC” stands for fair off-line cash; in the second part of [FTY98], the modular additions of tracing
were slightly modified and used to create a scheme that needs less computation, but retains security
under the same assumptions.

The idea is to combine U ’s identity with a “coin identifier” as in [CMS96] to an unconditional commit-
ment, which is then blindly signed.

System Setup

B chooses primes p, q with p = γq+1 for a specified small integer γ and the unique subgroup Gq of order
q of Zp with generators g, g1, . . . , g4 such that computing discrete logarithms in Gq is infeasible.

B also chooses a secret key XB ∈R Zq; there are corresponding public keys

h := gXB , h1 := gXB
1 , h2 := gXB

2 , h3 := gXB
3 .

Additionally, collision-resistant one-way hash functions H,H0, . . . are defined.

T chooses a secret key XT ∈R Zq; there are corresponding public keys f2 := gXT
2 , f3 := gXT

3 .
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Account Opening

At account opening, U chooses a secret u1 ∈ Zq with gu1
1 g2 6= 1 16; U computes his public identity as

I := gu1
1 and proves to B that he knows the discrete logarithm of I with respect to g1.

Withdrawal

In the withdrawal protocol shown in Figure 4.17, U creates an intermediate value I ′ and an ElGamal
encryption (E1, E2) of gs

2 based on T ’s public key f3. This encryption allows T to perform coin tracing.
The correct construction of I ′ and (E1, E2) with respect to each other and to I = gu1

1 is proven by two
proofs of equality of logarithms V1, V2.

U
(I = gu1

1 )
B

m, s, t ∈R Zq

I ′ := gu1s−1

1 gs−1

3 gt
4

E1 := gs
2f

m
3 , E2 := gm

3

V1 := ProofREP+EQLOG

(
(E1, f3), g2, (E2, g3), 1

)
V2 := ProofREP+EQLOG

(
(g3, I

′), (g1, g4), (E1, g2), f3, (I, I ′), (g3, g4)
)

−
I ′, E1, E2, V1, V2
−−−−−−−−−−−−−→

E2

?

6= 1
verify V1, V2

w ∈R Zq

a′ := gw, b′ := (I ′g2)w, b′′ := gw
4

←−
a′, b′, b′′

−−−−−−−−−−−−−
A := (I ′g2g

−t
4 )s = gu1

1 gs
2g3

z := hu1
1 hs

2h3 = AXB

x1, x2, u, v ∈R Zq

B := gx1
1 gx2

2

a := (a′)ugv

b := (b′b′′−t)suAv = Awu+v

c := H(A||B||z||a||b)
c′ := c/u

−
c′

−−−−−−−−−−−−−→
r′ := c′XB + w

←−
r′

−−−−−−−−−−−−−
r := r′u + v

gr ?= hca, Ar ?= zcb

(sig(A, B) = (z, a, b, r)) (E1, E2)

Figure 4.17: Withdrawal in the simplified system from [FTY98].

The proof V1 proves that for values x, y, z ∈ Zq known to U ,

E1 = fx
3 gy

2 and E2 = gx
31z;

16Otherwise, U would know two representations of gu1
1 g2 ((u1; 1) and (0; 0)) and could double-spend without being

identified.
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hence, it shows that (E1, E2) is an ElGamal encryption based on the public key f3.

The proof V2 proves that for values a, b, c, d, e, f ∈ Zq known to U ,

g3 = I ′
a
gb
1g

c
4 and E1 = ga

2fd
3 and I = I ′

a
ge
3g

f
4 ;

hence, assuming that U knows only one representation of E1 with respect to (g2, f3) 17, we have a = y
and d = x with the values x, y from the proof V1. We can then rewrite the equations above as

I ′ = g
1/y
3 g

−b/y
1 g

−c/y
4 and E1 = gy

2fx
3 and I ′ = I1/yg

−e/y
3 g

−f/y
4 ;

with I := gu1
1 and by defining y := s and x := m, we obtain

I ′ = g
1/s
3 g

−b/s
1 g

−c/s
4 and E1 = gs

2f
m
3 and I ′ = g

u1/s
1 g

−e/s
3 g

−f/s
4 .

Assuming that U knows only one representation of I ′ with respect to (g1, g3, g4), we get e = −1, b = −u1,
c = f . By setting t := −c/s, we then have the construction of I ′ as

I ′ = gu1s−1

1 gs−1

3 gt
4.

After B has verified V1 and V2, the value A is blindly signed; the signature protocol is almost identical
to the one in [Bra93]. The only modification is the inclusion of the additional generator g4 and of the
value t chosen by U at the beginning of the withdrawal protocol.

A is blinded by use of the blinding factor s chosen before. U could at this point cheat by using some
s′ 6= s and thus obtain an untraceable coin (since it no longer contains the value gs

2 which is encrypted
in (E1, E2), but gs′

2 ). However, during payment he is required to present a coin of a specific form. This
forces him to use s for blinding A. We’ll see this below.

B stores the encryption (E1, E2) in his withdrawal database.

Payment

In the payment protocol shown in Figure 4.18, U computes A1 := gu1
1 gs

2. Only if the value s was chosen
as the blinding factor for A, the verification

A1g3
?= A

performed by S will hold. U also provides the value A2 and proves that (A1, A2) = (gu1
1 gs

2, f
s
2 ) forms an

inverted ElGamal encryption of I = gu1
1 . The proof V3 proves this by showing that for values j, k, l ∈ Zq

known to U ,
A1 = gj

2g
k
1 and A2 = f j

21l.

Since A1 = A/g3 by the verification performed above, and since the withdrawal protocol ensures that
A = gu1

1 gs
2g3, S is convinced that A1 = gu1

1 gs
2. Assuming, as usual, that U knows only one representation

of A1, we have j = s and k = u1. The proof V3 then shows that A2 = fs
2 and thus that (A1, A2) indeed

is an inverted ElGamal encryption of I = gu1
1 .

In the computation of V3, the value A′ is replaced by the value B = gx1
1 gx2

2 created during withdrawal.
This makes double-spender identification without the help of T possible, as will be seen below.

Double-spender Identification

If U spends the same coin more than once, B will end up with two payment transcripts containing tuples
(c, r, r1, r2), (c′, r′, r′1, r

′
2) resulting from two proofs V3.

It’s not said whether the proof V3 is executed interactively or not; in both cases, with high probability
c 6= c′ (otherwise S is trying to double-deposit a coin). For the interactive case this is clear; in the
noninteractive setting, U computes the challenges himself as c := H(A1||B||g2||g1||A2||B′||f2||1||info)

17Otherwise, U could compute logg2f3.
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U
(A, B, (z, a, b, r))

S

A1 := gu1
1 gs

2 = A/g3

A2 := fs
2

V3 := ProofREP+EQLOG

(
(A1, g2), g1, (A2, f2), 1

)
−

A1, A2, A, B
−−−−−−−−−−−−−→

(z, a, b, r), V3

A1

?

6= 1
A1g3

?= A
verify sig(A, B) = (z, a, b, r)

verify V3

(A, B, (z, a, b, r), A1, A2, V3)

Figure 4.18: Payment in the simplified system from [FTY98].

and c′ := H(A1||B||g2||g1||A2||B′||f2||1||info′). As info 6= info′ (these values consist of data unique to
each payment, e.g. date/time and IS), with high probability c 6= c′. Now, since the same values x1, x2

are used in both proofs V3, B can compute

r1 − r′1
c− c′

= u1.

Anonymity Revocation

The anonymity can be revoked by T by use of his secret key XT ; the two different kinds of anonymity
revocation are performed as follows:

• Payment-based (owner tracing): T is given the pair (A1, A2) observed in a payment; T computes
A1/A

1/XT
2 = I and thus obtains the account number of U .

• Withdrawal-based (coin tracing): T is given a pair (E1, E2) observed in a withdrawal; T computes
E1/EXT

2 = gs
2 and then A = Igs

2g3. The coin A can be put on a blacklist for recognizing it when
it is spent.

Security for U

In [FTY98], a proof was sketched that if anonymity is compromised, then the Decision Diffie-Hellman
problem can be solved. As proven in [FTY96], U ’s anonymity can only be computational.

U can’t be falsely accused of overspending, as this would require forging a payment transcript; as for
[Bra93], this is assumed to be infeasible unless one can compute discrete logarithms or knows how to
represent the coin.

If U indeed overspends, the values u1, s that serve to represent the coin A become known to B at deposit
and even to S during payment, if U spends a coin twice at the same S. Anyone knowing these values
could then do further overspending.
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Security for B and S

The blind signature protocol used during withdrawal is as secure as [Bra93], since the modifications don’t
affect security. A proof sketch appeared in [FTY98]. Hence, the security for B and S is as in [Bra93].

Security for T

For T being able to trace, the encryption (E1, E2) has to be computed correctly and the values A1, A2

must be of the correct structure (i.e. they form an ElGamal encryption of U ’s identity). These facts
should be proven by the proofs V1, V2, V3. T has to trust B and S that they perform the proof protocols
with U correctly, i.e. that they don’t cooperate with a cheating U or cheat themselves. It was shown that
U could cheat by himself only if he is able to compute discrete logarithms; hence, under the assumption
that this is infeasible, T will be able to trace.

4.3.8 The Off-line System from [dST98]

In [dST98], a fair off-line e-cash system based on a modification of the scheme from [Bra93] was presented.
The trustee is passive and owner tracing directly provides the identity / account number of the owner
of the coin (instead of a value that the larger withdrawal database has to be searched for).

The security of the scheme is based on the representation problem and on the Decision Diffie-Hellman
problem.

System Setup

Two large primes p, q with q|p− 1 are generated (it was not mentioned by whom; let’s assume they are
chosen by B in a publicly verifiable pseudorandom manner). Gq is defined as the unique subgroup of Z∗

p

of order q. The description of Gq (i.e. p and q) is known to all parties.

T chooses a generator gT and two secret keys xT , yT ∈ Z∗
q ; the corresponding public keys are

hCT = g
x−1
T

T , hOT = g
y−1
T
T ,

which are published together with gT . The indices CT , OT refer to the use of the keys (coin tracing and
owner tracing).

B chooses a secret key x ∈R Z∗
q and three generators g, g1, g2 of Gq; it is assumed that discrete logarithms

of them with respect to each other are unknown to all participants. B publishes these generators and the
corresponding public keys h := gx, h1 := gx

1 , h2 := gx
2 , hT := gx

T . Finally, B chooses a collision-resistant
one-way hash function H that maps {0, 1}∗ to Z2k for a security parameter k.

Account Opening

At account opening, U chooses a secret value xu ∈ Z∗
q and computes his public identity or “account

number” as IdU := gxu

1 and proves to B that he knows how to represent IdU with respect to g1. U and
B independently compute P := hxu

1 = (IdU)x.

Withdrawal

The withdrawal protocol consists of two phases which are shown in Figures 4.19 and 4.20.

In the first phase, U gives B the information that will allow T to perform coin tracing: U chooses a
random value s ∈R Zq and generates an ElGamal encryption (gsgs

T , hs
CT ) of the value gs; this value will

be the blinding factor used to blind the coin in the second phase. With F := gT g, the proof Proof(ct) =
ProofEQLOG(ra, F, G, hCT , ct) is used to convince B of the correct construction of the encryption, i.e. it
proves that

G = F s = (gT g)s and ct = hs
CT .
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U
(F := gT g)

B
(F := gT g)

s ∈R Zq

G := F s = gs
T gs

ct := hs
CT

Proof(ct) := ProofEQLOG(ra, F, G, hCT , ct)

−
ct, G,Proof(ct)
−−−−−−−−−−−−−→

verify Proof(ct)

(s, G) (ct, G)

Figure 4.19: Withdrawal in the system from [dST98], part 1.

The “authentication response” ra is used to link the withdrawal to the prior authentication between
the parties and could be U ’s last response in the authentication protocol. U has to prove his identity
somehow to be able to withdraw coins the value of which is debited from his account; if the withdrawal is
performed electronically, the authentication protocol replaces the identity check with a paper document
(passport, driver’s licence etc.). The value ct is stored by B for possible later coin tracing.

The second phase of the withdrawal protocol consists mainly of the execution of a restrictive blind signa-
ture protocol presented in [dST98] and similar to the one from [Bra93]. It yields a blind signature (z, c, r)
by B on M ||coin = ot||D||E||IdUg2g

s
T . Both parties independently compute the blinded coin Blindcoin;

note that Blindcoin = coin × gs. The purpose of the values ot, D, E grouped in the additional message
M := ot||D||E is to ensure the possibility of owner tracing and to make double-spender identification
possible without the help of T . We’ll see how this works below.

Payment

The payment protocol is shown in Figure 4.21; U uses the values a, b used to compute D and E dur-
ing withdrawal to create a proof Proof(ot) := (cOT , r1, r2) = ProofREP+EQLOG(msg, gT , g1, C, hOT , ot),
where msg := IdS ||t is S’ account number concatenated with the payment date/time t. This proof con-
vinces S that U knows a representation of C := coin/g2 with respect to (gT , g1) and that the exponent
of gT in it is equal to loghOT

ot; in other words, for values x, y ∈ Zq known to U ,

C = gx
T gy

1 and ot = hx
OT .

Assuming that U knows only one such representation 18 of C and that the blind signature protocol used
during withdrawal is restrictive, we have x = s and y = xU . Hence, (C, ot) is an ElGamal encryption of
U ’s identity based on T ’s public key hOT .

U sends (M , coin, sig(M ||coin) = (z, c, r), Proof(ot), C, ot) to S who accepts the payment if the verifica-
tion of sig(M ||coin) and Proof(ot) is successful. If all participants are honest, the verification equation
for sig(M ||coin)

c
?= H(M ||coin||z||grhc||coinrzc)

holds since
grhc = gur0+vhc = gu(ω−c0x)gvhc = guωgcxgvhc = Au

0gv = A

and
coinrzc = coinur0+vzc = coinu(ω−c0x)coinvzc = coinuωcoin−cxcoinvzc

18Otherwise, U could compute logg1
gT .
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U
(s, G = gs

T gs)
B

(G = gs
T gs)

Blindcoin := IdUg2G Blindcoin := IdUg2G
ω ∈R Z∗

q

z0 := Blindcoinx = (IdUg2G)x

A0 := gω

B0 := Blindcoinω

←−
z0, A0, B0

−−−−−−−−−−−−−
u, v, a, b ∈R Z∗

q

A := Au
0gv

B := Bu
0 Blindcoinv/As

z := z0/hs

ot := hs
OT

D := ga
1gb

T
E := hb

OT

M := ot||D||E
coin := IdUg2g

s
T

c := H(M ||coin||z||A||B)
c0 := c/u

−
c0−−−−−−−−−−−−−→

r0 := ω − c0x

←−
r0−−−−−−−−−−−−−

A0
?= gr0hc0

B0
?= Blindcoinr0zc0

0

r := ur0 + v

(coin, (z, c, r), a, b, ot)

Figure 4.20: Withdrawal in the system from [dST98], part 2.
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U
(s, coin, (z, c, r), a, b, ot)

S

msg := IdS ||t
C := coin/g2

D := ga
1gb

T
E := hb

OT

cOT := H(msg||gT ||g1||C||hOT ||ot||D||E)
r1 := b−cOT s, r2 := a−cOT xu

Proof(ot) := (cOT , r1, r2)
= ProofREP+EQLOG(msg, gT , g1, C, hOT , ot)

−
M, coin, (z, c, r)
−−−−−−−−−−−−−→
Proof(ot), C, ot

verify sig(M ||coin) = (z, c, r)
verify Proof(ot)

(M, coin, (z, c, r),Proof(ot), C, ot)

Figure 4.21: Payment in the system from [dST98].

=
(

Blindcoin
gs

)ωu(Blindcoin
gs

)v

=
(

Bu
0

Asu
0

)(
Blindcoinv

gsv

)
=

Bu
0 Blindcoinv

(Au
0gv)s

=
Bu

0 Blindcoinv

As
= B,

and therefore
H(M ||coin||z||grhc||coinrzc) = H(M ||coin||z||A||B) =: c.

The verification equation for Proof(ot)

cOT
?= H(msg||gT ||g1||C||hOT ||ot||gr1

T gr2
1 CcOT ||hr1

OT otcOT ) ?= H(msg||gT ||g1||C||hOT ||M). (4.9)

holds since

gr1
T gr2

1 CcOT = gb−cOT s
T ga−cOT xu

1 CcOT = gb
T ga

1g−cOT s
T g−cOT xu

1 CcOT = gb
T ga

1 = D

and
hr1

OT otcOT = hb−cOT s
OT otcOT = hb

OT = E.

Notice that S has to verify both equalities of Equation 4.9; the first one holds if U knows the repre-
sentations as required, while the second equality holds if M = ot||D||E. If the second equality was not
checked, U could compute c with arbitrary values D′ := ga′

1 gb′

T 6= D, E′ := hb′

OT 6= E and thus prevent
tracing after double-spending.

Double-spender Identification

If U spends the same coin more than once, B will end up with values

cOT = H(msg||gT ||g1||C||hOT ||ot||D||E), r2 = a− cOT xU

c′OT = H(msg′||gT ||g1||C||hOT ||ot||D||E), r′2 = a− c′OT xU ,

where msg and msg′ will differ (otherwise S is trying to double-deposit a coin). Thus, with high probability
we have cOT 6= c′OT , and B can compute

r′2 − r2

cOT − c′OT

= xU .
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Anonymity Revocation

The anonymity can be revoked by T by use of his secret keys xT , yT ; the two different kinds of anonymity
revocation are performed as follows:

• Payment-based (owner tracing): T is given the values coin and ot observed in a payment; T
computes (coin/g2)/(ot)yT = IdU and thus obtains the account number of U .

• Withdrawal-based (coin tracing): T is given a ct observed in a withdrawal and the withdrawing
U ’s identity IdU ; T computes (ct)xT = gs

T and then coin = IdUg2g
s
T . The coin coin can be put on

a blacklist for recognizing it when it is spent.

Security for U

U ’s anonymity is preserved due to the blindness of the restrictive signature protocol executed during
withdrawal. It is based on the protocol from [Bra93], which is unconditionally blind. The additional
values G := F s, ct := hs

CT , and ot := hs
OT reduce the blindness to computational. Linking withdrawals

to payments by use of these values (i.e. linking values G, ct from a withdrawal to the corresponding
ot from payment) without knowing loggT hOT or loggT hCT is infeasible under the assumption that the
Decision Diffie-Hellman problem is hard to solve. An algorithm that for values hCT , ct = hs

CT , hOT , ot
could decide whether ot = hs

OT could be used to solve the Decision Diffie-Hellman problem

given g, ga, gb, x, decide x
?= gab

by setting hCT := g, ct := ga, hOT := gb, ot := x.

It is assumed that the proofs Proof(ct) and Proof(ot) leak no information that could compromise U ’s
anonymity.

U can’t be falsely accused of overspending, as this would require forging a payment transcript; as for
[Bra93], this is assumed to be infeasible unless one can compute discrete logarithms or knows how to
represent the coin.

If U indeed overspends, the values xU , s that serve to represent the coin become known to B at deposit
and even to S during payment, if U spends a coin twice at the same S. Anyone knowing these values
could then do further overspending.

Security for B

The blind signature protocol used during withdrawal is assumed to be as secure as the one from [Bra93],
since B doesn’t give any additional information and thus the modifications don’t affect B’s security.

Security for S

There is no way to prevent false accusations of double-depositing. However, this is not a serious problem
(B wouldn’t usually make such false accusations, as there is no money to be gained) and can be solved
easily (by including a signature by S in every deposit request). Theft or extortion of coins paid to S is
prevented by including IdS in the payment transcript and thus making the coin depositable only by S.

Security for T

For T being able to trace, the encryptions ct and ot have to be computed correctly. These facts should be
proven by the proofs Proof(ct), Proof(ot). T has to trust B and S that they perform the proof protocols
with U correctly, i.e. that they don’t cooperate with a cheating U or cheat themselves. It is assumed that
U can’t cheat during the execution of the proofs.
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Chapter 5

Self-Escrowing

In [PS00], self-escrow-based e-cash against user blackmailing was proposed. Instead of a trustee it is the
blackmailed user himself who helps to trace his coins, i.e. coins withdrawn by him or by the blackmailer.
Thus, the risk of misuse of the revocation ability is eliminated. In this chapter, the results of [PS00] are
briefly presented; then the possibility to generalize the approach used there is investigated.

5.1 Previous Results

There are various scenarios in which anonymity revocation might occur under circumstances the users
wouldn’t approve. Such scenarios are, e.g., a not-so-trustworthy trustee, an “Orwellian” future govern-
ment, or simply some attacker gaining access to the trustee’s secrets.

In [PS00], a self-escrow-based e-cash system was presented which provides coin tracing, i.e. which is secure
against user blackmailing. This specific type of crime was addressed because of its peculiar characteristics
in the digital world. As pointed out in the article, user blackmailing is much easier in an e-cash system
than with conventional cash, as in most cases the money delivery does not require any physical contact
between the user and the blackmailer 1. In addition, in an anonymous e-cash system there is no way to
make the extorted coins recognizable as can be done with paper-based cash by simply registering the
serial numbers of the banknotes.

Owner tracing can’t be implemented by means of self-escrowing, as the user would have to trace himself.
As will be seen below, this should be kept in mind when transforming trustee escrow-based systems (with
owner tracing) into self-escrow-based ones.

5.1.1 Replacing the Trustee

The basic idea from [PS00] is taking an escrow-based e-cash system and letting the user play the role of
the trustee. This is viable only if certain requirements are met by the system:

Minimum trust (R1): The trustee mustn’t need to be trusted by the bank or the recipients for any-
thing else but tracing.

Passivity (R2): The trustee must be passive (at least) in withdrawals, as otherwise the blackmailer
could force the user to not only withdraw the money, but also to play his trustee role wrongly.

Minimum involvement (R3): The payment and deposit protocols must work without the bank or the
recipients having to input any information about the trustee (e.g. a public key), as such information
would allow them to link the payments to the user.

1The blackmailer might encounter the user once at the beginning, but usually this is without risk to him, since U hasn’t
had time to inform law enforcement authorities.
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The requirement R2 is a bit too restrictive and should be loosened by adding the following:

Alternatively, the bank has to verify that the trustee plays his role correctly.

Most escrow-based e-cash systems don’t fulfill all of the requirements above. Typically, the public key of
the trustee is needed at payment or deposit time or both, hence R3 is violated. However, this is often
not the case anymore after owner tracing has been removed from the scheme.

In the next section, we’ll see why the fulfillment of the three requirements above guarantees that the
security of the system is not diminished.

5.1.2 Self-Escrowing in the System from [FTY96]

In [PS00], a concrete instantiation of self-escrowing was implemented based on the system from [FTY96].
The modifications to the system were the following:

• At account opening, U additionally gives B a public key pktrace and proves knowledge of the
corresponding secret key sktrace ; U signs pktrace to prevent dispute about it,

• pktrace is used (instead of T ’s public key) at withdrawal to encrypt A2 to enc.

In case U is blackmailed and pays the blackmailer, B can retrieve the value enc related to the withdrawal
of the extorted money. U can then decrypt the tracing information with sktrace ; as can be seen, it is
crucial that U actually is in possession of sktrace . This secret key is created and stored during account
opening; ideally, U may have an arbitrary number of backups of it; like this, as long as the blackmailer
can’t be sure of having found and destroyed all backups, he risks being traced. The blackmailer can force
U to open a new account; since U is to some extent under the blackmailer’s control during the attack,
it must be guaranteed that during account opening, U has a possibility to make a backup of sktrace .
This must happen in a way unobservable to the blackmailer, i.e. we should require that U opens the
account alone in a room shielded against transmissions. Furthermore, it must be ensured that U can
freely choose sktrace ; otherwise, the blackmailer could choose it and give U an electronic device which
contains sktrace and permits account opening, but doesn’t reveal sktrace to U , thus preventing a backup.
As can be seen, all this is no trivial issue; in a concrete implementation, the protective measures would
be chosen according to their cost and to the risks they protect against. We’ll not go into further detail
here.

The only actual modification to the original scheme from [FTY96] is the replacement of T ’s public key
with that of U , i.e. U plays the role of T . One might at first sight object that the original scheme doesn’t
fulfill all of the requirements claimed to be necessary for being able to simply replace T like this: indeed
it is true that T ’s public key is needed at payment, when U ’s identity is encrypted with it, in violation
of R3. But this is done to allow for owner tracing, which is incompatible with self-escrowing. Thus, the
parts of the scheme from [FTY96] needed for owner tracing were dropped altogether.

5.2 Further Discussion

In this section, the transformation of existing escrow-based e-cash schemes in ones with self-escrowing is
investigated. Since trustee replacement, as described above, is the key concept, its security is investigated
first of all. Afterwards, self-escrowing is implemented in the system from [CMS96], in the modular system
from [FTY98], and in the scheme from [dST98]. After these concrete instantiations, we’ll try to make
some general statements about implementing self-escrowing in escrow-based systems with trustee.

5.2.1 Security Issues

In the following, we’ll check that when the requirements from Subsection 5.1.1 are met, the security for
all parties isn’t diminished.
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Security for U

When U takes over T ’s role, he gains control over the anonymity revocation (namely coin tracing) in the
system and thus needn’t trust any third party T anymore; this is a security gain. On the other hand,
U himself becomes responsible for assuring the possibility for anonymity revocation and might prevent
it by not playing his trustee role correctly (on purpose or by mistake). But requirement R2 guarantees
that after trustee replacement, it is still as hard as before to obtain untraceable coins.

Requirement R3 ensures that U ’s anonymity isn’t compromised, as it means that in the self-escrow-based
system, the bank or the recipients don’t have to input any information about the “new trustee” U during
payment or deposit. Therefore, B or S or both together can’t link payments to withdrawals, and U ’s
anonymity is preserved.

Security for B

The first requirement of not having to trust T for anything else but tracing ensures that the collusion of
T with U (or anyone else) doesn’t compromise the security of the system. Hence, in a self-escrow-based
system fulfilling this requirement coins are just as hard to forge as in the underlying trustee escrow-based
system.

When it comes to double-spending, it is clear that in the underlying trustee escrow-based system, the
identification of double-spenders must be possible without T ’s help. Thus, implicitly “tracing” in the
first requirement means coin tracing, not double-spender tracing.

Security for S

As for B, the first requirement guarantees that the implementation of self-escrowing by trustee replace-
ment doesn’t compromise S’ security in the system. If in the self-escrow-based system an attack against
S can be performed, this is not due to the trustee replacement, but to a weakness of the underlying
system.

5.2.2 Self-Escrowing in the System from [CMS96]

The system from [CMS96] fulfills the requirements R1, R2, R3 from Subsection 5.1.1: T being passive,
he doesn’t participate in the regular protocols (withdrawal and payment), but performs only anonymity
revocation; T is therefore trusted only for tracing (R1). During withdrawal, T is passive; U encrypts the
tracing information d and proves its correct construction to B (R2). The public key of T isn’t needed
during payment or deposit (R3).

In the following, the modifications to the original scheme which implement self-escrowing are described:

At account opening, U provides an additional public key pktrace := gsktrace
2 and proves knowledge of the

corresponding secret key sktrace . U signs pktrace with his regular signature key to prevent dispute about
it.

At withdrawal, the encrypted tracing information d := yα
T is replaced by d := pkα

trace . Consequently, the
proof U about the correct construction of hw and d becomes

U := PLOGEQ(ε, g1, (hw/g2), d, pktrace).

Since logg1(hw/g2) = logd(pktrace), B’s verification of U will succeed.

At payment (both in the on-line and the off-line system), pktrace is never handed to S. Neither is any
other value that would make it possible for S or B or both to link the payment to the withdrawal of the
coin. Namely,

• in the on-line system, U gives S

– c#, hp, zp, W , which B hasn’t seen and which B can’t link to any withdrawal
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– V := ProofKLOG(g2, hp/g1) = PKLOG(ε, g2, hp/g1), which is a blind proof of knowledge 2

• in the off-line system, U gives S

– hp, zp, W, tp, which B hasn’t seen and which B can’t link to any withdrawal

– sp := rp − cpα, which is blinded by α.

Tracing is done as in the original scheme: B retrieves the encrypted tracing information d := pkα
trace =

(gsktrace
2 )α. U then computes g1d

1/sktrace = g1g
α
2 = hp.

5.2.3 Self-Escrowing in the Modular System from [FTY98]

As with the system from [FTY96], the requirements R1, R2, R3 are met and hence self-escrowing can
be implemented by substituting U for T .

At account opening, U provides an additional public key pktrace := gsktrace
1 and proves knowledge of the

corresponding secret key sktrace . U signs pktrace with his regular signature key to prevent dispute about
it.

At withdrawal, the encryption (E1, E2) of the tracing information (Ig2g
t
4)s is computed as

E1 := (Ig2g
t
4)

spkm
trace and E2 := gm

1 ,

thus replacing T ’s public key f1 by pktrace . As pktrace isn’t needed at payment or deposit time, the paid
coin can’t be linked to the withdrawal.

Coin tracing is performed by decrypting (E1, E2) with sktrace to E1/Esktrace
2 = (Ig2g

t
4)

s.

5.2.4 Self-Escrowing in the System from [dST98]

This system also fulfills the requirements for the implementation of self-escrowing by substitution of
U for T . However, removing the parts needed for owner tracing is a bit more complicated than in the
systems presented so far, as these parts are intertwined with the mechanism that allows B to identify
double-spenders without the help of T .

The first step is to redefine the generator gT (chosen by T in the original system) as an additional
generator chosen and published by B. If each user was to choose a “personal generator” gU corresponding
to gT , user anonymity would clearly be compromised.

U chooses an additional secret key sktrace with related public key pktrace := g
sk−1

trace

T and proves knowledge
of sktrace ; the key pair (sktrace , pktrace) replaces (xT , hCT ). The key pair (yT , hOT ) and therefore the
computation of ot and E are dropped, as they serve the purpose of owner tracing. Hence, the message
M := ot||D||E now becomes M := D. It will be useful in identifying double-spenders.

At withdrawal, the encrypted tracing information ct := hs
CT is replaced by ct := pks

trace . Consequently,
the proof Proof(ct) about the correct construction of ct becomes

Proof(ct) := ProofEQLOG(ra, F, G, pktrace , ct).

As it is true that logF G = logpktracect, B’s verification of Proof(ct) will succeed.

The new payment protocol is presented in Figure 5.1. At payment, U no longer proves knowledge of
representation and equality of logarithms for the values C, ot (ot served for owner tracing and was thus
dropped). Instead, he uses the proof Proof(C) to show that he knows how to represent C with respect
to (gT , g1).

U sends S the values M , coin, sig(M ||coin) = (z, c, r), Proof(C), and C. The verification of sig(M ||coin)
is as in the system with trustee, while Proof(C) is verified by checking

cC
?= H(msg||gT ||g1||C||gr1

T gr2
1 CcC ) ?= H(msg||gT ||g1||C||M).

2S′ view of V can be simulated in an indistinguishable way.
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U
(s, coin, (z, c, r), a, b)

S

msg := IdS ||t
C := coin/g2

D := ga
1gb

T
cC := H(msg||gT ||g1||C||D)
r1 := b− cCs, r2 := a− cCxu

Proof(C) := (cC , r1, r2)
= ProofREP (msg, gT , g1, C)

−
M, coin, sig(M ||coin)
−−−−−−−−−−−−−−−−−→

Proof(C)
verify sig(M ||coin)

and Proof(C)

(M, coin, (z, c, r),Proof(C), C)

Figure 5.1: Payment in a self-escrow-based system based on [dST98].

If U is honest, this equation holds since

gr1
T gr2

1 Cc = gb−cCs
T ga−cCxu

1 CcC = gb
T ga

1g−cCs
T g−cCxu

1 CcC = gb
T ga

1 = D =: M.

As in the system with trustee, both equalities have to be verified; the first one ensures that U knows
the representation, while the second one ensures the possibility to identify double-spenders. If it wasn’t
checked, U could replace D by D′ := ga′

1 gb′

T 6= D and thus prevent tracing after double-spending.

As hCT isn’t needed at payment or deposit time in the base system, so is not pktrace in the self-escrow-
based scheme. Thus, the paid coin (coin) can’t be linked to the withdrawal. Coin tracing is performed
by computing (ct)sktrace = gs

T and then coin = IdUg2g
s
T .

Double-spender Identification

Double-spender identification works just as in the scheme with trustee, although we dropped the values
ot, E. The value E was needed only as a “buffer value” to complete the proof of equality of logarithms
in the base scheme.

If U spends the same coin more than once, B will end up with values

cC = H(msg||gT ||g1||C||D), r2 = a− cCxU

c′C = H(msg||gT ||g1||C||D), r′2 = a− c′CxU ,

where msg and msg′ will differ (otherwise S is trying to double-deposit a coin; recall that these values
include S’ identity and data unique to a single payment). Thus, with high probability we have cC 6= c′C ,
and B can compute

r′2 − r2

cC − c′C
= xU .

5.2.5 Generalization of Self-Escrowing

When an escrow-based e-cash system fulfills all of the requirements from Subsection 5.1.1, self-escrowing
can be implemented by letting U play the trustee’s role. As pointed out in Subsection 5.2.2, this is the case

73



with the system from [CMS96]. For the systems from [FTY96], [FTY98], and [dST98] the requirements
are fulfilled after one has removed all parts needed for owner tracing from the scheme.

Is there a universally valid method to transform a trustee escrow-based e-cash scheme into a self-escrow-
based system? First, one should remember that self-escrowing provides only coin tracing; in the scheme
with trustee, for coin tracing to be possible, some tracing information (a “coin identifier”) has to be
escrowed, i.e. deposited at T . This has to take place before payment and therefore at withdrawal time
(before withdrawal, the coin doesn’t exist and there can’t be any identifier for it; escrowing after payment
would be too late).

The answer to the question above is given in the following for a few different types of escrow-based
systems.

Systems with Passive Trustee

In a system with a passive trustee, T is trusted only for tracing: if T was trusted for anything else, he
would have to participate also in some other than the tracing protocol. But this is not possible, as T
is passive. (Formally speaking, we would first define the notion of “passivity” of a Turing machine T ,
e.g. by saying that in all protocols with exception of those for tracing, the Turing machines representing
the other participants do not interact with machine T . Then, we might define “trust” and find that the
“need to trust for more than tracing” contradicts “passivity”.)

Being passive, T “participates” in the withdrawal only by presence of his public encryption key. U uses
it to encrypt the tracing information; it is not used at payment or deposit time. If in a given system
this requirement is not met, i.e. if T ’s public key is used at payment or deposit time, then this use of
the key does not serve the purpose of coin tracing and may therefore with high probability be dropped
to fulfill the requirement. The reason for this is that after the accomplishment of the withdrawal and
before initiation of any payment, coin tracing, i.e. the unblinding of the blind coins B has seen during
withdrawal, must already be possible. Therefore, any actions needed to enable coin tracing have to be
taken already at withdrawal time.

Thus, all the requirements from Subsection 5.1.1 are met. Hence, in any system with a passive trustee
(“passive” implies “trusted only for tracing”), self-escrowing should be possible by substituting U for T .

Systems with On-line Trustee

In a system with an on-line trustee, T participates in the withdrawal by acting as an intermediary
between U and B: it is T who performs the blinding. Thus, T sees the coin in its unblinded form and
can trace it. If T needs to be trusted only for tracing in the system, self-escrowing can be implemented
by letting U play T ’s role. However, it has to be ensured that U has the possibility to store the tracing
information (i.e. the blinding factors or the unblinded coins themselves) in a safe place and in a way
unobservable to the blackmailer. Otherwise, after the blackmailing U won’t be in possession of the tracing
information and hence tracing won’t be possible.

If T needs to be trusted for the correctness of blinding during withdrawal 3, implementing self-escrowing
is not possible; trusted parties can only be replaced if the new party can also be trusted. U can’t be
trusted to perform the blinding in a correct manner. Letting U prove the correctness to B gives us the
equivalent of a system with passive trustee, which is self-escrowable.

Pseudonym-based Systems

In a system in which T certifies pseudonyms for U as described in Section 4.2, self-escrowing can’t be
implemented by substituting U for T , since T has to be trusted for more than just tracing correctly.
Indeed, T certifies that the identity of the holder of a pseudonym is known to him. With T replaced by
U , anyone could open completely anonymous bank accounts; this is probably not wanted.

3A case where T needs to be trusted for the correctness of blinding would be if the ability to identify double-spenders
relies on the correct behavior of T .

74



To see why self-escrowing can’t work in pseudonym-based systems one has to realize that the pseudonyms
have to be certified by someone trusted by both U and B and therefore none of the two, but some third
party: T .

Efficiency Considerations

It is interesting to notice that after having implemented self-escrowing by the modular method of sub-
stituting U for T , systems resulting from schemes with passive trustee seem (at first sight) to be much
less efficient than those resulting from schemes with on-line trustee. In the former, at each withdrawal, U
encrypts the tracing information with his own public key and proves to B that the encryption is correct.
If the blackmailer has no control over U regarding the computation of this encryption, this proof of
correctness might be omitted, saving computation time (but losing security at U ’s risk). However, each
withdrawal would still require the computation of the encryption itself. In a system resulting from the
transformation of a scheme with on-line trustee, U has only to store the blinding factors. Self-escrow-
based systems of this kind thus seem more efficient. But if anonymity of honest users is to be preserved,
the blinding factors have to be encrypted if stored within the bank. Storing them anywhere else would
be difficult in a blackmailing situation, and therefore no option.

Thus, in the end, U has no choice but to encrypt “some data” to be stored by B; whether this should
be the blinding factors or some coin identifier depends on the size of this data in the underlying system.
For maximum security one would therefore choose a system based on a passive trustee scheme and keep
the proof of correctness of the encryption during withdrawal. This results in more computation, but a
“strong” blackmailer couldn’t anymore convince U to compute the encryption in a wrong manner.
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Chapter 6

Strengthened Security

As we have seen, security is no trivial issue in systems as complex as off-line anonymous e-cash schemes;
having dealt with user anonymity and trustee elimination in the previous chapter, we’ll concentrate on
security against coin forgery here; using the systems and techniques of the previous chapters and results
of previous work [PS96a, PS96b, Poi98, CMS96], we’ll try to build a payment system which is provably
secure in the random oracle model. As stated in Subsection 2.5.2, this model allows us to obtain security
proofs under the assumption that parts of the system (usually the hash functions) act like random oracles,
i.e. their outputs are seen as truly random for each new query. Recall that this assumption is made in
order to keep the systems efficient, i.e. there are systems provably secure even without this assumption,
but their efficiency is poor. If a scheme’s security can be proven in the random oracle model, then it will
be secure in the “real world” under the assumption that the parts of the system modeled as random
oracles have no weakness. This is much better than just being able to say “we can’t prove it, but nobody
has broken it so far”.

The unforgeability of coins relies on the security of the signature scheme used for issuing coins; in [PS96a],
security proofs for nonblind signature schemes in the random oracle model were addressed. Since, however,
anonymity for U is implemented by use of blind signatures, it is desirable to have security proofs for
blind signature schemes. These were presented in [PS96b], but they hold only if the number of issued
signatures (i.e., of withdrawn coins) is poly-logarithmically bounded 1. In [PS97], defined by the authors
themselves as “the full version” of [PS96a] and [PS96b], the results from the two articles were made more
precise, but we won’t need this degree of precision here.

In [Poi98], Pointcheval presented a blind signature scheme which is provably secure even for polynomially
many signatures. The key concepts from [PS96a, PS96b, Poi98] are explained in this chapter; then, we
proceed to construct a complete on-line escrow-based payment system with passive trustee which is
provably secure against coin forgery in the random oracle model (for polynomially many withdrawn
coins). We’ll see whether it is possible to implement self-escrowing in the scheme, and whether payments
can be made off-line.

6.1 Nonblind Signatures

6.1.1 Types of Signature Schemes

In [PS96a], only signature schemes of the following kind were considered: the signature on a message m
is a triple (σ1, h, σ2) such that for a hash function f with k output bits for a security parameter k,

h := f(m, σ1) and σ2 := σ2(σ1, m, h),

i.e. σ2 depends only on the values σ1, m, and h. Furthermore, a signature is independent of previous
signatures.

1I.e., the number of issued coins ‘ ≤ (log k)α, where k is the security parameter and � is some constant.
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Notice that all signature schemes resulting from the transformation from [FS86] 2 applied to a (zero-
knowledge) three-move identification protocol fall in this class.

6.1.2 Attacks

Two different types of attacks of an attacker A (who is a probabilistic polynomial-time Turing machine)
were considered:

• the so-called no-message attack, in which A knows only the signer’s public key and other public
data; he may ask queries to the hash function f , but can’t interact with the signer. The attacker’s
goal is to output a valid message-signature pair.

• the adaptively-chosen-message attack, which is maybe the strongest imaginable attack 3; here A can
ask the signer to sign arbitrary messages (chosen-message). He may use previous message-signature
pairs to determine which message to let the signer sign next (adaptivity). The attacker’s goal is to
output a signature on a message the signer didn’t sign.

Notice that these are the two extremes among the possible attacks; a no-message attacker is as restricted
as can be, while an adaptively-chosen-message attacker is allowed to do almost anything. Security against
one specific kind of attack only implies security against less powerful attacks. Thus, the term “security”
should always be used in a precise manner, i.e. by speaking of “security against a ... attack”.

6.1.3 The Forking Lemma

The forking lemma is the foundation for the proofs of security in [PS96a]. We’ll first state it, then give
an intuitive explanation of its meaning and finally present the proof.

Lemma 6.1 (The forking lemma). Consider a signature scheme as described above in the random
oracle model. Let A be a probabilistic polynomial-time Turing machine, given only the public data as
input. If A can find, with nonnegligible probability, a valid message-signature pair (m, (σ1, h, σ2)), then,
with nonnegligible probability, a replay of this machine with the same random tape and a different oracle
outputs another valid message-signature pair (m, (σ1, h

′, σ′2)) such that h 6= h′.

“Replay” means that the machine A is started again; as mentioned, this happens with the same inputs
and the same random tape, but with a different oracle. If A has nonnegligible probability of success,
then obviously with nonnegligible probability two runs of A will produce two signatures. The lemma
states that with nonnegligible probability they will both be signatures on m of the form (σ1, h, σ2) and
(σ1, h

′, σ′2) such that h 6= h′. This is due to the bifurcation of queries and responses sketched in Figure
6.1: During the first run, A asks Q queries Q1, . . . ,QQ and obtains responses ρ1, . . . , ρQ. During the
replay, for some β ∈ {1, . . . , Q}, the new oracle gives identical answers to the first β − 1 queries, but
replies ρ′β 6= ρβ to query Qβ . From there on, A may ask new queries Qβ+1, . . . ,QQ, because these queries
are chosen adaptively, i.e. depending on previous responses. This bifurcation leads to the name “forking
lemma”. With the two signatures, we’ll be able to solve, in polynomial time, some hard problem.

q q q

q

q q

q

- . . . . . . . . �����1

PPPPPq

. . . . . . . .

. . . . . . . .

-

-

Q1 Q2 Qβ

Qβ+1 QQ

Q′β+1 Q′Q

ρQ

ρ′Q

ρβ

ρ′β

ρ1

(m, (σ1, h, σ2))

(m, (σ1, h
′, σ′2))

Figure 6.1: The forking lemma.

2As mentioned in Subsection 2.7.3, this was creating signature schemes from three-move identification protocols by
replacing the random challenge c by c := H(m||a).

3If we exclude attacks where A forces the signer to reveal his secrets.
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Before proceeding with the proof of the forking lemma, we state the “probabilistic lemma” from [PS96a]
that will be useful in the proof. [PS97] contains an improved version of it called the “splitting lemma”.

Lemma 6.2 (The probabilistic lemma). For sets X, Y , let A ⊆ X × Y be such that the probability
Px,y[(x, y) ∈ A] ≥ ε. Then there exists a subset Ξ ⊆ X such that

1. Px[x ∈ Ξ] ≥ ε/2,

2. for a ∈ Ξ: Py[(a, y) ∈ A] ≥ ε/2.

This means that the set X can be split into two subsets Ξ, X\Ξ such that the nonnegligible 4 set Ξ
consists of “good” x’s which provide a nonnegligible probability over y that (x, y) ∈ A. We now move on
to the proof of the forking lemma.

Proof of Lemma 6.1. A is a probabilistic polynomial-time Turing machine with a random tape ω. During
the no-message attack, A asks Q distinct queries Q1, . . . ,QQ to the oracle f for some Q polynomial in k.
Let ρ1, . . . , ρQ be the corresponding answers of f . Randomly choosing f corresponds to a random choice
of ρ1, . . . , ρQ. For a random choice of ω, ρ1, . . . , ρQ, A outputs (with nonnegligible probability) a valid
signature (m, σ1, h, σ2). With overwhelming probability, the query (m, σ1) is asked during a successful
attack. Recall that h := f(m, σ1); since f is random, it is rather improbable that A can compute h
correctly without ever asking f(m, σ1). To do so, A would have to guess h correctly among the 2k

possibilities. Hence, there exists a β ∈ {1, . . . , Q} such that the probability of success over ω, ρ1, . . . , ρQ

with Qβ = (m, σ1) is nonnegligible, say 1/P (n) for a polynomial P and n the length of the public key.

Using Lemma 6.2, we’ll now fix the other variables. If we identify

• the set Ω of all possible random tapes ω with X ,

• the set R of all possible response-tuples (ρ1, . . . , ρQ) with Y ,

• the set of successful tuples (ω, ρ1, . . . , ρQ) S ⊆ Ω×R with A,

• the probability Pω,ρ1,...,ρQ [(ω, ρ1, . . . , ρQ) ∈ S] = 1/P (n) with ε,

we know that for this β there is a nonnegligible subset Ωβ ⊆ Ω of “good” random tapes ω. For Qβ =
(m, σ1) and ω ∈ Ωβ , the probability of success over the oracle responses ρ1, . . . , ρQ is greater than
1/(2P (n)):

∀ω ∈ Ωβ : Pρ1,...,ρQ [(ω, ρ1, . . . , ρQ) ∈ S] ≥ 1
2P (n)

.

Analogously, there exists a nonnegligible subset Rβ,ω of “good” tuples (ρ1, . . . , ρβ−1). Now, if we also
choose a “good” tuple (ρ1, . . . , ρβ−1), the probability of success of the attack over ρβ , . . . , ρQ is greater
than 1/(4P (n)). Then, with such β, ω, and (ρ1, . . . , ρβ−1), if we randomly choose ρβ , . . . , ρQ and ρ′β, . . . , ρ′Q,
with a nonnegligible probability we obtain two valid signatures (σ1, h, σ2) and (σ1, h

′, σ′2) on m. Since

• h := f(m, σ1) and h′ := f(m, σ′1),

• f is random,

• each output value of f has probability 1/2k,

with nonnegligible probability (exactly 1− 1/2k+1) we have h 6= h′.

Finally, if we randomly choose β, ω, ρ1, . . . , ρβ−1, ρβ , . . . , ρQ and ρ′β , . . . , ρ′Q
5, then with nonnegligible

probability we obtain two valid signatures (σ1, h, σ2) and (σ1, h
′, σ′2) on m such that h 6= h′.

4With respect to its size, since Px[x ∈ Ξ] ≥ "=2.
5(�′1; : : : ; �′β−1) := (�1; : : : ; �β−1).
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6.1.4 Security Against No-Message Attacks

In [PS96a], the forking lemma was used to prove the security against no-message attacks of the signature
scheme from [FS86] and of a modified ElGamal scheme. We’ll do the same here for the Schnorr signature
scheme as described in Subsection 2.5.4.

Theorem 6.3. Consider a no-message attack in the random oracle model. If an existential forgery (see
Section 2.5) of a Schnorr signature is possible with nonnegligible probability, then the discrete logarithm
problem can be solved in polynomial time.

Proof. Let A1 be a probabilistic polynomial-time attacker who can existentially forge Schnorr signatures
with only the public data (group G of prime order q, generator g, public key y := gx) as his input.
According to the forking lemma, running A1 twice with different oracles H, H′ yields two valid Schnorr
signatures (c, s), (c′, s′) on a message m such that the verification equations

c
?= H(m||gsyc)

c′
?= H′(m||gs′yc′)

hold. One would like to have

gsyc = gs′yc′ , (6.1)

but this can’t be seen as a direct consequence of the two verification equations, since c 6= c′ and H 6= H′.
However, if we define the signatures as (a, c, s), (a, c′, s′) such that c = H(m||a) and c′ = H′(m||a) 6,
and the verification equations as

c
?= H(m||a) and a

?= gsyc

c′
?= H′(m||a) and a

?= gs′yc′ ,

we directly get Equation 6.1 and can proceed to compute the discrete logarithm of y with respect to g:

gsyc = gs′yc′

⇔ gs−s′ = yc′−c

⇔ s− s′ = logg yc′−c

⇔ s− s′

c′ − c
= logg y.

As one can see, (a, c, s) corresponds directly to (σ1, h, σ2) from Subsection 6.1.1. The “modification” of
the Schnorr signature performed above actually isn’t one, since all the equations already appear as such
in the signature scheme. The signature in the form (c, s) is just a shorter variant of (a, c, s).

6.1.5 Security Against Adaptively-Chosen-Message Attacks

During an adaptively-chosen-message attack, the attacker A is allowed to ask the signer Σ to sign
arbitrary messages. If A has nonnegligible probability of success, then if it is possible to simulate the
signer by a simulator S who doesn’t know the signer’s secret key, the collusion of S and A will be able
to forge a signature and, with the forking lemma, to solve the underlying hard problem.

Why would we want to simulate the signer and not just use the real one for our purposes? One reason
is that it’s rather unlikely that there’s always a signer who will sign arbitrary messages for A. Another
reason is that as in Figure 6.2, A can be used as a “black box” 7 to create, together with S, a new Turing
machine A+ which, given only the public data as input, will be able to forge a signature and thus, with
the forking lemma, to solve the hard problem. Hence, we obtain a machine whose correct function doesn’t

6We can do this because according to the forking lemma, c and c′ result from the same query to the two different oracles.
7This means that only A’s input/output-behavior is known, i.e. we don’t know anything about A’s inner structure; the

only constraint is that A is a probabilistic polynomial-time Turing machine.
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Figure 6.2: Usage of A as a black box.

depend on the cooperation of some other machine (like the signer). But the most important reason for
using a simulator is that we can’t apply the forking lemma with a real signer, as we can’t “run him again
with a different oracle”. As S simulates the oracle H used by A, this is no problem in the simulation.

One might also think of the possibility to let S choose his own secret key and to act as a “regular” signer;
then, A+ would be able to solve the hard problem. This won’t work because the instance of the hard
problem depends on the secret key; e.g., the secret key being x with y = gx the corresponding public
key, the hard problem would be the discrete logarithm problem, and the instance of it would be finding
x, given only y. A+ would solve this instance, thus obtaining x. But since x was chosen by S (who is
a part of A+), A+ wouldn’t have gained any new knowledge. Hence, the public key must be chosen by
some entity that is not part of A+.

A mustn’t be able to distinguish S from the real signer, as A’s behavior and thus the probability of
success might change; this would forbid us to draw any useful conclusions. Formally, the views of A
when interacting with the real signer and with S must be indistinguishable.

We’ll now prove the security of the Schnorr signature scheme against adaptively-chosen-message attacks.
The following lemma states that a Schnorr signer can be simulated.

Lemma 6.4. The signer in the Schnorr signature scheme can be simulated in an indistinguishable way
by a probabilistic polynomial-time simulator S.

Proof. Upon receiving a message m to sign, the simulator S proceeds as follows:

1. choose c, s ∈R Zq,

2. compute a := gsyc,

3. define 8 H(m||a) := c.

Now, (a, c, s) is a valid signature on m. It is indistinguishable from the signature (a′, c′, s′) an honest
signer would have computed, since

8Recall that S simulates H and may therefore “define” its outputs.
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• a′ := gr for some random r, thus a′ is random, just as a,

• c′ := H(m||a′) is random, just as c, because H is a random oracle and because a′ is random,

• s′ := r − c′x is random due to the randomness 9 of r and c′, just as s.

If A asks a query Q to H, S lets H output f(Q), where f is a random oracle S has access to. Like this,
the simulated H is indistinguishable from a real random oracle, because its responses are either identical
to those of the real random oracle f or defined during signature generation as H(m||a) := c, where c is
a random value. The only possibility for A to notice a difference is that there’s a collision for H(Q), i.e.
one of the following things happens:

• during signature generation, S defines H(m||a) := c; for another signature, it happens that gs′hc′ =
a, and H(m||a) is redefined as H(m||a) := c′ 6= c. Then, one of the two signatures won’t pass the
verification and A notices that H has given two different responses to the same query,

• S defines H(m||a) := c during signature generation, but A has already asked H(Q) = H(m||a) and
obtained the response f(Q) 6= c before. A then notices that H has given two different responses to
the same query.

The first collision scenario occurs only with negligible probability 1/q, as c, s are chosen randomly (by
the way, an algorithm that efficiently found quadruples (c, s, c′, s′) such that a = gshc = gs′hc′ and
(c, s) 6= (c′, s′) could compute logg h).

To state that also the second possibility for collisions has only negligible probability, we have to assume
that before asking S to sign a message m, A doesn’t perform a large number of queries H(m||α) for
different values α ∈ Zq. Since the outputs of H are random, there is no point in asking such queries. If A
nevertheless does so, there exists another attacker A′ with the same probability of success who doesn’t
ask these queries. The probability doesn’t change because there’s no conceivable way how obtaining a
large number of random values could help the attacker.

Theorem 6.5. Consider an adaptively-chosen-message attack in the random oracle model. If an existen-
tial forgery of a Schnorr signature is possible with nonnegligible probability, then the discrete logarithm
problem can be solved in polynomial time.

Proof. Let A2 be an attacker who can existentially forge Schnorr signatures in an adaptively-chosen-
message-attack against the signer. We can simulate the signer by a probabilistic polynomial-time simula-
tor S in an indistinguishable way. According to the forking lemma, running A2 twice with different oracles
H, H′ yields two valid Schnorr signatures (a, c, s), (a, c′, s′) on a message m such that the verification
equations

c
?= H(m||a) and a

?= gsyc

c′
?= H′(m||a) and a

?= gs′yc′ ,

hold. As in the no-message attack, we obtain

gsyc = gs′yc′ ,

and can proceed to compute the discrete logarithm logg y.

6.2 Blind Signatures

As mentioned in Section 2.6, the definition of a successful forgery is different for blind signatures in com-
parison to normal (i.e. nonblind) signatures. Actually, a blind signature always constitutes an existential
forgery in the classic sense, as it is a signature the signer didn’t issue (in its unblind form).

For e-cash systems, the underlying blind signature scheme is required to prevent that anyone can obtain
more valid signatures (i.e. coins) than were actually issued. This can be formalized as in the following
definition.

9There is no correlation between r and c′ although c′ := H(m||gr), because H is a random oracle.
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Definition 6.1 ((`, ` + 1)-forgery). Consider a blind signature scheme. For a positive integer ` polyno-
mial in some security parameter of the scheme, an (`, ` + 1)-forgery occurs if a probabilistic polynomial-
time Turing machine A outputs ` + 1 valid signatures after only ` interactions with the signer.

A blind signature scheme is as secure against no-message attacks as the underlying nonblind scheme.
This can be seen by considering that in a no-message attack there is no interaction with the signer, and
thus no need for blinding. Hence, blinding doesn’t change the probability of success of a no-message
attack.

The methods from the previous section to obtain proofs of security against adaptively-chosen-message
attacks can’t be directly used for blind signature schemes, because the message is hidden from the signer
and the correctness of the resulting signature can’t be enforced by simulating the oracle H appropri-
ately 10. Thus, the signer can’t be simulated without the secret key. The solution is to use schemes that
have certain properties; e.g., they allow more than one secret key for a given public key. We’ll see how
this works in the following.

6.2.1 Witness Indistinguishability

The notion of “witness indistinguishability” was introduced in [FS90] for identification protocols. The
term “witness” comes from proof of knowledge protocols, where the prover wants to show that he knows
a secret value x (without revealing x) such that some relation R(x, y) holds for a value y known to
both the prover and the verifier. The value x is called the witness. Identification protocols as the one
of Schnorr described in Subsection 2.7.3 are proof of knowledge protocols with y the prover’s public
key, x the corresponding secret key, and R(x, y) = {(x, y)|y = gx} for a public generator g. By proving
knowledge of x, the prover proves his identity 11.

Witness indistinguishability means that if during two protocol executions the prover uses two different
witnesses x1, x2 such that R(x1, y) and R(x2, y), then the two different views of the verifier are indistin-
guishable. For Schnorr’s identification protocol this is clearly impossible 12. The protocol can, however,
be easily modified 13 to provide witness indistinguishability.

The same modification can be applied to the Schnorr signature scheme resulting from the identification
protocol. We could then speak of “secret key indistinguishability”. Clearly, the blind variant of the Schnorr
signature scheme can also be made “secret key indistinguishable”. Such an adaptation was presented in
[Oka93]; it is described in the following subsection.

6.2.2 Okamoto-Schnorr Blind Signatures

For a given security parameter k, primes p, q are chosen such that q|(p − 1) and 2k−1 < q ≤ 2k, i.e. q
divides (p − 1) and q is of “the right size” with respect to k. We know from Subsection 2.2.1 that the
group Z∗

p has order p − 1 and that there exists a unique subgroup G ⊆ Z∗
p of order q. Two elements

g, h ∈ G are chosen; they are both generators of G.

As in Schnorr’s signature scheme, G is a finite cyclic group of order q with generators g, h such that
computing discrete logarithms is infeasible. Let (r, s) ∈ (Z∗

q × Z∗
q) be the signer’s secret key, and let

y := g−rh−s be the corresponding public key. Let H be a collision-resistant one-way hash function that
maps {0, 1}∗ to Zq .

If both participants follow the protocol in Figure 6.3, (α, ε, ρ, σ) is a valid Okamoto-Schnorr signature
on m; the verification equations

ε
?= H(m||α)

10This can be easily seen by trying to prove the security of, e.g., the blind Schnorr scheme from Subsection 2.6.1. The
problem is that when the verifier asks H(m||t), the simulator has to respond before getting to know � in the next step
(when he receives c′, he can compute � = c− c′). As he obtains � too late and doesn’t get � at all, it’s impossible for him
to provide the verifier with a valid signature.

11 He proves “I’m the one who knows the secret key x corresponding to public key y”; assuming that he’s the only one
who knows x, this proves his identity.

12In the protocol, x1 6= x2 means x1 6= x2 (mod q) for q = ord(g), and thus gx1 6= gx2 .
13The idea is to define the public key as y := grhs for two generators g; h and a secret key consisting of the pair (r; s).
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α
?= gρhσyε

hold.

V
(y, m)

Σ
(y, (r, s))

t, u ∈R Zq

a := gthu (mod p)

←−
a

−−−−−−−−−−−−−
β, γ, δ ∈R Zq

α := agβhγyδ (mod p)
ε := H(m||α)

e := ε− δ (mod q)

−
e

−−−−−−−−−−−−−→
R := t + er (mod q)
S := u + es (mod q)

←−
R, S

−−−−−−−−−−−−−
a

?= gRhSye (mod p)
ρ := R + β (mod q)
σ := S + γ (mod q)

(α, ε, ρ, σ)

Figure 6.3: Blind Okamoto-Schnorr signature.

If the signer Σ knows another representation (r′, s′) of y with respect to (g, h) and executes the protocol
once using (r, s), once using (r′, s′), then the two views of the verifier V are indistinguishable.

In [PS96b], a proof of security against (`, ` + 1)-forgery for this scheme is given; the authors state that
it can be modified so as to cover other schemes that come from witness indistinguishable identification
protocols. We’ll take a look at this proof in the following subsection.

6.2.3 Security Against (‘; ‘ + 1)-Forgery

The main result of [PS96b] is the following theorem:

Theorem 6.6. Consider the Okamoto-Schnorr blind signature scheme in the random oracle model. If
there is a probabilistic polynomial-time Turing machine A which can perform an (`, ` + 1)-forgery with
nonnegligible probability, then there is a probabilistic polynomial-time machine which can solve the
discrete logarithm problem by doing a replay with A.

This is true even if the ` interactions with the signer are executed in parallel. This means that A is
allowed to initiate all interactions at arbitrary times and may suspend interactions and proceed with
others arbitrarily. We suppose he may use information from one interaction in other interactions.

The proof of this theorem uses the probabilistic lemma (Lemma 6.2) and a modified version of the forking
lemma (Lemma 6.1):

Lemma 6.7 (The forking lemma for blind signatures). Consider a blind signature scheme result-
ing from a witness indistinguishable identification protocol in the random oracle model. Let A be a
probabilistic polynomial-time attacker who can perform an (`, `+1)-forgery with nonnegligible probabil-
ity. Randomly choose an index j ∈ {1, . . . , Q} with Q the number of queries A asks to the random oracle.
Run A twice 14 with the same random tape but two different random oracles f and f ′ which provide

14Or a polynomial number of times; a precise bound on the necessary number of replays was investigated in [PS97].
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identical answers for the first j − 1 queries, but differ (at least) for the j-th query. With nonnegligible
probability, the two different outputs of A reveal two different representations of some αi with respect
to g and h.

As in [PS96b], we’ll first present a sketched proof of Theorem 6.6 which uses Lemma 6.7, and afterwards
present the proof of Lemma 6.7.

Proof (sketch) of Theorem 6.6. With nonnegligible probability, after ` interactions with the authority
and a polynomial number of queries to the random oracle, A outputs `+1 valid message-signature pairs.
Then, according to Lemma 6.7, a replay of A with the same random tapes but oracles f , f ′ of the
described type will yield two valid signatures (αi, ρi, σi, εi), (αi, ρ

′
i, σ

′
i, ε

′
i) on mi and hence

αi = gρihσiyεi = gρi−rεihσi−sεi

= gρ′ihσ′iyε′i = gρ′i−rε′ihσ′i−sε′i .

Now we have two representations of αi with respect to (g, h) and can compute the discrete logarithm of
h with respect to g as

logg h =
ρi − rεi − (ρ′i − rε′i)
σ′i − sε′i − (σi − sεi)

=
ρi − ρ′i − r(εi + ε′i)
σ′i − σi − s(ε′i + εi)

.

It is clear that we need the signer’s secret key (r, s) for this; additionally, we haven’t so far addressed the
question of how to convince the signer to participate in the replay. The solution is that the previously used
simulator now becomes a regular signer who cooperates with the attacker. Together, they can be used
to construct a probabilistic polynomial-time Turing machine A+ that can compute discrete logarithms
as in Figure 6.4. This is possible here (in contrast to the proof for nonblind signatures in the previous
section) because the instance of the hard problem doesn’t depend on the secret key, but only on the
generators g, h which A+ doesn’t choose. Thus, A+ really gains new knowledge (logg h).

(mi; (αi; ρi; σi; εi))

(mi; (αi; ρ
′
i; σ

′
i; ε

′
i))

logg h

r; s∈R Zq

g; h

g; h; y g; h; r; s; yAttacker

S

A+

Key generator

Signer

H

mi

‘ interactions

sig(mi)

‘ + 1 signatures

Replay

A

Figure 6.4: Collusion of attacker and signer.

Proof of Lemma 6.7. For the same reasons as in the proof of Lemma 6.1, we can assume that all the
(mi, αi) have been queries to the oracle during the attack. Let the nonnegligible success probability
of the attacker A be ε. Then, if we assume that among the total Q queries to the oracle, the indices
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Ind1, . . . , Ind`+1 ∈ {1, . . . , Q} of the (mi, αi) are constant 15, the success probability might decrease down
to ρ := ε/Q`+1 (because of all the Q`+1 different possible index tuples (Ind1, . . . , Ind`+1), we allow only
one).

The signer’s random tape is denoted by Ω; for i ∈ {1, . . . , `+1}, it determines the pairs (ti, ui) and these
in turn the values ai := gtihui . The distribution of (ti, ui, ai) where ti and ui are random and ai = gtihui

is the same as the distribution of (ti, ui, ai) where ti and ai are random and ui is the unique value such
that ai = gtihui . Thus, (ti, ui) will be replaced by (ti, ai) and, analogously, (r, s) will be replaced by
(r, y) in the following.

To facilitate handling the various values involved, they are grouped under variables as follows:

• ν := (ω, y, a1, . . . , a`), where ω denotes A’s random tape,

• τ := (t1, . . . , t`).

We will denote by S the set of all successful quadruples (ν, r, τ, f), i.e. quadruples such that the (`, `+1)-
forgery succeeds, where f is the random oracle. Then Pν,r,τ,f [(ν, r, τ, f) ∈ S] ≥ ρ.

We want to prove that the lemma holds, i.e. that after a replay 16, we obtain two valid signatures

(αi, ρi, σi, εi) and (αi, ρ
′
i, σ

′
i, ε

′
i)

on mi. Their validity implies
αi = gρihσiyεi = gρi−rεihσi−sεi

= gρ′ihσ′iyε′i = gρ′i−rε′ihσ′i−sε′i .

Moreover, we need ρi − rεi 6= ρ′i − rε′i in order to compute logg h.

For each i ∈ {1, . . . , ` + 1}, αi can only depend on ν, r, τ and the first Indi − 1 answers of the oracle
f . The question is whether the random variable χi = ρi − rεi depends on queries asked at steps Indi,
Indi + 1 etc. Hopefully, this is the case and by using two oracles that give different responses from step
Indi on, we’ll obtain values χi, χ′i such that χi 6= χ′i.

We consider the most likely value taken by χi when (ν, r, τ) and the Indi− 1 first answers of f are fixed.
We’ll denote by fi the restriction of f to the Indi − 1 first queries. Now, we define

λi(ν, r, τ, fi, c) := Pf

[(
χi(ν, r, τ, f) = c

)
∧
(
(ν, r, τ, f) ∈ S

)∣∣∣f extends fi

]
.

Thus, λi(ν, r, τ, fi, c) indicates the probability, over all f that extend the fixed fi, that the attack succeeds
and that χi = c. Next, we define

ci(ν, r, τ, fi) := c such that ∀c′ 6= c : λi(ν, r, τ, fi, c) ≥ λi(ν, r, τ, fi, c
′).

Hence, ci is defined as the value c such that the corresponding probability λi is maximal. Now, the
“good” subset G of S is defined as

G :=
{
(ν, r, τ, f) ∈ S | ∀i ∈ {1, . . . , ` + 1} : χi(ν, r, τ, f) = ci(ν, r, τ, fi)

}
,

and the “bad” subset B := S\G as its complement in S.

It’s important to understand what these subsets are: G contains the tuples (ν, r, τ, f) such that for all
i ∈ {1, . . . , `+1} the variable χi = ρi− rεi takes the value with the maximal probability, i.e. ci. For each
tuple (ν, r, τ, f) ∈ B, there is at least one i ∈ {1, . . . , ` + 1} such that χi 6= ci.

If we would succeed in finding (ν, r, τ, f) ∈ G and (ν, r, τ, f ′) ∈ B such that f and f ′ output the same
responses to the first Indi − 1 queries and that

χi(ν, r, τ, f ′) 6= ci(ν, r, τ, f ′i) = ci(ν, r, τ, fi) = χi(ν, r, τ, f) 17,

15I.e., (mj ; �j) is always the Indj-th query for all j ∈ {1; : : : ; ‘ + 1}.
16In [PS97]: after a polynomial number of replays.
17The last two equalities hold since f and f ′ have identical outputs on the first Indi−1 queries and because (�; r; �; f) ∈ G.
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then we would have a bifurcation at position i such that χi(ν, r, τ, f) 6= χi(ν, r, τ, f ′) and thus, by
definition, ρi − rεi 6= ρ′i − rε′i.

The rest of the proof shows that if we randomly choose (ν, r, τ, f) and a forking index i, then a replay
with an oracle f ′ 6= f such that f ′i = fi (and everything else unchanged) gives us, with nonnegligible
probability, the desired representations of αi.

First, a one-to-one mapping, i.e. a bijective function, from S onto S is presented; the special properties
of this mapping allow us to estimate the size of B, which will then be used to show the success of forking.

Definition 6.2. We denote by Φ the transformation which maps any tuple (ν, r, τ, f) to (ν, r+1, τ−e, f),
where τ − e := (t1 − e1, . . . , t` − e`); the values ei are the challenges sent to the signer.

The transformation Φ has some useful properties:

Lemma 6.8. The views of the attacker in the two protocol executions corresponding to (ν, r, τ, f) and
Φ(ν, r, τ, f) are identical, i.e. outputs are the same.

Proof. Let r′ := r + 1 and τ ′ := τ − e. The answers of the oracle f are unchanged, and the responses of
the signer become

R′
i(r

′, t′i, ei) = t′i + r′ei = (ti − ei) + (r + 1)ei = ti + rei = Ri(r, ti, ei).

This gives us the following corollary:

Corollary 6.9. The transformation Φ is a one-to-one mapping from S onto S.

The following lemma shows that if we choose (ν, r, τ, f) ∈ G, then Φ(ν, r, τ, f) ∈ B, except for a negligible
part.

Lemma 6.10. For fixed (ν, r, τ), the probability

Pf

[
(ν, r, τ, f) ∈ G ∧ Φ(ν, r, τ, f) ∈ G

]
over f is bounded by 1/q.

Proof. Assume the opposite, i.e. that (for fixed (ν, r, τ))

Pf

[
(ν, r, τ, f) ∈ ∪e1,...,e`

Y (e1, . . . , e`)
]

>
1
q
, (6.2)

where the set Y (e1, . . . , e`) is defined as

Y (e1, . . . , e`) :=
{
(ν, r, τ, f)

∣∣(ν, r, τ, f) ∈ G ∧ Φ(ν, r, τ, f) ∈ G ∧ E = (e1, . . . , e`)
}
,

with E denoting the `-tuple of questions asked to the signer. Each ei can have q different values, hence
there are q` different possible tuples E. Therefore, with Equation 6.2, at least one `-tuple (e1, . . . , e`)
exists such that

Pf

[
(ν, r, τ, f) ∈ Y (e1, . . . , e`)

]
>

1
q`+1

. (6.3)

As there are at least ` + 1 different queries to f (the (mi, αi) for i ∈ {1, . . . , ` + 1}), we can distinguish
at least q`+1 different oracles f . Furthermore, we can treat oracles that have identical responses to the
queries (mi, αi) but differ for some other queries as equal. This is because responses to queries not of
the form (mi, αi) are random values that probably are of no relevance to the attack. Hence, Equation
6.3 implies that there are at least two different oracles f and f ′ in Y (e1, . . . , e`), in the sense that for
some j ∈ {1, . . . , `+1}, f(mj, αj) 6= f ′(mj , αj). To see this, assume that there’s at most one such oracle.
Then, the probability on the left side of Equation 6.3 is

number of oracles f ∈ Y (e1, . . . , e`) = 1
total number of oracles ≥ q`+1

≤ 1
ql+1

,
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which violates the equation.

Let i be the smallest index j such that f(mj, αj) 6= f ′(mj , αj). Then fi = f ′i and εi 6= ε′i. Furthermore, by
definition of Y (e1, . . . , e`) we have (ν, r, τ, f) ∈ G, Φ(ν, r, τ, f) ∈ G, (ν, r, τ, f ′) ∈ G, and Φ(ν, r, τ, f ′) ∈ G.
According to Lemma 6.8 and by definition of G,

ci(ν, r, τ, fi) = ρi(ν, r, τ, f)− rεi

= ρi

(
Φ(ν, r, τ, f)

)
− rεi = ci(ν, r + 1, τ − e, fi) +

(
(r + 1)− r

)
εi

ci(ν, r, τ, f ′i) = ρi(ν, r, τ, f ′)− rε′i
= ρi

(
Φ(ν, r, τ, f ′)

)
− rε′i = ci(ν, r + 1, τ − e, f ′i) +

(
(r + 1)− r

)
ε′i.

Now, fi = f ′i implies ci(ν, r, τ, fi) = ci(ν, r, τ, f ′i); by the equations above then εi = ε′i, which is a
contradiction. Hence, our initial assumption was wrong and the lemma holds.

By making the sum over all triples (ν, r, τ) and by using Corollary 6.9 and Lemma 6.10, we obtain

P[G] = Pν,r,τ,f

[
(ν, r, τ, f) ∈ G ∧ Φ(ν, r, τ, f) ∈ G

]
+Pν,r,τ,f

[
(ν, r, τ, f) ∈ G ∧ Φ(ν, r, τ, f) ∈ B

]
≤ 1

q
+ Pν,r,τ,f

[
(ν, r, τ, f) ∈ G ∧ Φ(ν, r, τ, f) ∈ B

]
≤ 1

q
+ Pν,r,τ,f

[
Φ(ν, r, τ, f) ∈ B

]
≤ 1

q
+ P[B].

With P[G] = P[S]− P[B], we obtain P[B] ≥ (P[S]− 1/q)/2. Since 1/q is negligible with respect to P[S]
for sufficiently large q, we have P[B] ≥ P[S]/3 ≥ ρ/3. We will use this probability to show the success of
forking.

ρ

3
≤ P[B] = Pν,r,τ,f

[
(ν, r, τ, f) ∈ S ∧ ∃i : χi(ν, r, τ, f) 6= ci(ν, r, τ, fi)

]
≤

`+1∑
i=1

Pν,r,τ,f

[
(ν, r, τ, f) ∈ S ∧ χi(ν, r, τ, f) 6= ci(ν, r, τ, fi)

]
.

Then, a value k exists such that

Pν,r,τ,f

[
(ν, r, τ, f) ∈ S ∧ χk(ν, r, τ, f) 6= ck(ν, r, τ, fk)

]
≥ ρ

3(` + 1)
.

Let us randomly choose the forking index i ∈ {1, . . . , ` + 1}. With probability of at least 1/(` + 1), we
have guessed i = k. Given this, Lemma 6.2 ensures that there is a set X of quadruples (ν, r, τ, fi) such
that

1. Pν,r,τ,f

[
(ν, r, τ, fi) ∈ X

]
≥ ρ

6(`+1) ,

2. for all (ν, r, τ, fi) ∈ X , Pf

[
(ν, r, τ, f) ∈ S ∧ χi 6= ci

∣∣f extends fi

]
≥ ρ

6(`+1) .

Let us choose a random quadruple (ν, r, τ, f). With probability of at least ρ/6(`+1), we have (ν, r, τ, fi) ∈
X . Given this, again with probability of at least ρ/6(` + 1), we have (ν, r, τ, f) ∈ S and χi(ν, r, τ, f) 6=
ci(ν, r, τ, fi). Thus, the probability that all three conditions

• (ν, r, τ, f) ∈ S,

• (ν, r, τ, fi) ∈ X ,

• χi(ν, r, τ, f) 6= ci(ν, r, τ, fi)
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hold is at least
(
ρ/6(`+1)

)2. Let’s assume the conditions hold, and let’s denote by d the value χi(ν, r, τ, f)
and by c the value ci(ν, r, τ, fi).

Now, we’ll show that if we replay with another random oracle f ′ such that f ′i = fi and everything else
unchanged, we have

Pf ′
[
(ν, r, τ, f ′) ∈ S ∧ χi(ν, r, τ, f ′) 6= d

∣∣f ′ extends fi

]
≥ ρ/12(` + 1).

This is the probability that the replay will succeed and that χi(ν, r, τ, f ′) 6= χi(ν, r, τ, f); then, we have
two representations of αi with respect to g and h.

There are two cases to be considered, relatively to the value λi(ν, r, τ, fi, d):

• λi(ν, r, τ, fi, d) ≥ ρ/12(`+ 1): by definition of ci, we know that λi(ν, r, τ, fi, c) ≥ ρ/12(`+ 1) (recall
that ci is the value c such that the corresponding λi is maximal). Since c 6= d, we have the claimed
probability.

• λi(ν, r, τ, fi, d) < ρ/12(` + 1):

λi(ν, r, τ, fi, d) + Pf ′
[
(ν, r, τ, f ′) ∈ S ∧ χi(ν, r, τ, f ′) 6= d

∣∣f ′ extends fi

]
= Pf ′

[
(ν, r, τ, f ′) ∈ S

∣∣f ′ extends fi

]
≥ Pf ′

[
(ν, r, τ, f ′) ∈ S ∧ χi(ν, r, τ, f ′) 6= c

∣∣f ′ extends fi

]
≥ ρ

6(` + 1)

⇒ Pf ′
[
(ν, r, τ, f ′) ∈ S ∧ χi(ν, r, τ, f ′) 6= d

∣∣f ′ extends fi

]
≥ ρ

6(` + 1)
− λi(ν, r, τ, fi, d) >

ρ

12(` + 1)
.

Global Complexity of the Reduction

The overall probability of success is at least

1
` + 1

×
(

ρ

6(` + 1)

)2

× ρ

12(` + 1)
=

1
2(` + 1)

×
(

1
6(` + 1)

× ε

Q`+1

)3

,

where ρ = ε/Q`+1 with ε the probability of success of an (`, ` + 1)-forgery and Q the number of queries
to the random oracle.

6.3 Polynomially Many Blind Signatures

In [Poi98], a generic transformation applicable to some blind signature schemes was presented; it basically
implements a cut-and-choose-like approach by inserting a “checker” C between the signer and the verifier
whose task it is to control the verifier’s honest behavior. As will be seen, in the final scheme this task is
performed by the signer himself, i.e. there is no need for a real third party. Regarding C as an autonomous
participant who might collude with the signer or the verifier (and potential attacker) serves in proving
the claimed security.

The transformation was applied to the Okamoto-Schnorr blind signature scheme; the security of the
resulting scheme was presented step by step: if a probabilistic polynomial-time attacker can forge a
signature after polynomially many interactions with the signer, then a probabilistic polynomial-time
attacker against the basic Okamoto-Schnorr scheme can be constructed which succeeds after logarithmi-
cally many interactions. This latter attack is the one that was proven in [PS96b] to be as hard as the
discrete logarithm problem.

Recall that the Okamoto-Schnorr signature scheme is secure in the random oracle model only if the
number ` of signatures is poly-logarithmically bounded.
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A C Σ

for i ∈ {0, 1} :
βi, γi, δi, ϕi ∈R Zq

µi := H(m||ϕi)
ci := H(βi||γi||δi||µi)

−
c0, c1
−−−−−−−−→

compute a0, a1

←−
a0, a1
−−−−−−−− ←−

a0, a1
−−−−−−−−

for i ∈ {0, 1} :
αi := aig

βihγiyδi

εi := H(µi||αi)
ei := εi − δi

−
e0, e1
−−−−−−−−→

I ∈R {0, 1}

←−
I

−−−−−−−−

−
βI , γI
−−−−−−−−→

δI , µI

verify cI and eI

−
eĪ , aĪ−−−−−−−−→

compute R, S

←−
R, S

−−−−−−−− ←−
R, S

−−−−−−−−
aĪ

?= gRhSyeĪ

ρ := R + βĪ

σ := S + γĪ

(αĪ , εĪ , ρ, σ, ϕĪ)

Figure 6.5: The transformed Okamoto-Schnorr scheme.

6.3.1 Adding the Checker

To circumvent the restriction on the number ` of signatures, a checker C is inserted between the signer
Σ and the verifier (and potential attacker) A. The application of this transformation to the Okamoto-
Schnorr scheme is presented in Figure 6.5: A chooses two tuples of blinding factors (βi, γi, δi, ϕi) for
i ∈ {0, 1} and sends the commitments c0, c1 to C. Note that the random value ϕi is used to commit to
m (otherwise C would see m and the signature would no longer be blind); A will end up with a signature
on µĪ := H(m||ϕĪ) for a value Ī 18.

C initiates two parallel executions of the Okamoto-Schnorr blind signature protocol with Σ and receives
the commitments a0, a1 which are forwarded to A. A blinds them to α0, α1, computes the values ε0, ε1,
and the challenges e0, e1 which are sent to C. Now C randomly chooses I ∈ {0, 1}, asks A for the values
βI , γI , δI , µI , and upon A’s response checks the construction of cI and eI by verifying

cI
?= H(βI ||γI ||δI ||µI)

eI
?= H(µI ||aIg

βI hγI yδI )− δI .

C then asks eĪ , aĪ to Σ. Observe that in [Poi98] aĪ was omitted and Σ couldn’t tell which of the two
18For I ∈ {0; 1}, Ī denotes 1− I.
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protocol execution instances is the one to proceed with; however, later on, when Σ and C become one
party, this is irrelevant. C obtains the response (R, S) which is forwarded to A; A verifies its correctness
and computes ρ, σ, thus obtaining the signature (αĪ , εĪ , ρ, σ) on µĪ := H(m||ϕĪ). It is valid since

αĪ = gρhσyεĪ

εĪ = H(µĪ ||αĪ).

6.3.2 Security of the Scheme with Checker

In the following, we’ll sketch the proof of security against coin forgery from [Poi98]. Afterwards, we’ll
take a look at the blindness of the scheme; a slight modification is needed to ensure it.

Security Against (`, ` + 1)-Forgery

f

Attacker Simulator

SA
‘ interactions log ‘ interactions

‘ + 1 signatures

H

Σ

Signer

Σ′

A′

S simulates H

Figure 6.6: Simulation of the checker C.

For A, the signing party is constituted by the collusion of Σ and C, denoted by Σ′. To prove the
claimed security of the transformed scheme, Pointcheval first assumed that A is capable of obtaining
` + 1 signatures after ` interactions with Σ′ with probability ε, where ` is polynomial in some security
parameter. Then it was proven that if ε is nonnegligible, then a simulator S for C 19 as in Figure 6.6
exists such that

• A can’t distinguish S from C,

• during ` executions of the transformed scheme between A and S, S initiates 2` interactions with
Σ, but completes only λ of them, where λ is logarithmically bounded; S computes the responses
for the remaining `− λ interactions by himself,

• among the `+1 apparently valid signatures obtained by A, at least λ+1 are really valid, while the
` − λ signatures resulting from responses simulated by S are valid with respect to H, and hence
seem valid to A; however, they are not valid with respect to f .

Then, the collusion of S and A can forge a signature in the basic Okamoto-Schnorr scheme after only λ
interactions with Σ. But this was previously proven to be impossible unless solving the discrete logarithm
problem is feasible.

19S controls the hash function H used by A and has access to the random oracle f .
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Blindness

The scheme as proposed in [Poi98] actually isn’t blind, but this can be achieved with a slight modification.
We’ll first see how signatures can be linked to corresponding protocol views:

Let the signer Σ′ have a signature (αĪ , εĪ , ρ, σ, ϕĪ) on a message m; he wants to find out during which
execution of the signature protocol this signature was created. We suppose that Σ′ has stored the views
of all protocol executions. Now he can efficiently determine whether a view

view := (c0, c1, a0, a1, e0, e1, I, βI , γI , δI , µI , R, S)

corresponds to the given signature as follows:

1. set

δĪ := εĪ − eĪ

βĪ := ρ−R

γĪ := σ − S,

2. compute

µĪ := H(m||ϕĪ)

c := H(βĪ ||γĪ ||δĪ ||µĪ),

3. check c
?= cĪ .

This problem can be solved by “hiding” the values ci by use of additional blinding factors νi, i.e. by
letting A compute ci := H(βi||γi||δi||µi||νi). In addition, after receiving I from Σ′, A sends νI together
with the other blinding factors (βĪ , γĪ , δĪ , µĪ). The verification of cI is then performed by checking

cI
?= H(βĪ ||γĪ ||δĪ ||µĪ ||νI).

We don’t show the modified protocol here, as the changes will be reflected when we use it as a building
block in the following section. We believe that our modification doesn’t change the security of the scheme
against (`, ` + 1)-forgery.

6.4 An On-line Scheme

Building an on-line payment system based on the results from [Poi98] is straightforward: a coin is
represented by a random number together with a signature on it obtained by the transformed Okamoto-
Schnorr blind signature scheme. Double-spending is no issue in such an on-line system, but the anonymity
of it makes user blackmailing remain a problem. Therefore, implementing escrowing is investigated in the
following: first, using a trustee as in Chapter 4; afterwards, in the form of self-escrowing as in Chapter 5.

The first solution that comes to mind would be to add anonymity revocation in the modular manner
from [FTY98], especially as self-escrowing based on it has already been dealt with. However, this requires
the underlying signature scheme to be a restrictive one, which isn’t the case with the scheme presented
above.

6.4.1 Implementing Escrowing with Trustee

The approach chosen here is to merge the scheme from [CMS96] presented in Subsection 4.3.1 with the
transformed Okamoto-Schnorr signature scheme, thus obtaining a system in which, hopefully, coins are
as hard to forge as signatures from [Poi98] and that is as safe as the one from [CMS96] under all other
aspects. Additionally, self-escrowing and off-line payments might be implementable in the same way as
for the scheme from [CMS96].
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First, we modify the protocol of Figure 6.3; the result resembles the protocol “P” from [CMS96]. That
protocol is a modification of the Schnorr blind signature protocol from figure 2.3, which in turn is similar
to the Okamoto-Schnorr scheme. Therefore, the modifications to the Okamoto-Schnorr scheme were
chosen in perfect analogy to the modifications that transform the Schnorr scheme into protocol “P”.
Hopefully, they don’t affect the security of the signature scheme.

V
(y, m, hw1 , hw2 , φ)

Σ
(y, (r, s), hw1 , hw2)

zw := h−r
w1

h−s
w2

t, u ∈R Zq

ag := gthu

ah := ht
w1

hu
w2

←−
zw, ag, ah

−−−−−−−−−−−−−
β, γ, δ ∈R Zq

hp1 := hφ
w1

hp2 := hφ
w2

zp := zφ
w

αg := agg
βhγyδ

αh := aφ
hhβ

p1
hγ

p2
zδ

p

ε := H(m||αg||αh)
e := ε− δ

−
e

−−−−−−−−−−−−−→
R := t + er
S := u + es

←−
R, S

−−−−−−−−−−−−−
ag

?= gRhSye

ah
?= hR

w1
hS

w2
ze

w

ρ := R + β
σ := S + γ

(hp1 , hp2 , zp, αg, αh, ε, ρ, σ)

Figure 6.7: Protocol POS based on Okamoto-Schnorr signature.

In Figure 6.7, the resulting protocol POS (OS for Okamoto-Schnorr) is presented. The modification
consists of adding the values hw1 , hw2 and in consequence the values zw, ah, αh. As in the scheme from
[CMS96], the indices w and p indicate that a value is shared among U (who plays the part of V in
protocol POS) and someone else during withdrawal or during payment; “someone else” means B or S.
Corresponding tuples (hw1 , hw2 , zw) and (hp1 , hp2 , zp) are linked by the blinding exponent φ.

The verification equations for the signature provided by protocol POS are

ε
?= H(m||αg||αh)

αg
?= gρhσyε

αh
?= hρ

p1
hσ

p2
zε

p.

If the signature results from a correct execution of the protocol, the first of them holds per definition;
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the other two hold since

gρhσyε = gt+er+βhu+es+γyε

= gthugβhγ(grhs)e(g−rh−s)ε

= agg
βhγ(grhs)ε−δ(g−rh−s)ε

= agg
βhγ(g−rδh−sδ)

= agg
βhγyδ = αg

hρ
p1

hσ
p2

zε
p = ht+er+β

p1
hu+es+γ

p2
zε

p

= ht
p1

hu
p2

hβ
p1

hγ
p2

(hr
p1

hs
p2

)e(h−r
p1

h−s
p2

)ε

= aφ
hhβ

p1
hγ

p2
(hr

p1
hs

p2
)ε−δ(h−r

p1
h−s

p2
)ε

= aφ
hhβ

p1
hγ

p2
(h−rδ

p1
h−sδ

p2
)

= aφ
hhβ

p1
hγ

p2
zδ

p = αh.

Security of Protocol POS

f

‘ interactions ‘ interactions

Simulator Signer

H

S

Attacker

A

sigOS(m′
i)

m′
imi

Σ

S simulates H

sigPOS
(mi)

‘ + 1 POS-signatures

APOS

‘ + 1 Okamoto-Schnorr signatures

Figure 6.8: Black box reduction for proving the security of protocol POS .

The security of our scheme against coin forgery relies on that of protocol POS against signature forgery. In
the following, we’ll try to prove that forging a signature after logarithmically many executions of protocol
POS is as hard as doing so with the Okamoto-Schnorr signature scheme. The proof is by so-called black
box reduction as presented in Figure 6.8: we assume that there is a probabilistic polynomial-time attacker
APOS who can successfully obtain ` + 1 valid signatures after only ` executions of protocol POS . We use
APOS to construct a probabilistic polynomial-time attacker A that will succeed in obtaining ` + 1 valid
Okamoto-Schnorr signatures after only ` executions of the signature protocol. APOS is seen as a black
box in the usual sense, i.e. as an algorithm whose input and output behavior are known, but whose
interior is hidden. The description of APOS would be “an algorithm that interacts ` times with a signer
in protocol POS and outputs ` + 1 valid signatures”. Due to the black box character of APOS , A has
to simulate a POS-signer in an indistinguishable way to APOS . A has control over the hash function H
used by APOS ; this function has also to be simulated in such a way that APOS won’t be able to tell the
difference. A may use the Okamoto-Schnorr signer Σ as an oracle, i.e. perform regular executions of the
signature protocol with him 20. Both A and Σ have access to a random oracle f .

20Obviously not more than ‘.
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Regrettably, there’s no simulator S that would work in the desired manner. The problem is that Σ’s
secret key is needed to compute zw; additionally, the random values t, u are needed to compute ah.
Nevertheless, we’ll see what the simulator would look like if these problems would disappear; like this,
we’ll see another problem (that can be fixed), and try to do a “realistic” black box reduction for the
whole payment scheme, which consists of more than just protocol POS , later on. It would clearly have
been more elegant (and easier) to show that the security of the Okamoto-Schnorr scheme implies that of
protocol POS .

Each of the ` rounds of interaction between APOS and the “magic” S would look like this:

• S engages in an execution of the Okamoto-Schnorr scheme with Σ and obtains a := gthu for random
values t, u ∈R Zq. S sets ag := a, and “magically obtains” ah := gthu and zw := h−r

w1
h−s

w2
(magic is

required since S doesn’t know the values r, s, t, u).

• S sends zw, ag, ah to APOS , who performs all computations according to the protocol in Figure
6.7. When APOS asks (m||αg ||αh) to the hash function H, S lets it output f(m||αg) and receives
APOS ’s challenge e.

• S passes e on to Σ, who responds R, S according to the Okamoto-Schnorr scheme.

• S forwards R, S to APOS .

All the signatures output by APOS can be transformed to valid Okamoto-Schnorr signatures: for any of
them consisting of (hp1 , hp2 , zp, αg, αh, ε, ρ, σ), the corresponding Okamoto-Schnorr signature is (αg, ε, ρ, σ).
The verification equations

ε
?= f(m||αg)

αg
?= gρhσyε

hold. For the first equation, we can assume that APOS has asked H(m||αg||αh) for some αh during the
attack. This is because the output of H is seen as truly random; therefore, without asking H(m||αg||αh),
APOS can at best guess values ε, m, αg, αh such that the equation

ε = H(m||αg||αh)

holds. The second equation holds because it is a verification equation for signatures resulting from
protocol POS and the values in it result from the responses of the real POS-signer Σ.

Now, we have to show that S is indistinguishable from a real signer to APOS . The value ag sent by S is
identical to the one a regular signer would have computed; so are the values zw, ah (recall our “magic
assumption”) and the responses R, S. The only problem is the hash function H. It can be distinguished
very easily from a real oracle, since

H(m||αg||αh) := f(m||αg) =: H(m||αg||α′h)

for all m, αg, αh, α′h. We’ll now let S use a history table Hist where queries to H can be stored together
with the response resp given. Then, H is redefined:

H(m||αg||αh) :=


f(m||αg) if ∀x, resp : (m||αg||x, resp) /∈ Hist
Ω ∈R Zq if ∃x, resp : (m||αg||x, resp) ∈ Hist ∧ x 6= αh

resp if (m||αg||αh, resp) ∈ Hist.i

Like this, the response is computed as f(m||αg), if this is the first query of the form (m||αg||x) for all x.
If a collision occurs, i.e. if a query (m||αg ||x) with x 6= αh has already been asked before, the response
is chosen as a random value. Since f(m||αg) is also truly random, in both cases the distribution of the
responses is indistinguishable from a real random oracle (actually, this one is “just as random”). The
third possibility is that the query has already been asked before; also in this case H behaves exactly like
a random oracle, giving the same response as before.

Unfortunately, a new problem arises: if a collision occurs for some query (m||αg||αh) and one of the `+1
signatures that APOS outputs contains

ε = H(m||αg||αh) := Ω ∈R Zq,
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then the Okamoto-Schnorr signature resulting from this signature won’t be valid, since

ε 6= f(m||αg).

Assumption 6.11. Consider the black box reduction using a probabilistic polynomial-time attacker
APOS , a simulator S, and a hash function H as described above. Then, collisions of H that result in
invalid Okamoto-Schnorr signatures occur only with negligible probability, or APOS can be replaced by
another Turing machine that performs the attack with the same probability of success and causes a
collision only with negligible probability.

Argumentation. Assume that a collision occurs such that APOS asks m||αg||α′h to H and (m||αg||αh)
has already been asked before. If one of these two queries is useless, i.e. if it isn’t used in any way for the
attack, replace APOS by another Turing machine that acts exactly like APOS , with the exception that
the useless query is not asked 21. If both queries are useful, we have three cases:

1. Both queries result in a signature, i.e. among the `+1 signatures that are output, there is one which
contains the values αg, αh, and one which contains αg, α

′
h. We can assume that the corresponding

values ρ, σ and ρ′, σ′ differ. Since both signatures are valid, we have

αg = gρhσyf(m||αg) = gρ′hσ′yΩ

with Ω the response to the colliding query. As both f(m||αg) and Ω are truly random, with
overwhelming probability there are two different representations

αg = gρ−rf(m||αg)hσ−sf(m||αg)

= gρ′−rΩhσ′−sΩ.

Anyone knowing the values r, s, f(m||αg), Ω may use these representations to compute the discrete
logarithm of h with respect to g as

logg h =
ρ− rf(m||αg)− ρ′ + rΩ
σ′ − sΩ− σ + sf(m||αg)

.

Thus, if we let the simulator S choose his own secret key pair (r′, s′) and interact as a regular signer
with APOS , then with nonnegligible probability, the collusion of S and APOS will output logg h in
polynomial time. This is believed to be infeasible.

2. At most one of the queries results in a signature, but both are somehow useful and therefore
necessary for the attack. This is improbable, since H’s outputs are seen as truly random and thus
can’t be of any use unless they result in a signature. If APOS needs random values, another Turing
machine exists that acts just like APOS but doesn’t cause collisions (it gets the necessary random
values by some other means).

3. The collision is purely casual; the probability for this is 1/q, and therefore negligible.

The argumentation for Assumption 6.11 is not completely satisfactory; for the second case, one might
imagine that APOS chooses values m, αg and then asks several queries to H with different values αh, until
the response is of some specific structure which facilitates the attack. Fortunately, we can circumvent
the whole problem by a slight modification to the Okamoto-Schnorr signature scheme.

Modified Blind Okamoto-Schnorr Signatures

Consider the blind Okamoto-Schnorr signature protocol as in Figure 6.3. We modify it slightly by letting
V choose a random value α′ and compute ε := H(m||α||α′). The resulting protocol is shown in Figure
6.9. The value α′ is part of the new signature, which is verified by checking

ε
?= H(m||α||α′)
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V
(y, m)

Σ
(y, (r, s))

t, u ∈R Zq

a := gthu (mod p)

←−
a

−−−−−−−−−−−−−
β, γ, δ ∈R Zq

α := agβhγyδ (mod p)
α′ ∈R Zq

ε := H(m||α||α′)
e := ε− δ (mod q)

−
e

−−−−−−−−−−−−−→
R := t + er (mod q)
S := u + es (mod q)

←−
R, S

−−−−−−−−−−−−−
a

?= gRhSye (mod p)
ρ := R + β (mod q)
σ := S + γ (mod q)

(α, α′, ε, ρ, σ)

Figure 6.9: Modified blind Okamoto-Schnorr signature.

α
?= gρhσyε.

Any signature resulting from protocol POS is also a valid signature in the modified Okamoto-Schnorr
scheme. The only thing that remains to show is that the modified scheme is as secure against an (`, `+1)-
forgery as the basic Okamoto-Schnorr scheme. Intuitively, this is clear since V doesn’t get any new
information from Σ; moreover, the modifications to V ’s computations don’t give him any new possibility
to cheat, since H is seen as a random oracle. Formally, we have to investigate whether the forking
lemma for blind signatures is still valid. This is the case, as can be easily verified (we only have to
insert α′ in the appropriate positions of the proof). Analogously, Theorem 6.6 holds also for the modified
Okamoto-Schnorr scheme.

With this result, we implement the simulator S as described before, but let the response to the query
m||αg||αh be f(m||αg||αh) instead of f(m||αg). Under the “magic assumption”, APOS can’t distinguish
S from a modified Okamoto-Schnorr signer.

Now, back to reality and to the problem that still persists: we can’t construct a simulator S for protocol
POS as above (because our “magic assumption” doesn’t hold and there’s no way to simulate the signer
without the values r, s, t, u), and therefore we’ll build the complete payment system and then try to prove
its security against coin forgery.

Adding a Checker to Protocol POS

Figure 6.10 shows protocol POSC , which is the result of adding a checker to protocol POS . The signer Σ
performs the tasks of both the signer from protocol POS and the checker. Moreover, we use additional
hash functions H0,H1 to compute the values µi, ci; like this we don’t have to worry about whether V

21We have to allow APOS
to perform useless computations, since we don’t know anything about the machine’s interior.

But obviously if a “stupid” machine exists, there’s also an “intelligent” version of it. This is the positive aspect of the black
box character: not only can’t we say anything about how the machine actually looks like, we also don’t need to do so.
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V
(y, m, hw1 , hw2 , φ)

Σ
(y, (r, s), hw1 , hw2)

for i ∈ {0, 1} :
βi, γi, δi, ϕi, νi ∈R Zq

µi := H0(m||ϕi)
ci := H1(βi||γi||δi||µi||νi)

−−
c0, c1

−−−−−−−−−−−−−−→
zw := h−r

w1
h−s

w2

for i ∈ {0, 1} :
ti, ui ∈R Zq

ag,i := gtihui

ah,i := hti
w1

hui
w2

←−−
zw, ag,0/1, ah,0/1
−−−−−−−−−−−−−−

hp1 := hφ
w1

hp2 := hφ
w2

zp := zφ
w

for i ∈ {0, 1} :
αg,i := ag,ig

βihγiyδi

αh,i := aφ
h,ih

βi
p1

hγi
p2

zδi
p

εi := H(µi||αg,i||αh,i)
ei := εi − δi

−−
e0, e1

−−−−−−−−−−−−−−→
I ∈R {0, 1}

←−−
I

−−−−−−−−−−−−−−

−
βI , γI , δI , µI , νI , αh,I
−−−−−−−−−−−−−−−−−→

verify cI and eI

R := tĪ + eĪr
S := uĪ + eĪs

←−−
R, S

−−−−−−−−−−−−−−
ag,Ī

?= gRhSyeĪ

ah,Ī
?= hR

w1
hS

w2
z

eĪ
w

ρ := R + βĪ

σ := S + γĪ

αg := αg,Ī

αh := αh,Ī

ε := εĪ

µ := µĪ

(µ, hp1 , hp2 , zp, αg, αh, ε, ρ, σ)

Figure 6.10: Protocol POSC based on Okamoto-Schnorr signature.
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gets additional information on the hash function H. The value cI is verified by checking

cI
?= H(βI ||γI ||δI ||µI ||νI).

Recall that νi “hides” ci. Since the value αh,I is also used for the computation of eI , the verification of
eI is performed as

eI
?= H(µI ||aIg

βI hγI yδI ||αh,I)− δI .

We can’t let Σ compute αh,I by himself (like αg,I := aIg
βIhγI yδI ), because V would then have to show

his secret φ. Note that if Σ could compute discrete logarithms, he could at this time extract φ: with
b := ah,Ih

βI
w1

hγI
w2

zδI
w , we have

logb αh,I = φ.

The verification equations for the signature (hp1 , hp2 , zp, αg, αh, ε, ρ, σ) on µĪ := H(m||ϕĪ) provided by
protocol POSC are

ε
?= H(µĪ ||αg||αh)

αg
?= gρhσyε

αh
?= hρ

p1
hσ

p2
zε

p.

They hold if the signature results from a correct execution of the protocol, analogously to the compu-
tations made before for protocol POS . We’ll proceed with the description of the whole e-cash scheme.
Protocol POSC will be used as a building block for the withdrawal protocol.

System Setup

As in Subsection 6.2.2, let G be a finite cyclic group of prime order q with generators g, h such that
computing discrete logarithms is infeasible. g1, . . . , g4 are additional generators; the participating parties
are assumed not to know how to represent any of the generators with respect to the others. To achieve
this, the generators should be chosen in a publicly verifiable, pseudorandom manner. Then virtually
anybody might choose them; typically, this would be done either by B or by some governmental entity.

B chooses a secret key (r, s) ∈ (Zq × Zq); the corresponding public key is y := g−rh−s.

T chooses a secret key τ ∈R Z∗
q ; the corresponding public key is yT := gτ

2 .

Let H be a collision-resistant one-way hash function that maps {0, 1}∗ to Zq.

Withdrawal

The withdrawal protocol is shown in 6.11. During withdrawal, U chooses a random coin number c# and
the blinding factor φ ∈R Z∗

q . The “coin bases” hw1 , hw2 and the tracing information d are computed with
φ. Again, d can be seen as a Diffie-Hellman-type encryption of φ. The proofs of equality of logarithms
U1, U2 prove the following:

U1 : logg1
(hw1/g2) = logd yT

U2 : logg3
(hw2/g4) = logd yT .

Thus, they show that the same value φ was used for the computation of hw1 , hw2 , and d. Additionally,
the correct form of these values is proven.

Upon successful verification of U1 and U2 by B, both parties engage in an execution of the protocol POSC

with the initial values as shown in Figure 6.11. U ends up with (µ, hp1 , hp2 , zp, αg, αh, ε, ρ, σ); the coin
will be

coin := (µ, hp1 , hp2 , zp, αg, αh, ε, ρ, σ, V )

and consist of the commitment µ := H(c#||ϕĪ) to the coin number c# 22, the modified Okamoto-Schnorr
signature (hp1 , hp2 , zp, ε, αg, αh, ρ, σ) on µ, and a proof V about the structure of hp1 , hp2 . As in the system

22Note that as in the on-line scheme from [CMS96], this coin number isn’t actually used for anything; in the off-line
system presented in the next section it will be replaced by a value that will allow B to trace double-spenders without the
help of T .
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U B

random coin number c#
φ ∈R Z∗

q

hw1 := g
1/φ
1 g2

hw2 := g
1/φ
3 g4

d := yφ
T

U1 := ProofEQLOG(ε, g1, (hw1/g2), d, yT )
U2 := ProofEQLOG(ε, g3, (hw2/g4), d, yT )

−
hw1 , hw2 , d, U1, U2
−−−−−−−−−−−−−−→

verify U1, U2

(y, c#, hw1 , hw2 , φ) (y, (r, s), hw1 , hw2)

protocol POSC

(µ, hp1 , hp2 , zp, αg, αh, ε, ρ, σ) (d)

Figure 6.11: Withdrawal in our on-line escrow-based system.

from [CMS96], the proof V prevents the attack of choosing hp1 := hφ
w1

gζ , hp2 := hφ
w2

hζ , and zp := zφ
wyζ

for some ζ 6= 0. Such an attack would yield a valid untraceable coin.

V is defined as
V := ProofEQLOG(ε, g2, hp1/g1, g4, hp2/g3)

and proves that
logg2

(hp1/g1) = logg4
(hp2/g3).

If implemented in the same way as the proof from [CMS96] described in Subsection 2.7.4, it consists of
a pair (cV , sV ) and is verified by checking

cV
?= H(ε||g2||hp1/g1||g4||hp2/g3||gsV

2 (hp1/g1)cV ||gsV
4 (hp2/g3)cV ).

B obtains the encrypted tracing information d which is stored in the withdrawal database.

Payment

The payment protocol is shown in Figure 6.12; U computes V (this might of course also be done before
payment) and sends the coin to S, who verifies the modified Okamoto-Schnorr signature and the proof
V . The coin is then passed on to B, who in addition checks in his deposit database that coin hasn’t
already been spent.

Anonymity Revocation

The anonymity can be revoked by T by use of his secret key τ ; the two different kinds of anonymity
revocation are performed as follows:

• Payment-based (owner tracing): T is given an hp1 observed in a payment; T computes (hp1/g1)τ =
(gφ

2 )τ = d, and B searches his withdrawal database for d.

• Withdrawal-based (coin tracing): T is given a d observed in a withdrawal; T computes g1d
1/τ =

g1g
φ
2 = hp1 , and hp1 can be put on a blacklist for recognizing the coin when it is spent.
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U
(µ, hp1 , hp2 , zp, αg, αh, ε, ρ, σ, φ)

S B

V := ProofEQLOG(ε, g2, hp1/g1, g4, hp2/g3)
coin := (µ, hp1 , hp2 , zp, αg, αh, ε, ρ, σ, V )

−
coin

−−−−−−−−→
verify signature

verify V

−
coin

−−−−−−−−→
verify signature

verify V
verify that coin
hasn’t already

been spent

Figure 6.12: Payment in our on-line escrow-based system.

The equalities used above hold because for every triple (hw1 , hp1 , d) originating from a correct withdrawal
it is true that

φ = (logg1
(hw1/g2))−1 = logyT d = logg2

(hp1/g1).

6.4.2 Security of the Scheme

Security for U

Our arguments on the security for U are similar to those for the on-line system from [CMS96] in Subsection
4.3.1. This is a direct consequence of the similarity of the underlying blind signature schemes.

For payments to be unlinkable and anonymous, the protocol POSC has to be blind; unconditional blind-
ness could be proven by showing that for every possible view of B and for every possible message-signature
tuple there’s exactly one suitable tuple (φ, βi, γi, δi, ϕi, νi) of blinding factors. Regrettably, protocol POSC

isn’t unconditionally blind; this is due to the fact that V has to send αh,I to Σ. As we stated before, the
secret value φ could then be computed as the discrete logarithm of αh,I to an appropriate base. Hence,
the ability to compute discrete logarithms would break the blindness of protocol POSC . If we can show
that this is the only way to break it, we may still be satisfied; the anonymity of the whole scheme is
based on the stronger Decision Diffie-Hellman assumption, and therefore we wouldn’t lose anything.

Let’s for a moment suppose V doesn’t give the value αh,I to Σ. Then, given a view consisting of hw1 , hw2 ,
ci, zw, ag,i, ah,i, ei, I, βI , γI , δI , µI , R, S and a message-signature tuple (µĪ , hp1 , hp1 , zp, αg, αh, ε, ρ, σ),
we can say the following about the possible blinding factors:

The values βI , γI , δI , ϕI , νI are clearly fixed (ϕI is fixed by µI , i.e. by µI := H(c#||ϕI)), because U
sends them to B. For the remaining values, the only possibility is

φ := loghw1
hp1 = loghw2

hp2 = logzw
zp

βĪ := ρ−R

γĪ := σ − S

δĪ := εĪ − eĪ

ϕĪ := the value such that µĪ = H(m||ϕĪ).
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With these blinding factors, U would have computed (for i ∈ {0, 1})

µĪ := H(m||ϕĪ)
ci := H(βi||γi||δi||µi||νi)

hp1 := hφ
w1

hp2 := hφ
w2

zp := zφ
w

αg,i := ag,ig
βihγiyδi

αh,i := aφ
h,ih

βi
p1

hγi
p2

zδi
p

εi := H(µi||αg,i||αh,i)
ei := εi − δi.

The verification of cI then obviously holds; we omit the verification of eI , because Σ can’t perform it
without the value αh,I . It remains to show that αg,Ī = gρhσyεĪ and αh,Ī = hρ

p1
hσ

p2
z

εĪ
p :

αg,Ī = ag,Īg
βĪhγĪ yδĪ = gtĪ+βĪ+reĪ huĪ+γĪ+seĪ yεĪ = gR+βĪ hS+γĪ yεĪ = gρhσyεĪ

αh,Ī = aφ

hĪ
hβĪ

p1
hγĪ

p2
zδĪ

p = htĪ+βĪ+reĪ
p1

huĪ+γĪ+seĪ
p2

zεĪ
p = hR+βĪ

p1
hS+γĪ

p2
zεĪ

p = hρ
p1

hσ
p2

zεĪ
p .

The equation εĪ := H(µĪ ||αg,Ī ||αh,Ī) holds per definition. Thus, the blinding factors (φ, βi, γi, δi, ϕi)
would in fact have resulted in the valid message-signature tuple (µĪ , hp1 , hp2 , zp, αg,Ī , αh,Ī , εĪ , ρ, σ).

This convinces us that if V didn’t give the value αh,I to Σ, the protocol would be unconditionally blind.
Given the value αh,I alone, Σ would have to be able to compute discrete logarithms in order to break the
blindness of the protocol. We now have to ask ourselves if αh,I together with the rest of the view could
be used to break the blindness in some other way (one which is less powerful than computing discrete
logarithms). This seems infeasible, since αh,I is “thrown away” immediately after the verification of eI ,
i.e. it isn’t used for anything else. Furthermore, no value from the resulting signature is linked to αh,I

by anything else than φ, because the signature contains only blinding factors with index Ī. Since these
factors remain unknown to Σ, he can’t establish a link between αh,I and the signature.

Even if protocol POSC was unconditionally blind, U ’s anonymity would still be only computational,
because the encrypted tracing information d could be used by B to link withdrawal and payment by
testing

logyT d
?= logg2

(hp1/g1).

This would be feasible if one could efficiently compute discrete logarithms. Being able to solve the Decision
Diffie-Hellman problem would also be sufficient, the instance to solve would be

given (hp1/g1) = gφ
2 and yT = gτ

2 , decide d
?= gτφ

2 .

In [Cam98] it was stated that linking like this is even equivalent to the Decision Diffie-Hellman problem,
but we can’t see this.

The proof V from payment can’t be linked to the corresponding withdrawal. Furthermore, above we stated
that B’s view from protocol POSC and the value d obtained during withdrawal both for themselves don’t
compromise user anonymity, at least against a computationally limited B. What happens if we allow
simultaneous evaluation of both pieces of information and possibly also of the proofs U1, U2? The value
d is defined as the public key of the trustee taken to the power of U ’s secret value φ. As long as
we assume that solving the discrete logarithm or the Decision Diffie-Hellman problem is infeasible, d
shouldn’t compromise U ’s anonymity. The same holds for the proofs U1, U2, which are assumed not to
leak information about φ under the mentioned assumptions.

A rigorous proof of the infeasibility to link withdrawals to payments should try to make a reduction from
some problem assumed to be hard to linking. Due to lack of time we weren’t able to do this here; we
suspect the hard problem to be the “hard Decision Diffie-Hellman problem” 23.

As double-spending is impossible in an on-line system, false accuses of overspending and further over-
spending by other parties are no issue.

23It is almost identical to the Decision Diffie-Hellman problem: given values g, gx, gy, gx−1
, r, decide r

?
= gxy.
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Security for B

In the protocol POS , the only additional information (with respect to the basic Okamoto-Schnorr signa-
ture scheme) given by B to U is the values zw and ah. The question is to what extent this information
actually diminishes the security against coin forgery.

Intuitively, we might argue that in protocol POS , B’s secret values r, s, t, u are perfectly hidden inside
zw and ah. The same holds for the secret values r, s, ti, ui and the additional values zw, ah,i in protocol
POSC (for i ∈ {0, 1}).
Based on this and recalling that the verification equations for signatures from protocol POSC are

ε
?= H(µĪ ||αg||αh)

αg
?= gρhσyε

αh
?= hρ

p1
hσ

p2
zε

p,

we could assume that the successful forgery of a coin requires the attacker to be able to do one of the
following:

• find a collision for the hash function H

• solve the verification equations for arbitrary values

• if not able to solve the verification equations in a universal way: find, possibly using authentic
signatures issued by the signer, a new, valid coin.

The hash function is seen as a random oracle and therefore finding a collision for it it infeasible.

If the attacker was able to universally solve the verification equations, forging Okamoto-Schnorr signa-
tures (even with the transformation from [Poi98]) would be equally possible for him.

What remains is the third possibility; it means finding a coin that hasn’t been issued by B and that
can’t be recognized as a forgery. Hence, the values µ, hp1 , hp2 , and zp of this new coin must be different
from those of previously withdrawn coins; otherwise B would detect the coin when checking for double-
spending in the deposit database. It seems reasonable that if the attacker was able to find corresponding
values αg, αh, ε, ρ, σ such that the verification equations hold for the resulting signature, he could do
so also in the case of Okamoto-Schnorr signatures with checker. Hence, a probabilistic polynomial-time
attacker capable of forging coins in this payment system could also forge signatures in the signature
scheme from [Poi98].

The argumentation above seems plausible, but it doesn’t strictly prove anything (because we don’t know
how much more information A actually gets from zw, ah,i). This is why we now return to black box
reduction. Let’s assume that there is a probabilistic polynomial-time attacker APOSC for our payment
system who succeeds, with nonnegligible probability, in an (`, `+1)-forgery. Now, we’d like to use APOSC

as a black box to build a probabilistic polynomial-time attacker A that performs, with nonnegligible
probability, an (`, ` + 1)-forgery in the modified Okamoto-Schnorr scheme with checker. The setting
would then be as in Figure 6.13.

The question that immediately arises is: can we construct the simulator S or do we have the same
problem as before, i.e. do we need the signer’s secret key?

Clearly, APOSC will probably verify that the responses R, S obtained by him satisfy the verifications
from protocol POSC

ag,Ī
?= gRhSyeĪ ,

ah,Ī
?= hR

w1
hS

w2
zeĪ

w .

We’ll have to circumvent the problem that the signer’s secrets (r, s, ti, ui) are still needed to compute zw

and ah,i. If hw1 and hw2 were of the special form hw1 = gη and hw2 = hη for a value η ∈ Zq known to
S, he could compute

zw := yη = g−rηh−sη = h−r
w1

h−s
w2

,

102



f

‘ + 1 modified Okamoto-Schnorr signatures
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Σ

S simulates H

APOSC

Figure 6.13: Black box reduction for proving the security of our e-cash system.

ah,i := aη
g,i = gtiηhuiη = hti

w1
hui

w2
,

and zw, ah,i would thus have the correct form. S can achieve this if he can get to know φ and if he can
choose the generators g1, . . . , g4. Assuming that S obtains φ, he’ll choose g1, . . . , g4 as follows:

1. choose b1, b2 ∈R Zq,

2. set g1 := gb1 , g2 := gb2 and g3 := hb1 , g4 := hb2 .

Then, with η computed as η := b1/φ + b2, we have

gη = gb1/φ+b2 = g
1/φ
1 g2 = hw1 ,

hη = hb1/φ+b2 = g
1/φ
3 g4 = hw2 .

Thus, S can provide APOSC with correct values zw, ah,i. We’ll have to address the following questions:

• How does S obtain φ?

• Does it change the probability of success of APOSC if we let S choose g1, . . . , g4, i.e. do these
generators have the same probability distribution as if they were chosen randomly?

• Is S still indistinguishable for APOSC ?

We’ll let S “extract” φ; to this end, the proofs U1, U2 in the withdrawal protocol (Figure 6.11) are made
interactive. Actually, it suffices to make one of them interactive; we show this in Figure 6.14 for U1.

Now, we let S execute the interactive version of U1 once; he obtains the response r. Then he resets APOSC

to the point where APOSC has just sent the commitments a, b. S then sends another challenge c′ 6= c and
obtains another response r′. He can then compute φ as

φ =
c− c′

r − r′
.

The resetting of the attacker doesn’t contradict his black box character, since we don’t modify the interior
of APOSC nor need any knowledge about it. Skeptical readers may think of it like this: instead of resetting
APOSC , we may as well run two machines, both identical to APOSC , with the same random tapes and
inputs, with exception of the challenges: c for one machine, c′ for the other. Having received r and r′,
we switch one of the machines off.
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Verifier (S)
(g1, (hw1/g2), d, yT )

Prover (APOSC )
(g1, (hw1/g2), d, yT , 1/φ)

w ∈R Zq

a := gw
1 , b := dw

←−
a, b

−−−−−−−−−−−−−
c ∈R Zq

−
c

−−−−−−−−−−−−−→
r := w + c/φ

←−
r

−−−−−−−−−−−−−
gr
1

?= a(hw1/g2)c

dr ?= byc
T

Figure 6.14: Interactive version of the proof U1.

Next, we’ll see whether the generators g1, . . . , g4 chosen by S as described above will have a different
probability distribution than generators chosen at random. The generators g1, . . . , g4 are based on the
randomly chosen generators g, h of the Okamoto-Schnorr signature. Since the values b1, b2 we use to
compute g1, . . . , g4 are also chosen randomly, the resulting generators are “almost” random. They are
related to each other by the equations

logg g1 = logh g3 and logg g2 = logh g4.

But we can assume that APOSC can’t distinguish tuples g1, . . . , g4 for which these relations hold from tu-
ples for which they don’t hold 24. Furthermore, these relations shouldn’t diminish the success probability
of APOSC ; and even if they did so, they would have an impact only on the third verification equation

αh
?= hρ

p1
hσ

p2
zε

p.

Hence, the `+1 POSC-signatures might not all be valid, but the resulting `+1 modified Okamoto-Schnorr
signatures will, since they are tested only with the other two verification equations.

There’s still one problem: if APOSC performs the “public verification” of the random choice of the
generators 25, S might not be able to generate the correct data for this verification 26. However, we can
assume that the verification is not essential for the attack: the attack should work against an honest
signer, and generators chosen by such a signer would pass the test; thus, APOSC wouldn’t gain any new
knowledge, since we can require that the verification doesn’t give him other information than that the
generators were indeed chosen correctly. Therefore, we may assume that APOSC doesn’t perform the
verification; otherwise, we know that another attacker exists who is identical to APOSC , except that he
doesn’t perform the verification.

If in doubt about all this, we can simply let a trusted third party (e.g. the governmental institution
that supervises banks) perform the verification, thus not allowing A to perform it. We believe that this
question is not of great importance for the security of our scheme against coin forgery.

For all other aspects, S is as indistinguishable to APOSC as the simulator constructed under our “magic
assumption” in Subsection 6.4.1 was to APOS . For the “checker function”, S simply passes the corre-
sponding values (I, βI , γI , δI , µI , νI , αh,I) on to Σ. Then, if APOSC exists, with nonnegligible probability,

24Otherwise, APOSC
could solve the Decision Diffie-Hellman problem: e.g., given the generator g and g1 = gb1 ; h = gκ,

distinguishing whether g3 = hb1 = gκb1 is precisely that problem.
25See “System Setup”.
26This depends on how the generators in the real system are created and on how the verification is performed. If the

verification makes use of some one-way function, S won’t be able to trick APOSC
into believing that the generators were

chosen randomly.
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the probabilistic polynomial-time Turing machine A from Figure 6.13 will succeed in an (`, `+1)-forgery
in the modified Okamoto-Schnorr signature scheme with checker. As this was proven to be infeasible, we
conclude that our scheme is secure against this forgery in the random oracle model.

Double-spending is no issue in an on-line system.

Alternative Approach for Proving Security Against (`, ` + 1)-Forgery

After the problems we had trying to prove the security of protocol POS by use of black box reduction,
similar problems for a proof for the whole e-cash scheme seemed possible. Therefore a different approach
to prove the security of the scheme against (`, ` + 1)-forgery was thought of. The question was whether
the forking lemma for blind signatures (Lemma 6.7) could be used to prove the security of our scheme.

The authors of [PS96b] stated that the forking lemma can be applied to any blind signature protocol
resulting from a witness indistinguishable identification protocol. The Okamoto-Schnorr signature scheme
has this property and is, as we put it, “secret key indistinguishable”. Our e-cash system, however, is not.
This is due to the fact that U gets not only B’s public key y := g−rh−s, but also the value zw := h−r

w1
h−s

w2
.

Hence, the use of different secret keys (r, s), (r′, s′) can be detected; actually, the values y, zw are already
sufficient to compute the secret key that was used to create them, under the assumption that one can
compute discrete logarithms.

So there is no unconditional indistinguishability; what we can hope for is that

1. our scheme is computationally “secret key indistinguishable”,

2. this suffices to be able to apply the forking lemma for blind signatures.

What does the indistinguishability precisely mean? Let B know two secret keys (r, s) 6= (r′, s′) such that
y = g−rh−s = g−r′h−s′ , and let U and B execute the withdrawal protocol twice. U sends hw1 , hw2 and
obtains the value zw during the first execution; let h′w1

, h′w2
, and z′w be the corresponding values from

the second protocol execution. Now, our scheme is “secret key indistinguishable” if it is infeasible for U
to know whether B computed both zw and z′w using the same secret key.

We believe this is the case; regrettably we couldn’t find any problem, e.g. the Decision Diffie-Hellman
problem, that can be reduced to our problem. Obviously, our assumption can only hold if U isn’t allowed
to choose the values hw1 , hw2 , h′w1

, h′w2
in some specific manner. Choosing hw1 = h′w1

and hw2 = h′w2

will clearly instantly reveal whether the same secret key is used to compute zw and z′w.

Under the assumption that it is infeasible for an honest user U to distinguish whether B used the same
secret key, we’re interested in whether the forking lemma for blind signatures can be applied. We believe
that the proof of the lemma can be modified to fit our scheme at least up to Lemma 6.8; there, of course,
we get a real problem. The two views of the attacker won’t be identical. Due to lack of time (and because
the black box reduction was so much easier) we’re not investigating this further here.

Security for S

As the system is on-line, coins paid to S should be hard to steal or extort (deposit takes place immediately
after payment). There are no means to prevent false accusations of double-depositing. However, this is
not a serious problem (B wouldn’t usually make such false accusations, as there is no money to be gained)
and can be solved easily (by including a signature by S in every deposit request).

Security for T

It should be impossible to obtain untraceable coins. A coin becomes untraceable if U uses, instead of φ,
another blinding factor φ′ for the computation of hp1 , hp2 , and zp. The values hp1 , hp2 contained in the
resulting coin would then have to be of the form 27

hp1 = g1g
φ′

2 and hp2 = g3g
φ′

4

27Recall that the proof V verified during payment ensures this.
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such that φ′ 6= φ; thus, anonymity revocation with the value d := yφ
T would yield g1g

φ
2 6= hp1 . In protocol

POSC , U obtains the values ag,i, ah,i; to obtain a valid but untraceable coin, he has to compute a value
αh,i such that at the end of the protocol, the verification equation

αh,i
?= hρ

p1
hσ

p2
zε

p

holds, i.e.
αh,i

?= hti+eir
p1

hui+eis
p2

zεi
p .

This will be the case if αh,i is computed as

αh,i := hti
p1

hui
p2

hβi
p1

hγi
p2

zδi
p ,

thus replacing aφ
h,i = htiφ

w1
huiφ

w2
by hti

p1
hui

p2
= htiφ

′

w1
huiφ

′

w2
. This seems the easiest way to obtain a valid but

untraceable coin.

We had a similar situation in the on-line system from [CMS96]; as we stated on Page 41, it was proven
in [Cam98] that an algorithm capable of obtaining an untraceable coin in that system would solve the
Diffie-Hellman problem. We tried to obtain an equivalent argument for our scheme, i.e. to show that if
there is an algorithm which on input g, h, g1, . . . , g4, φ, φ′, ag,i, ah,i outputs

hti
p1

hui
p2

= (g1g
φ′

2 )ti(g3g
φ′

4 )ui ,

then we can use this algorithm to solve some hard problem. It seems that there’s an even easier way to
see why such an algorithm can’t exist:

Recall that ah,i := hti
w1

hui
w2

; clearly, we have “witness indistinguishability” for ah,i, i.e. there’s no way to
distinguish the q different pairs (t′i, u

′
i) ∈ (Zq × Zq) that all result in this particular value ah,i. For an

honest U , it’s of no relevance which values ti, ui B actually uses, since U performs calculations only with
the product ah,i. A dishonest U who tries to obtain an untraceable coin, however, would have to compute
the value hti

p1
hui

p2
that replaces aφ

h,i with exactly the same values ti, ui that were used for computing ah,i.
Suppose he could compute the set

H := {ht′i
p1h

u′i
p2 ∈ Zq|ah,i := h

t′i
w1h

u′i
w2};

then the probability that he would guess hti
p1

hui
p2

, i.e. the unique element out of this set that results in a
valid signature, is 1/q, and hence negligible.

But we have to consider that U also has the information ag,i := gtihui , and thus there is a unique pair
(ti, ui) that represents both ag,i and ah,i. Therefore we’ll make a reduction: if an algorithm was capable
of computing the correct value hti

p1
hui

p2
with the additional information ag,i, we could use this algorithm

to obtain untraceable coins in the system from [CMS96] like this:

In that system, we get the values
t̃g := gr̃

t̃h := hr̃
w = g

1/α
1 g2,

and need to compute the value hr̃
p = (g1g

α′

2 )r̃. Clearly, we also have the values α, α′. We set the inputs
for our algorithm as follows:

(g, g1, g2) := (g, g1, g2) as in the system from [CMS96]
h = g3 = g4 := 1

φ := α

φ′ := α′

ag,i := t̃g = gthu for some t, u ∈ Zq

ah,i := t̃h = g
1/φ
1 g2g

1/φ
3 g4

Now, with these inputs our algorithm computes

ht
p1

hu
p2

= (g1g
φ′

2 )t(g3g
φ′

4 )u = (g1g
α′

2 )t1u = hr̃
p.

106



The last equality holds because

gr̃ =: t̃g = gthu = gt1u ⇒ t = r̃.

Thus, we can compute the value needed to obtain untraceable coins in the system from [CMS96], and this
implies the ability to solve the Diffie-Hellman problem. As this is believed to be infeasible, we conclude
that it is also infeasible to obtain untraceable coins in our scheme.

6.4.3 Self-Escrowing

Our system fulfills the requirements R1, R2, R3 from Subsection 5.1.1: T being passive, he doesn’t
participate in the regular protocols (withdrawal and payment), but performs only anonymity revocation;
T is therefore trusted only for tracing (R1). During withdrawal, T is passive; U encrypts the tracing
information d and proves its correct construction to B (R2). The public key of T isn’t needed during
payment or deposit (R3).

The modifications to the our scheme are analogous to those to the system from [CMS96]:

At account opening, U provides an additional public key pktrace := gsktrace
2 and proves knowledge of the

corresponding secret key sktrace . U signs pktrace with his regular signature key to prevent dispute about
it.

At withdrawal, the encrypted tracing information d := yφ
T is replaced by d := pkφ

trace . Consequently, the
proofs U1, U2 about the correct construction of hw1 , hw2 , and d become

U1 := ProofEQLOG(ε, g1, (hw1/g2), d, pktrace),

U2 := ProofEQLOG(ε, g3, (hw2/g4), d, pktrace).

Since logg1(hw1/g2) = logd(pktrace) and logg3(hw2/g4) = logd(pktrace), B’s verification of U1 and U2 will
succeed.

At payment, pktrace is never handed to S. Neither is any other value that would make it possible for
S or B or both to link the payment to the withdrawal of the coin. Thus, the self-escrow-based scheme
preserves U ’s anonymity just as well as the escrow-based one.

Tracing is done as in our escrow-based scheme: B retrieves the encrypted tracing information d :=
pkφ

trace = (gsktrace
2 )φ. U then computes g1d

1/sktrace = g1g
φ
2 = hp1 .

6.5 Off-line Payments

We’all adapt the modifications that transformed the on-line system from [CMS96] to an off-line scheme
to our system; the withdrawal and payment protocols are slightly modified, allowing B to identify double-
spenders without the help of T . The anonymity of honest users is maintained.

The proof V is redefined; we assume that it was implemented as in Subsection 2.7.4. Then, to un-
derstand how the identification of double-spenders works, one has to keep in mind that V is an ex-
tended Schnorr signature. During its generation, the signer U chooses a random value r to compute c as
c := H(m||g1||g2||h1||h2||gr

1 ||gr
2). If two different messages are signed using the same value r, the secret

key can be computed from the two signatures. Therefore it suffices to force U to compute V using the
same r for a given coin. Double-spending will then result in B being able to compute the secret key used
to create V , which is φ; then B can look up d = yφ

T in the withdrawal database, and thus identify U .

U has to choose rp (which plays the role of r) and use tp := g
rp

2 instead of the coin number c# as
the message m in protocol POSC during withdrawal, i.e. U ’s input to protocol POSC changes from
(y, c#, hw1 , hw2 , φ) to (y, tp, hw1 , hw2 , φ). Since this is the only modification to the withdrawal protocol,
the whole new protocol is not shown here.

The new payment protocol, however, is presented in Figure 6.15; U sends (hp1 , hp2 , zp, αg, αh, ε, ρ, σ, tp) to
S. After verifying the modified Okamoto-Schnorr signature sig := (αg, αh, ε, ρ, σ) resulting from protocol
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U
(hp1 , hp2 , zp, αg, αh, ε, ρ, σ, tp, rp, φ)

S

sig := (αg, αh, ε, ρ, σ)

−
hp1 , hp2 , zp, sig, tp
−−−−−−−−−−−−−−→

verify sig
cp := H(IDS ||cnt||sig)

←−
cp

−−−−−−−−−−−−−
sp := rp − cpφ

−
sp

−−−−−−−−−−−−−→
g

sp

2 (hp1/g1)cp
?= tp

g
sp

4 (hp2/g3)cp
?= tp

V := (cp, sp)

(hp1 , hp2 , zp, sig), tp, V, cnt)

Figure 6.15: Off-line payment.

POSC , S provides U with the challenge cp := H(IDS ||cnt||sig) and obtains the response sp := rp − cpφ
(mod q). The verifications subsequently performed by S succeed if sp was computed correctly, because
then

g
sp

2 (hp1/g1)cp = g
rp−cpφ
2 (hφ

w1
/g1)cp = g

rp−cpφ
2 g

cpφ
2 = g

rp

2 = tp,

g
sp

4 (hp2/g3)cp = g
rp−cpφ
4 (hφ

w2
/g1)cp = g

rp−cpφ
2 g

cpφ
4 = g

rp

2 = tp.

The equalities hpi = hφ
wi

= g1g
φ
2 hold for i ∈ {0, 1} because sig proves that the withdrawal protocol was

executed correctly.

The “new” proof V obtained by S is V := (cp, sp); S’ final result (hp1 , hp2 , zp, sig), tp, V, cnt) can be
passed to B for deposit who will be able to verify both sig and V . The counter value cnt serves to protect
U against S framing him as a double-spender; if cnt wasn’t included, S could double-deposit the coin
and say U paid twice with it. With cnt, B will only believe this if the values cnt, cnt’ in the two payment
transcripts differ, i.e. if U actually responded to two different challenges.

As for the off-line version of the scheme from [CMS96], including sig links V to a specific withdrawal and
therefore to this specific coin.

Double-spender Identification

If U spends a coin twice, B will end up with two different challenge-response pairs (cp, sp), (c′p, s′p) related
to the coin. B then computes

sp − s′p = rp − cpφ− rp + c′pφ = φ(c′p − cp)

⇒ φ =
sp − s′p
c′p − cp

and d = yφ
T ,

and looks d up in the withdrawal database, thus identifying U .
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Changes in Security

Avoiding double-spender identification requires the ability to forge the signature V ; this is believed to
be infeasible.

U can be falsely accused of overspending by B if B can present two different signatures V for one coin
although U spent the coin only once. This means being able to forge V , which is believed to be infeasible.
Should U indeed overspend, then B could compute φ and collude with some S to further overspend the
coin.

Theft or extortion of coins paid to S is prevented by including IdS in the payment transcript and thus
making the coin depositable only by S.

For all other aspects, the off-line scheme is as secure as the on-line system.

6.5.1 Self-Escrowing

Implementing self-escrowing in the off-line scheme works just as for the on-line system.
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Chapter 7

Conclusion

In the previous chapters, we presented various escrow-based e-cash systems and investigated their se-
curity. Self-escrowing against user blackmailing was generalized and we showed that for schemes with
a passive trutee, it can be implemented by replacing the trustee by the user. We then addressed ways
to provide formal proofs of security against coin forgery while keeping the schemes efficient. Based on a
provably secure signature scheme, we built an on-line escrow-based scheme which can be made self-escrow-
based. Moreover, both variants of it can be modified so as to provide off-line payments. The security of
our scheme against coin forgery was proven in the random oracle model by black box reduction.

7.1 Open Problems

As far as the security of our scheme against other attacks than coin forgery is concerned, it would be
interesting to prove it in a rigorous way, i.e. without “plausibility arguments”, but with formal proofs
instead.

Furthermore, the security of our scheme against coin forgery should be provable by application of an
adapted version of the forking lemma, instead of the reduction we performed.

Finally, it remains open whether the efficiency of our scheme can be improved without loss of security.

7.2 Other Approaches

In the following, we’ll briefly present approaches to anonymity control which are different from those
investigated in this thesis.

7.2.1 Flow Control [STS99a]

In [STS99a], it was claimed that anonymity control is mainly desirable to prevent the (illegal) flow of
large amounts of money, while untraceability and unlinkability of small cash amounts can be tolerated
as with paper-based cash. The suggested “flow control” approach therefore allows each user to spend
only a limited amount of e-cash anonymously in a given time frame. To prevent the accumulation of
many small amounts of e-cash to a large amount, the electronic coins have to be non-transferable. The
basic idea for achieving this is to make the coins spendable only by someone who knows a so-called
nontransferability secret. This secret has to be of such importance that no user would give it away (e.g.
a digital signature key that can be used to sign documents of legal relevance); alternatively, the secret
can be hidden altogether from the user (e.g. stored in a tamper-resistant device which in turn could
require biometric authentication). As the authors of [STS99a] pointed out, no system can be perfectly
non-transferable, but as the amount of work a criminal would have to do to accumulate a reasonable
amount of anonymous e-cash rises, such a scenario gets more and more improbable.
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Both an on-line and an off-line scheme were presented; the latter is based on [Bra93].

7.2.2 Auditable Anonymous E-Cash [STS99b]

In [STS99b], a fully anonymous electronic cash system was presented which isn’t signature-based. More-
over, it is auditable, i.e. banks can’t secretly issue coins; this implies that blackmailing a bank won’t
work, because even if the bank remains silent, the auditing authority will notice the attack. This also
prevents insider attacks or theft of secret keys of a bank (actually, there are no secret keys of banks
required for issuing coins). It is of course assumed that coins can be invalidated.

The bank maintains a public database based on a list of valid coins, and the user proves during payment
that he knows one of these coins, without showing it. Thus, his anonymity is preserved. The public
database consists of a forest of so-called hash trees, which are binary trees such that for a given hash
function H the following holds: for any vertex v with two children v1, v2, we have v = H(v1, v2). The
coins consist of a value z of a leaf of a tree together with values that form a so-called hash chain from z
to the root of the tree.

The roots of all trees in the forest are broadcast at regular intervals to all shops. If a shop chooses to
receive these updates less frequently, the only limitation is that it won’t be able to accept coins withdrawn
recently.

The system from [STS99b] was stated to be “theoretically efficient but not yet practical.”
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